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Abstract

In some speaker recognition scenarios we find conversations
recorded simultaneously over multiple channels. That is the
case of the interviews in the NIST SRE dataset. To take ad-
vantage of that, we propose a modification of the PLDA model
that considers two different inter-session variability terms. The
first term is tied between all the recordings belonging to the
same conversation whereas the second is not. Thus, the for-
mer mainly intends to capture the variability due to the phonetic
content of the conversation while the latter tries to capture the
channel variability. We test this approach on the NIST SRE12
core condition using multiple channels per interview to enroll
the speakers. The proposed approach improves the minimum
DCF by 26–29 % on telephone speech and by 1–8% on inter-
views compared to the standard PLDA (scoredby the book).

Index Terms: Speaker recognition, PLDA, i-vectors, si-
multaneous recordings.

1. Introduction
In some speaker recognition scenarios speech is recorded si-
multaneously by several microphones. That is the case of the
NIST speaker recognition evaluations (SRE) where interviews
are recorded over 14 different microphones [1]. However, in the
context of NIST evaluations, this fact has never been explicitly
exploited and, in practice, simultaneous recordings are treated
as recordings from different conversations [2–4].

In the context of microphone arrays, beam-forming algo-
rithms create a direction dependent gain pattern that enhances
the speech in the direction of the target speaker [5–8]. However,
usually, as in NIST interviews, microphones are not configured
in arrays so we cannot always apply those techniques.

In [9], we find another example of exploiting simultaneous
recordings. There stereo data is used to train a linear transfor-
mation from a noisy environment to a clean environment us-
ing phoneme dependent multi-environment models based linear
normalization (PD-MEMLIN). That transformation is applied
to clean noisy signals.

In this work, we propose an extension of the well known
PLDA model [10] that takes advantage of conversations
recorded over multiple channels. We consider a PLDA with
two terms of inter-session variability where the first one intends
to account for inter-conversation variability and the second one
for intra-conversation variability (microphone variability).

The paper is organized as follows. Section 2 introduces the
baseline PLDA. Section 3 describes the extended PLDA and the

mathematical formulation. Section 4 presents our experimental
setup and results. Finally, section 5 shows our conclusions.

2. PLDA
PLDA [10] is a generative model that assumes that an i-vector
φij from the sessionj of speakeri can be written as:

φij = µ+Vyi +Uxij + ǫij (1)

whereµ is a speaker independent term,V is a low rank matrix
of eigenvoices,yi is the speaker factor vector,U is a low rank
matrix of eigenchannels,xij is the channel factor vector andǫij
is an offset that accounts for the rest of channel variability not
included inUxij .

Gaussian priors are assumed for the latent variables:

yi ∼ N (yi|0, I) (2)

xij ∼ N (xij |0, I) (3)

ǫij ∼ N
(

ǫij |0,D
−1

)

(4)

whereN denotes a Gaussian distribution; andD is a diag-
onal precision matrix. The parametersµ, V, U and andD
are trained from a development database by ML and MD itera-
tions [11]. We denote byM the set of all the model parameters.

If the U matrix is full rank, this model is equivalent to a
simplified model (SPLDA) withoutU and with full covariance
D [4].

3. PLDA with two types of inter-session
variability

3.1. Model description

Let’s suppose that we have available i-vectors from conversa-
tions that were recorded simultaneously over different channels
or noisy conditions. We define a new PLDA model such as an
i-vectorφijl of speakeri, conversationj and recorded over a
channell can be written as:

φijl = µ+Vyi +Uxij + ǫijl (5)

where the channel factorsxij are tied between all the i-vectors
belonging to the same conversation whereas the channel offset
ǫijl is different for each i-vector. In this case the prior forǫijl is
chosen to be

ǫijl ∼ N
(

ǫijl|0,W
−1

)

(6)
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Figure 1: BN PLDA with two types of inter-session variability

whereW is a full-rank precision matrix.
This model intends to decompose the inter-session variabil-

ity into two terms that account for different types of variability.
The termUxij , being tied for all the channel types, should ac-
count for variability different from the channel, mainly phonetic
variability. On the contrary, the termǫijl should account for the
channel variability.

Figure 1 depicts the Bayesian network of the model. We
use the notation of [12]. The variablesθij and zijl indicate
who is the speaker in conversationij and which conversation
corresponds to segmentijl, respectively. Each speaker hasHi

conversations and each conversation is recorded overLij chan-
nels.

