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Abstract: Ambient intelligence is an interdisciplinary paradigm which envisages smart spaces that provide services 
and adapt transparently to the user.  As the most natural interface for human interaction, speech can be 
exploited for adaptation purposes  in such scenarios.  Low latency is  required,  since adaptation must  be 
continuous. Most speaker tracking approaches found in the literature work offline, fully processing pre-
recorded audio files by a two-stage procedure: (1) performing acoustic segmentation and (2) assigning each 
segment a speaker label. In this work a real-time low-latency speaker tracking system is presented, which 
deals with continuous audio streams.  Experimental results are reported on the AMI Corpus of meeting 
conversations, revealing the effectiveness of the proposed approach when compared to an offline speaker 
tracking system developed for reference.

 1 INTRODUCTION

Ambient  Intelligence  (AmI)  is  an  interdisciplinary 
applied research field, aiming to create smart spaces 
which  provide  services  featuring  user  and  context 
adaptation capabilities (ISTAG, 2001) (Cook, 2009). 
It  was originally devised as  Ubiquitous Computing 
in  (Weiser,  1991)  where  it  was  suggested  the 
interaction  of  consumer  electronics, 
telecommunications  and  computing  devices  to 
support people carrying out everyday life activities 
in a natural way. In such environment, daily objects 
feature  computing  and  telecommunication 
capabilities.  Transparency is critical, so natural and 
intelligent interfaces are needed for human-computer 
interaction  (Abowd,  2005).  Speech  is  a  natural 
interface for human interaction and the most suitable 
means  to  support  user  interaction  and  adaptation. 
Speech  streams  can  be  exploited  to  extract  user 
related  information  such  as  location,  identity,  etc. 
But in such environments, user adaptation must be 
continuous,  and  low-latency  online  processing  is 
needed.

Speaker diarization and speaker tracking are well 
known tasks which aim to answer the question Who 
spokes  when?.  Speaker  tracking  aims  to  detect 
segments  corresponding  to  a  known  set  of  target 
speakers (Martin, 2001). Speaker diarization consists 
of  detecting  speaker  turns  without  any  prior 
knowledge about the target speakers (Tranter, 2006) 
(Meignier,  2006).  Speaker  diarization  and  tracking 
primary  applications  domains  assume  that  audio 
recordings  are  fully  available  before  processing. 
Common approaches  to  these tasks consist  of  two 
uncoupled  steps:  (1)  audio  segmentation  and  (2) 
speaker  detection. In  speaker  diarization,  segments 
hypothetically  uttered  by  the  same  speaker  are 
clustered  together.  In  speaker  tracking,  however, 
once  the  audio  stream  is  segmented,  speaker 
detection  is  carried  out  through  classical  speaker 
recognition  techniques  (Moraru,  2005)  (Istrate, 
2005)  (Bonastre,  2000).  In  any  case,  these 
methodologies  are  not  suitable  for  low-latency 
online speaker detection.

Few  works  related  to  real-time  speaker 
segmentation  and  tracking  can  be  found  in  the 
literature (Wu, 2003) (Lu, 2005) (Liu, 2005). Most 
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of the speaker segmentation approaches are based on 
metrics  measuring  spectral  changes,  such  as 
Bayesian  Information  Criterion  (Chen,  1998)  and 
Generalized Likelihood Ratio (Bonastre, 2000) (Liu, 
2005).  These  procedures  are  robust  but 
computationally  expensive  since  two  or  three 
Gaussian models must be estimated for scoring each 
possible change point in each analysis window, and 
there  can  be  between  100  and  1000  analysis 
windows  per  second.  In  (Wu,  2003),  a  real-time 
model-based  speaker  change  detection  system  is 
proposed,  where  a  Universal  Background  Model 
(UBM)  is  taken  as  reference  to  classify  speech 
segments,  and  a  distance  between  two  adjacent 
windows  is  computed  which  accounts  for  the 
spectral  change.  In  (Lu,  2005),  an  unsupervised 
speaker  segmentation  and  tracking  algorithm  is 
presented. Once the speaker change boundaries are 
determined,  each  segment  is  scored  with  a  set  of 
incremental  quasi  Gaussian  Mixture  Models 
corresponding to unknown target speakers. In (Liu, 
2005), an online speaker adaptation methodology is 
applied  for  real-time  speaker  tracking,  with 
unknown target speakers. This approach combines a 
phonotactic  speaker  change  detection module with 
an  online  speaker  clustering  algorithm.  Speaker 
adaptation is  based  on feature  transformation.  The 
transformation  matrix  is  incrementally  adapted  as 
labeled segments become available.

