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ABSTRACT

Ambient Inteligence aims to create smart spaces providing 
services  in  a  transparent  and  non-intrusive  fashion,  so 
context  awareness  and  user  adaptation  are  key  issues. 
Speech  can  be  exploited  for  user  adaptation  in  such 
scenarios  by  continuously  tracking  speaker  identity. 
However,  most  speaker  tracking  approaches  require 
processing  the  full  audio  recording  before  determining 
speaker  turns, which  makes  them  unsuitable  for  online 
processing and low-latency decision-making. In this work a 
low-latency  speaker  tracking  system  is  presented,  which 
deals with continuous audio streams and outputs decisions at 
one-second  intervals,  by  scoring  fixed-length  audio 
segments with a set of target speaker models. A smoothing 
technique is explored, based on the scores of past segments, 
which increases the robustness of tracking decisions to local 
variability.  Experimental  results  are  reported  on  the  AMI 
Corpus of meeting conversations, revealing the effectiveness 
of  the  proposed  approach  when  compared  to  an  offline 
speaker tracking approach developed for reference.

Index Terms — Speaker Recognition, Low-latency, Speaker 
Tracking, AMI Corpus, Ambient Intelligence

1. INTRODUCTION
Ambient Intelligence (AmI) is an interdisciplinary applied 
research field, aiming to create smart spaces which provide 
services  featuring  user  and  context  adaptation  capabilities 
[1].  Speech  is  a  natural  interface  for  user  interaction  and 
adaptation. Speech streams can be exploited to extract user 
related  information  such  as  location,  identity,  emotional 
state,  etc.  Since  user  adaptation  must  be  done  in  a 
continuous  fashion,  online  processing  and  low-latency 
decision-making are key issues.
Speaker tracking is a well-known task which aims to detect 
speech segments corresponding to known target speakers in 
an audio resource [2]. Typically, there have been three main 
application domains for  speaker  tracking:  broadcast  news, 
meetings  and telephone conversations.  The methodologies 
applied in such domains [3][4][5] require processing the full 
audio  recording  before  determining  speaker  turns,  which 
makes  them  unsuitable  for  online  processing  and  low-
latency decision-making.  Few works featuring low-latency 

speaker  segmentation  and  tracking  can  be  found  in  the 
literature  [6][7][8].  In  those  works,  low-latency  was 
achieved by detecting speaker changes dynamically and by 
determining speaker  labels  in  an  unsupervised  way,  since 
neither the number nor the identity of speakers was known a 
priori. In this work, however, the speaker tracking system is 
required  to  continuously  track  a  low  number  of  known 
speakers  (the  members  of  a  family)  in  a  smart  home 
environment.
Keeping in mind the particular conditions of this scenario, a 
very simple speaker tracking algorithm is proposed, where 
audio  segmentation  and  speaker  detection  are  jointly 
accomplished  by  processing  fixed-length  audio  segments 
and scoring each of them to decide whether it belongs to a 
target speaker or to an impostor. Since speaker detection is 
done  for  very  short  (one-second  length)  segments,  the 
performance  of  the  online  speaker  tracking  system  may 
degrade due to local variability. So, a smoothing technique, 
based on a linear combination of present and past scores, is 
proposed to increase the robustness to such variability.
The performance of the proposed approach is compared to 
that  of  an  offline  system developed  for  reference,  which 
follows a classical two-stage metric-based approach: change 
points are located in adjacent windows over the whole input 
stream  by  applying  a  BIC-like  criterion,  and  speaker 
detection is performed on the resulting segments. Evaluation 
is carried out on the AMI Corpus (Augmented Multi-party 
Interaction) [9], which contains human conversations in the 
context of smart meeting rooms, close to the AmI scenario 
described above. 
The rest of the paper is organized as follows. In section 2, 
the  main  features  of  the  speaker  tracking  systems  are 
described.  Section  3  gives  details  about  the  experimental 
setup. Results using the online and offline speaker tracking 
systems are presented and discussed in Section 4. Finally, 
conclusions and future work are outlined in section 5.

