KALAKA-2
A TV Broadcast Speech Database for the Recognition of Iberian Languages in Clean and Noisy Environments

Luis J. Rodríguez-Fuentes, Mikel Penagarikano, Amparo Varona, Mireia Diez, Germán Bordel,

Software Technologies Working Group (http://gtts.ehu.es)
Department of Electricity and Electronics, University of the Basque Country
Barrio Sarriena s/n, 48940 Leioa, Spain
email: luisjavier.rodriguez@ehu.es

LREC 2012, Istanbul, Turkey
May 23, 2012
Contents

1 Introduction
 - Motivation
 - Database features (in brief)

2 Design issues

3 Recording setup

4 Creating the database
 - Classification of recordings
 - Selection of speech segments
 - Automatic extraction of 30-, 10- and 3-second segments

5 Database evaluation
 - The Albayzin 2010 LRE
 - System development and evaluation based on KALAKA-2

6 Conclusions and future work
Motivation

- To support the **Albayzin 2010 Language Recognition Evaluation**, organized by the Spanish Network on Speech Technologies, from May to November 2010 (*second edition*).
Motivation

- To support the **Albayzin 2010 Language Recognition Evaluation**, organized by the Spanish Network on Speech Technologies, from May to November 2010 (*second edition*).

- To provide a multilingual speech database specifically designed for language recognition applications featuring Iberian languages as target languages (*including Portuguese and English*).
Motivation

- To support the **Albayzin 2010 Language Recognition Evaluation**, organized by the Spanish Network on Speech Technologies, from May to November 2010 (second edition).

- To provide a multilingual speech database specifically designed for language recognition applications featuring Iberian languages as target languages (including Portuguese and English).

- To measure the performance of state-of-the-art language recognition systems when dealing with noisy/overlapped speech, and compare it to the performance on clean speech.
Database features (in brief)

- Six target languages: Basque, Catalan, English, Galician, Portuguese and Spanish.
Database features (in brief)

- Six target languages: Basque, Catalan, English, Galician, Portuguese and Spanish.
- Out-Of-Set (OOS) languages, to allow open-set tests: Arabic, French, German and Romanian.
Database features (in brief)

- Six target languages: Basque, Catalan, English, Galician, Portuguese and Spanish.

- Out-Of-Set (OOS) languages, to allow open-set tests: Arabic, French, German and Romanian.

- Speech signals extracted from TV shows, including planned and spontaneous speech involving a varying number of speakers.
Database features (in brief)

- Six target languages: Basque, Catalan, English, Galician, Portuguese and Spanish.

- Out-Of-Set (OOS) languages, to allow open-set tests: Arabic, French, German and Romanian.

- Speech signals extracted from TV shows, including planned and spontaneous speech involving a varying number of speakers.

- Two types of speech signals: **clean** (mostly studio conditions) and **noisy** (noise, music or speech in the background, or overlapped speech)
Database features (in brief)

- Six target languages: Basque, Catalan, English, Galician, Portuguese and Spanish.
- Out-Of-Set (OOS) languages, to allow open-set tests: Arabic, French, German and Romanian.
- Speech signals extracted from TV shows, including planned and spontaneous speech involving a varying number of speakers.
- Two types of speech signals: clean (mostly studio conditions) and noisy (noise, music or speech in the background, or overlapped speech)
- Database size: around 125 hours (5 DVD, by request to authors)
 - Training dataset: 82 hours (more than 13 hours per target language, 80% clean + 20% noisy)
 - Development dataset: 21,5 hours (4950 segments, 3 nominal durations, target and OOS languages, 70% clean + 30% noisy)
 - Evaluation dataset: 21,5 hours (4992 segments, 3 nominal durations, target and OOS languages, 67% clean + 33% noisy)
Design issues

- **Basic design criteria:**
 - Single recording setup (devices, connectors, audio conversions, etc.)
 - All the materials classified into: (1) clean or (2) noisy/overlapped
 - Other sources of variability (speakers, etc.): as much diversity as possible
Design issues

- **Basic design criteria:**
 - Single recording setup (devices, connectors, audio conversions, etc.)
 - All the materials classified into: (1) clean or (2) noisy/overlapped
 - Other sources of variability (speakers, etc.): as much diversity as possible

