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Abstract

Search on speech (SoS) is a challenging area due to the huge amount of information stored in audio and video
repositories. Spoken term detection (STD) is an SoS-related task aiming to retrieve data from a speech repository given
a textual representation of a search term (which can include one or more words). This paper presents a multi-domain
internationally open evaluation for STD in Spanish. The evaluation has been designed carefully so that several analyses
of the main results can be carried out. The evaluation task aims at retrieving the speech files that contain the terms,
providing their start and end times, and a score that reflects the confidence given to the detection. Three different
Spanish speech databases that encompass different domains have been employed in the evaluation: the MAVIR
database, which comprises a set of talks from workshops; the RTVE database, which includes broadcast news programs;
and the COREMAH database, which contains 2-people spontaneous speech conversations about different topics. We
present the evaluation itself, the three databases, the evaluation metric, the systems submitted to the evaluation, the
results, and detailed post-evaluation analyses based on some term properties (within-vocabulary/out-of-vocabulary
terms, single-word/multi-word terms, and native/foreign terms). Fusion results of the primary systems submitted to
the evaluation are also presented. Three different research groups took part in the evaluation, and 11 different systems
were submitted. The obtained results suggest that the STD task is still in progress and performance is highly sensitive
to changes in the data domain.

Keywords: Search on speech, Spoken term detection, Spanish, International evaluation

1 Introduction
Search on speech (SoS) has become an interesting
research area due to the huge amount of information
stored in audio and video repositories. SoS focuses on
retrieving speech content from audio repositories that
matches user queries, for which the development of effi-
cient methods is highly necessary [1]. Significant research
has been carried out in SoS for spoken document retrieval
(SDR) [2–7], keyword spotting (KWS) [8–13], spoken
term detection (STD) [14–19], and query-by-example
(QbE) STD and SDR [20–25]. STD is important due to the
following factors: (1) It offers the possibility of retrieving
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any speech file that contains any term (a sequence of one
or more words) from its textual representation, allowing
search of any term in a large index efficiently. (2) This
technology can be accessed using any device with text
input capabilities. (3) It is suitable for building open-
vocabulary SoS systems.

1.1 Spoken term detection overview
STD has been receiving much interest for years from
outstanding companies/research institutes such as IBM
[14, 26–30], BBN [31–33], SRI & OGI [34–36], BUT
[17, 37, 38], Microsoft [39], QUT [40, 41], JHU [16, 42–44],
Fraunhofer IAIS/NTNU/TUD [15], NTU [45, 46], and
IDIAP [47], among others. STD systems are composed
of two main stages: (1) indexing, which is usually done
with an automatic speech recognition (ASR) subsystem
and (2) search by a detection subsystem, as depicted
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Fig. 1 Architecture and evaluation of a standard STD system

in Fig. 1. The ASR subsystem generates word/subword
lattices from the input speech signal and stores them as an
index. The detection subsystem integrates a term detec-
tor and a decision maker. The term detector searches for
putative detections of the terms in the index, and the deci-
sion maker decides whether each putative detection is
a hit or a false alarm (FA) based on certain confidence
measures.
For the ASR stage, word-based speech recognition has

been widely used [35, 48–54], since this typically yields
better performance than subword-based ASR [55–62]
due to the lexical and language model (LM) informa-
tion employed by the word-based ASR. However, one of
the main drawbacks of word-based ASR is that it can
only detect in-vocabulary (INV) terms. On the other
hand, the subword-based approach has the unique advan-
tage that it can detect terms that consist of words that
are not in the vocabulary of the recognizer, i.e., out-of-
vocabulary (OOV) terms. The combination of these two
approaches has been proposed in order to exploit the rel-
ative advantages of word and subword-based strategies
[17, 32, 33, 36, 44, 63–70].
Recently, end-to-end ASR-free approaches for STD have

also been proposed, which aim to solve the issue of collect-
ing and handling large amounts of data for building word
and phone-based STD systems [28–30].
The availability of ASR tools, e.g., Hidden Markov

Model Toolkit (HTK) [71], Sphinx [72], and Kaldi [44, 73],
among others, facilitates the development of STD sys-
tems, since these mitigate the issue of constructing an
ASR system from scratch. Among these, Kaldi is specially
suitable for building STD systems since it integrates an
ASR subsystem, a term detector, and a decision maker
[73–75]. The Kaldi STD system employs a word-based
approach for term detection, and a method based on
proxy words (i.e., replace each OOV word by the most
similar in-vocabulary word or word sequence) to detect
OOV terms [76].

1.2 Methods
Research carried out in a certain area (speech recogni-
tion, speaker recognition, speaker diarization, to cite some
examples) may be difficult to compare in the absence of a
common evaluation framework. In STD, research also suf-
fers from this issue since the published systems typically
employ different acoustic databases and different lists of
terms that make system comparison impossible. In this
context, international evaluations provide a unique frame-
work to measure the progress of any technology, as STD
in this case.
ALBAYZIN evaluation campaigns comprise an interna-

tionally open set of evaluations supported by the Span-
ish Thematic Network on Speech Technologies (RTTH1)
and the ISCA Special Interest Group on Iberian Lan-
guages (SIG-IL2), which have been held biennially since
2006. These evaluation campaigns provide an objec-
tive mechanism to compare different systems and are a
powerful way to promote research on different speech
technologies [77–86].
Spanish is a major language in the world and signifi-

cant research has been conducted on it for ASR, KWS,
and STD tasks [87–93]. The increasing interest in SoS
around the world and the lack of SoS evaluations deal-
ing with the Spanish language encouraged us to organize
a series of STD evaluations starting in 2012 and held
biennially until 2018 aiming to evaluate the progress in
this technology for Spanish. Each evaluation has been
extended by incorporating new challenges. The main
novelty of the fourth ALBAYZIN STD evaluation is the
addition of a new data domain, namely broadcast news,
with programs from the Spanish public television Radio
Televisión Española (RTVE). In addition, a novel conver-
sational speech database has also been used to assess the
validity of the submitted systems in an unseen domain.

1http://www.rthabla.es/
2http://www.isca-speech.org/iscaweb/index.php/sigs$?$layout=edit&id=132

http://www.rthabla.es/
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Moreover, the terms used in one of the databases in the
ALBAYZIN 2016 STD evaluation were kept to enable a
straightforward comparison of the systems submitted to
both evaluations.
The main objectives of this evaluation can be summa-

rized as follows:

• Organize the first Spanish STD multi-domain
evaluation whose systems are ranked according to
different databases and different domains

• Provide evaluation and benchmark with increasing
complexity in the search terms compared to the
previous ALBAYZIN STD evaluations

This evaluation is suitable for research groups/companies
that work in speech recognition.
This paper is organized as follows: First, the Section 2

presents the evaluation (including databases, evaluation
metrics, and participants) and a comparison with other
STD evaluations. Then, in the Section 3, the different
systems submitted to the evaluation are presented. Evalu-
ation results along with a discussion are presented in the
Section 4 which includes the corresponding paired t tests
[94] as statistical significance measure for system com-
parison. The Section 5 presents a post-evaluation analysis
based on some search term properties and the fusion of
the primary systems submitted to the evaluation. The last
section outlines the main conclusions of the paper.

2 Spoken term detection evaluation
2.1 STD evaluation overview
This evaluation involves searching a list of terms (given in
written form) within speech data, and indicating the audio
files and timestamps of each detected occurrence.
The evaluation consists in searching different term lists

within different sets of speech data. Speech data comprise
different domains (workshop talks, broadcast news, and
2-people conversations), for which individual datasets are
given. Each domain contains training/development/test
data, except the 2-people conversation dataset that only
contains test data. The evaluation result ranking is based
on the average system performance on the three datasets
in the test experiment. Participants can use the training
data for system training and the development data for sys-
tem tuning, but any additional data can also be employed
both for training and development.
Two different types of terms are defined in this evalu-

ation, namely in-vocabulary terms and out-of-vocabulary
terms. The OOV term set was defined to simulate the
out-of-vocabulary words of a large vocabulary continuous
speech recognition (LVCSR) system. In case participants
employ an LVCSR system for processing the audio, these
OOV terms must be previously removed from the sys-
tem dictionary and hence, other methods have to be used

for searching OOV terms. On the other hand, the INV
terms could appear in the LVCSR system dictionary in
case participants consider it.
Participants could submit a primary system and up to 4

contrastive systems. No manual intervention was allowed
for each developed system to generate the final output
file, and hence, all the systems had to be fully automatic.
Listening to the test data, or any other human interac-
tion with the test data, was forbidden before the evalua-
tion results had been sent back to the participants. The
output file with the term detections followed the stan-
dard Extensible Markup Language (XML)-based format
accepted by the National Institute of Standards and Tech-
nology (NIST) evaluation tool [95]. Ground-truth labels
corresponding to the test data were given to participants
once the organizers sent back the evaluation results.

2.2 Evaluation metric
In STD, a hypothesized occurrence is called a detection;
if the detection corresponds to an actual occurrence, it is
called a hit, otherwise it is called a false alarm. If an actual
occurrence is not detected, this is called amiss. The Actual
Term-Weighted Value (ATWV) metric proposed by NIST
[95] has been used as the main metric for the evaluation.
This metric integrates the hit rate and false alarm rate of
each term into a single metric and then averages over all
the terms:

ATWV = 1
|�|

∑

K∈�

(
NK
hit

NK
true

− β
NK
FA

T − NK
true

)
, (1)

where � denotes the set of terms and |�| is the number
of terms in this set. NK

hit and NK
FA represent the numbers

of hits and false alarms of term K, respectively, and NK
true

is the number of actual occurrences of K in the audio. T
denotes the audio length in seconds, and β is a weight fac-
tor set to 999.9, as in the ATWV proposed by NIST [31].
This weight factor causes an emphasis placed on recall
compared to precision with a ratio 10:1.
ATWV represents the Term-Weighted Value (TWV)

for a threshold given by the STD system (usually tuned
on development data). An additional metric, called Max-
imum Term-Weighted Value (MTWV) [95] can also be
used to evaluate the performance of an STD system.
MTWV is the maximum TWV obtained by the STD sys-
tem for all possible thresholds, and hence does not depend
on the tuned threshold. Therefore, MTWV represents an
upper-bound of the performance obtained by the STD
system. Results based on this metric are also presented
to evaluate system performance regardless the decision
threshold.
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p(Miss) and p(FA) values, which represent the probabil-
ity of miss and FA of the STD system, respectively, are also
reported. They are defined as follows:

p(Miss) = 1 − Nhit
Ntrue

(2)

p(FA) = NFA
T − Ntrue

, (3)

where Nhit represents the number of hits of the STD sys-
tem, Ntrue is the number of occurrences of the terms in
the audio, NFA represents the number of FAs of the STD
system, and T denotes the audio length in seconds. These
values provide a quantitative way to measure the STD sys-
tem performance in terms of misses (or equivalently, hits)
and false alarms.
In addition to ATWV, MTWV, p(Miss), and p(FA),

NIST also proposed a detection error tradeoff (DET)
curve [96] to evaluate the performance of an STD sys-
tem working at various miss/FA ratios. Although DET
curves were not used for the evaluation itself, they are also
presented in this paper for system comparison.
In this work, the NIST STD evaluation tool [97] was

employed to compute MTWV, ATWV, p(Miss), p(FA),
and DET curves.

