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ABSTRACT

Mel-Frequency Cepstral Coefficients and their derivatamescom-
monly used as acoustic features for speaker recognitiordudie
ing the number of features leads to more robust estimate®dém

performance of recognizers, so MFCC, energy and their firdt a
second derivatives are commonly used as features. Theingsul
feature vectors may consist of up to 50 components, all ahthe
conveying a certain amount of relevant information.

Literature is plenty of comparative studies which consider

parameters, and speeds up the classification task, whictuis ¢ | ' g S
cial for real-time speaker recognition applications rmgnon low-  10US feature extraction techniques and then select thitiygethe

resource devices. In this paper, a feature selection puoedzhsed ~P€st performance in a target task (see [15] for referenaeyhis
on Genetic Algorithms (GA) is presented and compared to twdVork, instead, we aim to smartly reduce feature dimensiapésd

well-known dimensionality reduction techniques, nameBAPand

LDA. Evaluation is carried out for two speech databasestaion
ing laboratory read speech and telephone spontaneoushszgec
plying a standard speaker recognition system. Resultsestigfoat
dynamic features are less discriminant than static onase ghe
low-size optimal subsets found by the GA did not include dyita
features. GA-based feature selection outperformed PCA_&4d

up computation while keeping performance. MFCC, energy and
their first and second derivatives are taken as the basaelmestc
features. Then, th& features most relevant to the classification
task are extracted. In other words, thadimensional feature space
is transformed into &-dimensional subspac& (< D) which min-
imizes the loss of relevant information. A robustness issuaso
involved, since a limited amount of data is available toreate

when dealing with clean speech, whereas PCA and LDA outpersP€aker models.

formed GA-based feature selection for telephone speecbhapty

due to some kind of noise compensation implicit in lineansra
forms, which cannot be accomplished just by selecting aetudfs
features.

1. INTRODUCTION

Smart environments with pervasive computing capabilitezgiire
automatic adaptation/customization of the products amdicss
they provide. Speaker identification is a natural way of @osting
many services, by first identifying and then retrieving mfiation
about clients. After identification, client choices or sities can
be tracked and stored, improving their profiles for furthreeiac-
tions. In these applications, transparency and naturalaescriti-
cal. Clients should be aware that their activities are béiagked,
their voice recorded and their profile information storeudt, these
actions should not interfere with the service itself. Dejieg on
the interface, speakers might be continuously trackedjgiriglen-
tified when the service is started. In any case, they cannasked
even for just a few seconds of speech data to create accuoéite$
nor interactions delayed due to a computationally expensdarch
of their profiles. Moreover, clients may be accessing theiser
through a portable or embedded device with low storage and co
putational capabilities. In this case, real-time operati@comes
the most critical issue to allow natural interactions. Fase latter
applications, high dimensional feature vectors do not sagtable,
and some kind of dimensionality reduction technique musage
plied to save as much time as possible with no or little penforce
degradation.

State-of-the-art speaker recognition systems use shiort-t

The problem of dimensionality reduction is sometimes for-
mulated as a linear transform which projects feature veabor a
transformed subspace defined by relevant directions. Given
dimensional feature vectof, a K- D matrix A is applied to get
a K-dimensional vectolr of transformed featureX(< D). The
matrix A is estimated so that, from the point of view of classifi-
cation, redundancy is removed and relevant informatioaimet.
This should, at least, optimize the performance for theetavglue
of K, but it may even outperform the baseline feature set, duseto t
removal of harmful or confusing features and, more prohataly
better (more robust) estimates of model parameters. Thaiolg
methods have been proposed (among others):

— Principal Component Analysi@CA) [12], an old technique of
multivariate statistical analysis, consists of computhmgeigenvec-
tors of theD - D covariance matriz, then sorting them according
to the corresponding eigenvalues, in descending orderfiaalty
building the projection matriXA (called Karhunen-Loeve Trans-
form, KLT) with the largestK eigenvectors (i.e. th& directions

of greatest variance). Each feature vectois then pre-processed
according to the expressioh= A(X — i), wherep represents the
mean feature vector. KLT decorrelates the features anddesv
the smallest possible reconstruction error among all firiesmns-
forms, i.e. the smallest possible mean-square error bettheedata
vectors in the originaD-dimensional space and the data vectors in
the projected-dimensional subspace. Unfortunately, this does not
guarantee minimizing classification error.