3.2. Posterior of the hidden variables

In order to implement this model, we need the posterior distri-
bution of the latent factors. That is needed for the E-step of the
EM algorithm as much as for the evaluation of likelihood ratios.
The posterior can be decomposed into two factors:

P (yi,Xi|Φi,M) = P (Xi|yi,Φi,M)P (yi|Φi,M) (7)

whereΦi is the set of all the i-vectors of speakeri andXi the
set of all the channel factors.

3.2.1. Sufficient statistics

We find convenient to define some sufficient statistics. The con-
versation dependent statistics are

Fij =

Lij
∑

l=1

φijl (8)

Fij =Fij − Lijµ (9)

whereLij is the number of simultaneous channels for the con-
versationij. The speaker dependent statistics are

Ni =

Hi
∑

j=1

Lij (10)

Fi =

Hi
∑

j=1

Fij (11)

whereHi are the number of conversations andNi the total num-
ber recordings of speakeri.

3.2.2. Conditional posterior ofXi

The conditional posterior of channel factorsXi is a product of
Gaussians:

P (Xi|yi,Φi,M) =

Hi
∏

j=1

N
(

xij |xij ,L
−1

xij

)

(12)

where

ζij =ζ̃ij − LijJyi (13)

ζ̃ij =U
T
WFij (14)

J =U
T
WV (15)

Lxij
=I+ LijU

T
WU (16)

xij =L
−1

xij
ζij (17)

3.2.3. Posterior ofyi

The marginal posterior of speaker factorsyi is also Gaussian

P (yi|Φi,M) = N
(

yi|yi,L
−1

yi

)

(18)

where

Lyi
=I+NiV

T
WV −

Hi
∑

j=1

L2

ijJ
T
L

−1

xij
J (19)

γi =γ̃i −

Hi
∑

j=1

LijJ
T
L

−1

xij
ζ̃ij (20)

γ̃i =V
T
WFi (21)

yi =L
−1

yi
γi (22)

Note that if all the conversations were recorded over only
one channel (Lij = 1 for all), we would obtain the same equa-
tions as for the standard PLDA [11].

The equations for the M-step are the same as for the stan-
dard PLDA but using equations (12) and (18) to computed the
needed expectations.

4. Experiments
4.1. Development and evaluation datasets

We carried out experiments on the NIST SRE12 core condi-
tion [13]. This evaluation presented significant differences com-
pared with previous ones. In previous evaluations, the enroll-
ment data was released at evaluation time. In NIST SRE12,
most of the target speakers were taken from evaluations SRE06
to SRE10. For enrolling each speaker, it was allowed to use all
the data available. Thus, the core condition, instead of posing a
1 side against 1 sidescenario, represents aN sides against 1
sidescenario. Besides, it was allowed to use the target speak-
ers data for development (training of UBM, i-vector extractor
and calibration, score normalization, etc.), that was also differ-
ent from previous evaluations. Furthermore, the evaluation pro-
posed new challenges like speech with artificially added noise,
speech collected in noisy environments and segments of differ-
ent duration.

We created our development dataset for the evaluation tak-
ing those differences into account. The dataset was divided into
two parts:



• Training: This part includes all the signals from SRE04,
SRE05, SRE06 and 70% of the signals of SRE08 and
SRE10. We used it to train the UBM, JFA, and PLDA
models. Besides, the segments in SRE08 and SRE10
parts were used to enroll the target speakers.

• Test: We reserved a 30% of the speech in SRE08 and
SRE10 to create a test set for training calibration and
evaluating our system. It includes short telephone calls,
short and long interviews and 10 seconds calls.

The segments excerpted from the same phonecall or interview
(same ldc-id) were assigned to the training part or to the test
part but not to both.

Both parts of the dataset were augmented adding Babble
and HVAC1 noises of 15 and 6 dB of signal-to-noise ratio fol-
lowing NIST SRE12 guidelines. The Babble noises were cre-
ated averaging 1000 conversations from previous evaluations.
Different noise samples were added to the training and test
datasets. To add the noise, the power of the noise and speech
signals was estimated with a psophometric filter and a VAD.
The noise added to telephone segments was filtered by a simu-
lated telephone channel.

Adding noisy versions, our training set includes 66457 male
and 87826 female segments from 982 male and 1372 female
speakers.