- **KALAKA-2 is a major update of KALAKA:**
 - Two new target languages: Portuguese and English
 - KALAKA materials fully recycled:
 - KALAKA train + dev → KALAKA-2 train
 - KALAKA eval → KALAKA-2 dev
 - New recordings (specially for Portuguese, English and OOS languages)
 - Disjoint subsets of TV shows assigned to train, dev and eval
 - Evaluation dataset entirely built on new recordings
Design issues

- **Basic design criteria:**
 - Single recording setup (devices, connectors, audio conversions, etc.)
 - All the materials classified into: (1) clean or (2) noisy/overlapped
 - Other sources of variability (speakers, etc.): as much diversity as possible

- **KALAKA-2 is a major update of KALAKA:**
 - Two new target languages: Portuguese and English
 - KALAKA materials fully recycled:
 - KALAKA train + dev → KALAKA-2 train
 - KALAKA eval → KALAKA-2 dev
 - New recordings (specially for Portuguese, English and OOS languages)
 - Disjoint subsets of TV shows assigned to train, dev and eval
 - **Evaluation dataset entirely built on new recordings**

- **Segment duration:**
 - **train:** no constraints
 - **dev and eval:** three nominal durations of 30, 10 and 3 seconds
Recording setup (I)

- Cable TV: easy access to audio in different languages
- Roland Edirol R-09 ultra-light audio recorder
- CD quality (16 bit / 44.1 kHz / stereo) recordings
- Audio signals downsampled to 16 kHz, single channel, by means of SoX

Three recording times:
- October-November 2008 (Arabic, Romanian and English)
- April-May 2010 (Arabic, German, French, Romanian, English and Portuguese)
- August-September 2010 (Basque, Catalan, Galician and Spanish)

Recorded time: 257 hours (more than 2 times the size of KALAKA-2)
TV channels and recorded time (in minutes) for each language in KALAKA-2

<table>
<thead>
<tr>
<th>Language</th>
<th>TV Channels</th>
<th>Recorded time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basque</td>
<td>ETB1, ETBSat</td>
<td>1996</td>
</tr>
<tr>
<td>Catalan</td>
<td>TVCi</td>
<td>1842</td>
</tr>
<tr>
<td>English</td>
<td>DWTV, BBCWorld, CNN, Bloomberg</td>
<td>2705</td>
</tr>
<tr>
<td>Galician</td>
<td>TVG</td>
<td>2240</td>
</tr>
<tr>
<td>Portuguese</td>
<td>RTPi</td>
<td>2608</td>
</tr>
<tr>
<td>Spanish</td>
<td>TVE1, La 2, La Sexta, Cuatro, Tele5, Antena3, ETB2, TV Canaria Sat, AndalucíaTV, TeleMadrid, ExtremaduraTV, CNNPlus</td>
<td>2090</td>
</tr>
<tr>
<td>Arabic</td>
<td>Al Jazeera</td>
<td>497</td>
</tr>
<tr>
<td>French</td>
<td>TV5Monde Europe</td>
<td>499</td>
</tr>
<tr>
<td>German</td>
<td>DWTV</td>
<td>431</td>
</tr>
<tr>
<td>Romanian</td>
<td>PROTV</td>
<td>552</td>
</tr>
</tbody>
</table>
Classification of recordings

- **Task**: distribute TV shows into training, development and evaluation

- **Two basic criteria**:
 - *independence*: a given TV show is always posted to the same dataset
 - *diversity*: similar proportions of show types in all datasets

- Different distributions of OOS languages for development and evaluation, to avoid tuning systems to reject specific OOS languages.
Selection of speech segments (I)

- **Task**: to extract speech segments from the recorded materials, by listening and looking at audio signals.

- **Criteria**:
 - Multiple speakers allowed
 - Single (nominal) language
 - Clean/Noisy classification relaxed: *mostly clean* and *mostly noisy* segments
 - **Discarded**: (1) narrow-band (telephone-channel) speech and (2) fragments with multiple languages (even in the background)
 - **Exception**: two or more OOS languages may appear in the same segment

- **Tools**: *Wavesurfer* and *CoolEdit*

- **Results**:
 - *clean speech*: segments of any length greater than 30 seconds
 - *noisy/overlapped speech*: segments of length between 30 and 35 seconds
Selection of speech segments (II) - Training dataset

- No further processing was applied to segments posted to training.
- Training data **ONLY** for target languages.
- More than 10 hours of clean speech and more than 2 hours of noisy speech per target language.

Distribution of training segments per target language in KALAKA-2, for clean and noisy speech: number of segments (\#) and total duration (\(T\), in minutes).