—Linear Discriminant Analysi§LDA) [7] attempts to find the trans-
form A that maximizes a criterion of class separability. This is&lo
by computing the within-class and between-class varianatrim

spectrum features, the Mel-Frequency Cepstral Coeffigientces,Zyc andZp, then finding the eigenvectors &1y, sorting

(MFCC) [4], because they convey not only the frequency idigtr
tion identifying sounds, but also speaker specific featurkddi-
tionally, it has been shown that dynamic information im@®the

them according to the eigenvalues in descending order, aatlfi
building the projection matriR with the firstK eigenvectors (which
define theK most discriminant hyperplanes). LDA assumes that all



the classes share a common within-class covariance matiix¢hat
each class is modelled by a single Gaussian distributiorA &Bo
assumes that classes are linearly separable. Additioredlany
supervised approach, it requires labelling samples witbscidenti-
ties.

Linear transforms combine in an elegant way feature extnact
and feature selection. However, these two steps can begpitied
in an uncoupled way. Strictly speaking, feature selectmrsists of
determining an optimal subset of features by exhaustivadjoeing

(GMM) [16]. GMM parameters are estimated from speaker sam-
ples by applying thevlaximum Likelihood(ML) criterion. Each
sampleX consists of a sequence bfdimensional feature vectors:

X = (X1,X2,...,X7). The conditional probability of a feature vector
X, given the speaker modal= {wj, uj,Zj|j = 1,...,M}, is com-
puted as follows:

M
POIA) = 5 WA (% k5, Z)) @)
=

all the 2 possible combinations. Most feature selection procedures

use the classification error as the evaluation function s Tiikes
exhaustive search computationally unfeasible in pracgeen for

where /' (x; 4, %) denotes th®-dimensional normal density func-
tion of mean vecto and covariance matriX, and the mixture

moderate values db. The simplest method consists of evaluating weights satisfy the constraiQtM wj=1
= .

the D features individually and selecting themost discriminative
ones, but it does not take into account dependencies amangés.
So a number of suboptimal heuristic search techniques hese b
proposed in the literature, which essentially trade-affdptimality
of the selected subset for computational efficiency [11].

Genetic Algorithms (GA) suitably fit this kind of complex op-
timization problems. Candidate solutions are represeaseihdi-
viduals in a large population. Initial solutions (which miag ran-
domly generated) are iteratively driven by the GA to an optim
point according to a complex metric that measures the pegoce
of the individuals in a target task. The fittest individuate ae-
lected and their chromosomes mixed, mutated or taken ugekan
to the next generation. A major advantage of GA over otheribeu
tic search techniques is that they do not rely on any assompti
about the properties of the evaluation function. Multichijee eval-
uation functions (e.g. combining the accuracy and the doslas-
sification) can be defined and used in a natural way [18] [14. G
can easily encode decisions about selecting or not sedefet@tures
as sequences of boolean values, allow to smartly exploréetie
ture space by retaining those decisions that benefit thsifitagion
task, and simultaneously avoid local optima due to theririaic
randomness. GA have been recently applied to feature éxinac
[3], feature weighting [20] an feature selection [5] [19]speaker
recognition.

We assume that input utterances are produceds liypown
speakers, represented by their corresponding madels, ..., As.
Then, fgr any input utteranc¥ = (x1,X2,...,X7), the most likely
speaker(X) is selected according to the following expression:

i(X) = arg_max log p(Ai|X) )
i=1...,

Applying the Bayes rule, taking into account that maximigin
over the set of speakers does not depend on the acoustimsegque
assuming that all the speakers have eguatiori probabilities and
that acoustic vectors are statistically independent |livics:

f(X)

arg_max log(p(X A7) ()

1...S

.
argi:qjafslogﬂ P(x|Ai)

(©)

According to Eg. 3, the computational cost of speaker recog-
nition depends linearly on the number of speak&safid on the