2.3 Databases
Three different databases that comprise different acoustic
conditions and domains have been employed for the eval-
uation. (1) For comparison purposes, the same MAVIR
database employed in the previous ALBAYZIN STD eval-
uations in 2012, 2014, and 2016 has been used. (2) A
database named RTVE that consists of different programs
recorded from the Spanish public television (Radio Tele-
visión Española) and involves different broadcast news
domains. (3) The COREMAH database, which contains
conversational speech with two speakers per recording.
For the MAVIR and RTVE databases, three separate
datasets (i.e., for training, development, and test) were
provided to participants. For the COREMAH database,
only test data were provided. This allowed measuring
the generalization capability of the systems in an unseen
domain. Tables 1, 2, and 3 include some database features
such as the division into training, development, and test;
the number of word occurrences; duration; and average
mean opinion score (MOS) [98] as a way to get an idea of
the quality of each speech file in the different databases.

2.3.1 MAVIR
The MAVIR database consists of a set of Spanish talks
extracted from the MAVIR workshops3 held in 2006,
2007, and 2008 that contain speakers from Spain and Latin
America.

3http://www.mavir.net

Table 1 Characteristics of the MAVIR database: number of word
occurrences (#occ.), duration (dur.) in minutes (min), number of
speakers (#spk.), and average MOS (Ave. MOS)

File ID Data #occ. dur. (min) #spk. Ave. MOS

Mavir-02 train 13,432 74.51 7 (7 ma.) 2.69

Mavir-03 dev 6681 38.18 2 (1 ma. 1 fe.) 2.83

Mavir-06 train 4332 29.15 3 (2 ma. 1 fe.) 2.89

Mavir-07 dev 3831 21.78 2 (2 ma.) 3.26

Mavir-08 train 3356 18.90 1 (1 ma.) 3.13

Mavir-09 train 11,179 70.05 1 (1 ma.) 2.39

Mavir-12 train 11,168 67.66 1 (1 ma.) 2.32

Mavir-04 test 9310 57.36 4 (3 ma. 1 fe.) 2.85

Mavir-11 test 3130 20.33 1 (1 ma.) 2.46

Mavir-13 test 7837 43.61 1 (1 ma.) 2.48

ALL train 43,467 260.27 13 (12 ma. 1 fe.) 2.56

ALL dev 10,512 59.96 4 (3 ma. 1 fe.) 2.64

ALL test 20,277 121.3 6 (5 ma. 1 fe.) 2.65

These characteristics are displayed for training (train), development (dev), and
testing (test) datasets

TheMAVIR Spanish data consist of spontaneous speech
files from different speakers, which amount to about 7 h
of speech. These data are then divided for the purpose of
this evaluation into training, development, and test sets.
The data were alsomanually annotated in an orthographic
form, but timestamps were only set for phrase bound-
aries. To prepare the data for the evaluation, organizers
manually added the timestamps for the roughly 3000
occurrences of the spoken terms used in the development
and test evaluation sets. The training data were made
available to the participants including the orthographic
transcription and the timestamps for phrase boundaries4.
The speech data were originally recorded in several

audio formats (pulse-code modulation (PCM) mono and
stereo, MP3, 22.05 kHz, and 48 kHz, among others). The
recordings were converted to PCM, 16 kHz, single chan-
nel, and 16 bits per sample using the SoX tool5. All the
recordings (except one) were made with the same equip-
ment, a Digital TASCAM DAT model DA-P1. Different
microphones were used, which mainly consisted of table-
top or floor standing microphones, but in one case a lava-
lier microphone was used. The distance from the mouth
of the speaker to the microphone varies and was not con-
trolled at all, but in most cases the distance was smaller
than 50 cm. The recordings were made in large confer-
ence rooms with capacity for over a hundred people and
a large amount of people in the conference room. This
poses additional challenges including background noise
(particularly babble noise) and reverberation. The realistic

4http://cartago.lllf.uam.es/mavir/index.pl?m=videos
5http://sox.sourceforge.net/

http://www.mavir.net
http://cartago.lllf.uam.es/mavir/index.pl?m=videos
http://sox.sourceforge.net/
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Table 2 Characteristics of the RTVE database: number of word
occurrences (#occ.), duration (dur.) in minutes (min.), number of
speakers (#spk.), and average MOS (Ave. MOS)

File ID Data #occ. dur. (min) #spk. Ave. MOS

LN24H-20151125 dev2 21,049 123.50 22 3.37

LN24H-20151201 dev2 19,727 112.43 16 3.27

LN24H-20160112 dev2 18,617 110.40 19 3.24

LN24H-20160121 dev2 18,215 120.33 18 2.93

millennium-20170522 dev2 8330 56.50 9 3.61

millennium-20170529 dev2 8812 57.95 10 3.24

millennium-20170626 dev2 7976 55.68 14 3.55

millennium-20171009 dev2 9863 58.78 12 3.60

millennium-20171106 dev2 8498 59.57 16 3.40

millennium-20171204 dev2 9280 60.25 10 3.29

millennium-20171211 dev2 9502 59.70 12 2.95

millennium-20171218 dev2 9386 55.55 15 2.70

EC-20170513 test 3565 22.13 N/A 3.12

EC-20170520 test 3266 21.25 N/A 3.38

EC-20170527 test 2602 17.87 N/A 3.42

EC-20170603 test 3527 23.87 N/A 3.90

EC-20170610 test 3846 24.22 N/A 3.31

EC-20170617 test 3368 21.55 N/A 3.36

EC-20170624 test 3286 22.60 N/A 3.65

EC-20170701 test 2893 22.52 N/A 3.47

EC-20170708 test 3425 23.15 N/A 3.58

EC-20170715 test 3316 22.55 N/A 3.82

EC-20170722 test 3929 27.40 N/A 3.88

EC-20170729 test 4126 27.45 N/A 3.61

EC-20170909 test 3063 21.05 N/A 3.64

EC-20170916 test 3422 24.60 N/A 3.40

EC-20170923 test 3331 22.02 N/A 3.24

EC-20180113 test 2742 19.02 N/A 3.80

EC-20180120 test 3466 21.97 N/A 3.28

EC-20180127 test 3488 22.52 N/A 3.56

EC-20180203 test 3016 21.60 N/A 3.90

EC-20180210 test 3214 23.20 N/A 3.71

EC-20180217 test 3094 20.33 N/A 3.57

EC-20180224 test 3140 20.78 N/A 3.56

millennium-20170703 test 8714 55.78 N/A 1.10

millennium-20171030 test 8182 57.05 N/A 3.44

ALL train 3,729,924 27729 N/A 3.04

ALL dev1 545,952 3742.88 N/A 2.90

ALL dev2 149,255 930.64 N/A 3.25

ALL test 90,021 605.48 N/A 3.32

These characteristics are displayed for training (train), development (dev), and
testing (test) datasets. Results for train and dev1 are not reported per file due to the
large number of files (about 400 for train and about 60 for dev1)

Table 3 Characteristics of the COREMAH database: number of
word occurrences (#occ.), duration (dur.) in minutes (min.),
number of speakers (#spk.), and average MOS (Ave. MOS)

File ID #word occ. dur. (sec) #spk. Ave. MOS

49-50-rejection 343 109 2 (1 ma. 1 fe.) 1.90

49-50-compliment 470 126 2 (1 ma., 1 fe.) 2.35

49-50-apology 585 191 2 (1 ma., 1 fe.) 2.17

51-52-rejection 227 57 2 (2 fe.) 2.82

51-52-compliment 244 54 2 (2 fe.) 3.28

51-52-apology 283 59 2 (2 fe.) 4.02

53-54-rejection 183 47 2 (2 fe.) 3.26

53-54-compliment 152 44 2 (2 fe.) 2.58

53-54-apology 224 57 2 (2 fe.) 3.20

55-56-rejection 202 62 2 (1 ma., 1 fe.) 2.54

55-56-compliment 261 74 2 (1 ma., 1 fe.) 2.81

55-56-apology 337 82 2 (1 ma., 1 fe.) 2.46

57-58-rejection 509 153 2 (1 ma., 1 fe.) 2.62

57-58-compliment 328 89 2 (1 ma., 1 fe.) 1.65

57-58-apology 566 177 2 (1 ma., 1 fe.) 2.79

59-60-rejection 146 51 2 (2 fe.) 2.79

59-60-compliment 166 49 2 (2 fe.) 2.19

59-60-apology 167 41 2 (2 fe.) 3.54

61-62-rejection 286 74 2 (1 ma., 1 fe.) 2.27

61-62-compliment 192 46 2 (1 ma., 1 fe.) 2.99

61-62-apology 206 52 2 (1 ma., 1 fe.) 2.32

63-64-rejection 324 103 2 (1 ma., 1 fe.) 3.11

63-64-compliment 379 99 2 (1 ma., 1 fe.) 2.56

63-64-apology 437 128 2 (1 ma., 1 fe.) 2.62

65-66-rejection 252 60 2 (1 ma., 1 fe.) 2.91

65-66-compliment 188 47 2 (1 ma., 1 fe.) 2.46

65-66-apology 198 53 2 (1 ma., 1 fe.) 3.13

67-68-rejection 201 59 2 (2 fe.) 2.14

67-68-compliment 166 50 2 (2 fe.) 4.06

67-68-apology 218 63 2 (2 fe.) 3.12

69-70-rejection 99 33 2 (2 fe.) 4.07

69-70-compliment 89 30 2 (2 fe.) 2.43

69-70-apology 127 46 2 (2 fe.) 4.30

71-72-rejection 360 110 2 (1 ma., 1 fe.) 2.17

71-72-compliment 257 72 2 (1 ma., 1 fe.) 2.61

71-72-apology 328 93 2 (1 ma., 1 fe.) 2.06

ALL 9700 2740 24 (7 ma., 17 fe.) 2.46

These characteristics are displayed for training (train), development (dev), and
testing (test) datasets

settings and the variety of phenomena in the spontaneous
speech in this database make it appealing and challenging
enough for the evaluation.
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2.3.2 RTVE
The RTVE database belongs to the broadcast news
domain and contains speech from different television
(TV) programs recorded from 2015 to 2018 (e.g.,
Millenium, La tarde en 24H, Comando actualidad, España
en comunidad, to name a few). These comprise about
570 h in total, which were further divided into training,
development, and test sets for the purpose of this eval-
uation. To prepare the data for the evaluation, orga-
nizers manually added the timestamps for the roughly
2700 occurrences of the spoken terms used in the
development and test evaluation sets. The training data
were available to participants with the corresponding
subtitles of the speech data (though these could con-
tain non-accurate word transcriptions), and the devel-
opment data were further divided into two different
development sets, as follows: The dev1 dataset consists
of about 60 h of speech material with human-revised
word transcriptions without time alignment. The dev2
dataset, which was employed as real development data
for STD evaluation, consists of 15 h of speech data. The
recordings were provided in Advanced Audio Coding
(AAC) format, stereo, 44.1 kHz, and variable bit rate.
As far as we know, this database represents the largest
speech database employed in any Spanish SoS evalua-
tion. More information about the RTVE database can be
found in [99].

