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ABSTRACT

Mel-Frequency Cepstral Coefficients and their derivativesare com-
monly used as acoustic features for speaker recognition. Reduc-
ing the number of features leads to more robust estimates of model
parameters, and speeds up the classification task, which is cru-
cial for real-time speaker recognition applications running on low-
resource devices. In this paper, a feature selection procedure based
on Genetic Algorithms (GA) is presented and compared to two
well-known dimensionality reduction techniques, namely PCA and
LDA. Evaluation is carried out for two speech databases, contain-
ing laboratory read speech and telephone spontaneous speech, ap-
plying a standard speaker recognition system. Results suggest that
dynamic features are less discriminant than static ones, since the
low-size optimal subsets found by the GA did not include dynamic
features. GA-based feature selection outperformed PCA andLDA
when dealing with clean speech, whereas PCA and LDA outper-
formed GA-based feature selection for telephone speech, probably
due to some kind of noise compensation implicit in linear trans-
forms, which cannot be accomplished just by selecting a subset of
features.

1. INTRODUCTION

Smart environments with pervasive computing capabilitiesrequire
automatic adaptation/customization of the products and services
they provide. Speaker identification is a natural way of customizing
many services, by first identifying and then retrieving information
about clients. After identification, client choices or activities can
be tracked and stored, improving their profiles for further interac-
tions. In these applications, transparency and naturalness are criti-
cal. Clients should be aware that their activities are beingtracked,
their voice recorded and their profile information stored, but these
actions should not interfere with the service itself. Depending on
the interface, speakers might be continuously tracked, or just iden-
tified when the service is started. In any case, they cannot beasked
even for just a few seconds of speech data to create accurate profiles,
nor interactions delayed due to a computationally expensive search
of their profiles. Moreover, clients may be accessing the service
through a portable or embedded device with low storage and com-
putational capabilities. In this case, real-time operation becomes
the most critical issue to allow natural interactions. For these latter
applications, high dimensional feature vectors do not seemsuitable,
and some kind of dimensionality reduction technique must beap-
plied to save as much time as possible with no or little performance
degradation.

State-of-the-art speaker recognition systems use short-term
spectrum features, the Mel-Frequency Cepstral Coefficients
(MFCC) [4], because they convey not only the frequency distribu-
tion identifying sounds, but also speaker specific features. Addi-
tionally, it has been shown that dynamic information improves the

performance of recognizers, so MFCC, energy and their first and
second derivatives are commonly used as features. The resulting
feature vectors may consist of up to 50 components, all of them
conveying a certain amount of relevant information.

Literature is plenty of comparative studies which considervar-
ious feature extraction techniques and then select that yielding the
best performance in a target task (see [15] for reference). In this
work, instead, we aim to smartly reduce feature dimension tospeed
up computation while keeping performance. MFCC, energy and
their first and second derivatives are taken as the baseline acoustic
features. Then, theK features most relevant to the classification
task are extracted. In other words, theD-dimensional feature space
is transformed into aK-dimensional subspace (K < D) which min-
imizes the loss of relevant information. A robustness issueis also
involved, since a limited amount of data is available to estimate
speaker models.

The problem of dimensionality reduction is sometimes for-
mulated as a linear transform which projects feature vectors on a
transformed subspace defined by relevant directions. Givena D-
dimensional feature vectorX, a K ·D matrix A is applied to get
a K-dimensional vectorY of transformed features (K < D). The
matrix A is estimated so that, from the point of view of classifi-
cation, redundancy is removed and relevant information retained.
This should, at least, optimize the performance for the target value
of K, but it may even outperform the baseline feature set, due to the
removal of harmful or confusing features and, more probably, to
better (more robust) estimates of model parameters. The following
methods have been proposed (among others):