In [5], a reduced set of features was determined on a speakefength of the input utterancd}. Since GMM are used as speaker
by-speaker basis by applying GAs to maximize a measure of disnodels, the computational cost also depends linearly onuheer

crimination between each speaker and her/his two closéghne

of mixtures M) and on the dimension of the feature spad (

bours. Speaker recognition performance was measured omlh sm

dataset containing only 15 speakers, and using a very simple

speaker identification algorithm. In [19], feature weiglgtiwas
used as an intermediate step towards feature selection. wefs
applied to search for feature weights maximizing speakeoge
nition performance on a validation dataset. Speaker modeis
based on empirical distributions of acoustic labels, otgdithrough
vector quantization. Finally, features were sorted adogrtb their

3. FEATURE SELECTION USING GENETIC
ALGORITHMS

In this study, the well-know®imple Genetic AlgorithSGA) [10]
is applied to search for the optimal feature set. The eviaaif
feature sets (i.e. the fitness function used by the GA) isthaséhe
classification accuracy obtained in speaker recognitigeements

weights and th& features with greatest average ranks were retaineéor development data.

and evaluated.

The GA-driven selection process begins by fixing the target

In this paper, a feature selection procedure based on a GasizeK of the reduced feature subspace. Then, an initial popula-
driven search is presented and compared to PCA and LDA in #on of candidate solution(feature subsets) is randomly gener-

speaker recognition task. Experiments are carried outar t
speech databases, containing laboratory read speechleplkiaiee
spontaneous speech, respectively. A standard GMM-basedkep
recognition system is applied. The rest of the paper is dzgdras
follows. The speaker recognition system and the featuexgeh
approach are described in Sections 2 and 3, respectivetyeXiper-
imental setup is outlined in Section 4, including detailsw@hthe

speech databases, the computation of MFCC, the speakedamode

ated. To evaluate th€-feature subsdt = { f1, fo,..., fx }, the fol-
lowing steps are carried out: (1) the acoustic vectors ofithele
speech database are reduced to the components enumeréted in
(2) speaker models are estimated using a training corpysitte3-
ances in a development corpus are classified by applyingtraksr
models; and (4) the speaker recognition accuracy obtaimethé
development corpus is used to evaluate

Each candidate solution is represented B+dimensional vec-

and the implementations of GA, PCA and LDA. Section 5 presenttor of positive integerk = {ry,ro,...,rp}, the K highest values

the results of the GA-based feature selection approacheaaksp

determining what features are selected. Note that the seateré

recognition experiments, and compares them to those of RMA a setl" may be represented by different vectors, that is, moditioati

LDA. Finally, conclusions are summarized in Section 6.

2. SPEAKER RECOGNITION

In this work, the distribution of feature vectors extracfesm a
speaker’s speech is represented by a linear combinatibhrofil-
tivariate Gaussian densities, known @gaussian Mixture Model

to a given candidate solutidR might not change the selection of
features. This redundancy in representation makes theigeaihgo-
rithm to evolve smoothly and facilitates its convergence.

At the end of each iteration/generation, after all khdeature
subsets in the population are evaluated, some of them (yghbael
fittest ones), are selected, mixed and mutated in order theggop-
ulation for the next generation. Mutation is used to intrmalsmall



variations that help decrease the chances of getting Iptiaha. On
the other hancklitism(copying some of the fittest individuals to the
next generation) is applied to guarantee that the fithesgiumin-
creases monotonically with successive generations. tfitlceease

is smaller than a given threshold, or a maximum number of gen

erations is reached, the algorithm stops and the optitrfgature

subset” = {f1, fy,..., fk } is returned. Finallyl" is evaluated on a
test corpus. The three datasets used in this procedureingyade-

velopment and test, are independent and composed of disgts
of utterances.