2.3.3 COREMAH
The COREMAH database contains conversations about
different topics such as rejection, compliment, and apol-
ogy, which were recorded in 2014 and 2015 in a
university environment6. This database contains Span-
ish recordings from speakers with different levels of
Spanish (native, advanced C1, and intermediate B1).
Since the main purpose of this database is to evalu-
ate the submitted systems to an unseen domain, only
the Spanish native speaker recordings are employed
in the evaluation to recreate the same conditions of
the other databases. The speech data amount to about
45min. To prepare the data for the evaluation, orga-
nizers manually added the timestamps for the roughly
1000 occurrences of the spoken terms used in the test
evaluation set.
The original recordings are videos in the Moving Pic-

ture Experts Group (MPEG) format. The audio of these
videos was extracted and converted to PCM, 16 kHz, sin-
gle channel, and 16 bits per sample using the ffmpeg7
tool. It is worth mentioning that this database contains a
high degree of overlapped speech, which makes it quite
challenging.

6http://www.lllf.uam.es/coremah/[100]
7https://ffmpeg.org/

2.3.4 Term list selection
The selection of terms for the development and test sets
aimed to build a realistic scenario for STD, by including
high occurrence terms, low occurrence terms, in-language
(INL) (i.e., Spanish) terms, out-of-language (OOL) (i.e.,
foreign) terms, single-word and multi-word terms, in-
vocabulary and out-of-vocabulary terms, and terms of
different length. A term may not have any occurrence or
appear one or more times in the speech data. Table 4
includes some features of the development and test term
lists such as the number of INL and OOL terms, the num-
ber of single-word and multi-word terms, and the number
of INV and OOV terms, along with the number of occur-
rences of each set in the corresponding speech database. It
must be noted that a multi-word term is considered OOV
in case any of the words that form the term is OOV.

2.4 Comparison to other STD international evaluations
Spoken Term Detection evaluations have been orga-
nized from more than a decade. In 2006, the NIST
launched the first NIST STD evaluation [95], with English,
Mandarin Chinese, and Modern Standard and Levan-
tine Arabic as target languages. The speech included
conversational telephone speech (CTS), broadcast news
(BNews) speech, and speech recorded in roundtablemeet-
ing rooms (RTMeet) with distantly placed microphones
(this last type was used for English only). NIST pub-
licly released the results of this evaluation, and they are
summarized in Table 5.
A significant amount of STD research has been car-

ried out in the framework of the IARPA BABEL program
and NIST Open Keyword Search (OpenKWS) evaluation
series [19, 28, 30, 32, 33, 44, 52, 56, 58, 63, 65–67, 70, 101–
107]. The BABEL program was born in 2011 aiming to
develop fully automatic and noise-robust speech recogni-
tion systems in a limited time (e.g., one week) and with
a limited amount of transcribed training data. This pro-
gram supports research in low-resource languages such as
Cantonese, Pashto, Tagalog, Turkish, Vietnamese, Swahili,
and Tamil, among others. From 2013 to 2016, NIST orga-
nized an annual STD evaluation called OpenKWS, which
is included within the BABEL program, but open to other
research groups besides BABEL participants [108–111].
This evaluation was quite similar to the former NIST
STD 2006 evaluation and included CTS and microphone
speech data on a surprise language that was announced
only a few (4 or less) weeks before the evaluation. The
main results of these OpenKWS evaluations are shown
in Table 6. In 2017, NIST also launched the biennial
Open Speech Analytics Technologies (OpenSAT) evalu-
ation series, which includes keyword search among its
tasks. This series goal is “to provide broad support for the
advancement of speech analytic technologies by including
multiple speech analytic tasks andmultiple data domains.”

http://www.lllf.uam.es/coremah/
https://ffmpeg.org/
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Table 4 Development and test term list characteristics for MAVIR, RTVE, and COREMAH databases

Term list dev-MAVIR dev-RTVE test-MAVIR test-RTVE test-COREMAH

#IN-LANG terms (occ.) 354 (959) 307 (1151) 208 (2071) 301 (1082) 153 (1022)

#OUT-LANG terms (occ.) 20 (55) 91 (351) 15 (50) 103 (162) 8 (16)

#SINGLE terms (occ.) 340 (984) 380 (1280) 198 (2093) 383 (1186) 145 (1004)

#MULTI terms (occ.) 34 (30) 18 (222) 25 (28) 21 (58) 16 (34)

#INV terms (occ.) 292 (668) 312 (1263) 192 (1749) 316 (1035) 128 (948)

#OOV terms (occ.) 82 (346) 86 (239) 31 (372) 88 (209) 33 (90)

“dev” stands for development, “IN-LANG” refers to in-language terms, “OUT-LANG” to foreign terms, “SINGLE” to single-word terms, “MULTI” to multi-word terms, “INV” to
in-vocabulary terms, “OOV” to out-of-vocabulary terms, and “occ.” stands for occurrences. The term length of the development term lists varies between 4 and 27 graphemes.
The term length of the mAVIR and rTVE test term lists varies between 4 and 28 graphemes. The term length of the cOREMAH test term list varies between 3 and 17 graphemes

This evaluation focused on low-resources languages, as
the previous OpenKWS, and speech data comprised con-
versational telephone speech.
In the ALBAYZIN 2018 STD evaluation, the audio com-

prises diverse recording conditions: (1) real talks in real
workshops held in large conference rooms with public,
(2) conversational speech, and (3) broadcast news speech.
In the recordings of the workshops, microphones, confer-
ence rooms, and even recording conditions change from
one recording to another, and tabletop and ground stand-
ing microphones were typically employed. In addition,
our evaluation explicitly defines different in-vocabulary
and out-of-vocabulary term sets. These differences in the
evaluation conditions make our evaluation pose different
challenges and make it difficult to compare the results
obtained in our evaluation to those of the previous NIST
STD/OpenKWS/OpenSAT evaluations.
STD evaluations have also been held in the framework

of the NTCIR conferences from 2011 to 2016 [112–115].
Data used in these evaluations are spontaneous speech in
Japanese, provided by the National Institute for Japanese
language, and spontaneous speech recorded during seven
editions of the Spoken Document Processing Workshop.
In these evaluations, the organizers provided the partici-
pants with manual transcriptions of the speech data and
the output of an LVCSR system. Table 7 presents the best
result obtained in each evaluation, where the F-measure
was used as the evaluation metric. Although MAVIR data
employed in our evaluation could be similar in terms of
speech nature to these NTCIR STD evaluations (speech

Table 5 Best performance (in terms of Actual Term
Weighted-Value, ATWV) obtained in the NIST STD 2006
evaluation for the different conditions: “CTS” stands for
Conversational Telephone Speech, “BNews” for Broadcast News,
and “RTMeet” for speech recorded in roundtable meeting rooms

Language CTS BNews RTMeet

English 0.8335 0.8485 0.2553

Arabic 0.3467 − 0.0924 N/A

Mandarin 0.3809 N/A N/A

recorded in real workshops), our evaluation makes use
of a different language, employs a larger list of terms
along with three different databases (each covering a dif-
ferent domain), and defines disjoint development and
test term lists to measure the generalization capability of
the systems. Besides, the evaluation metric used in these
evaluations is different. All these differences make system
comparison very difficult.

2.5 Comparison to previous ALBAYZIN search on speech
evaluations

From 2012, ALBAYZIN STD evaluation has been inte-
grated within the framework of ALBAYZIN SoS evalu-
ation. This SoS evaluation includes two different tasks,
named STD and QbE STD. In 2012, participants focused
on the QbE STD task, whereas in 2014, systems were
mainly submitted to the STD task. In 2016 and 2018,
both tasks received the same attention from participants.
Specifically, from 2014, the ALBAYZIN STD evaluation
has evolved in different aspects:

• Evaluation domains. In the evaluation held in 2014, a
single domain (spontaneous speech from workshop
talks) was chosen. In 2016, a novel Spanish database
(Spanish European parliament sessions) was added to
that domain, which allowed measuring the system
performance on an additional dataset, for which
neither training nor development data were provided.
The system ranking was based on the performance
obtained on the workshop talk domain. On the other

Table 6 Best performance (in terms of Actual Term-Weighted
Value, ATWV) obtained in the different editions (2013, 2014, 2015,
and 2016) of the OpenKWS evaluations under the full language
pack condition

Evaluation ATWV Language

OpenKWS 2013 0.6248 Vietnamese

OpenKWS 2014 0.5802 Tamil

OpenKWS 2015 0.6548 Swahili

OpenKWS 2016 0.8730 Georgian
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Table 7 Best performance (in terms of F-measure) obtained in
the different editions of the NTCIR STD evaluations

Evaluation F-measure

NTCIR STD-09 0.3660

NTCIR STD-10 0.7944

NTCIR STD-11 0.6140

NTCIR STD-12 0.7188

hand, the evaluation held in 2018 employs three
different domains: spontaneous speech from
workshop talks, broadcast news (which contains the
largest database used in any Spanish STD evaluation),
and spontaneous speech from 2-people conversations
(for which neither training nor development data
were provided). This makes the evaluation more
attractive for participants, since they can evaluate the
submitted systems in different domains and
conditions. Moreover, since the evaluation ranking is
based on the average performance from the different
datasets, participants were encouraged to build
multi-domain STD systems. This represents the most
important difference compared to the evaluation held
in 2016.

• Number and complexity of search terms. The
number of terms used in the evaluations increases
from one evaluation to another. In 2014, there were
548 terms for searching, 780 terms in 2016, and 1560
terms in the 2018 evaluation. In addition, the
complexity of the search terms has also increased
from one evaluation to another, with more
out-of-language, multi-word, and OOV terms.

• Evaluation sets. In 2014, the evaluation organizers
provided two different datasets:
training/development and test datasets. Aiming to
solve the system bias to the training data when the
submitted systems were evaluated on development
data, the 2016 and 2018 evaluations provided three
different datasets: training, development, and test.

2.6 Participants
Three different teams submitted 11 different systems to
the ALBAYZIN 2018 Spoken Term Detection evaluation,
as listed in Table 8. About 3months were given to the
participants for system development and, therefore, the
STD evaluation focuses on building STD systems in a lim-
ited period of time. The training, development, and test
data were released to the participants at different times.
Training and development data were released on June
30, 2018. The test data were released on September 24,
2018. The final system submission was due on October
21, 2018. Final results were discussed at IberSPEECH 2018
conference on November 21, 2018.