In  this  paper,  a  real-time  low-latency  online 
speaker tracking approach is presented, designed for 
an AmI scenario (for example,  an intelligent home 
environment), where the system continuously tracks 
known  speakers.  The  expected  number  of  target 
speakers is low (i.e. the members of a family). This 
scenario  requires  taking almost  instantaneous  (low 
latency) speaker  tracking decisions.  A very simple 
speaker tracking algorithm is proposed, where audio 
segmentation  and  speaker  detection  are  jointly 
accomplished  by  defining  and  processing  fixed-
length audio segments and scoring each of them to 
decide whether it belongs to a target speaker or to an 
impostor.  Audio segments are scored by means of 
acoustic  models  (corresponding  to target  speakers) 
estimated  via  Maximum  a  Posteriori  (MAP) 
adaptation of a UBM (Reynolds, 2000). The MAP-
UBM methodology yields good speaker recognition 
performance and allows for a fast scoring technique 
which  speeds  up  the  score  computation.  Finally, 
detection scores are calibrated (i.e linearly mapped 
to likelihood ratios)  and then,  based on the scores 
obtained  for  a  development  corpus,  an  optimal 
application-dependent  decision  threshold  (that 
minimizes  the  expected  error  cost)  is  established 

(Brummer, 2006). The performance of the proposed 
approach  is  compared to that  of an offline system 
developed for reference, which follows the classical 
two-stage  approach:  audio  segmentation  is  done 
over  the  whole  input  stream,  and  MAP-UBM 
speaker  detection  is  performed  on  the  resulting 
segments.  Speaker  tracking  experiments  applying 
both systems were carried out on the AMI Corpus 
(Carletta,  2007),  which  contains  human 
conversations in the context of smart meeting rooms, 
close to the AmI scenario described above.

The rest of the paper is organized as follows. In 
section 2 the main features of the speaker tracking 
systems are described, including the acoustic front-
end, the audio segmentation (required for the offline 
reference  system)  and  the  speaker  detection  and 
calibration stages. Section 3 gives details about the 
experimental  corpus  and  the  UBM  estimation. 
Speaker tracking results using the proposed and the 
reference systems are presented in section 4. Finally, 
conclusions and guidelines for future work are given 
in Section 5.

 2 SPEAKER TRACKING 
SYSTEMS

 2.1 Acoustic Front-End

In this work, 16 kHz audio streams are analyzed 
in  frames  of  20  milliseconds,  at  intervals  of  10 
milliseconds. A Hamming window is applied and a 
512-point  FFT computed.  The FFT amplitudes are 
then  averaged  in  24  overlapped  triangular  filters, 
with  central  frequencies  and  bandwidths  defined 
according  to  the  Mel  scale.  A  Discrete  Cosine 
Transform is finally applied to the logarithm of the 
filter  amplitudes,  obtaining  12  Mel-Frequency 
Cepstral  Coefficients  (MFCC).  To  increase 
robustness against channel distortion, Cepstral Mean 
Normalization  (CMN)  is  applied.  When  the  audio 
stream  is  processed  on-the-fly,  a  dynamic  CMN 
approach is applied, the cepstral mean being updated 
at each time t as follows:

t=C t 1−t−1 (1)

where  α is  a  time  constant, C(t) is  the  vector  of 
cepstral coefficients at time t and µt-1 is the dynamic 
cepstral  mean  at  time  t-1.  After  CMN,  the  first 
derivatives  of  the  MFCC  are  also  computed, 
yielding a 24-dimensional feature vector.