4. EXPERIMENTAL SETUP
4.1 Speech databases

4.4 GA implementation

The genetic algorithm was implemented by means of ECJ [8], a
Java-based Evolutionary Computation and Genetic Progiagnm
Research System, developed at George Mason UniversitghiEv
tionary Computation Laboratory and released under a Spaogn
source license. Preliminary experimentation was carrigdmad-
just the parameters that control the performance and cgernee

of the GA. Population size is one of the most critical pararset
high volume populations make the convergence of the alguarit
too slow, whereas too small populations could limit the clegrer-
formance. An optimal population size was determined fohdac
On the other hand, it was observed that 40 generations wetgbn

to converge in most cases, so no other convergence critemsn
applied. The allowed gene values ranged from 0 to 255 (8.bits)

Two series of experiments were carried out for two differentOffspring was bred by first selecting and then mixing two pése

databases, emphAlbayzin amdhana each partitioned in three
sets: (1) the training set, used to estimate the speakerlsyd@i

in the current population. The first parent was selectedrdaugto
the fitness-proportional criterion, by picking the fittesirh seven

the development set, used by the GA to compute the fitness fungandomly chosen individuals. The second parent was choste i

tion; and (3) the test set, used to evaluate the performahtieo
optimalK-feature subset.

same way, but only from two randomly chosen individuals |lmva
diversity and avoid local optima. One-point crossover wadiad

Albayzinis a phonetically and gender-balanced database imnd the mutation probability was set to 0.01. Finally, thepest

Spanish, recorded at 16 KHz in laboratory conditions [2]cdh-
tains 204 speakers, each speaker contributing 25 utteyémeesin-
gle session, each utterance lasting an average of 3.55dscbhe
25 utterances corresponding to each speaker are disttibstéol-
lows: 10 are taken for training, 7 for development and 8 fefitey.
So, the training, development and test sets are compose@46f 2
1428 and 1632 utterances, respectively.

case of elitism was applied by keeping the fittest individoaltthe
next generation.

45 PCA and LDA implementations

LNKnet[13], a public domain software developed at MIT Lincoln
Laboratory, was used to perform PCA. Regarding LDA, a custom
implementation was developed in Java. It computes the nvittdss

Dihanais a spontaneous task-specific speech corpus in Spamovariance matrix,, as a weighted average of the covariance ma-

ish, recorded at 8 kHz through telephone lines [1]. It cogtai

trices of speakers, using the fraction of training sampbesespond-

900 human-machine dialogues from 225 speakers (153 men, 1&g to each speaker as weight. Covariance matrices of speate

women), acquired through\izard of Ozsetup [9]. Additionally,
each speaker recorded 8 phonetically balanced and 8 taskisp
read utterances. So, each speaker contributes with 4 diedcand
16 read utterances, recorded in one or more sessions. Thiadra
set consists of 2 dialogues and 8 phonetically balanced ugad

ances per speaker, and both the development and test setstcon

of 1 dialogue and 4 task-specific read utterances per speaker
training, development and test sets contain 4598, 2379 8ad 2
utterances, respectively.

4.2 Speech processing
Speech is analysed in 25-millisecond frames, at intenvial® onil-

estimated from training data, assuming a single Gaussiasitgle
model. The between-class covariance matrix is computediby s
tracting the within-class covariance matrix from the glotavari-
ance matrixXpc = >g — Zwe.

5. RESULTSAND DISCUSSION
5.1 Performance of thefeature sets provided by the GA
Table 1 shows the mean speaker recognition error rates a4
confidence intervals obtained with the optimal feature geigided

by the GA. Recognition results for three reference sets (RIFC
MFCC+E and the full feature vector) are shown too. To illatsr

liseconds. A Hamming window is applied and an FFT computedthe consistency of the optimal sets provided by the GA, eaters
whose length depends on the sampling frequency: 256 paints f for both the development and test sets are shown. Note that th
signals sampled at 8 khz and 512 points for signals sampled &A 00ks for the besK-dimensional feature subset by performing
16 kHz. FFT amplitudes are then averaged in 20 (8 kHz) or 24Peaker recognition experiments on a development dateiseteas

(16 kHz) overlapped triangular filters, with central freqoies and
bandwidths defined according to the Mel scale. A Discreter@os
Transform is finally applied to the logarithm of the filter aitymes,
obtaining 10 (8 kHz) or 12 (16 kHz) Mel-Frequency Cepstrat Co
efficients (MFCC). To increase robustness against charisgrd
tion, Cepstral Mean Normalization (CMN) [17] is applied on a
utterance-by-utterance basis. The first and second deasaif the

the performance of the optimal subset is measured on anéndep
dent test set. The close correlation between the rates fordmts
supports the use of genetic algorithms for this kind of otation
problems.