The enrollment lists include all the telephone and interview
segments of the SRE12 target speakers without noisy versions.

4.2. Speaker recognition system configuration

As features, we used 20 short-time Gaussianized MFCC with
deltas and double deltas. We trained full covariance, gender
dependent UBM with 2048 components. We used a 600 dimen-
sion i-vector extractor. Both UBM and i-vector extractor were
trained on telephone data from our development dataset without
added noise.

We reduced the i-vector dimensionality to 400 using PLDA.
That has the side effect of centering and whitening the i-
vectors [4]. Then, we applied i-vector length normaliza-
tion [14]. Finally, we evaluated the trials applying the standard
PLDA or the proposed PLDA (PLDA2CHT). Both PLDA, the
one used for dimensionality reduction and the one used for clas-
sification, were trained on telephone and microphone data aug-
mented with noise.

To score the trials, we compared three strategies: standard,
i-vector averaging (ivavg) and i-vector statistics scaling (iv-
sscal). GivenN enrollment i-vectorsΦtrn of a target speaker
and a test i-vectorφtst; the standard scoring consists of com-
puting the likelihood ratio between the probability that all the
i-vectors belong to the same speaker and the probability that
Φtrn belong to one speaker andφtst to another. This is, theo-
retically, the correct way of scoring the trial. Because of that,
it is also calledby the bookor N against1 scoring. It can be
shown that the likelihood ratio can be computed as [15]:

R (Φtrn, φtst) =
P (Φtrn, φtst|T )

P (Φtrn, φtst|N )
(23)

=
P (y0|Φtrn)P (y0|φtst)

P (y0)P (y0|Φtrn, φtst)

∣

∣

∣

∣

y0=0

(24)

where we plug-in the standard PLDA posteriorP (y|Φ) or the
PLDA 2CHT posterior given in equation (18). i-vector aver-
aging consist of averaging the enrollment i-vectors of the target

1We downloaded HVAC noises from Freesound.org

speaker and computing the likelihood ratio in a1 against 1fash-
ion.

i-vector averaging proved superior performance in the sys-
tems submitted to NIST 2012 evaluation. The success of
i-vector averaging could be explained because considering
many enrollment i-vectors, somehow, overfits the estimation
of P (y|Φtrn), that is, produces a posterior ofy with a too
small covariance. On the contrary, having only one enrollment
i-vector makes the posterior wider. Another explanation could
be that having a different number of enrollment i-vectors for
each target speaker, the scores produced by PLDA are in a dif-
ferent range of values whereas, having only one enrollment i-
vector per speaker produces better aligned scores.

To combine the strengths of i-vector averaging and the
PLDA with two variability terms, we propose to scale the suffi-
cient statistics used to computeP (y|Φ) like this:

F
′

ij =
Fij

HiLij

(25)

F
′

i =

Hi
∑

j=1

F
′

ij (26)

L′

ij =1/Hi (27)

N ′

i =

Hi
∑

j=1

L′

ij = 1 . (28)

Doing that, we control the weight of each i-vector in the calcu-
lus of the posterior. To be precise, the weight of each conversa-
tion is 1/Hi and the number of effective i-vectors isN ′

i = 1,
the same as in i-vector averaging. The weight of each i-vector
on its corresponding conversation is1/Lij .

We did not explicitly calibrate the scores. The Actual DCF
is computed with the scores straight out of the PLDA.

4.3. Results

Table 1 shows results on the NIST SRE12 core condition. The
common conditions considered in 2012 as primary performance
indicators include the following subsets of trials:

• Det1: All trials involving multiple segment training and
interview speech in test without added noise in test.

• Det2: All trials involving multiple segment training and
phone call speech in test without added noise in test.

• Det3: All trials involving multiple segment training and
interview speech with added noise in test.

• Det4: All trials involving multiple segment training and
phone call speech with added noise in test.

• Det5: All trials involving multiple segment training and
phone call speech intentionally collected in a noisy envi-
ronment in test.

Results are reported in terms of Equal Error Rate (EER), Mini-
mum Detection Cost Function (MinDCF) and Actual Detection
Cost Function (ActDCF) as defined by NIST [13]. The new pri-
mary DCF is the average of the classical DCF in two operating
points (PT = 0.01 and0.001).