 2.2 Audio Segmentation

Audio segmentation, also known as acoustic change 
detection,  is  required  by  most  speaker  tracking 
systems as a previous step to the detection of target 
speakers. A simple algorithm is applied in this work, 
which  segments  the  audio  signal  in  a  fully 
unsupervised  way,  by  locating  the  most  likely 
change points from a purely acoustic point of view. 
The algorithm considers a sliding window  W of N 
acoustic  vectors  and  computes  the  likelihood  of 
change at the center of that window, then moves the 
window  K vectors  ahead  and  repeats  the  process 
until the end of the vector sequence. To compute the 
likelihood of change, each window is divided in two 
halves,  Wleft and Wright, then a Gaussian distribution 
(with  diagonal  covariance  matrix)  is  estimated  for 
each  half  and  finally  the  cross-likelihood  ratio  is 
computed and stored as likelihood of change. This 
yields  a  sequence  of  cross-likelihood ratios  which 
must  be  post-processed  to  get  the  hypothesized 
segment  boundaries.  This  involves  applying  a 
threshold τ and forcing a minimum segment size δ. 
In practice, a boundary t is validated when its cross-
likelihood ratio exceeds τ and there is no candidate 
boundary with greater ratio in the interval  [t-δ,t+δ] 
(see (Rodriguez, 2007) for details).

 2.3 Speaker Detection

The real-time speaker  tracking system proposed in 
this  work  computes  a  detection  score  per  target 
speaker and outputs a speaker identification decision 
at  fixed-length  intervals.  That  length  has  been 
empirically  set  to  one  second,  which  provides 
relatively good time resolution and spectral richness, 
and  a  reasonably  small  latency  for  most  online 
speaker  tracking  scenarios.  The  offline  system 
developed for reference does the same computation, 
but using the segments  produced by the algorithm 
described in Section 2.2. Regardless the way audio 
segments are obtained, they are scored with the same 
set of MAP-UBM target speaker models (Reynolds, 
2000).

In  the  adaptation of  a  speaker  model  from the 
UBM, only  non-overlapped training segments (i.e. 
those  segments  containing  only  speech  from  that 
speaker, according to the time references of manual 
annotations)  are  used.  This  way,  component 
densities  related  to  the  acoustic  classes  strongly 
observed  in  training  data  will  change,  whereas 
component  densities  that  correspond  to  weaker  or 
missing acoustic units (such as silence or impostors) 
will remain un-adapted. Therefore, it is assumed that 

the resulting MAP-UBM system should be able to 
detect speech from target speakers and reject silence, 
noise and speech from impostors.

Given  the  acoustic  model  λs for  the  target 
speaker s and λUBM for the UBM, the detection score 
∆s(X) is computed as follows:

∆s(X)= L(X|λs) - L(X|λUBM) (2)

where  L(X|λ)  is  the  log-likelihood  of  X  given  λ. 
Once the detection scores are computed for all the 
target  speakers,  a  unique  identification  decision is 
made per segment: X is marked as coming from the 
most likely target speaker s* = arg maxsϵ[1,S]{∆s(X)}, 
if  ∆s*(X)  >  θ.  Otherwise  X is  marked  as  coming 
from an impostor. The decision threshold  θ can be 
heuristically  established  to  optimize  the 
discrimination. Note that, for any given segment  X, 
there  could  actually  be  two  or  more  speakers 
speaking at the same time. However,  the detection 
approach described above cannot inform of speaker 
overlaps, because only the most likely speaker can 
be detected.