Confidence intervals allow significant performance compar-
isons among different feature sets. This deserves a brighex
nation. Model estimations start from random initializago Pre-

MFCC, the frame energy (E) and its first and second derivativeiminary experimentation showed that, fixed the set of fezdand

are also computed, thus yielding a 33-dimensional (8 khz) 89-
dimensional (16 kHz) feature vector.

4.3 Speaker models
The baseline system uses 32-mixture diagonal covarianckl @

speaker models. The number of mixtures was tuned in prelimi

nary experiments, aiming to get a suitable trade-off betwesm-
putational load and performance. ML estimates of modelrpara
ters are computed from speaker samples by applying theiviera
Expectation-MaximizatioEM) algorithm [6], starting from ran-
dom values. Though few iterations are enough for the model p
rameters to converge, the random nature of initializatioplies
that different runs of the EM algorithm can lead to differpatam-
eter estimates. We discuss in Section 5 some issues retatlis t
fact.

a

the training database, random initializations led to sligHiffer-

ent model parameters after convergence, and therefota slify
ferences in speaker recognition performance were obserlieid
uncertainty can be taken into account in performance cosga

by computing the mean error rate and the corresponding el
interval in a significant number of experiments. In this giutie
whole process of training speaker models and carrying cedlsy
recognition experiments on the test set was repeated 28, tane

the 95% confidence interval was computed, assuming a Gaussia
distribution of error rates.

In the experiments for clean speech, the recognition eatar r
decreases consistently as the number of features incréage$

to 12, but performance improvements become relatively lsmizlr

K > 12. Since optimal feature sets flir< 12 consist exclusively

of a number of MFCCs plus the frame energy, this suggests that



Table 1: Mean error rates and 95% confidence intervals irkspeacognition experiments for clean and telephone spegioly the optimal
K-dimensional feature subsets provided by the GAKor 6, 8, 10, 11, 12, 13, 20 and 30. Results using MFCC, MFCC+Etlaadull

feature vector are shown too, for reference.

K Clean speech Telephone speech
Development Test Development Test

6 7.64+0.12 | 5.71+0.09 | 31.76+0.16 | 34.23+0.12
8 2.86+0.12 1.81+0.09 | 21.99+0.13 | 23.90+0.14
10 2.24+0.11 | 0.94£0.04 | 17.914+0.16 | 19.70+0.12
11 0.81+0.06 | 0.35+0.04 | 17.64+0.11 | 19.32+0.14
12 1.23+0.07 | 0.30+0.04 | 17.37:0.09 | 19.24-0.14
13 1.05+0.06 | 0.36+0.03 | 17.30:0.12 | 19.12+0.14
20 0.67£0.09 | 0.16+0.02 | 17.59+0.09 | 19.99+0.11
30 0.57+0.05 | 0.13t0.02 | 16.05-0.14 | 19.10+0.14
MFCC 1.27+0.08 | 0.40+0.06 | 17.91:0.16 | 19.70t0.12
MFCC+E 0.90£0.05 | 0.22£0.04 | 19.76+0.14 | 22.34+0.10
Full feature vector| 0.77+0.09 0.20+0.03 | 15.66+0.16 | 18.69+0.15

when dealing with clean laboratory speech, the informagibaut
speaker characteristics contained in dynamic features &fird sec-
ond derivatives) is less relevant than that contained ticS&atures.

It does not mean that dynamic features are useless. Maniestud
have demonstrated that including them improves performaric
only means that when reduced sets must be defined, staticdsat
are the best choice.

Results for telephone speech also support this conclusien:
optimal feature sets foK < 10 are composed exclusively by
MFCCs, and performance improvementsKor- 10 are very small.
It is worth noting the case of the reference subset compok2@ o

that corpus consists of spontaneous speech. The presenoesef
makes PCA and LDA more suitable than GA, because feature se-
lection cannot compensate for noise, whereas linear samsfcan
do it to a certain extent. This may explain why either PCA oALD
outperformed GA in all cases but f&r= 8. LDA was the best ap-
proach in most cases (féf = 10, 11, 12, 13 and 20), whereas GA
was the second best approachfoe 6, 10, 11, 12 and 13. On the
other hand, the lowest error rate (15.97%) was obtaineH fer30
using PCA.

