PROCESSOR __|
STATUS

MC6800
PERIPHERAL —
CONTROL

SYSTEM _|
CONTROL

Vec@
GND()
CLK

FCo

ADDRESS
BUS

A23-A0

B
c=9

D15-D0

ASYNCHRONOUS
— BUS
CONTROL

BUS
— ARBITRATION
CONTROL

| INTERRUPT
CONTROL

Function Code Qutput

FC2 FC1 FCO

Address Space

(Undefined, Reserved)®

User Data

User Program

(Undefined, Reserved)”

(Undefined, Reserved)”

Supervisor Data

Supervisor Program

alalalalole|le|lo

1] 0
1] 1
1 0
1 1
0 0
0 1
1 0
1 1

CPU Space

*Address space 3 is reserved for user definition, while 0 and

4 are reserved for future use by Motorola.

Vectors Numbers Address
Hex Decimal Dec Hex Spacas Assignment
0 0 0 000 SP | Reset: Initial SSP2
1 1 4 004 SP | Reset: Initial PC2
2 2 8 oos SD Bus Error
3 3 12 0oC sD Address Error
4 B! 16 010 SD lllegal Instruction
5 5 20 014 SD Zero Divide
6 6 24 018 SD CHK Instruction
7 7 28 01C SD TRAPV Instruction
8 8 32 020 SD Privilege Violation
9 9 36 024 SD Trace
A 10 40 028 SD Line 1010 Emulator
B 11 44 02C SD Line 1111 Emulator
C 121 48 030 SD (Unassigned, Reserved)
D 131 52 034 SD (Unassigned, Reserved)
E 14 56 038 SD Format Error2
F 15 60 03C sD Uninitialized Interrupt Vector
10-17 16-231 B84 040 SD (Unassigned, Reserved)
92 05C —
18 24 96 060 sD Spurious Interrupt3
19 25 100 064 SD Level 1 Interrupt Autovector
1A 26 104 068 sD Level 2 Interrupt Autovector
1B 27 108 06C SD Level 3 Interrupt Autovector
1C 28 112 oro sD Level 4 Interrupt Autovector
1D 29 116 074 SD Level 5 Interrupt Autovector
1E 30 120 078 SD Level 6 Interrupt Autovector
1F 31 124 o7C sD Level 7 Interrupt Autovector
20-2F 3247 128 080 SD TRAP Instruction Vectors?
188 0BC —
30-3F 48631 192 0Co sD (Unassigned, Reserved)
255 OFF —
40-FF 64-255 256 100 SD User Interrupt Vectors
1020 3FC —

Group Exception Processing
0 Reset Exception Processing Begins within Two Clock Cycles
Address Error
Bus Error
1 Trace Exception Processing Begins before the Next Instruction
Interrupt
lllegal
Privilege
2 TRAP, TRAPV, | Exception Processing Is Started by Normal Instruction Execution
CHK
Zero Divide
EVEN BYTE 0DD BYTE
1 0|7 0
15 0 HIGHER
ADDRESS
5P —>= STATUS REGISTER

PROGRAM COUNTER HIGH

PROGRAM COUNTER LOW

N 7Groupr‘! anqg Excgprtionistack Frarn]sr.-r

15 " 13 12 n 10 9 a 7 6 5 4 3 2 1 0

LOWER ADDRESS ‘ RW | N | FUNCTION CODE
HIGH
F —ACCESSADDRESS — — — — — — — = — = — = — = — = — = = = — — — — — — — — — — - — — 1
LowW
INSTRUCTION REGISTER
STATUS REGISTER
HIGH
F PROGRAMCOUNTER - — — — — = — = = — — — — — & — & - - oo
Low

R/W (Read/Write): Write=0, Read=1. I/N (Instruction/Not): Instruction=0, Not=1

. Supervisor Stack Order for Bus or Address Error Exception

NOTES:

1.

w

@ oM

Vector numbers 12, 13, 16-23, and 48-63 are reserved for future
enhancements by Motorola. No user peripheral devices should be
assigned these numbers.

Reset vector (0) requires four words, unlike the other vectors which only
require two words, and is located in the supervisor program space.
The spurious interrupt vector is taken when there is a bus error
indication during interrupt processing.

TRAP #n uses vector number 32+ n.

MCB8010 only. This vector is unassigned, reserved on the MC68000
and MCB8008.

SP denotes supervisor program space, and SD denotes

supervisor data space.

Exception Processing Sequence

In the first step of exception processing, an internal copy is made of the status register. After the
copy is made, the S bit of the status register is set, putting the processor into the supervisor mode.
Also, the T bit is cleared, which allows the exception handler to execute unhindered by tracing. For
the reset and interrupt exceptions, the interrupt priority mask is also updated appropriately.

In the second step, the vector number of the exception is determined. For interrupts, the vector
number is obtained by a processor bus cycle classified as an interrupt acknowledge cycle. For all
other exceptions, internal logic provides the vector number. This vector number is then used to
calculate the address of the exception vector.