 2.4 Calibration of scores
Calibration maps detection scores {∆s | s  ∈ [1,S]} to 
likelihood  ratios {C(∆s) |  s   ∈ [1,S]}  without  any 
specific application in mind. The scaling parameters 
are  computed  over  a  development  corpus  by 
maximizing Mutual Information, which is equivalent 
to minimizing the so called CLLR (a metric defined in 
(Brummer,  2006)),  which  integrates  the  expected 
cost  over  a  wide  range  of  operation  points 
(representing specific applications) in the Detection 
Error  Tradeoff  (DET)  curve  (Martin,  1997).  The 
final  decision  is  taken  by  applying  the  minimum 
expected cost Bayes decision threshold to calibrated 
scores  C(∆). The target speaker is accepted only if 
the following inequality holds:

C ≥ln C fa 1−P target 
Cmiss P target  (3)

where  Cmiss and  Cfa are  miss  and false-acceptance 
error costs, and  Ptarget the prior probability of target 
speakers.  Scores  are  calibrated  by  means  of  the 
FoCal  toolkit,  applying  a  linear  mapping  strategy 
(see http://www.dsp.sun.ac.za/~nbrummer/focal/).

http://www.dsp.sun.ac.za/~nbrummer/focal/


 3 EXPERIMENTAL SET-UP

 3.1 The AMI Corpus
Experiments are carried out over the AMI Corpus of 
meeting conversations, available as a public resource 
(see http://corpus.amiproject.org/). The AMI Corpus 
is  a  multimodal  dataset  concerned  with  real-time 
human interaction in the context of smart  meeting 
rooms. Data, collected in three instrumented meeting 
rooms, include a range of  synchronized audio and 
video  recordings.  Meetings  contain  speech  in 
English, mostly from non native speakers.

In this work, the development and evaluation of 
speaker tracking systems is based on a subset of the 
AMI  Corpus,  the  Edinburgh  scenario  meetings, 
including  15  sessions:  ES2002-ES2016,  with  four 
meetings  per  session,  each  meeting  being  half  an 
hour long on average. Training data are taken from 
meetings recorded at the three AMI sites. The audio 
stream is obtained by mixing the signals from the 
headset  microphones  of  the  participating  speakers. 
Three  of  the  four  speakers  participating  in  each 
session are taken as target  speakers,  the remaining 
one  being  assigned  the  role  of  impostor.  Careful 
impostor selection –not random– is made to account 
for  gender  unbalanced  sessions.  In  sessions 
containing just one female speaker, the impostor is 
forced to be male (and vice versa), in order to avoid 
that gender favors impostor discrimination.

In  order  to  assess  the  speaker  tracking 
performance in realistic conditions, two independent 
subsets are defined, consisting of different sessions 
(and therefore different  speakers),  for development 
and  evaluation  purposes,  respectively.  The 
development  set,  consisting  of  8  sessions  (32 
meetings),  is  used  to  tune  the  configuration 
parameters  of  the  speaker  tracking  systems.  The 
evaluation  set,  including  the  remaining  7  sessions 
(28  meetings),  is  used  only  to  evaluate  the 
performance  of  the  previously  tuned  speaker 
tracking systems.

Both the development and evaluation subsets are 
further  divided  into  train  and  test  datasets.  Two 
meetings  per  session  are  randomly  selected  for 
training speaker models, and the remaining two are 
left for testing purposes. Time references are based 
on manual annotations provided in the AMI Corpus.

 3.2 UBM estimation

Two speaker detection systems have been developed 
based on the MAP-UBM approach. They only differ 
in the data used to estimate the UBM: UBM-g uses 

15  gender-balanced  AMI  meetings  from  all  sites 
except Edinburgh (so, a kind of room mismatch may 
be expected), whereas UBM-t uses only speech from 
target  speakers  in  training  meetings.  UBM-g  is 
estimated  once  and  can  be  applied  to  whatever 
evaluation data and target speakers, whereas UBM-t 
must be estimated specifically for each set of target 
speakers.