In summary, the GA-based feature selection scheme proposed
in this paper seems to be competitive only when dealing wéarc

MFCC and the frame energy, whose performance is 1.85 alksoluspeech, though it performs quite well even for telephorennkl

points worse than that of the subset composed exclusivelyOby
MFCC. This result reveals the lack of robustness of the frame
ergy when dealing with telephone speech, an issue that neesdigl
discovered by the GA in the selection experiments, sinceftie
mal feature subsets fé¢ < 13 did not include the frame energy.

5.2 Comparing GA to PCA and LDA

GA-based feature selection projects the origalimensional fea-
ture space into a reducé&ddimensional subspace by just selecting

speech when the targKtis small. Authors that argue against GA
optimization say that it is too costly, since it requiresatésely eval-
uating candidate solutions in classification experiments a de-
velopment dataset. It must be noted, however, that GA opiitian

is done off-line, so the computational cost is not an issugrat-
tice. Moreover, during recognition, feature selectioneissl costly
than feature transformation.

5.3 Empirical timesavings

K features. PCA and LDA not only reduce but also scale andeotat 10 check empirically the time savings that could be attaibgd

the original feature space, through a transformation matehich
optimizes a given criterion on the training data. From tlispof
view, PCA and LDA generalize feature selection, but theedat

reducing the number of features, recognition times wererokx
for several values oK in two different computers (see Figure 1).
As expected, the running tintegrew linearly withK. In the case

applied to computé (the highest variance in PCA, and the highest of Albayzin (clean/laboratory/read speech), using IBatisional

ratio of between to within class variances in LDA) do not rhatc
the criterion applied in evaluation (the highest speakeogaition
accuracy). This is the strong point of GA, since featurectiln is
performed in order to maximize the speaker recognition atan
independent development corpus.

GA-based feature selection, PCA and LDA were tested in

speaker recognition experiments on clean and telephorecispe

feature vectors took on average around 40% the time of using
full 39-dimensional feature vectors. In the case of Dihaede{
phone/office/spontaneous speech), similar savings weserad
when comparing the running times of 10-dimensional and 33-
dimensional feature vectors.

6. CONCLUSIONS

First, D-dimensional feature vectors were transformed into redn this work, genetic algorithms were applied to search fiersub-
ducedK-dimensional feature vectors, according to the optimat subset ofK features maximizing the recognition performance. Alterna

set/transformation given by GA, PCA or LDA, then speaker eisd
were estimated on the training corpus and finally speakegree
tion experiments were carried out on the test corpus. Reaud

tively, two well-known feature dimensionality reducti@thniques,
PCA and LDA, were applied and their performance compared to
that of the GA-based feature selection approach. Expetsnen

shown in Table 2 (results for GA are the same shown in Table L)vere carried out for two speech databases in Spanish, pentai
Again, the mean error rate and the 95% confidence intervain 2ing read speech in laboratory conditions and spontaneceschp

different experiments are given, to account for the unagstan-
trinsic to the estimation of GMM parameters.

through telephone lines, respectively, applying a stah@M-
based speaker recognition system.

Inthe case of clean speech, neither PCA nor LDA outperformed  Feature selection based on GA suggests that static fearees

GA. PCA yielded lower error rates than LDA fé& > 12. ForK <
12, LDA outperformed PCA. However, the error rates are too lo
and the differences in performance too small for these csimhs
to be statistically significant.

more discriminant than dynamic features for speaker retiogn
applications. If a reduced set of features had to be selddigzl
to storage or computational restrictions), MFCC would ke libst
choice, augmented with the frame energy when dealing wéhrel

Error rates for telephone speech were much higher than thodaboratory speech. In the case of telephone speech, théesmal

obtained for clean speech. Besides considering the presainc
channel and environment noise, it can be argued that a laryefp

feature subsetK(< 13) did not include the frame energy, which
reveals that channel and/or environment noise is distpttia infor-



Table 2: Mean error rates and 95% confidence intervals inkspeacognition experiments on test data for clean and helep speech,
using the optimaK-dimensional feature sets provided by GA, PCA nd LDA, Kor 6, 8, 10, 11, 12, 13, 20 and 30.