Table 8 Participants in the ALBAYZIN 2018 STD evaluation along
with the systems submitted

Team ID Research institution Systems Type of system

GTM-IRLab AtlantTIC Research
Center+Information
Retrieval Lab.
Universidade de
Vigo+Universidade
da Coruña, Spain

Combined Kaldi
Proxy Kaldi
Phone-based

LVCSR+phone-
based LVCSR
Phone-based

CENATAV Voice Group,
Advanced
Technologies
Application Center,
Cuba

Kaldi-DNN
Kaldi-SGMM
Kaldi-GMM

LVCSR LVCSR
LVCSR

GTTS Universidad
del País Vasco,
Spain

Combined Synt-
DTW Super-BNF
Synt-DTW
Multilingual-BNF
Synt-DTW
Monoph.-BNF
Synt-DTW
Triph.-BNF
Synt-DTW

QbE-STD QbE-STD
QbE-STD QbE-STD
QbE-STD

3 Systems
In this section, the systems submitted to the evaluation are
described (see Appendix). These systems can be divided
into three different categories, as presented in Table 8: (1)
LVCSR-based approaches, (2) subword approaches based
on phone units, and (3) generating a spoken query from
the written form of the term using speech synthesis and
employing dynamic time warping (DTW)-based search in
a QbE-STD framework.

3.1 Combined Kaldi-based STD system (Combined Kaldi)
This system combines a word-based STD system and a
phone-based STD system, as depicted in Fig. 2. Both
systems are described next.

3.1.1 Word-based STD system
The ASR subsystem is based on the Kaldi open-
source toolkit [73] and employs deep neural network
(DNN)-based acoustic models. Specifically, a DNN-based
context-dependent speech recognizer is trained following
the DNN training approach presented in [116]. Forty-
dimensionalMel-frequency cepstral coefficients (MFCCs)
augmented with three pitch- and voicing-related features
[117] and appended with their delta and acceleration
coefficients are first extracted for each speech frame.
The DNN has 6 hidden layers with 2048 neurons each.
Each speech frame is spliced across ± 5 frames to pro-
duce 1419-dimensional vectors which are the input to the
first layer, whereas the output layer is a soft-max layer
representing the log-posteriors of the context-dependent
hidden Markov model (HMM) states. The Kaldi LVCSR
decoder generates word lattices [118] using these DNN-
based acoustic models.



Tejedor et al. EURASIP Journal on Audio, Speech, andMusic Processing         (2019) 2019:16 Page 9 of 37

Fig. 2 Architecture of the Combined Kaldi STD system

The data used to train the acoustic models of this
Kaldi-based LVCSR system are extracted from the Span-
ish training material of the 2006 TC-STAR automatic
speech recognition evaluation campaign8, which amounts
to about 99 h of speech, and the Galician broadcast news
database Transcrigal [119], which amounts to about 26 h
of speech. It must be noted that all the non-speech parts
as well as the speech parts corresponding to transcrip-
tions with pronunciation errors, incomplete sentences,
and short speech utterances are discarded, so in the end
the acoustic training material consists of approximately
104.5 h.
The language model employed in the LVCSR system

is constructed using a text database of 150 million word
occurrences composed of material from several sources
(transcriptions of European and Spanish Parliaments from
the TC-STAR database, subtitles, books, newspapers,
on-line courses, and the transcriptions of the MAVIR
sessions included in the development set provided by
the evaluation organizers9 [120]). Specifically, the LM is
obtained from static interpolation of two 4-gram-based
language models which are trained using these different
text databases. Both LMs are built using the Kneser-Ney
discounting strategy employing the SRILM toolkit [121],
and the final LM is obtained using the SRILM static n-
gram interpolation functionality. One of the 4-gram LMs
is trained from the subtitles provided by the evaluation
organizers within the RTVE training data, and the other
LM is built from the rest of the text corpora. Both LMs
contain 15 million 4-grams, 10 million 3-grams, 780K 2-
grams, and 300K 1-grams. The LM vocabulary size is
limited to the most frequent 300K words and, for each
evaluation data set, the OOV terms are removed from
the languagemodel. Grapheme-to-phoneme conversion is
carried out with the Cotovia software [122].

8http://www.tc-star.org
9http://cartago.lllf.uam.es/mavir/index.pl?m=descargas

The STD subsystem integrates the Kaldi term detec-
tor [73–75], which searches for the input terms within
the word lattices obtained in the previous step. To do
so, these lattices are processed using the lattice index-
ing technique described in [123] so that the lattices of all
the utterances in the search collection are converted from
individual weighted finite state transducers (WFSTs) to
a single generalized factor transducer structure in which
the start-time, end-time, and lattice posterior probabil-
ity of each word token are stored as 3-dimensional costs.
This factor transducer is actually an inverted index of all
word sequences seen in the lattices. Thus, given a list of
terms, a simple finite state machine is created such that it
accepts each term and composes it with the factor trans-
ducer to obtain all occurrences of the terms in the search
collection. The Kaldi decision-maker conducts a YES/NO
decision for each detection based on the term specific
threshold (TST) approach presented in [49]. To do so, the
score for each detection is computed as follows:

p >
Nconf

T
β

+ β−1
β

Nconf
, (4)

where p is the confidence score of the detection, Nconf is
the sum of the confidence score of all the detections of
the given term, β is set to 999.9 (as in Eq. 1), and T is the
length of the audio in seconds.
The proxy words strategy in the Kaldi open-source

toolkit [76] is employed for OOV term detection. This
strategy consists in substituting each OOV word of the
search term with acoustically similar INV proxy words so
that the search of OOV terms can be carried out using the
obtained INV term or terms.

3.1.2 Phone-based STD system
The phone-based STD system is applied for INV and
OOV term detection and follows a probabilistic retrieval

http://www.tc-star.org
http://cartago.lllf.uam.es/mavir/index.pl?m=descargas
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model for information retrieval. Thismodel consists of the
following stages:

• Indexing. The lattice-to-phone-lattice tool in the
Kaldi [73] toolkit is employed to produce phone
lattices from the word lattices output by the LVCSR
system described above. Then, 40 n-best lists are
created from the phone lattices and indexed in terms
of phone n-grams of different size [124, 125]. The
minimum and maximum sizes of the n-grams are set
to 1 and 5, respectively, according to [125].
According to the probabilistic retrieval model used in
this system, each spoken document is represented by
means of a language model [126]. In this case, given
that the phone transcriptions have errors, several
hypotheses for each transcription are used to improve
the quality of the language model. The start time and
duration of each phone are also stored in the index.

• Search. A phonetic transcription of the term is first
obtained using the grapheme-to-phoneme model for
Spanish included in the Cotovia software [122]. Then,
the term is searched within the different indices, and
a score for each spoken document is computed
following the query likelihood retrieval model [127].
It must be noted that this model sorts the spoken
documents according to how likely it is that they
contain the term, but the start and end times of the
match are required in this task. To obtain these times,
the phone transcription of the term T is aligned to
that of the spoken document D by computing its
minimum edit distance (MED)MED(T ,D). This
allows the recovery of the start and end times, since
they are stored in the index. In addition, the MED is
used to penalize the score returned by the query
likelihood retrieval model (Lopez-Otero et al.:
Probabilistic information retrieval models for
query-by-example spoken document retrieval,
submitted) (i.e., scoreLM(T ,D)), as follows:

score(T,D) = scoreLM(T ,D) · scoreMED(T ,D),
(5)

where scoreMED(T ,D) is a score between 0 and 1
derived fromMED(T ,D) and computed as

scoreMED(T ,D) = nT − MED(T ,D)

K
, (6)

where nT is the number of phonemes of the term,
and K is the length of the best alignment path.

Indexing and search are performed using Lucene.10

3.1.3 Fusion
Discriminative calibration and fusion [128] are applied in
order to combine the outputs of the word and phone-

10http://lucene.apache.org

based STD systems described above. The global minimum
score produced by the system for all the terms is used to
hypothesize the missing scores. After normalization, cal-
ibration and fusion parameters are estimated by logistic
regression on the development dataset to obtain improved
discriminative and well-calibrated scores [129]. Calibra-
tion and fusion training are performed using the Bosaris
toolkit [130].
The decision threshold, weight of the LM in the word-

based system, and number of n-best lists in the phone-
based system for MAVIR and RTVE development data
are tuned for each dataset from the individual develop-
ment dataset. However, for all the test data (i.e., MAVIR,
RTVE, and COREMAH), these parameters are tuned
from the combined ground-truth labels of the MAVIR
and RTVE development data, aiming to avoid overfit-
ting issues. The rest of the parameters are set based on
preliminary experiments.

3.2 Kaldi+proxy words-based STD system (Proxy Kaldi)
This system is the word-based STD system described in
the Section 3.1.

3.3 Phone-based sTD system (Phone-based)
This system is the phone-based STD system explained in
the Section 3.1.

3.4 Kaldi-based DNN system (Kaldi-DNN)
This system, whose architecture is presented in Fig. 3,
is based on an LVCSR system constructed with the
open-source Kaldi toolkit [73]. Specifically, the design
of the system relies on the use of the s5 Wall Street
Journal (WSJ) recipe in Kaldi11. The acoustic features
used are 13 MFCCs with cepstral mean and vari-
ance normalization (CMVN) to reduce the effects of
the channel. Linear discriminant analysis (LDA), maxi-
mum likelihood linear transform (MLLT), and feature-
space maximum likelihood linear regression (fMLLR)
were also applied to obtain more robust features. The
training of the acoustic models begins with a flat ini-
tialization of context-independent phone HMMs. Then,
several re-training and alignment of acoustic mod-
els are performed to obtain context-dependent phone
HMMs, following the standard procedures of the Kaldi s5
WSJ recipe12.
These phone models consist of three HMM states,

each in a tied-pdf cross-word tri-phone context with
Gaussian mixture models (GMMs). Then, the GMM-
HMM model is speaker-adapted by means of sub-
space Gaussian mixture model (SGMM), as described
in [131], using fMLLR features and sharing the same

11https://github.com/kaldi-asr/kaldi/tree/master/egs/wsj/s5
12https://github.com/kaldi-asr/kaldi/tree/master/egs/wsj/s5

http://lucene.apache.org
https://github.com/kaldi-asr/kaldi/tree/master/egs/wsj/s5
https://github.com/kaldi-asr/kaldi/tree/master/egs/wsj/s5
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Fig. 3 Architecture of the Kaldi-DNN STD system

Gaussian model. The GMM-HMM also produces the
alignments for training the DNN-based acoustic model
(DNN-HMM). The DNNs contain 2 hidden layers with
300 nodes each. The number of spliced frames is 9
to produce 360 dimensional vectors as input to the
first layer. The output layer is a soft-max layer rep-
resenting the log-posteriors of the context-dependent
states.
The data used to train the acoustic models com-

prise the TC-STAR data recorded from 2005 to 2007,
which contain more than 26 h of speech; a subset of
the dev1 set of the RTVE data, which amounts to about
14 h of speech; and the MAVIR training data, which
amount to more than 4 h of speech. In total, there are
45 h of speech material in the three datasets. Over-
lapped speech is removed from the dev1 set of RTVE,
so eventually 44 h of speech are used for acoustic model
training.
The data used for language model training include the

text transcriptions of the data used for acoustic model
training, which contain 425K word occurrences. Specif-
ically, these text transcriptions are given to the SRILM
toolkit [121] to create a trigram-based LM, which con-
sists of 38K trigrams, 155K bigrams, and 23K unigrams.
The system vocabulary consists of the different words
corresponding to the training data which, after removing
the OOV words, amounts to 23K words. The multilin-
gual G2P transcriber13 is employed to obtain the phone
transcription of each word.
The Kaldi decoder generates word lattices using the

DNN-HMM based acoustic models. The STD subsystem,
which takes the word lattices as input, includes the Kaldi
term detector and Kaldi decision maker-explained in the
Combined Kaldi system.
The proxy words strategy in the Kaldi open-source

toolkit [76] is employed for OOV term detection.
All the system parameters are selected based on pre-

liminary experiments, and no additional tuning from
development data is carried out.