<table>
<thead>
<tr>
<th></th>
<th>Clean speech</th>
<th>Noisy speech</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>(T) (minutes)</td>
</tr>
<tr>
<td>Basque</td>
<td>406</td>
<td>644</td>
</tr>
<tr>
<td>Catalan</td>
<td>341</td>
<td>687</td>
</tr>
<tr>
<td>English</td>
<td>249</td>
<td>731</td>
</tr>
<tr>
<td>Galician</td>
<td>464</td>
<td>644</td>
</tr>
<tr>
<td>Portuguese</td>
<td>387</td>
<td>665</td>
</tr>
<tr>
<td>Spanish</td>
<td>342</td>
<td>625</td>
</tr>
</tbody>
</table>
Automatic extraction of 30-, 10- and 3-second segments (I)

- Segments of fixed nominal duration (30, 10 and 3 seconds) extracted from clean-speech fragments posted to dev and eval.

- **Single-pass greedy algorithm:**
 - Segments enclosed by a certain amount of silence.
 - A 30-second segment is validated if and only if it contains a valid 10-second segment. Similarly, a 10-second segment is validated if and only if it contains a 3-second segment.
 - Segments can be slightly longer than their nominal duration.
Automatic extraction of 30-, 10- and 3-second segments (I)

- Segments of fixed nominal duration (30, 10 and 3 seconds) extracted from clean-speech fragments posted to dev and eval.

- **Single-pass greedy algorithm:**
 - Segments enclosed by a certain amount of silence.
 - A 30-second segment is validated if and only if it contains a valid 10-second segment. Similarly, a 10-second segment is validated if and only if it contains a 3-second segment.
 - Segments can be slightly longer than their nominal duration.

- Noisy-speech fragments of 30-35 seconds stored as 30-second segments.

- Greedy algorithm applied to extract 10- and 3-second noisy segments.
Automatic extraction of 30-, 10- and 3-second segments (I)

- Segments of fixed nominal duration (30, 10 and 3 seconds) extracted from clean-speech fragments posted to dev and eval.

- **Single-pass greedy algorithm:**
 - Segments enclosed by a certain amount of silence.
 - A 30-second segment is validated if and only if it contains a valid 10-second segment. Similarly, a 10-second segment is validated if and only if it contains a 3-second segment.
 - Segments can be slightly longer than their nominal duration.

- Noisy-speech fragments of 30-35 seconds stored as 30-second segments.

- Greedy algorithm applied to extract 10- and 3-second noisy segments.

- **Development and evaluation datasets:**
 - Same size and characteristics, except for the distribution of OOS languages and the proportion of clean and noisy speech.
 - At least 150 segments per target language and nominal duration.
 - Around 450 OOS segments per nominal duration.
Automatic extraction of 30-, 10- and 3-second segments (II)

Distribution of segments per language (the same for each nominal duration) in the development and evaluation datasets of KALAKA-2.

<table>
<thead>
<tr>
<th>Target languages</th>
<th>Devel</th>
<th>Eval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>clean</td>
<td>noisy</td>
</tr>
<tr>
<td>Basque</td>
<td>146</td>
<td>29</td>
</tr>
<tr>
<td>Catalan</td>
<td>120</td>
<td>47</td>
</tr>
<tr>
<td>English</td>
<td>133</td>
<td>60</td>
</tr>
<tr>
<td>Galician</td>
<td>137</td>
<td>60</td>
</tr>
<tr>
<td>Portuguese</td>
<td>164</td>
<td>77</td>
</tr>
<tr>
<td>Spanish</td>
<td>136</td>
<td>83</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OOS languages</th>
<th>Devel</th>
<th>Eval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>clean</td>
<td>noisy</td>
</tr>
<tr>
<td>Arabic</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>French</td>
<td>120</td>
<td>32</td>
</tr>
<tr>
<td>German</td>
<td>108</td>
<td>73</td>
</tr>
<tr>
<td>Romanian</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The Albayzin 2010 LRE: conditions

- **Task**: deciding by computational means whether or not a target language was spoken in a test utterance.
 - Trial = speech segment + target language
 - Required system output: hard decision + likelihood score
 - Performance measured by presenting a set of trials and comparing system decisions with the ground truth.