– Principal Component Analysis(PCA) [12], an old technique of
multivariate statistical analysis, consists of computingthe eigenvec-
tors of theD ·D covariance matrixΣ, then sorting them according
to the corresponding eigenvalues, in descending order, andfinally
building the projection matrixA (called Karhunen-Loeve Trans-
form, KLT) with the largestK eigenvectors (i.e. theK directions
of greatest variance). Each feature vectorX is then pre-processed
according to the expressionY = A(X−µ), whereµ represents the
mean feature vector. KLT decorrelates the features and provides
the smallest possible reconstruction error among all linear trans-
forms, i.e. the smallest possible mean-square error between the data
vectors in the originalD-dimensional space and the data vectors in
the projectedK-dimensional subspace. Unfortunately, this does not
guarantee minimizing classification error.

– Linear Discriminant Analysis(LDA) [7] attempts to find the trans-
form A that maximizes a criterion of class separability. This is done
by computing the within-class and between-class variance matri-
ces,Σwc andΣbc, then finding the eigenvectors ofΣ−1

wcΣbc, sorting
them according to the eigenvalues in descending order, and finally
building the projection matrixA with the firstK eigenvectors (which
define theK most discriminant hyperplanes). LDA assumes that all



the classes share a common within-class covariance matrix,and that
each class is modelled by a single Gaussian distribution. LDA also
assumes that classes are linearly separable. Additionally, as any
supervised approach, it requires labelling samples with class identi-
ties.

Linear transforms combine in an elegant way feature extraction
and feature selection. However, these two steps can be also applied
in an uncoupled way. Strictly speaking, feature selection consists of
determining an optimal subset of features by exhaustively exploring
all the 2D possible combinations. Most feature selection procedures
use the classification error as the evaluation function. This makes
exhaustive search computationally unfeasible in practice, even for
moderate values ofD. The simplest method consists of evaluating
theD features individually and selecting theK most discriminative
ones, but it does not take into account dependencies among features.
So a number of suboptimal heuristic search techniques have been
proposed in the literature, which essentially trade-off the optimality
of the selected subset for computational efficiency [11].

Genetic Algorithms (GA) suitably fit this kind of complex op-
timization problems. Candidate solutions are representedas indi-
viduals in a large population. Initial solutions (which maybe ran-
domly generated) are iteratively driven by the GA to an optimal
point according to a complex metric that measures the performance
of the individuals in a target task. The fittest individuals are se-
lected and their chromosomes mixed, mutated or taken unchanged
to the next generation. A major advantage of GA over other heuris-
tic search techniques is that they do not rely on any assumption
about the properties of the evaluation function. Multiobjective eval-
uation functions (e.g. combining the accuracy and the cost of clas-
sification) can be defined and used in a natural way [18] [14]. GA
can easily encode decisions about selecting or not selecting features
as sequences of boolean values, allow to smartly explore thefea-
ture space by retaining those decisions that benefit the classification
task, and simultaneously avoid local optima due to their intrinsic
randomness. GA have been recently applied to feature extraction
[3], feature weighting [20] an feature selection [5] [19] inspeaker
recognition.

In [5], a reduced set of features was determined on a speaker-
by-speaker basis by applying GAs to maximize a measure of dis-
crimination between each speaker and her/his two closest neigh-
bours. Speaker recognition performance was measured on a small
dataset containing only 15 speakers, and using a very simple
speaker identification algorithm. In [19], feature weighting was
used as an intermediate step towards feature selection. GAswere
applied to search for feature weights maximizing speaker recog-
nition performance on a validation dataset. Speaker modelswere
based on empirical distributions of acoustic labels, obtained through
vector quantization. Finally, features were sorted according to their
weights and theK features with greatest average ranks were retained
and evaluated.