13https://github.com/jcsilva/multilingual-g2p

3.5 Kaldi-based SGMM system (Kaldi-SGMM)
This system is the same as the Kaldi-DNN system but
SGMMs are employed for acoustic modeling in the Kaldi-
based LVCSR system.

3.6 Kaldi-based GMM system (Kaldi-GMM)
This system is the same as the Kaldi-DNN system but
GMMs are employed for acoustic modeling in the Kaldi-
based LVCSR system.

3.7 Combined synthetic-Speech DTW system (Combined
synt-DTW)

This system, whose architecture is shown in Fig. 4, aims to
completely overcome the OOV word issue of text-based
approaches. To do so, the written form of the term is syn-
thesized to generate a spoken query that is then given to a
QbE-STD system to hypothesize detections.

3.7.1 Generation ofmultiple spoken queries
Two different text-to-speech (TTS) tools are used for spo-
ken query generation: the Google TTS (gTTS) Python
library and command-line interface (CLI) tool [132],
which provides two different female voices (es-ES and es-
US); and the Cocoa TTS interface in MacOS [133], which
has five different voices (three male, two female) includ-
ing both European and American Spanish. In this way,
for each textual form of the term, seven spoken queries
q1, q2, . . . , q7 are synthesized.

3.7.2 Voice activity detection (VAD)
The synthesized spoken queries and the audio documents
are given to a VAD system. Specifically, the Python inter-
face for the VAD module developed by Google for the
WebRTC project [134] is employed. This VAD strategy
is based on Gaussian distributions of speech and non-
speech features.

3.7.3 Feature extraction
The feature extraction consists in stacked bottleneck fea-
ture (SBNF) computation following the BUT/Phonexia
approach [135], both for the synthesized spoken queries

https://github.com/jcsilva/multilingual-g2p
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Fig. 4 Architecture of the Combined Synt-DTW STD system

and the audio documents. To do so, three different neural
networks are applied, each trained to classify a differ-
ent set of acoustic units and later optimized for language
recognition tasks. The first network is trained on tele-
phone speech from the English Fisher corpus [136] with
120 monophone state targets, which will be referred as
FisherMono. The second one is also trained on the Fisher
corpus but with 2423 triphone tied-state targets and will
be referred as FisherTri. The third network is trained
on telephone speech from 17 languages included in the
IARPA Babel program [137], with 3096 stacked mono-
phone state targets (BabelMulti for short). Given that the
SBNF extractors are trained using 8 kHz speech signals,
the documents and the synthesized spoken queries are
downsampled to 8 kHz.
The architecture of the SBNF networks consists of

two stages. The first stage is a standard bottleneck net-
work fed with low-level acoustic features, which span 10
frames (100ms), producing a bottleneck feature vector of
80 dimensions. The second stage employs five equally-
spaced bottleneck feature vectors from the first stage
as input and is trained on the same targets as the first
stage, producing bottleneck features of the same size (80).
The bottleneck features extracted from the second stage

are known as stacked bottleneck features, and comprise
the output of the feature extraction module. Alterna-
tively, the extractor can output target posteriors, instead
of SBNFs.
The operation of BUT/Phonexia SBNF extractors

requires an external VAD module (as WebRTC VAD in
our case) providing speech/non-speech information. If no
external VAD is provided, a simple energy-based VAD is
computed internally. This system employs the WebRTC
VAD module.
The first aim for the feature extraction stage was

to employ the BUT/Phonexia posteriors, but the huge
size of FisherTri (2423) and BabelMulti (3096) targets
requires some kind of selection, clustering or dimension-
ality reduction approach. Therefore, given that—at least
theoretically—the same information is conveyed by sBNFs
with a suitably low dimensionality (as 80 in this case),
sBNFs are employed. However, this may require to pay a
high price. Posteriors have a clear meaning, they can be
linearly combined and their values suitably fall within the
range [0,1], which makes the − log cos(α) distance also
range in [0,1], where α is the angle between two vectors
of posteriors. On the other hand, bottleneck layer activa-
tions have no clear meaning, it is not actually known if

Fig. 5 Example of the iterative DTW procedure: (1) The best match of q in x[ 1, n] is located in x[ k1, k2]. (2) Since the score is greater than the
established threshold T, the search continues in the surrounding segments x[ 1, k1 − 1] and x[ k2 + 1, n]. (3) x[ k2 + 1, n] is not searched, because it is
too short. (4) The best match of q in x[ 1, k1 − 1] is located in x[ k3, k4]. (5) But its score is lower than T, so the surrounding segments x[ 1, k3 − 1] and
x[ k4 + 1, k1 − 1] are not searched. The search procedure outputs the segments x[ k1, k2] and x[ k3, k4]
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Fig. 6 Overall system results of the ALBAYZIN 2018 STD evaluation on development data

they can be linearly combined (e.g., for computing an aver-
age query frommultiple query instances), and their values
are unbounded, so the − log cos(α) distance no longer
applies.

3.7.4 Average query construction
From the synthesized spoken queries, the longest query
is taken as reference and then, optimally aligned to the
other queries by means of a standard DTW procedure.
Let ql be a sequence of ml VAD-filtered sBNF vectors
for the reference query, and let qi be the sequence of mi
vectors corresponding to another synthesized query. The

alignment starts at [ 1, 1], ends at [ml,mi], and involves L
alignments, such that each feature vector of ql is aligned
to a sequence of vectors of qi. This is repeated for all the
synthesized queries, and a set of feature vectors namely
Sj is obtained from the alignment with each feature vec-
tor ql[ j], j = 1, 2, . . . ,ml. Then, each ql[ j] is averaged with
the feature vectors in Sj to get a single average query, as
follows:

qavg[ j]= 1
1 + |Sj|

⎛

⎝ql[ j]+
∑

v∈Sj
v

⎞

⎠ j = 1, 2, . . . ,ml. (7)

Fig. 7 Overall system results of the ALBAYZIN 2018 STD evaluation on test data
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Fig. 8 System results of the ALBAYZIN 2018 STD evaluation on MAVIR development data

Finally, the average query qavg[ j] is used to search for
occurrences in the audio documents using the DTW-
based approach explained next.

3.7.5 Dynamic timewarping-based search
To perform the search of spoken queries in audio doc-
uments, the system follows the DTW-based approach
presented in [138]. Given two sequences of sBNFs cor-
responding to a spoken query and an audio document, a
VAD system is used to discard non-speech frames, but
keeping the timestamp of each frame. To avoid mem-
ory issues, audio documents are split into chunks of
5min with 5-s overlap and processed independently. This
chunking process is key to the speed and feasibility of the
search procedure.
Let q = (q[ 1] , q[ 2] , . . . , q[m] ) be the VAD-filtered

sequences corresponding to a query of length m and x =
(x[ 1] , x[ 2] , . . . , x[ n] ) be those of an audio document of
length n. Since sBNFs (theoretically) range from −∞ to
+∞, the distance between any pair of vectors, q[ i] and
x[ j], is defined as follows:

d(q[ i] , x[ j] ) = − log
(
1 + q[ i] ·x[ j]

|q[ i] | · |x[ j] |
)

+ log 2. (8)

Table 9 Percentage of MAVIR INV terms that do not appear in
the LVCSR system vocabulary (only for word-based STD systems)

System ID Development OOV rate Test OOV rate

Combined Kaldi 0.3% 5.2%

Proxy Kaldi 0.3% 5.2%

Kaldi-DNN 5.5% 20.3%

Kaldi-SGMM 5.5% 20.3%

Kaldi-GMM 5.5% 20.3%

Note that d(v,w) ≥ 0, with d(v,w) = 0 if and only if
v and w are aligned and pointing in the same direction,
and d(v,w) = +∞ if and only if v and w are aligned and
pointing in opposite directions.
The distance matrix computed according to Eq. 8 is nor-

malized with respect to the audio document x, as follows:

dnorm
(
q[ i] , x[ j]

) = d(q[ i] , x[ j] ) − dmin(i)
dmax(i) − dmin(i)

, (9)

where:
dmin(i) = min

j=1,...,n
d(q[ i] , x[ j] ) (10)

dmax(i) = max
j=1,...,n

d(q[ i] , x[ j] ). (11)

In this way, matrix values are in the range [ 0, 1] and a
perfect match would produce a quasi-diagonal sequence
of zeroes. This can be seen as test normalization since,
given a query q, distance matrices take values in the same
range (and with the same relative meaning), no matter the
acoustic conditions, the speaker or other factors of the
audio document x.
It must be noted that the chunking process described

above makes the normalization procedure differ from that
applied in [138], since dmin(i) and dmax(i) are not com-
puted for the whole audio document but for each chunk
independently. On the other hand, considering chunks
of 5min might be beneficial, since normalization is per-
formed in a more local fashion, that is, more suited to
the speaker(s) and acoustic conditions of each particular
chunk.
The best match of a query q of lengthm in an audio doc-

ument x of length n is defined as that which minimizes
the average distance in a crossing path of the matrix dnorm.
A crossing path starts at any given frame of x, k1 ∈[ 1, n],
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Fig. 9 System results of the ALBAYZIN 2018 STD evaluation on RTVE development data

then traverses a region of x which is optimally aligned
to q (involving L vector alignments), and ends at frame
k2 ∈[ k1, n]. The average distance in this crossing path is
as follows:

davg(q, x) = 1
L

L∑

l=1
dnorm(q[ il] , x[ jl] ), (12)

where il and jl are the indices of the vectors of q and x
in the alignment l, for l = 1, 2, . . . , L. Note that i1 = 1,
iL = m, j1 = k1, and jL = k2. The optimization procedure
isO(n·m·d) in time (d size of feature vectors) andO(n·m)

in space. Readers are referred to [138] for more details.
The detection score is computed as 1 − davg(q, x),

thus ranging from 0 to 1, being 1 only for a perfect
match. The starting time and the duration of each detec-
tion are obtained by retrieving the time offsets corre-
sponding to frames k1 and k2 in the VAD-filtered audio
document.
This procedure is iteratively applied to find not only

the best match, but also less likely matches in the same
audio document. To that end, a queue of search intervals is
defined and initialized with [ 1, n]. Given an interval [ a, b],
and assuming that the best match is found at [ a′, b′], the

Table 10 Percentage of RTVE INV terms that do not appear in
the LVCSR system vocabulary (only for word-based STD systems)

System ID Development OOV rate Test OOV rate

Combined Kaldi 5.1% 6.6%

Proxy Kaldi 5.1% 6.6%

Kaldi-DNN 52.6% 66.8%

Kaldi-SGMM 52.6% 66.8%

Kaldi-GMM 52.6% 66.8%

intervals [ a, a′ − 1] and [ b′ + 1, b] are added to the queue
(for further processing) only if the following conditions
are satisfied: (1) The score of the current match is greater
than a given threshold T (T = 0.85); (2) The interval is
long enough (half the query length, m/2); (3) The num-
ber of matches (those already found + those waiting in
the queue) is limited to less than a given threshold M
(M = 7). An example is shown in Fig. 5. Finally, the list of
matches for each query is ranked according to the scores
and truncated to the N highest scores (N = 1000, though
it effectively applied only in a few cases).
Four different DTW-based searches are carried out.