For clean interviews (det1), standard PLDA is better in
terms of EER and PLDA2CHT in term of minDCF. The ver-
sions with i-vector averaging and stats scaling clearly outper-
form the versions scoredby the book. For noisy interviews
(det3), the PLDA2CHT presents slightly better performance.
However, stats scaling is superior in terms of EER and, standard



Table 1: EER, minDCF and actDCF of PLDA approaches on
the SRE12 core condition.

Cond. System EER(%) MinDCF ActDCF
PLDA 5.51 0.350 0.441
PLDA 2CHT 5.62 0.322 0.418
PLDA ivavg 4.31 0.333 1.296Det1

PLDA 2CHT iv-sscal 4.54 0.318 0.527

PLDA 8.93 0.550 0.604
PLDA 2CHT 5.97 0.390 0.426
PLDA ivavg 1.89 0.243 0.321Det2

PLDA 2CHT iv-sscal 1.70 0.212 0.235

PLDA 5.32 0.278 0.345
PLDA 2CHT 5.26 0.275 0.356
PLDA ivavg 5.16 0.345 2.162Det3

PLDA 2CHT iv-sscal 4.75 0.312 0.913

PLDA 10.14 0.632 0.724
PLDA 2CHT 7.42 0.470 0.545
PLDA ivavg 2.73 0.273 0.278Det4

PLDA 2CHT iv-sscal 2.51 0.237 0.242

PLDA 10.04 0.587 0.660
PLDA 2CHT 6.85 0.430 0.477
PLDA ivavg 2.30 0.264 0.490Det5

PLDA 2CHT iv-sscal 2.05 0.195 0.213

scoring in terms of minDCF. The standard scoring produces bet-
ter naturally calibrated scores than i-vector averaging and stats
scaling. Nevertheless, that can be solved by a calibration step.

Regarding conditions involving telephone speech in test
(det2,4,5), the differences between PLDA and PLDA2CHT are
more significant. Using standard scoring, PLDA2CHT outper-
forms the PLDA achieving a relative improvement of 27–33%
in terms of EER and 26–29% in terms of minDCF. Further-
more, i-vector averaging and stats scaling clearly outperform
the standard scoring. The PLDA2CH with stats scaling im-
proves by 8–10% in terms of EER and by 12–26% in terms
of minDCF with regard to PLDA with i-vector averaging. The
PLDA 2CHT with scaling produces very well calibrated scores.
Figure 2 shows DET curves [16] for condition det2. The curves
prove that the behavior of the systems is consistent over all op-
erating points.

The improvement of the PLDA2CHT, larger in phonecalls
than in interviews can be explained because, cross-channel (in-
terview vs telephone) compensation is not good enough and,
for most speakers, there are more enrollment interviews than
phonecalls.

5. Conclusions
In this paper, we presented an extension of the standard PLDA
model that considers two different terms of inter-session vari-
ability (channel terms). This model takes advantage of scenar-
ios that include conversations recorded simultaneously over dif-
ferent channels. To do that, the first channel term is tied between
all the recordings belonging to the same conversation while the
second is allowed to be different for every recording. Thus, we
intend that the former captures the variability between conversa-
tions, mainly phonetic variability, and the latter, the variability
between channels.

The approach was tested on the core condition of the recent
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Figure 2: DET curves for the condition with telephone speech
without added noise on test (det2).

NIST 2012 speaker recognition evaluation. In this evaluation,
we count with interviews recorded simultaneously over several
channels to train the PLDA and to enroll the target speakers.
For conditions with interview speech on test, the differences
between the approaches evaluated were not very significant.
However, the proposed PLDA achieved a clear gain compared
to standard PLDA on phonecalls. The minDCF improves by
around 27% if we compare both PLDA scoredby the bookand
by around 17% if we use i-vector averaging and stats scaling
scorings.

6. Acknowledgments
The work of GTC is supported by the Spanish Government
and the European Union (FEDER) through projects TIN2011-
28169-C05-02 and INNPACTO IPT-2011-1696-390000. The
work of GTTS is supported by the University of the Basque
Country under grant GIU10/18 and Mireia Diez is supported by
a 4-year research fellowship from the Department of Education,
University and Research of the Basque Country. We would like
to thank Brno University of Technology for hosting the 2012
Bosaris workshop where this work began.



7. References
[1] C. Cieri, L. Corson, D. Graff, and K. Walker, “Resources for New

Research Directions in Speaker Recognition: The Mixer 3, 4 and
5 Corpora,” inInterspeech 2007, Antwerp (Belgium), Aug. 2007.