Test conditions:

- Clean-speech vs. noisy-speech
- Closed-set vs. open-set evaluation
- 30-, 10- and 3-second test segments

Primary performance measure:

$$C_{\text{avg}}$$

Combination of miss and false alarm error rates, pooled across target languages, according to language priors (P_{target}, $P_{\text{non-target}}$) and application-dependent costs (C_{miss} and C_{fa}).

DET curves: to compare the global performance of two systems.
The Albayzin 2010 LRE: conditions

- **Task**: deciding by computational means whether or not a target language was spoken in a test utterance.
 - Trial = speech segment + target language
 - Required system output: hard decision + likelihood score
 - Performance measured by presenting a set of trials and comparing system decisions with the ground truth.

- **Test conditions**:
 - clean-speech vs. noisy-speech
 - closed-set vs. open-set evaluation
 - 30-, 10- and 3-second test segments
The Albayzin 2010 LRE: conditions

- **Task**: deciding by computational means whether or not a target language was spoken in a test utterance.
 - Trial = speech segment + target language
 - Required system output: hard decision + likelihood score
 - Performance measured by presenting a set of trials and comparing system decisions with the ground truth.

- **Test conditions**:
 - clean-speech vs. noisy-speech
 - closed-set vs. open-set evaluation
 - 30-, 10- and 3-second test segments

- **Primary performance measure**: \(\text{average cost} \ C_{\text{avg}} \)
 Combination of miss and false alarm error rates, pooled across target languages, according to language priors \(P_{\text{target}}, P_{\text{non-target}} \) and \(P_{\text{OOS}} \) and application dependent costs \(C_{\text{miss}} \) and \(C_{\text{fa}} \).

- **DET curves**: to compare the global performance of two systems.
The Albayzin 2010 LRE: summary of results (I)

- State-of-the-art language recognition systems
The Albayzin 2010 LRE: summary of results (I)

- State-of-the-art language recognition systems
- **Clean-speech, closed-set, 30-second segments**: $C_{avg} \times 100 = 1.81$
 - Performance comparable to that obtained in similar tasks of NIST LRE.
 - Much better than in Albayzin 2008 LRE ($C_{avg} \times 100 = 5.52$): technology improvements, more training data and less confusable target languages (Portuguese and English).
The Albayzin 2010 LRE: summary of results (I)

- State-of-the-art language recognition systems
- **Clean-speech, closed-set, 30-second segments:** $C_{avg} \times 100 = 1.81$
 - Performance comparable to that obtained in similar tasks of NIST LRE.
 - Much better than in Albayzin 2008 LRE ($C_{avg} \times 100 = 5.52$): technology improvements, more training data and less confusable target languages (Portuguese and English).

- **Dependence on nominal duration:** $C_{avg}(3s) \approx 2 \cdot C_{avg}(10s)$ and $C_{avg}(10s) \approx 2 \cdot C_{avg}(30s)$
The Albayzin 2010 LRE: summary of results (I)

- State-of-the-art language recognition systems

- **Clean-speech, closed-set, 30-second segments:** $C_{avg} \times 100 = 1.81$
 - Performance comparable to that obtained in similar tasks of NIST LRE.
 - Much better than in Albayzin 2008 LRE ($C_{avg} \times 100 = 5.52$): technology improvements, more training data and less confusable target languages (Portuguese and English).

- **Dependence on nominal duration:** $C_{avg}(3s) \approx 2 \cdot C_{avg}(10s)$ and $C_{avg}(10s) \approx 2 \cdot C_{avg}(30s)$

- **Clean-speech, open-set, 30-second segments:** $C_{avg} \times 100 = 2.96$
 - 63.5% cost increase (smaller for 10- and 3-second segments)
 - False alarms related to OOS languages
The Albayzin 2010 LRE: summary of results (I)

- State-of-the-art language recognition systems
- **Clean-speech, closed-set, 30-second segments**: $C_{avg} \times 100 = 1.81$
 - Performance comparable to that obtained in similar tasks of NIST LRE.
 - Much better than in Albayzin 2008 LRE ($C_{avg} \times 100 = 5.52$): technology improvements, more training data and less confusable target languages (Portuguese and English).