Three of them employ the three sBNF sets computed
in the feature extraction module (FisherMono, FisherTri,
BabelMulti). The other DTW search employs the con-
catenation of all the three sBNF sets (which leads to
240-dimensional sBNFs). Each DTW search produces dif-
ferent term detections that are next fused in the fusion
stage.

3.7.6 Calibration and fusion
The scores produced by the different searches are trans-
formed according to a discriminative calibration/fusion
approach commonly applied in speaker and language
recognition [139].
First, the so-called q-norm (query normalization) is

applied, so that zero-mean and unit-variance scores are
obtained per query. Then, if n different systems are fused,
detections are aligned so that only those supported by k
or more systems (1 ≤ k ≤ n) are retained for further pro-
cessing (k = 2). To build the full set of trials (potential
detections), a rate of 1 trial per second is chosen (which
is consistent with the evaluation script provided by the
organizers). Given one of those detections of a query q
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Fig. 10 System results of the ALBAYZIN 2018 STD evaluation on MAVIR test data

supported by at least k systems and a system A that did
not provide a score for it, there could be different ways
to fill up this hole. The minimum score that A has output
for query q in other trials is selected. In fact, the mini-
mum score for the query q is hypothesized for all target
and non-target trials of query q for which system A has
not output a detection score. When a single system is
considered (n = 1), the majority voting scheme and the
filling up of missing scores are skipped. In this way, a com-
plete set of scores is prepared, which besides the ground
truth (target/non-target labels) for a development set of
queries, can be used to discriminatively estimate a linear

transformation that will hopefully produce well-calibrated
scores.
The calibration/fusion model is learned on the devel-

opment set and then applied to both the development
and test sets, using the Bosaris toolkit [130]. Under this
approach, and given the effective prior (in this evaluation,
P̂target = CmissPtarget/(CmissPtarget + Cfa(1 − Ptarget)) =
0.001), the Bayes optimal threshold is applied and—at
least theoretically—no further tuning would be necessary.
In practice, however, if a system yields a small amount of
detections, the system will be using hypothesized scores
for most of the trials. As a result, the calibration/fusion

Fig. 11 System results of the ALBAYZIN 2018 STD evaluation on RTVE test data
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Fig. 12 System results of the ALBAYZIN 2018 STD evaluation on COREMAH test data

model would be poorly learned and the Bayes optimal
threshold would not produce good results.
The calibration/fusion parameters and optimal decision

threshold are obtained from the corresponding devel-
opment set for each database (MAVIR and dev2 for
RTVE). For the COREMAH database, the optimal cal-
ibration/fusion parameters tuned on MAVIR data are
employed, since evaluation organizers did not provide any
development data for that database, and the optimal deci-
sion threshold is chosen so that 15% of the detections
with the highest scores are assigned YES decision. The
parameters involved in the feature extraction and search
procedures are set based on preliminary experiments.

3.8 Super-bottleneck feature-based synthetic-speech
DTW system (Super-BNF synt-DTW)

This system is the same as the Combined Synt-DTW sys-
tem, except that a single DTW-based search with the
concatenation of the three SBNF as features is used to
hypothesize term detections.

Table 11 Percentage of COREMAH INV test terms that do not
appear in the LVCSR system vocabulary (only for word-based STD
systems)

System ID OOV rate

Combined Kaldi 0%

Proxy Kaldi 0%

Kaldi-DNN 14.8%

Kaldi-SGMM 14.8%

Kaldi-GMM 14.8%

3.9 Multilingual bottleneck feature-based
synthetic-speech DTW system (Multilingual-BNF
synt-DTW)

This system is the same as the Super-BNF Synt-DTW sys-
tem, except that DTW-based search on the BabelMulti
sBNF set is used for term detection.

3.10 Monophone bottleneck feature-based
synthetic-speech DTW system (Monoph.-BNF
synt-DTW)

This system is the same as the Super-BNF Synt-DTW sys-
tem, except that DTW-based search on the FisherMono
sBNF set is used for term detection.

3.11 Triphone bottleneck feature-based synthetic-speech
DTW system (Triph.-BNF synt-DTW)

This system is the same as the Super-BNF Synt-DTW
system, except that DTW-based search on the FisherTri
sBNF set is used for term detection.

4 Evaluation results and discussion
4.1 Overall results
The overall evaluation results are presented in Figs. 6
and 7 for development and test data, respectively. These
show that the best performance for MTWV and ATWV
metrics corresponds to the Combined Kaldi system.
Development and test data largely present the same
ranking results. However, as explained next, this does not
mean that the best system on development data corre-
sponds to the best system on test data for all the databases.
Different calibration threshold issues have caused this in
the overall results.
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4.2 Development data
4.2.1 MAVIR
System results for the MAVIR development data are
presented in Fig. 8. The best performance is obtained
with the Kaldi-DNN system, for which the small perfor-
mance gap between MTWV and ATWV suggests that
the threshold has been well-calibrated. This best perfor-
mance is statistically significant for a paired t test (p <

0.01) with respect to the Phone-based system and the
systems that employ the QbE-STD approach (i.e., Com-
bined Synt-DTW, Super-BNF Synt-DTW, Multilingual-
BNF Synt-DTW, Monoph.-BNF Synt-DTW, and Triph.-
BNF Synt-DTW ), and weakly significant (p < 0.03)
with respect to the Combined Kaldi system. On the one
hand, by inspecting the systems that employ a text-based
STD approach, the Phone-based system degrades the STD
performance compared with the other text-based STD
systems. Although this system is based on word ASR
to produce word lattices, these are then converted to
phone n-grams for search, so that the word information
is lost. This can be critical for highly-spontaneous and

low-quality speech in MAVIR data. Nevertheless, phone-
based systems typically convey fast search and index-
ing, and the possibility of detecting OOV terms with no
additional system development. All the text-based STD
systems that employ word ASR and word lattices for
search do not present statistically significant differences
for a paired t test, and hence they should be consid-
ered equivalent from an STD perspective. This indicates
that the small difference in OOV rate in the develop-
ment data according to Table 9 (5.5% − 0.3% = 5.2%)
is not statistically significant. The systems that employ a
QbE-STD approach for STD obtained a remarkably low
performance. This may be due to these factors: (1) An
acoustic mismatch between the synthesized queries and
the test audios might lead to low scores and block the iter-
ative DTW detection procedure. (2) The use of bottleneck
layer activations as frame-level acoustic representation
might be incompatible with the query averaging proce-
dure (which worked fine with phone posteriors). (3) The
absence of lexical information since no ASR system is
employed.

Fig. 13 The DET curves of the STD systems for MAVIR development data
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4.2.2 RTVE
System results for the RTVE development data are pre-
sented in Fig. 9. The best performance is obtained with
the Combined Kaldi system, for which the very small per-
formance gap between MTWV and ATWV suggests that
the threshold has been optimally calibrated. This best
performance is statistically significant for a paired t test
(p < 0.01) compared with the rest of the systems, except
with the Phone-based system, for which the improvement
is weakly significant (p < 0.02), and the Proxy Kaldi
system, for which the performance gap is insignificant.
This different ranking, compared with the MAVIR devel-
opment data, is due to the large difference in the OOV
rate (52.6% − 5.1% = 47.5%) between the Kaldi-DNN
and Combined Kaldi systems, as presented in Table 10.
It is worth mentioning that there is no significant dif-
ference for a paired t test between the Proxy Kaldi and
the Phone-based systems. This suggests that phone-based
systems are able to perform similarly to word-based sys-
tems for high-quality and well-pronounced speech such
as that of the RTVE data. The systems that employ the
QbE-STD approach obtain the worst results, probably

due to the same causes mentioned in the previous
section.

4.3 Test data
4.3.1 MAVIR
System results for the MAVIR test data are presented in
Fig. 10. The best performance is obtained with the Proxy
Kaldi system, for which the performance gap between
MTWV and ATWV metrics suggests that the threshold
calibration works well. This best performance is statisti-
cally significant for a paired t test (p < 0.01) compared
with all the systems except the Kaldi-DNN and Kaldi-
SGMM systems. On the one hand, the low performance
of the Combined Kaldi system indicates some calibration
issues in the fusion stage. This is confirmed by the low
performance obtained in the Phone-based system, which
indicates that the parameter tuning on MAVIR develop-
ment data does not generalize well in unseen data. On
the other hand, the Proxy Kaldi system incorporates INV
and OOV term detection in a common framework, and
hence it is more robust against calibration issues. The dif-
ferences in OOV rate shown in Table 9 between the Proxy

Fig. 14 The DET curves of the STD systems for RTVE development data
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Kaldi, Kaldi-DNN, and Kaldi-SGMM systems (20.3% −
5.2% = 15.1%) do not produce a statistically significant
reduction in the ATWV performance, which suggests that
robust acoustic models along with an effective OOV term
detection can mitigate the OOV issue in low-quality and
highly-spontaneous speech domains. Again, the systems
based on a QbE-STD approach obtained a much lower
performance.

4.3.2 RTVE
System results for the RTVE test data are presented
in Fig. 11. The best performance corresponds to the
Proxy Kaldi system, for which MTWV and ATWV are
very close, indicating an almost perfect threshold cal-
ibration. This best performance is statistically signifi-
cant for a paired t test (p < 0.01) with respect to
the rest of the systems, except the Combined Kaldi and
the Phone-based systems. Similar findings to those of
the RTVE development data arise: (1) The large dif-
ference in OOV rate shown in Table 10 for test data
(66.8% − 6.6% = 62.2%) produces large differences in
terms of ATWV for the word-based STD systems. (2)

The results of the Phone-based system can be considered
statistically equivalent to those obtained with the Proxy
Kaldi system, which highlights the performance of the n-
grams when facing term detection in an open-vocabulary
STD system.

4.3.3 COREMAH
System results for the COREMAH test data are presented
in Fig. 12. The best performance is for the Monoph.-BNF
Synt-DTW system, although all of the systems obtained
very low MTWV/ATWV results. This best performance
is statistically significant for a paired t test (p < 0.01)
compared with the Combined Kaldi, Kaldi-SGMM, and
Kaldi-GMM systems, and weakly significant compared
with the Proxy Kaldi (p < 0.04), Phone-based (p < 0.02),
andKaldi-DNN (p < 0.03) systems. The low performance
obtained in these data may be due to the following factors:
(1) These data contain overlapped speech, which signifi-
cantly reduces ASR performance; (2) the absence of train-
ing/development data belonging to this domain, which
prevents the systems from being properly tuned to these
data. This is especially critical in systems based on word

Fig. 15 The DET curves of the STD systems for MAVIR test data
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speech recognition, which typically need a larger dataset
for system construction than systems based on QbE-STD
since these just rely on template-matching of features. For
systems based on word ASR, the threshold calibration
issue is more important, as can be seen from the perfor-
mance gap between MTWV and ATWV. Table 11 shows
the OOV rate of the word-based systems. In this case, the
OOV rate is not as critical to STD performance as the
change in the data domain.

