




Exception Processing Sequence
In the first step of exception processing, an internal copy is made of the status register. After the
copy is made, the S bit of the status register is set, putting the processor into the supervisor mode.
Also, the T bit is cleared, which allows the exception handler to execute unhindered by tracing. For
the reset and interrupt exceptions, the interrupt priority mask is also updated appropriately.

In the second step, the vector number of the exception is determined. For interrupts, the vector
number is obtained by a processor bus cycle classified as an interrupt acknowledge cycle. For all
other exceptions, internal logic provides the vector number. This vector number is then used to
calculate the address of the exception vector.

The third step, except for the reset exception, is to save the current processor status. (The reset
exception does not save the context and skips this step.) The current program counter value and
the saved copy of the status register are stacked using the SSP. The stacked program counter value
usually points to the next unexecuted instruction. However, for bus error and address error, the
value stacked for the program counter is unpredictable and may be incremented from the address
of the instruction that caused the error. Group 1 and 2 exceptions use a short format exception
stack frame. Additional information defining the current context is stacked for the bus error and
address error exceptions.

The last step is the same for all exceptions. The new program counter value is fetched from the
exception vector. The processor then resumes instruction execution. The instruction at the address
in the exception vector is fetched, and normal instruction decoding and execution is started.



Reset
The reset exception corresponds to the highest exception level. The
processing of the reset exception is performed for system initiation and
recovery from catastrophic failure. Any processing in progress at the
time of the reset is aborted and cannot be recovered. The processor is
forced into the supervisor state, and the trace state is forced off. The
interrupt priority mask is set at level 7. The vector number is internally
generated to reference the reset exception vector at location 0 in the
supervisor program space. Because no assumptions can be made about
the validity of register contents, in particular the SSP, neither the
program counter nor the status register is saved. The address in the first
two words of the reset exception vector is fetched as the initial SSP, and
the address in the last two words of the reset exception vector is
fetched as the initial program counter. Finally, instruction execution is
started at the address in the program counter. The initial program
counter should point to the powerup/restart code. The RESET
instruction does not cause a reset exception; it asserts the RESET signal
to reset external devices, which allows the software to reset the system
to a known state and continue processing with the next instruction.

Bus Error
Exception processing for a bus error follows the usual sequence of steps.
The status register is copied, the supervisor mode is entered, and tracing
is turned off. The vector number is generated to refer to the bus error
vector. Since the processor is fetching the instruction or an operand
when the error occurs, the context of the processor is more detailed. To
save more of this context, additional information is saved on the
supervisor stack. The program counter and the copy of the status
register are saved. The value saved for the program counter is advanced
2–10 bytes beyond the address of the first word of the instruction that
made the reference causing the bus error. If the bus error occurred
during the fetch of the next instruction, the saved program counter has a
value in the vicinity of the current instruction, even if the current
instruction is a branch, a jump, or a return instruction. In addition to the
usual information, the processor saves its internal copy of the first word
of the instruction being processed and the address being accessed by
the aborted bus cycle. Specific information about the access is also
saved: type of access (read or write), processor activity (processing an
instruction), and function code outputs when the bus error occurred.
The processor is processing an instruction if it is in the normal state or
processing a group 2 exception; the processor is not processing an
instruction if it is processing a group 0 or a group 1 exception. If a bus
error occurs during the last step of exception processing, while either
reading the exception vector or fetching the instruction, the value of the
program counter is the address of the exception vector. Although this
information is not generally sufficient to effect full recovery from the bus
error, it does allow software diagnosis. Finally, the processor commences
instruction processing at the address in the vector. It is the responsibility
of the error handler routine to clean up the stack and determine where
to continue execution. If a bus error occurs during the exception
processing for a bus error, an address error, or a reset, the processor
halts and all processing ceases. This halt simplifies the detection of a
catastrophic system failure, since the processor removes itself from the
system to protect memory contents from erroneous accesses. Only an
external reset operation can restart a halted processor.

Address Error
An address error exception occurs when the processor attempts to
access a word or longword operand or an instruction at an odd address.
An address error is similar to an internally generated bus error. The bus
cycle is aborted, and the processor ceases current processing and
begins exception processing. The exception processing sequence is the
same as that for a bus error, including the information to be stacked,
except that the vector number refers to the address error vector.
Likewise, if an address error occurs during the exception processing for
a bus error, address error, or reset, the processor is halted. The user
must be certain that the proper corrections have been made to the
stack image and user registers before attempting to continue the
instruction. With proper software handling, the address error exception
handler could emulate word or long-word accesses to odd addresses if
desired.



Instruction Traps
Traps are exceptions caused by instructions; they occur when a
processor recognizes an abnormal condition during instruction
execution or when an instruction is executed that normally traps
during execution. Exception processing for traps is
straightforward. The status register is copied; the supervisor
mode is entered; and tracing is turned off. The vector number is
internally generated; for the TRAP instruction, part of the vector
number comes from the instruction itself. The program counter,
and the copy of the status register are saved on the supervisor
stack. The saved value of the program counter is the address of
the instruction following the instruction that generated the trap.
Finally, instruction execution commences at the address in the
exception vector. Some instructions are used specifically to
generate traps. The TRAP instruction always forces an exception
and is useful for implementing system calls for user programs. The
TRAPV and CHK instructions force an exception if the user
program detects a run-time error, which may be an arithmetic
overflow or a subscript out of bounds. A signed divide (DIVS) or
unsigned divide (DIVU) instruction forces an exception if a
division operation is attempted with a divisor of zero.


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5