- **Dependence on nominal duration**: $C_{avg}(3s) \approx 2 \cdot C_{avg}(10s)$ and $C_{avg}(10s) \approx 2 \cdot C_{avg}(30s)$

- **Clean-speech, open-set, 30-second segments**: $C_{avg} \times 100 = 2.96$
 - 63.5% cost increase (smaller for 10- and 3-second segments)
 - False alarms related to OOS languages

- Dealing with **noisy speech**: cost increase ranging from 40% to 80%

- **Noisy-speech, open-set, 3-second segments**: $C_{avg} \times 100 = 15.51$
The Albayzin 2010 LRE: summary of results (II)

Best primary systems in the 30s tracks of Albayzin 2010 LRE

Albayzin 2010 LRE – 30s

False Alarm probability (in %)
Miss probability (in %)

closed clean
open clean
closed noisy
open noisy
GTTS Language Recognition System - Features

- System built based **exclusively** on KALAKA-2...
GTTS Language Recognition System - Features

- System built based **exclusively** on KALAKA-2...
 ...except for the phone decoders.
GTTS Language Recognition System - Features

- System built based **exclusively** on KALAKA-2...
 ...except for the phone decoders.
- Same system submitted to NIST 2011 LRE (**with very competitive performance**).
- Discriminative fusion of two acoustic and three phonotactic subsystems:
 - LE-GMM and generative iVectors
 - Phone-Lattice-SVM using BUT decoders for Czech, Hungarian and Russian
GTTS Language Recognition System - Features

- System built based **exclusively** on KALAKA-2...
 ...except for the phone decoders.
- Same system submitted to NIST 2011 LRE (**with very competitive performance**).
- Discriminative fusion of two acoustic and three phonotactic subsystems:
 - LE-GMM and generative iVectors
 - Phone-Lattice-SVM using BUT decoders for Czech, Hungarian and Russian
- Two sets of models, estimated on the training dataset, using:
 - clean speech segments (for the clean-speech condition)
 - the whole training dataset (for the noisy-speech condition)
GTTS Language Recognition System - Features

- System built based **exclusively** on KALAKA-2...
 ...except for the phone decoders.
- Same system submitted to NIST 2011 LRE (**with very competitive performance**).
- Discriminative fusion of two acoustic and three phonotactic subsystems:
 - LE-GMM and generative iVectors
 - Phone-Lattice-SVM using BUT decoders for Czech, Hungarian and Russian
- Two sets of models, estimated on the training dataset, using:
 - clean speech segments (for the clean-speech condition)
 - the whole training dataset (for the noisy-speech condition)
- Generative Gaussian backend and discriminative fusion models estimated on development data, by means of the FoCal toolkit, using:
 - segments containing target languages (for the closed-set condition)
 - all the development segments (for the open-set condition)

See the paper for more details and references
GTTS Language Recognition System - Features

- System built based **exclusively** on KALAKA-2...
 ...except for the phone decoders.
- Same system submitted to NIST 2011 LRE (**with very competitive performance**).
- Discriminative fusion of two acoustic and three phonotactic subsystems:
 - LE-GMM and generative iVectors
 - Phone-Lattice-SVM using BUT decoders for Czech, Hungarian and Russian
- Two sets of models, estimated on the training dataset, using:
 - clean speech segments (for the clean-speech condition)
 - the whole training dataset (for the noisy-speech condition)
- Generative Gaussian backend and discriminative fusion models estimated on development data, by means of the FoCal toolkit, using:
 - segments containing target languages (for the closed-set condition)
 - all the development segments (for the open-set condition)

See the paper for more details and references
GTTS Language Recognition System - Results

C_{avg} performance

<table>
<thead>
<tr>
<th></th>
<th>30s</th>
<th>10s</th>
<th>3s</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>0.0063</td>
<td>0.0263</td>
<td>0.0888</td>
</tr>
<tr>
<td>OC</td>
<td>0.0171</td>
<td>0.0437</td>
<td>0.1094</td>
</tr>
<tr>
<td>CN</td>
<td>0.0177</td>
<td>0.0599</td>
<td>0.1476</td>
</tr>
<tr>
<td>ON</td>
<td>0.0390</td>
<td>0.0867</td>
<td>0.1740</td>
</tr>
</tbody>
</table>

Albayzin 2010 LRE – 30s

False Alarm probability (in %)
Miss probability (in %)

closed clean
closed noisy
open clean
open noisy
Conclusions

- KALAKA-2: a database containing clean and noisy/overlapped speech from wide-band TV broadcasts is available for your use.
Conclusions

- KALAKA-2: a database containing clean and noisy/overlapped speech from wide-band TV broadcasts is available for your use.

- It allows to develop and evaluate language recognition systems for Iberian languages + English.
Conclusions

- KALAKA-2: a database containing clean and noisy/overlapped speech from wide-band TV broadcasts is available for your use.