4.4 Development and test data DET curves
DET curves of the systems submitted to the evaluation are
presented in Figs. 13 and 14 for MAVIR and RTVE devel-
opment data, respectively, and in Figs. 15, 16, and 17 for
MAVIR, RTVE, and COREMAH test data, respectively.
On MAVIR development data, the Proxy Kaldi system

performs the best for low and high FA rates, and the
Kaldi-DNN and Kaldi-SGMM systems perform the best
for moderate FA rates. On RTVE development data, the
Proxy Kaldi system performs the best for low and high FA
rates, and the Combined Kaldi system performs the best

for moderate FA rates. According to the MTWV/ATWV
results (see Figs. 8 and 9), this means that the best operat-
ing point is placed in moderate FA rates for both datasets.
On MAVIR test data, the Proxy Kaldi system performs

the best for all the operation points, as expected from the
MTWV/ATWV results (see Fig. 10). On RTVE test data,
the Proxy Kaldi system performs the best for low FA rates,
and the Combined Kaldi system performs the best for low
miss rates. According to the MTWV/ATWV results (see
Fig. 11), this means that the best operating point resides
in low FA rates. On COREMAH test data, the Combined
Kaldi system performs the best for low FA rates, and the
Proxy Kaldi system performs the best for low miss rates.
According to the MTWV/ATWV results (see Fig. 12),
this differs from the best ATWV (which is obtained
with theMonoph.-BNF Synt-DTW system). However, this
Monoph.-BNF Synt-DTW system only outputs one detec-
tion as hit (the detection with the highest score) and
no FAs. This causes that any other systems working at
different miss/FA ratios have a better DET curve in case
there are FAs with better scores than those of the hits.

Fig. 16 The DET curves of the STD systems for RTVE test data
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5 Post-evaluation analysis
After the evaluation period, an analysis based on some
term properties and fusion of the primary systems submit-
ted from the different participants has been carried out.
This section presents the results of this analysis.

5.1 Performance analysis of STD systems for in-language
and out-of-language terms

An analysis of the STD performance has been carried
out for INL and OOL terms and results are presented in
Fig. 18 for MAVIR, RTVE, and COREMAH test data. As
expected, a large STD performance degradation is found
from INL to OOL terms for all the databases in systems
that employ a text-based STD approach. Some discrep-
ancies appear on the COREMAH test data (i.e., Kaldi-
DNN, Kaldi-SGMM, and Kaldi-GMM systems) although
the STD performance is so low that any conclusion is
meaningless. However, for the systems that employ the
QbE-STD approach, the differences between INL and
OOL terms are not so clear, and specially onMAVIR data,
systems perform, in general, better for OOL term detec-
tion than for INL term detection. This may be due to the

fact that Spanish language was not employed in the feature
extraction, but English and other IARPA Babel program
languages were, along with the fact that OOL terms in this
database are mainly English terms.

5.2 Performance analysis of STD systems for single and
multi-word terms

An analysis of the STD performance has been carried
out for single and multi-word terms and results are pre-
sented in Fig. 19 for MAVIR, RTVE, and COREMAH
test data. They show some differences depending on the
database.
OnMAVIR test data, Kaldi-DNN, Kaldi-SGMM, Kaldi-

GMM, and Proxy Kaldi systems perform better for single-
word term detection than for multi-word term detection.
This probably happens because multi-word term detec-
tion is intrinsically more difficult for word-based ASR
since more words must be detected. However, on RTVE
test data, Kaldi-DNN, Kaldi-SGMM, and Kaldi-GMM
systems perform better for multi-word term detection
than for single-word term detection. This might be caused
by the fact that there are much more OOV single-word

Fig. 17 The DET curves of the STD systems for COREMAH test data
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terms (202) than OOV multi-word terms (9), which leads
to a dramatical degradation in the final performance for
single-word terms.
On the other hand, Combined Kaldi and Phone-based

systems perform better for multi-word term detection on
MAVIR and RTVE test data. The Phone-based system
relies on a subword unit approach and multi-word terms

are typically longer than single-word terms. Short terms
tend to produce many FAs in phone-based systems, and
the opposite stands for longer terms. Therefore, phone-
based systems may obtain better performance for multi-
word term detection. The Combined Kaldi system
performance for multi-word terms seems to be highly
influenced by the Phone-based system.

Fig. 18 System results of the ALBAYZIN 2018 STD evaluation on test data for in-language (INL) and out-of-language (foreign) (OOL) terms
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The systems that employ a QbE-STD approach obtain
better performance for multi-word term detection than
for single-word term detection on MAVIR and RTVE
test data due to the fact that multi-word terms are typ-
ically longer than single-word terms so that less false
alarms are produced with the DTW search. In addi-
tion, these systems typically perform better for multi-
word term detection than the Kaldi-DNN, Kaldi-SGMM,

and Kaldi-GMM systems. This indicates that QbE-STD
approaches can be effectively employed for long term
detection in the absence of robust word-based LVCSR
systems.
On COREMAH test data, the systems obtained bet-

ter performance for multi-word term detection than for
single-word term detection. However, the ATWVs are, in
general, so low that any conclusion is hardly reliable.

Fig. 19 System results of the ALBAYZIN 2018 STD evaluation on test data for single-word (Single) and multi-word (Multi) terms
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5.3 Performance analysis of STD systems for INV and OOV
terms

Figure 20 shows a similar analysis for in-vocabulary
and out-of-vocabulary terms. The text-based STD sys-
tems perform, in general, better for INV term detec-
tion than for OOV term detection. The Kaldi-DNN,
Kaldi-SGMM, and Kaldi-GMM systems on MAVIR test

data are the only exceptions. We consider this could
be due to the moderate OOV term rate (20.3%) in this
dataset, along with the amount of training data used
to train the INV language model. However, when the
OOV term rate increases (66.8% for the RTVE test data),
the proxy words strategy of Kaldi for OOV term detec-
tion is less powerful. System performance is so low on

Fig. 20 System results of the ALBAYZIN 2018 STD evaluation on test data for in-vocabulary (INV) and out-of-vocabulary (OOV) terms
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Fig. 21 Fusion and primary system results of the ALBAYZIN 2018 STD evaluation on MAVIR development data

COREMAH test data that no reliable conclusion can be
derived.

5.4 System fusion
After the evaluation, we have combined all the primary
systems developed by the participants by fusing the scores
they produced. System fusion consists of two different
stages: (1) pre-processing and (2) calibration and fusion.
These are explained next.

5.4.1 Pre-processing
First, scores for each query and system are normalized to
mean 0 and variance 1.
All the detections given by the fused systems are taken

into account to generate the output of the fusion system.

Given a certain detection output by a certain system A, in
case some other fused system B does not detect it (and
hence there is no score for it), the score generated for that
detection is the minimum global score for all the terms
generated by system B.

5.4.2 Calibration and fusion
Calibration and fusion are carried out with the Bosaris
toolkit [130]. To do so, a linear model based on logistic
regression trained on the development detection scores is
employed. MAVIR and RTVE fusion parameters are opti-
mized independently based on their corresponding devel-
opment sets and then, are applied to their corresponding
test sets. For COREMAH data, the model trained for
MAVIR data is employed.

Fig. 22 Fusion and primary system results of the ALBAYZIN 2018 STD evaluation on RTVE development data
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Fig. 23 Fusion and primary system results of the ALBAYZIN 2018 STD evaluation on MAVIR test data

Fusion is employed to combine the three primary sys-
tems of the participants in the evaluation (i.e., Combined
Kaldi, Combined Synt-DTW, and Kaldi-DNN systems).

5.4.3 Fusion results
Results are presented in Figs. 21 and 22 for MAVIR and
RTVE development data, respectively, and in Figs. 23,
24, and 25 for MAVIR, RTVE, and COREMAH test
data, respectively. They show that system fusion plays
an important role on RTVE data, for which the fusion
improves the best individual system for both development
and test data. A paired t test shows that the Fusion sys-
tem obtains a statistically significant difference (p <

0.01) for both sets of RTVE data. However, on MAVIR

and COREMAH data, the fusion does not outperform
the best individual system. RTVE data contain higher-
quality/better-pronounced speech than MAVIR data, and
there were much more data available for RTVE. Fusion
gets more benefit on these conditions. On COREMAH
data, for which there are no available data for a fine tuning,
fusion gets also worse results.
DET curves of the primary systems and the fusion sys-

tems are presented in Figs. 26 and 27 for MAVIR and
RTVE development data, respectively, and in Figs. 28, 29,
and 30 for MAVIR, RTVE, and COREMAH test data,
respectively. OnMAVIR development data, theCombined
Kaldi system performs the best for low FA rates, the
Kaldi-DNN system performs the best for moderate FA

Fig. 24 Fusion and primary system results of the ALBAYZIN 2018 STD evaluation on RTVE test data
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Fig. 25 Fusion and primary system results of the ALBAYZIN 2018 STD evaluation on COREMAH test data

rates, and the Fusion system performs the best for low
miss rates. This means that the fusion may be suitable
for scenarios in which misses are more important than
false alarms. OnMAVIR test data, the Kaldi-DNN system
performs the best for low FA rates and the Fusion system

performs the best for low miss rates. This confirms that
system fusion is suitable for low miss rates on MAVIR
data. On RTVE development and test data, the Fusion sys-
tem performs the best for almost all the operating points,
which is consistent with the MTWV/ATWV results (see

Fig. 26 The DET curves of the fusion and primary STD systems for MAVIR development data
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Fig. 27 The DET curves of the fusion and primary STD systems for RTVE development data

Fig. 28 The DET curves of the fusion and primary STD systems for MAVIR test data
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Fig. 29 The DET curves of the fusion and primary STD systems for RTVE test data

Figs. 22 and 24). On COREMAH test data, the Combined
Kaldi system performs the best for almost all the operat-
ing points. In these data, the Fusion system may play an
important role for low miss rates regardless the high FA
rates.

5.5 Comparison to the ALBAYZIN 2016 STD evaluation
Given that MAVIR test data are the same for ALBAYZIN
2016 and 2018 STD evaluations, these data can be used
to establish a comparison between the performance of
the systems presented to both evaluations (see Fig. 31).
The highest performance in 2018 (ATWV = 0.4699) is
lower than that obtained in 2016 (ATWV = 0.5724).
In the 2018 evaluation, the decision threshold was tuned
on MAVIR and RTVE data simultaneously, which pro-
duced the performance degradation. However, in 2016,
the decision threshold was only tuned on MAVIR data,
which produced a better threshold calibration, and hence,
better performance.
Therefore, it can be said that building multi-domain

STD systems still represents a research challenge since
it can lead to reduced performance on some specific
domains. However, this presents a great advantage, since
a single system is able to search on speech in different
domains.