[2] Y. Lei, L. Burget, L. Ferrer, M. Graciarena, and N. Scheffer,
“Towards Noise-Robust Speaker Recognition Using Probabilis-
tic Linear Discriminant Analysis,” inInternational Conference on
Acoustics, Speech and Signal Processing ICASSP 2012, Kyoto
(Japan), Mar. 2012, pp. 4253–4256.

[3] D. Garcia-Romero, X. Zhou, and C. Y. Espy-Wilson, “Multicon-
dition Training of Gaussian PLDA Models in i-Vector Space for
Noise and Reverberation Robust Speaker Recognition,” inInter-
national Conference on Acoustics, Speech and Signal Processing
ICASSP 2012, Kyoto (Japan), Mar. 2012, pp. 4257–4260.

[4] J. Villalba and E. Lleida, “Handling i-Vectors from Different
Recording Conditions Using Multi-Channel Simplified PLDA in
Speaker Recognition,” inInternational Conference on Acous-
tics, Speech and Signal Processing ICASSP 2013, Vancouver
(Canada), May 2013.

[5] Q. L. Q. Lin, E.-E. J. E.-E. Jan, and J. Flanagan, “Microphone
arrays and speaker identification,”Ieee Transactions On Speech
And Audio Processing, vol. 2, no. 4, 1994.

[6] J. Ortega-Garcia and J. Gonzalez-Rodriguez, “Providing single
and multi-channel acoustical robustness to speaker identification
systems,” in1997 IEEE International Conference on Acoustics
Speech and Signal Processing, vol. 2. IEEE Comput. Soc. Press,
1997, pp. 1107–1110. [Online]. Available: http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=596135

[7] I. A. Mccowan, J. Pelecanos, and S. Sridharan, “Robust Speaker
Recognition using Microphone Arrays,” inOdyssey Speaker and
Language Recognition Workshop, no. 1, Crete (Greece), 2001.

[8] J. W. Stokes, J. C. Platt, and S. Basu, “Speaker Identification us-
ing a Microphone Array and a Joint HMM with Speech Spectrum
and Angle of Arrival,” in2006 IEEE International Conference on
Multimedia and Expo, 2006.

[9] L. Buera, E. Lleida, J. D. Rosas, J. Villalba, A. Miguel, A. Or-
tega, and O. Saz, “Speaker verification and identification using
Phoneme Dependent Multi-Environment Models based LInear
Normalization in adverse and dynamic acoustic environments,”
in Summer School for Advanced studies on Biometrics for Secure
Authentication Multimodality ans System Integration, 2005.

[10] S. J. D. Prince and J. H. Elder, “Probabilistic Linear Discriminant
Analysis for Inferences About Identity,”IEEE International
Conference on Computer Vision, no. iii, pp. 1–8, 2007. [Online].
Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=4409052

[11] N. Brummer, “EM for Probabilistic LDA,” Agnitio Research,
Cape Town (South Africa), Tech. Rep. February, Feb. 2010.
[Online]. Available: https://sites.google.com/site/nikobrummer/
EMforPLDA.pdf

[12] C. Bishop,Pattern Recognition and Machine Learning. Springer
Science+Business Media, LLC, 2006.

[13] “The NIST Year 2012 Speaker Recognition Evaluation Plan,”
NIST, Tech. Rep., 2012. [Online]. Available: http://www.nist.
gov/itl/iad/mig/upload/NIST\ SRE12\ evalplan-v17-r1.pdf

[14] D. Garcia-Romero and C. Y. Espy-Wilson, “Analysis of I-vector
Length Normalization in Speaker Recognition Systems,” inInter-
speech 2011, Florence, 2011, pp. 249–252.

[15] N. Brummer and E. De Villiers, “The Speaker Partitioning Prob-
lem,” in Odyssey Speaker and Language Recognition Workshop,
Brno, Czech Republic, 2010.

[16] A. F. Martin, G. R. Doddington, T. Kamm, M. Ordowski,
and M. A. Przybocki, “The DET curve in assessment
of detection task performance,” inFifth European Confer-
ence on Speech Communication and Technology, vol. 97,
ISCA. Citeseer, 1997, pp. 1895–1898. [Online]. Avail-
able: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
117.4489\&amp;rep=rep1\&amp;type=pdf