2. SPEAKER TRACKING SYSTEMS

2.1. Acoustic front-end
In this work, 16 kHz audio streams are analyzed in frames 
of 20 milliseconds, yielding a vector of 12 Mel-Frequency 
Cepstral  Coefficients  (MFCC)  per  frame.  To  increase 
robustness  against  channel  distortion,  Cepstral  Mean 



Normalization (CMN) is applied. When the audio stream is 
processed on-the-fly, a dynamic CMN approach is applied, 
where the cepstral mean is updated at each time i as follows:

i=C i 1−i−1 , (1)

where α is a time constant (typically, around 0.001), C(i) is 
the vector  of cepstral  coefficients  at  time  i and  µi-1 is  the 
dynamic  cepstral  mean  at  time  i-1.  After  CMN,  the  first 
derivatives of the MFCC are also computed, yielding a 24 
dimensional feature vector.

2.2. Audio segmentation
In  this  work,  audio  segmentation  is  needed  only  by  the 
offline speaker tracking system developed for reference. A 
simple and  computationally  efficient  algorithm is  applied, 
which  segments  the  audio  signal  in  a  fully  unsupervised 
way, by locating the most likely change points from a purely 
acoustic  point  of  view.  The  algorithm,  similar  to  other 
metric-based  approaches  [10][11],  considers  a  sliding 
window  W of  N acoustic  vectors  and  computes  the 
likelihood  of  change  at  the  center  of  that  window.  Then 
moves the window K vectors ahead and repeats the process 
until  the  end  of  the  vector  sequence.  To  compute  the 
likelihood of change, each window is divided in two halves, 
Wleft and  Wright,  then a Gaussian distribution with diagonal 
covariance matrix is estimated for each half, and finally a 
cross-likelihood  ratio  [12]  is  computed  and  stored  as 
likelihood  of  change.  This  yields  a  sequence  of  cross-
likelihood ratios  which  must  be  post-processed  to  get  the 
hypothesized segment boundaries. This involves applying a 
threshold  τ  and  forcing  a  minimum  segment  size  δ.  In 
practice, a boundary t is validated when its cross-likelihood 
ratio  exceeds  τ  and  there  is  no  candidate  boundary  with 
greater ratio in the interval [t-δ,t+δ] (see [13] for details).

2.3. Speaker detection
The real-time speaker tracking system proposed in this work 
computes a detection score per target speaker and outputs a 
speaker detection decision for fixed-length segments.  That 
length  has  been  empirically  set  to  one  second,  which 
provides  relatively  good  time  resolution  and  spectral 
richness,  and  a  reasonably  small  latency  for  most  online 
speaker tracking scenarios. The offline system developed for 
reference  applies  the same speaker  detection strategy,  but 
using the segments produced by the algorithm described in 
Section 2.2.
Audio segments are scored by means of Gaussian Mixture 
Models (GMM) corresponding to target speakers, estimated 
via Maximum a Posteriori (MAP) adaptation of a Universal 
Background Model (UBM) [14]. In this work, 256-mixture 
GMMs are used. Speaker model adaptation is based only on 
non-overlapped training  segments,  i.e.  those  segments 
containing only speech from the target speaker, according to 
the time references of manual annotations. The MAP-UBM 
methodology allows for a fast scoring technique, which is a 
key  feature  in  order  to  achieve  a  low-latency  response. 

Briefly,  the  computation  of  speaker  likelihoods  involves 
only the top C (in this work, C=8) scoring mixtures in the 
UBM computation, which is done in first place (see [14]).
Given the acoustic observation X and the acoustic models λt 
for the target speaker t, and λUBM for the UBM, the detection 
score for the target speaker t, ∆t(X), is computed as follows:

t X =L X∣t −LX ∣UBM  , (2)

where L(X|λ) is the log-likelihood of X given λ.

2.4. Calibration of scores
Before taking a decision, detection scores are calibrated to 
compensate for  differences  in means and variances  which 
may  degrade  performance.  Calibration  maps  detection 
scores Δt(X)  to  likelihood  ratios C(Δt(X)),  without  any 
specific  application  in  mind.  The  scaling  parameters  are 
computed  over  a  development  corpus  by  maximizing 
Mutual Information, which is equivalent to minimizing the 
so called  CLLR (a metric defined in [15]), which integrates 
the  expected  cost  over  a  wide  range  of  operation  points 
(representing  specific  applications).  Since  scaling 
parameters  are  computed beforehand,  calibration does  not 
significantly increase the computational cost of the speaker 
tracking system.
The  final  decision  is  taken  by  applying  the  minimum 
expected cost Bayes decision threshold to calibrated scores 
C(Δt(X)).  The  most  likely  speaker  t  is  detected  if  the 
following inequality holds:

C t ≥ln C fa 1−P target 
Cmiss P target  , (3)

where Cmiss and Cfa are the miss and false-acceptance error 
costs, and Ptarget is the prior probability of target speakers. 
Otherwise,  X is  marked as  unknown (i.e.  coming from a 
non-target speaker, noise, etc.). Calibration of scores is done 
by means of the  FoCal toolkit [16] with a linear mapping 
strategy.
Note that, for any given segment X, there could actually be 
two or more speakers speaking at the same time. However, 
the detection approach described above cannot inform about 
speaker  overlaps,  because  only  the  most  likely  target 
speaker can be detected.

2.5. Smoothing of scores
Since speaker detection is done for very short (one-second 
length) segments, the performance of the low-latency online 
speaker  tracking  system  may  degrade  due  to  local 
variability.  To  increase  the  robustness  to  such  variability, 
information  from  previous  segments  can  be  taken  into 
account, that is, the acoustic scores of target speakers may 
be based on speech segments lasting more than one second. 
Assuming that no speaker change takes place in the previous 
segments, scores will be more accurate as more samples are 
used  to  compute  them.  On  the  other  hand,  this  does  not 



affect  the  online  processing  and  low-latency  decision-
making  constraints.  In  practice,  a  smoothed  score  is 
computed  by  linearly  combining  the  scores  of  the  last  w 
(one-second length) segments, weighting them according to 
a rectangular (uniform) or a triangular (linearly decreasing 
as going back in time) function.

3. EXPERIMENTAL SETUP
3.1. The AMI Corpus
Experiments were carried out over the AMI meeting corpus, 
which  is  available  as  a  public  resource  [17].  The  AMI 
Corpus contains human interactions in the context of smart 
meeting  rooms.  Data,  collected  in  three  instrumented 
meeting rooms, include a range of synchronized audio and 
video  recordings.  Meetings  contain  speech  in  English, 
spoken by native and (mostly) non native speakers.
In  this  work,  the  development  and  evaluation  of  speaker 
tracking systems was based on a subset of the AMI corpus, 
the  Edinburgh  scenario  meetings,  including  15  sessions: 
ES2002-ES2016,  with  four  meetings  per  session,  each 
meeting being half an hour long on average. Training data 
were taken from meetings recorded at the three AMI sites. 
The audio stream was obtained by mixing the signals from 
the headset microphones of the participating speakers. Three 
of the four speakers participating in each session were taken 
as target speakers, the remaining one being assigned the role 
of  impostor.  Careful  impostor selection (not  random) was 
made,  in  order  to  avoid  that  gender  favors  impostor 
discrimination. For instance, in sessions containing just one 
female  speaker,  the  impostor  was  forced  to  be male  (and 
viceversa).
In order to avoid the evaluation to be tilted by tuning, two 
independent  subsets  were  defined,  consisting  of  different 
sessions (and therefore different speakers), for development 
and evaluation purposes. The development set, consisting of 
8 sessions (32 meetings), was used to tune the configuration 
parameters of the speaker tracking systems. The evaluation 
set, including the remaining 7 sessions (28 meetings), was 
used  only  to  evaluate  the  performance  of  the  previously 
tuned speaker tracking systems. Both the development and 
evaluation subsets were  further  divided into train and test 
datasets. Two meetings per session were randomly selected 
for training speaker models, and the remaining two were left 
for testing purposes.

3.2. UBM estimation
Two  speaker  detection  systems  were  developed,  which 
differed in the data used to estimate the UBM: UBM-g used 
15  gender-balanced  AMI  meetings  from  all  sites  except 
Edinburgh (so, a kind of room mismatch may be expected), 
whereas  UBM-t used only speech from training meetings. 
UBM-g  was  estimated  once  and  could  be  applied  to 
whatever  evaluation  data  and  target  speakers,  whereas 
UBM-t had to be estimated specifically for each set of target 
speakers.