6 Conclusions
This paper has presented a multi-domain spoken term
detection international evaluation for search on speech in
Spanish. The amount of systems submitted to the eval-
uation has made it possible to compare the progress
of this technology under a common framework. Three
different research groups have taken part in the evalua-
tion and eleven different systems were submitted in total.
Most of the systems are largely based on the standard
text-based STD approach (with state-of-the-art DNN-
based ASR systems) for hypothesizing detections from
word ASR. On the other hand, other systems are based
on a QbE-STD framework for hypothesizing detections.
Among those systems, Combined Kaldi and Phone-based
systems, which include a probabilistic retrieval model
for information retrieval and a query likelihood retrieval
model, and Combined Synt-DTW, Super-BNF Synt-DTW,
Multilingual-BNF Synt-DTW, Monoph.-BNF Synt-DTW,
and Triph.-BNF Synt-DTW, which employ speech synthe-
sis for query generation from the term list and a QbE-
STD approach, can be considered novel from an STD
perspective.
The most important conclusion from this evaluation

is that multi-domain STD is still a challenge in STD
research, since results have shown much variability with
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Fig. 30 The DET curves of the fusion and primary STD systems for COREMAH test data

regard to domainmismatch. On the one hand, the submit-
ted systems have obtained the best performance on RTVE
data, for which more data are available for system con-
struction and include high-quality and well-pronounced
speech. On the other hand, the systems have obtained
the worst performance on COREMAH data, for which

only test data were provided, and speech is very sponta-
neous and with high degree of overlapping. This indicates
that domain change is quite challenging in STD tasks.
Finally, systems on MAVIR data, which present highly-
spontaneous speech, obtained performances between
those obtained on RTVE and COREMAH data.

Fig. 31 Best system performances obtained in the ALBAYZIN STD 2016 and 2018 evaluations on MAVIR test data
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We have also shown that OOL term detection still
remains an important challenge in STD, since systems
have obtained low performance on those terms (ATWV =
0.1392 on MAVIR data and ATWV = 0.3496 on
RTVE data). On OOV term detection, which is cru-
cial for open-vocabulary STD, systems have obtained
best performances of ATWV = 0.5284 on MAVIR
data and ATWV = 0.3600 on RTVE data (i.e., for
domains in which training/development data have been
provided). Regarding multi-word term detection, sys-
tems have obtained best performances of ATWV =
0.4595 on MAVIR data and ATWV = 0.5967 on
RTVE data.
Given the best overall result obtained in the evalua-

tion (ATWV = 0.2250), which comes from the aver-
age of the three domains, there is still ample room
for improvement. Specifically, the performance of STD
systems degrades dramatically when applied to unseen
data. This encourages us to maintain the STD evalua-
tion in the next years, focusing on multi-domain STD,
and the applicability of this technology to unseen chal-
lenging domains. Specifically, in the next months we
will be launching the ALBAYZIN 2020 STD evalua-
tion to be held in November 2020 within the Iber-
SPEECH conference. This new evaluation edition aims
to provide new domains and more challenging data (i.e.,
more difficult search terms) and evaluation conditions
(i.e., rank the submitted systems from weighting the
system performance according to the most challenging
domain).

Appendix
This appendix shows the full result tables for the systems
submitted to the ALBAYZIN 2018 STD evaluation for
development and test data.

Table 12 Overall system results of the ALBAYZIN 2018 STD
evaluation on development and test data

Development Test

System ID MTWV ATWV MTWV ATWV

Combined Kaldi 0.6001 0.5743 0.4098 0.2250

Proxy Kaldi 0.5645 0.5489 0.3825 0.2187

Phone-based 0.5557 0.5366 0.3723 0.2135

Kaldi-DNN 0.4639 0.4621 0.2213 0.1924

Kaldi-SGMM 0.4467 0.4383 0.2200 0.1698

Kaldi-GMM 0.4324 0.4248 0.2062 0.1489

Combined Synt-DTW 0.0683 0.0475 0.0452 0.0297

Super-BNF Synt-DTW 0.0691 0.0565 0.0427 0.0362

Multilingual-BNF Synt-DTW 0.0737 0.0640 0.0433 0.0412

Monoph.-BNF Synt-DTW 0.0665 0.0565 0.0369 0.0338

Triph.-BNF Synt-DTW 0.0655 0.0492 0.0451 0.0378

Table 13 System results of the ALBAYZIN 2018 STD evaluation
on MAVIR development data

System ID MTWV ATWV p(FA) p(Miss)

Combined Kaldi 0.5470 0.5290 0.00011 0.348

Proxy Kaldi 0.5314 0.5179 0.00003 0.442

Phone-based 0.4828 0.4739 0.00016 0.362

Kaldi-DNN 0.5974 0.5946 0.00008 0.322

Kaldi-SGMM 0.6045 0.5897 0.00005 0.348

Kaldi-GMM 0.5705 0.5556 0.00006 0.373

Combined Synt-DTW 0.0379 0.0023 0.00000 0.961

Super-BNF Synt-DTW 0.0469 0.0293 0.00004 0.917

Multilingual-BNF Synt-DTW 0.0467 0.0351 0.00001 0.947

Monoph.-BNF Synt-DTW 0.0332 0.0191 0.00002 0.950

Triph.-BNF Synt-DTW 0.0405 0.0137 0.00001 0.952

Table 14 System results of the ALBAYZIN 2018 STD evaluation
on RTVE development data

System ID MTWV ATWV p(FA) p(Miss)

Combined Kaldi 0.6549 0.6195 0.00004 0.306

Proxy Kaldi 0.5976 0.5798 0.00001 0.397

Phone-based 0.6286 0.5993 0.00004 0.331

Kaldi-DNN 0.3303 0.3295 0.00002 0.648

Kaldi-SGMM 0.2889 0.2868 0.00001 0.699

Kaldi-GMM 0.2943 0.2939 0.00002 0.690

Combined Synt-DTW 0.0986 0.0927 0.00004 0.859

Super-BNF Synt-DTW 0.0912 0.0836 0.00002 0.888

Multilingual-BNF Synt-DTW 0.1007 0.0928 0.00002 0.878

Monoph.-BNF Synt-DTW 0.0997 0.0939 0.00002 0.880

Triph.-BNF Synt-DTW 0.0905 0.0846 0.00005 0.862

Table 15 System results of the ALBAYZIN 2018 STD evaluation
on MAVIR test data

System ID MTWV ATWV p(FA) p(Miss)

Combined Kaldi 0.3981 0.3077 0.00014 0.464

Proxy Kaldi 0.4750 0.4699 0.00011 0.412

Phone-based 0.3432 0.2506 0.00015 0.506

Kaldi-DNN 0.4450 0.4429 0.00009 0.464

Kaldi-SGMM 0.4478 0.4424 0.00008 0.475

Kaldi-GMM 0.4046 0.3750 0.00008 0.510

Combined Synt-DTW 0.0440 0.0091 0.00002 0.941

Super-BNF Synt-DTW 0.0365 0.0315 0.00001 0.953

Multilingual-BNF Synt-DTW 0.0343 0.0288 0.00002 0.943

Monoph.-BNF Synt-DTW 0.0309 0.0303 0.00001 0.963

Triph.-BNF Synt-DTW 0.0317 0.0171 0.00001 0.963
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Table 16 System results of the ALBAYZIN 2018 STD evaluation on RTVE test data

System ID MTWV ATWV p(FA) p(Miss)

Combined Kaldi 0.6730 0.5425 0.00005 0.277

Proxy Kaldi 0.5860 0.5859 0.00006 0.355

Phone-based 0.6458 0.5133 0.00005 0.304

Kaldi-DNN 0.1970 0.1941 0.00001 0.789

Kaldi-SGMM 0.1876 0.1851 0.00002 0.797

Kaldi-GMM 0.1916 0.1894 0.00002 0.793

Combined Synt-DTW 0.0911 0.0799 0.00003 0.880

Super-BNF Synt-DTW 0.0864 0.0761 0.00004 0.878

Multilingual-BNF Synt-DTW 0.0957 0.0949 0.00004 0.869

Monoph.-BNF Synt-DTW 0.0746 0.0679 0.00003 0.897

Triph.-BNF Synt-DTW 0.1022 0.0951 0.00002 0.881

Table 17 System results of the ALBAYZIN 2018 STD evaluation on COREMAH test data

System ID MTWV ATWV p(FA) p(Miss)

Combined Kaldi 0.1582 − 0.1751 0.00005 0.791

Proxy Kaldi 0.0864 − 0.3997 0.00005 0.860

Phone-based 0.1279 − 0.1233 0.00002 0.849

Kaldi-DNN 0.0220 − 0.0598 0.00001 0.971

Kaldi-SGMM 0.0247 − 0.1182 0.00004 0.931

Kaldi-GMM 0.0224 − 0.1178 0.00002 0.959

Combined Synt-DTW 0.0006 0.0000 0.00001 0.988

Super-BNF Synt-DTW 0.0051 0.0011 0.00000 0.993

Multilingual-BNF Synt-DTW 0.0000 0.0000 0.00000 1.000

Monoph.-BNF Synt-DTW 0.0053 0.0032 0.00000 0.995

Triph.-BNF Synt-DTW 0.0014 0.0011 0.00000 0.999

Table 18 Fusion and primary system results of the ALBAYZIN 2018 STD evaluation on development data

MAVIR RTVE

System ID MTWV ATWV p(FA) p(Miss) MTWV ATWV p(FA) p(Miss)

Combined Kaldi 0.5470 0.5290 0.00011 0.348 0.6549 0.6195 0.00004 0.306

Kaldi-DNN 0.5974 0.5946 0.00008 0.322 0.3303 0.3295 0.00002 0.648

Combined Synt-DTW 0.0379 0.0023 0.00000 0.961 0.0986 0.0927 0.00004 0.859

Fusion 0.5928 0.5523 0.00015 0.261 0.6940 0.6903 0.00006 0.242

Table 19 Fusion and primary system results of the ALBAYZIN 2018 STD evaluation on test data

MAVIR RTVE

System ID MTWV ATWV p(FA) p(Miss) MTWV ATWV p(FA) p(Miss)

Combined Kaldi 0.3981 0.3077 0.00014 0.464 0.6730 0.5425 0.00005 0.277

Kaldi-DNN 0.4450 0.4429 0.00009 0.464 0.1970 0.1941 0.00001 0.789

Combined Synt-DTW 0.0440 0.0091 0.00002 0.941 0.0911 0.0799 0.00003 0.880

Fusion 0.4323 0.4084 0.00019 0.376 0.6854 0.6539 0.00005 0.261

COREMAH

Combined Kaldi 0.1582 − 0.1751 0.00005 0.791

Kaldi-DNN 0.0220 − 0.0598 0.00001 0.971

Combined Synt-DTW 0.0006 0.0000 0.00001 0.988

Fusion 0.1021 − 0.2225 0.00004 0.856
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