 3.3 Performance measures
The  performance  of  speaker  tracking  systems  is 
commonly  analyzed  by  means  of  Detection  Error  
Tradeoff (DET) plots (Martin, 1997). Performance is 
measured  in  terms  of  time  that  is  correctly  or 
incorrectly  classified  as  belonging  to  a  target. 
Therefore, miss and false alarm rates are computed 
as  a  function of  time (Martin,  2001) and not  as  a 
function  of  trial  number,  like  in  speaker  detection 
experiments.

DET performance can be summarized in a single 
figure by means of the Equal Error Rate (EER), the 
point  of  the  DET curve  at  which  miss  and  false 
alarm rates are equal. Obviously, the lower the EER, 
the higher the accuracy of a speaker tracking system.

Another way to summarize in a single figure the 
performance of a speaker tracking system is the so 
called F-measure, defined as follows:

F=2. 0∗PRC∗RCL
PRCRCL

(4)

where precision (PRC) and recall (RCL) are related 
to  false  alarm  and  miss  rates  respectively.  PRC 
measures the correctly detected target time from the 
total  target  time  detected.  RCL  computes  the 
correctly detected target time from the actual target 
time. The F-measure ranges from 0 to 1, with higher 
values indicating better performance. Collar periods 
of 250 milliseconds at the end of speaker turns are 
ignored for scoring purposes. Thus, speaker turns of 
less than 0.5 seconds are not scored.

 4 EXPERIMENTAL RESULTS
Figures 1 and 2 show the performance of the online 
and offline speaker tracking systems, using UBM-g 
and  UBM-t  as  background  models,  for  the 
development and evaluation sets, respectively. Since 
the speaker detection strategy followed in this work 
cannot  detect  speaker  overlaps,  all  the  segments 
containing  speech  from two or  more  speakers  are 
removed when scoring test meetings.

http://corpus.amiproject.org/


Figure 1:  DET performance of speaker tracking systems 
on the development set defined on the AMI corpus.

Figure 2:  DET performance of speaker tracking systems 
on the evaluation set defined on the AMI corpus.

As  expected,  the  classical  offline  system 
outperforms  the  proposed  low-latency  online 
system,  but  the  performance  of  the  latter  is  quite 
good. Taking the performance of the offline system 
as  reference,  in  speaker  tracking experiments  over 
the evaluation set, the EER increases from 25.80 to 
26.20  (1.55%  relative  degradation)  when  using 
UBM-g, and from 19.07 to 21.14 (10.85% relative 
degradation) when using UBM-t. On the other hand, 
UBM-t systems outperform UBM-g systems, maybe 
due to the aforementioned room mismatch in UBM-
g and the limited amount of training data.

In  addition,  performance  degradation  from 
development  to  evaluation  is  small  (from  around 
20% to 21% EER) in  MAP-UBM-t,  which means 
that system configuration (based on the development 
set)  was  also  suitable  for  the  evaluation  set.  The 

MAP-UBM-g  system suffers  a  bigger  degradation 
from  development  to  evaluation.  It  seems  that 
estimating  the  UBM  from  unknown  speakers  in 
mismatched  conditions  (different  rooms)  degrades 
acoustic  coverage  and  reduces  the  robustness  of 
system configuration with regard to using a room-
specific  UBM estimated from target  speakers.  The 
UBM-t system might be getting advantage not only 
from  matching  the  room,  but  also  from  the 
consistency between the speakers  in the UBM and 
the  target  speakers.  In  fact,  100%  of  the  target 
speakers appearing in the test corpus contribute data 
to the UBM-t, increasing the consistency of speaker 
models estimated through MAP adaptation (because 
a perfect  match exists between the adaptation data 
corresponding to any target speaker and some of the 
component densities of the UBM).