- It allows to develop and evaluate language recognition systems for Iberian languages + English.

- Average costs using state-of-the-art technology are high enough to allow further (statistically significant) improvements in all the tracks, except for the easiest one (closed-set, clean-speech, 30s segments).
Conclusions

- KALAKA-2: a database containing clean and noisy/overlapped speech from wide-band TV broadcasts is available for your use.

- It allows to develop and evaluate language recognition systems for Iberian languages + English.

- Average costs using state-of-the-art technology are high enough to allow further (statistically significant) improvements in all the tracks, except for the easiest one (closed-set, clean-speech, 30s segments).

- Currently, KALAKA-2 is distributed in 5 DVD after direct request to authors.
Conclusions

- KALAKA-2: a database containing clean and noisy/overlapped speech from wide-band TV broadcasts is available for your use.

- It allows to develop and evaluate language recognition systems for Iberian languages + English.

- Average costs using state-of-the-art technology are high enough to allow further (statistically significant) improvements in all the tracks, except for the easiest one (closed-set, clean-speech, 30s segments).

- Currently, KALAKA-2 is distributed in 5 DVD after direct request to authors.

- We have contacted ELRA to manage licensing issues with the TV broadcast providers.
Future work

Actually, current work: **KALAKA-3**
Future work

Actually, current work: **KALAKA-3**

* Support for the **Albayzin 2012 Language Recognition Evaluation**: June to October 2012, results presented at **IberSpeech 2012**, to be held in Madrid (Spain) in November 2012.
Future work

Actually, current work: **KALAKA-3**

- Support for the **Albayzin 2012 Language Recognition Evaluation**: June to October 2012, results presented at **IberSpeech 2012**, to be held in Madrid (Spain) in November 2012.

- Besides including all the materials of KALAKA-2, which will be reused for training,
Future work

Actually, current work: **KALAKA-3**

- Support for the **Albayzin 2012 Language Recognition Evaluation:**
 June to October 2012, results presented at **IberSpeech 2012,**
 to be held in Madrid (Spain) in November 2012.

- Besides including all the materials of KALAKA-2, which will be reused for training, development and evaluation data will consist of **any kind of speech found in the Internet** (YouTube videos),

You are all invited to participate !!!
Future work

Actually, current work: **KALAKA-3**

- Support for the **Albayzin 2012 Language Recognition Evaluation**: June to October 2012, results presented at **IberSpeech 2012**, to be held in Madrid (Spain) in November 2012.

- Besides including all the materials of KALAKA-2, which will be reused for training, development and evaluation data will consist of **any kind of speech found in the Internet** (YouTube videos), **4 new target languages** will be added: French, German, Greek and Italian.
Future work

Actually, current work: **KALAKA-3**

- Support for the **Albayzin 2012 Language Recognition Evaluation**: June to October 2012, results presented at **IberSpeech 2012**, to be held in Madrid (Spain) in November 2012.

- Besides including all the materials of KALAKA-2, which will be reused for training, development and evaluation data will consist of **any kind of speech found in the Internet** (YouTube videos), **4 new target languages** will be added: French, German, Greek and Italian, and **many other OOS languages** will be also recorded.

More info at http://iberspeech2012.ii.uam.es/ (under Albayzin Evaluations)

You are all invited to participate !!!

Luis J. Rodríguez-Fuentes et al.

KALAKA-2: Broadcast Speech for Iberian Languages
Future work

Actually, current work: **KALAKA-3**

- Support for the **Albayzin 2012 Language Recognition Evaluation**: June to October 2012, results presented at **IberSpeech 2012**, to be held in Madrid (Spain) in November 2012.

- Besides including all the materials of KALAKA-2, which will be reused for training, development and evaluation data will consist of **any kind of speech found in the Internet** (YouTube videos), **4 new target languages** will be added: French, German, Greek and Italian, and **many other OOS languages** will be also recorded.

Future work

Actually, current work: **KALAKA-3**

- Support for the **Albayzin 2012 Language Recognition Evaluation**: June to October 2012, results presented at **IberSpeech 2012**, to be held in Madrid (Spain) in November 2012.

- Besides including all the materials of KALAKA-2, which will be reused for training, development and evaluation data will consist of **any kind of speech found in the Internet** (YouTube videos), 4 new target languages will be added: French, German, Greek and Italian, and **many other OOS languages** will be also recorded.

You are all invited to participate !!!