K Clean speech Telephone speech
GA PCA LDA GA PCA LDA
6 | 571+0.09 | 14.370.15 | 8.114+0.14 | 34.23+0.16 | 33.23+0.12 | 35.52t0.14
8 | 1.81+0.09 | 5.86t0.12 | 2.64+0.09 | 23.90+0.14 | 24.19+0.13 | 25.06+0.13
10 | 0.94+0.04 | 2.73+0.12 | 1.21+0.06 | 19.70:0.12 | 20.67A4-0.12 | 19.43+0.12
11 | 0.35+0.04 | 1.61+0.07 | 1.12+0.06 | 19.32+0.14 | 20.2A4-0.13 | 18.10+0.13
12 | 0.30+0.04 | 0.94+0.06 | 0.79+0.06 | 19.270.14 | 19.75+-0.16 | 18.18+0.12
13 | 0.33+0.05 | 0.56+0.05 | 0.88+0.04 | 19.12+0.11 | 19.63+0.10 | 17.66+0.10
20 | 0.16+0.02 | 0.19+-0.02 | 0.39+0.04 | 19.99+-0.11 | 17.610.13 | 17.24+0.11
30 | 0.13+0.02 | 0.15+0.03 | 0.33+0.04 | 19.10t0.14 | 15.97+0.15 | 18.17:0.12
0.5 —— . . . [1] N. Alcocer, M. J. Castro, |. Galiano, R. Granel, S. Graog a
oas | Albayain (machine 2) ] D. Griol. Adquisicion de un Corpus de Dialogo: DIHANA. In
Dihana (machine 1) ------ - Actas de las Ill Jornadas en Tecnologia del Habla (in Span-
04} Dihana (machine 2) - 1 ish), pages 131-134, Valencia (Spain), November 2004.
~ 035} . [2] F. Casacuberta, R. Garcia, J. Llisterri, C. Nadeu, JPktdo,
@ and A. Rubio. Development of Spanish Corpora for Speech
s %3 i Research (Albayzin). IG. Castagneri Ed., Proceedings of
E ot . the Workshop on International Cooperation and Standardiza
2 02| | tion of Speech Databases and Speech I/O Assessment Meth-
g ’ ods pages 26-28, Chiavari, Italy, September 1991.
® 015f 1 [3] C. Charbuillet, B. Gas, M. Chetouani, and J. L. ZaradéteF
01f . Bank Design for Speaker Diarization Based on Genetic Al-
gorithms. InProceedings of the IEEE ICASSP;0Bulouse,
005 r 1 France, 2006.
0 c 0 " 2% - - - 2 [4] S. B. Davis and P. Mermelstein. Comparison of Parametric

K (number of features)

Figure 1: Average running times (real-time factor, xRT) deveral

values ofK, in speaker recognition experiments carried out in two
different computers (machine 1: 2 x Quad Core Intel Xeon B532
1.86GHz, 1066MHZ FSB, 4GB FB 667MHz; machine 2: 2 x AMD

Opteron270 64bit Dual Core 2.0Ghz, 4GB).

mation it conveys. Regarding the methodology, the consigtef
the feature selection results across the development anditsets
validates the use of GA for this kind of optimization probkem

GA outperformed PCA and LDA only when dealing with clean

(5]

(6]

(7]

speech, whereas PCA and LDA outperformed GA in most cases[8]
when dealing with telephone speech, probably due to son kin [9]

of noise compensation implicit in linear transforms, whaannot
be accomplished just by selecting a subset of features.)icase,
since applying a linear transform is more costly than seiget sub-
set of features, depending on the targethe gain in performance
might not be worth the additional effort.

At the end of this study, we were tempted to combine the strong

points of GA and linear transforms by applying GA to seargtitie
linear transform that maximized the speaker recognitide ca a

development set. However, such an approach was found ibifeas

in practice, because determinikgD floating-point transform coef-

ficients (instead of judt feature indices) requires a huge amount o

training and development data (and a shocking amount ofegsac
ing time) for the GA to converge and provide a robust trarmafor
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