Table 1 shows precision (PRC), recall (RCL) and 
F-measure  performance  of  the  speaker  tracking 
systems,  for  both  the  calibrated  and  uncalibrated 
speaker detection scores. These results correspond to 
the operation point (threshold) considered optimal in 
the  DET curve.  The  threshold  used  for  calibrated 
scores is based on application-dependent costs and 
target  priors,  adjusted  on the  development  corpus. 
For  uncalibrated  scores,  the  threshold  is  fixed  to 
zero, i.e. a target speaker is detected if the likelihood 
of  the  null  hypothesis  is  higher  than  that  of  the 
alternative hypothesis.

Table 1: Precision (PRC),  Recall  (RCL)  and F-measure 
performance  of  the  real-time  (rt)  and  reference  (ref) 
speaker tracking systems,  using UBM-g and UBM-t,  on 
the development (Dev) and evaluation (Eval) sets.

Uncalibrated Calibrated
PRC RCL F PRC RCL F

Dev

rt-UBM-g 0.66 0.92 0.77 0.81 0.8 0.81
ref-UBM-g 0.67 0.93 0.78 0.82 0.82 0.82
rt-UBM-t 0.67 0.91 0.77 0.82 0.83 0.82

ref-UBM-t 0.69 0.92 0.79 0.84 0.86 0.85

Eval

rt-UBM-g 0.69 0.92 0.78 0.78 0.85 0.8
ref-UBM-g 0.69 0.93 0.79 0.78 0.84 0.81
rt-UBM-t 0.71 0.91 0.8 0.81 0.85 0.83

ref-UBM-t 0.72 0.92 0.81 0.81 0.87 0.84

Results in Table 1 demonstrate the usefulness of 
the  calibration  stage,  which  leads  to  better 
performance in all cases. Finally, note that the real-
time  (online,  low-latency)  system  provides  only 
slightly  worse  performance  than  the  reference 
(offline) system: 1.7% average relative degradation 
in  F-measure.  Though  speaker  tracking  actually 
takes  advantage  from  an  offline  acoustic 



segmentation of the audio stream, depending on the 
scenario  and  the  required  latency,  offline  audio 
segmentation  would  not  be  feasible.  In  such  a 
situation, the proposed approach provides real-time 
low-latency  online  speaker  tracking  at  the  cost  of 
little performance degradation.

 5 CONCLUSIONS AND 
FUTURE WORK

In  this  paper,  an  online  speaker  tracking  system, 
designed  for  an  Ambient  Intelligence  scenario,  is 
presented  an  evaluated.  The  system  processes 
continuous  audio  streams  and  outputs  a  speaker 
identification decision for fixed-length (one second) 
segments. Speaker detection is done by means of a 
MAP-UBM  speaker  verification  backend.  A 
calibration  stage  is  applied  which  linearly  maps 
detection  scores  to  likelihood  ratios.  Calibration 
parameters  are  estimated  beforehand  based  on 
development data, yielding significant performance 
improvements without increasing the computational 
cost,  which  is  crucial  for  a  real-time  low-latency 
system.  An  alternative  speaker  tracking  system, 
based on an offline segmentation of the audio stream 
has been developed and evaluated for reference.

Experiments have been carried out on a subset of 
the AMI Corpus of meeting conversations.  Results 
demonstrate that better results can be attained when 
the  UBM  is  estimated  from  data  matching  test 
conditions (same room, same speakers),  instead of 
using  general  but  unrelated  data.  The  calibration 
stage  provides  performance  improvements  in  all 
cases. Finally, offline segmentation of audio streams 
actually  improves  speaker  tracking  performance 
with  regard  to  using  fixed-length  segments. 
However,  depending  on  the  scenario  and  the 
required  latency,  offline audio segmentation would 
not be feasible. The proposed system provides real-
time low-latency online speaker tracking with little 
performance degradation.

Current work involves increasing the robustness 
of  detection  scores  (and  decisions)  by  using 
information  from  past  segments.  Future  work 
includes  using  detection  scores  in  a  speaker 
verification framework (thus allowing the detection 
of multiple speakers), and making a smart use of all 
the  available  data  through  new  UBM  estimation 
strategies.
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