The third step, except for the reset exception, is to save the current processor status. (The reset
exception does not save the context and skips this step.) The current program counter value and
the saved copy of the status register are stacked using the SSP. The stacked program counter value
usually points to the next unexecuted instruction. However, for bus error and address error, the
value stacked for the program counter is unpredictable and may be incremented from the address
of the instruction that caused the error. Group 1 and 2 exceptions use a short format exception
stack frame. Additional information defining the current context is stacked for the bus error and
address error exceptions.

The last step is the same for all exceptions. The new program counter value is fetched from the
exception vector. The processor then resumes instruction execution. The instruction at the address
in the exception vector is fetched, and normal instruction decoding and execution is started.

Reset

The reset exception corresponds to the highest exception level. The
processing of the reset exception is performed for system initiation and
recovery from catastrophic failure. Any processing in progress at the
time of the reset is aborted and cannot be recovered. The processor is
forced into the supervisor state, and the trace state is forced off. The
interrupt priority mask is set at level 7. The vector number is internally
generated to reference the reset exception vector at location 0 in the
supervisor program space. Because no assumptions can be made about
the validity of register contents, in particular the SSP, neither the
program counter nor the status register is saved. The address in the first
two words of the reset exception vector is fetched as the initial SSP, and
the address in the last two words of the reset exception vector is
fetched as the initial program counter. Finally, instruction execution is
started at the address in the program counter. The initial program
counter should point to the powerup/restart code. The RESET
instruction does not cause a reset exception; it asserts the RESET signal
to reset external devices, which allows the software to reset the system
to a known state and continue processing with the next instruction.

Address Error

An address error exception occurs when the processor attempts to
access a word or longword operand or an instruction at an odd address.
An address error is similar to an internally generated bus error. The bus
cycle is aborted, and the processor ceases current processing and
begins exception processing. The exception processing sequence is the
same as that for a bus error, including the information to be stacked,
except that the vector number refers to the address error vector.
Likewise, if an address error occurs during the exception processing for
a bus error, address error, or reset, the processor is halted. The user
must be certain that the proper corrections have been made to the
stack image and user registers before attempting to continue the
instruction. With proper software handling, the address error exception
handler could emulate word or long-word accesses to odd addresses if
desired.

Bus Error

Exception processing for a bus error follows the usual sequence of steps.
The status register is copied, the supervisor mode is entered, and tracing
is turned off. The vector number is generated to refer to the bus error
vector. Since the processor is fetching the instruction or an operand
when the error occurs, the context of the processor is more detailed. To
save more of this context, additional information is saved on the
supervisor stack. The program counter and the copy of the status
register are saved. The value saved for the program counter is advanced
2-10 bytes beyond the address of the first word of the instruction that
made the reference causing the bus error. If the bus error occurred
during the fetch of the next instruction, the saved program counter has a
value in the vicinity of the current instruction, even if the current
instruction is a branch, a jump, or a return instruction. In addition to the
usual information, the processor saves its internal copy of the first word
of the instruction being processed and the address being accessed by
the aborted bus cycle. Specific information about the access is also
saved: type of access (read or write), processor activity (processing an
instruction), and function code outputs when the bus error occurred.
The processor is processing an instruction if it is in the normal state or
processing a group 2 exception; the processor is not processing an
instruction if it is processing a group 0 or a group 1 exception. If a bus
error occurs during the last step of exception processing, while either
reading the exception vector or fetching the instruction, the value of the
program counter is the address of the exception vector. Although this
information is not generally sufficient to effect full recovery from the bus
error, it does allow software diagnosis. Finally, the processor commences
instruction processing at the address in the vector. It is the responsibility
of the error handler routine to clean up the stack and determine where
to continue execution. If a bus error occurs during the exception
processing for a bus error, an address error, or a reset, the processor
halts and all processing ceases. This halt simplifies the detection of a
catastrophic system failure, since the processor removes itself from the
system to protect memory contents from erroneous accesses. Only an
external reset operation can restart a halted processor.

;’Egg ADDRESS Instruction Traps
— I> A23-R0 Traps are exceptions caused by instructions; they occur when a
> D15-D0 processor recognizes an abnormal condition during instruction
A - execution or when an instruction is executed that normally traps
- ll%z > ASYNCHRONOUS during execution. Exception processing for traps s
PROCESSOR - = s oL straightforward. The status register is copied; the supervisor
STAIUS “ STACK mode is entered; and tracing is turned off. The vector number is
_ _ — internally generated; for the TRAP instruction, part of the vector
E BR . . .
MC680D | €= < _ | BUS number comes from the instruction itself. The program counter,
PERIPHERAL — -«——22 — == 3 [ARBITRATION . i
CONTROL VPA ¢ BGACK CONTROL and the copy of the status register are saved on the supervisor
T o] stack. The saved value of the program counter is the address of
ﬁ %
SYSTEM | < RESET 5 <« PLI - '(’;VJIETRE(L)’ET the instruction following the instruction that generated the trap.
CONTROL %» < P2 Finally, instruction execution commences at the address in the
- ’ exception vector. Some instructions are used specifically to

generate traps. The TRAP instruction always forces an exception
and is useful for implementing system calls for user programs. The
TRAPV and CHK instructions force an exception if the user
program detects a run-time error, which may be an arithmetic
overflow or a subscript out of bounds. A signed divide (DIVS) or
unsigned divide (DIVU) instruction forces an exception if a
division operation is attempted with a divisor of zero.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5