3.3. Performance measures
In  the  following,  performance  is  analyzed  by  means  of 
Detection Error Tradeoff (DET) plots. When a single figure 
is needed, the Equal Error Rate (EER) is used. Performance 
is measured in terms of time that is correctly or incorrectly 
classified as belonging to a target speaker. Therefore, miss 
and false alarm rates are computed as a function of time and 
not as a function of trial number, like in speaker detection 
experiments.  Collar periods of 250 milliseconds at the end 
of  speaker  turns  are  ignored  for  scoring  purposes.  Thus, 
speaker  turns  of  less  than  0.5  seconds  are  not  scored. 
Segments containing speech from two or more speakers are 
not scored either.
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Figure 1. DET curves for the online (rt) and offline (ref) speaker 
tracking systems on the evaluation set of the AMI Corpus, using 
UBM-t  (matching  room and  speakers)  and  UBM-g (general)  as 
background models.

4. EXPERIMENTAL RESULTS
4.1. Online vs. Offline speaker tracking
Figure 1 shows the performance of the online and offline 
speaker  tracking  systems,  using  UBM-g  and  UBM-t  as 
background  models,  for  the  evaluation  set  of  the  AMI 
Corpus.  As  expected,  the  offline  system  outperforms  the 
proposed low-latency online system, but the performance of 
the latter is relatively good. The EER increases from 25.80 
to 26.20 (1.55% relative degradation) when using UBM-g, 
and from 19.07 to 21.14 (10.85% relative degradation) when 
using  UBM-t.  Note  that  UBM-t  outperforms  UBM-g, 
probably  due  to  the  aforementioned  room  mismatch  in 
UBM-g  and  the  limited  amount  of  training  data.  This 
suggests  the  use,  whenever  possible,  of  a  room-specific 
UBM. In fact, UBM-t might be getting advantage not only 
from  matching  the  room,  but  also  from  the  consistency 
between the speakers in the UBM and the target speakers. In 
fact, 100% of the target speakers appearing in the test corpus 
contribute data to the UBM-t, increasing the consistency of 
speaker models estimated through MAP adaptation (because 



a  perfect  match  exists  between  the  adaptation  data 
corresponding  to  any  target  speaker  and  some  of  the 
component densities of the UBM).

4.2. Results with smoothed scores
In  Figure  2,  DET performance  is  shown  when  detection 
scores are computed as a linear combination of the scores 
for  the  last  w (one-second  length)  segments,  either  with 
uniform weights (rectangular  function,  fs) or with linearly 
decreasing weights (triangular function,  ft). The optimal  w 
(which somehow depends on the average length of speaker 
turns) was heuristically determined on the development set. 
For  the  rectangular  function,  the optimal  value was  w=2. 
For the triangular function, it was w=3. As shown in Figure 
2, smoothing the scores consistently improved the speaker 
tracking  performance  on  the  evaluation  set  of  the  AMI 
Corpus,  the EER decreasing from 21.14% (no smoothing, 
w=1)  to  19.37%  (fs,  w=2)  and  18.64%  (ft,  w=3), 
respectively.  The  same  behaviour  was  observed  in  the 
development  set,  the  EER  decreasing  from  18.94%  (no 
smoothing, w=1) to 16.91% (fs, w=2) and 16.26% (ft, w=3), 
respectively.
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Figure 2. DET curves for the online speaker tracking system on the 
evaluation  set  of  the  AMI  corpus:  non-smoothed  (UBM-t),  and 
applying rectangular (fs, w=2) and triangular (ft, w=3) smoothing 
functions.

5. CONCLUSIONS AND FUTURE WORK
In this paper, a low-latency online speaker tracking system, 
specifically designed for an Ambient Intelligence scenario, 
has been described, and experimental results on a subset of 
the  AMI  corpus  of  meeting  conversations  have  been 
presented.  Results  for  an  alternative  speaker  tracking 
system,  based  on  an  offline  segmentation  of  the  audio 
stream,  followed by a  MAP-UBM scoring  backend,  have 
been also presented for reference.
It has been found that the proposed system provides low-
latency  online  speaker  tracking  with  little  performance 

degradation  with  regard  to  the  reference  system.  A 
smoothing approach,  consisting on linearly  combining the 
scores of present and several past segments, has been also 
evaluated, yielding improved performance.
Future  work  includes  using  a  more  powerful  speaker 
recognition  backend  (GMM-SVM),  searching  for  more 
effective score smoothing schemes, using more realistic data 
(e.g.  speech  from distant  microphones)  and  developing  a 
low-latency  online  speaker  tracking  service,  based  on the 
approach  presented  in  this  paper,  for  an  intelligent  home 
environment.
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