In this paper, a feature selection procedure based on a GA-
driven search is presented and compared to PCA and LDA in a
speaker recognition task. Experiments are carried out for two
speech databases, containing laboratory read speech and telephone
spontaneous speech, respectively. A standard GMM-based speaker
recognition system is applied. The rest of the paper is organized as
follows. The speaker recognition system and the feature selection
approach are described in Sections 2 and 3, respectively. The exper-
imental setup is outlined in Section 4, including details about the
speech databases, the computation of MFCC, the speaker models
and the implementations of GA, PCA and LDA. Section 5 presents
the results of the GA-based feature selection approach in speaker
recognition experiments, and compares them to those of PCA and
LDA. Finally, conclusions are summarized in Section 6.

2. SPEAKER RECOGNITION

In this work, the distribution of feature vectors extractedfrom a
speaker’s speech is represented by a linear combination ofM mul-
tivariate Gaussian densities, known asGaussian Mixture Model

(GMM) [16]. GMM parameters are estimated from speaker sam-
ples by applying theMaximum Likelihood(ML) criterion. Each
sampleX consists of a sequence ofD-dimensional feature vectors:
X = (x1,x2, . . . ,xT). The conditional probability of a feature vector
x, given the speaker modelλ = {w j ,µ j ,Σ j | j = 1, . . . ,M}, is com-
puted as follows:

p(x|λ ) =
M

∑
j=1

w jN (x; µ j ,Σ j ) (1)

whereN (x; µ,Σ) denotes theD-dimensional normal density func-
tion of mean vectorµ and covariance matrixΣ, and the mixture
weights satisfy the constraint∑M

j=1 w j = 1.
We assume that input utterances are produced byS known

speakers, represented by their corresponding modelsλ1,λ2, . . . ,λS.
Then, for any input utteranceX = (x1,x2, . . . ,xT), the most likely
speaker̂i(X) is selected according to the following expression:

î(X) = arg max
i=1,...,S

log p(λi |X) (2)

Applying the Bayes rule, taking into account that maximizing
over the set of speakers does not depend on the acoustic sequence,
assuming that all the speakers have equala priori probabilities and
that acoustic vectors are statistically independent, it follows:

î(X) = arg max
i=1,...,S

log(p(X|λi)p(λi))

= arg max
i=1,...,S

log
T

∏
t=1

p(xt |λi)

= arg max
i=1,...,S

T

∑
t=1

log p(xt |λi) (3)

According to Eq. 3, the computational cost of speaker recog-
nition depends linearly on the number of speakers (S) and on the
length of the input utterance (T). Since GMM are used as speaker
models, the computational cost also depends linearly on thenumber
of mixtures (M) and on the dimension of the feature space (D).

3. FEATURE SELECTION USING GENETIC
ALGORITHMS

In this study, the well-knownSimple Genetic Algorithm(SGA) [10]
is applied to search for the optimal feature set. The evaluation of
feature sets (i.e. the fitness function used by the GA) is based on the
classification accuracy obtained in speaker recognition experiments
for development data.

The GA-driven selection process begins by fixing the target
size K of the reduced feature subspace. Then, an initial popula-
tion of candidate solutions (K-feature subsets) is randomly gener-
ated. To evaluate theK-feature subsetΓ = { f1, f2, . . . , fK}, the fol-
lowing steps are carried out: (1) the acoustic vectors of thewhole
speech database are reduced to the components enumerated inΓ;
(2) speaker models are estimated using a training corpus; (3) utter-
ances in a development corpus are classified by applying the speaker
models; and (4) the speaker recognition accuracy obtained for the
development corpus is used to evaluateΓ.

Each candidate solution is represented by aD-dimensional vec-
tor of positive integersR = {r1, r2, . . . , rD}, the K highest values
determining what features are selected. Note that the same feature
setΓ may be represented by different vectors, that is, modifications
to a given candidate solutionR might not change the selection of
features. This redundancy in representation makes the genetic algo-
rithm to evolve smoothly and facilitates its convergence.

At the end of each iteration/generation, after all theK-feature
subsets in the population are evaluated, some of them (usually the
fittest ones), are selected, mixed and mutated in order to getthe pop-
ulation for the next generation. Mutation is used to introduce small



variations that help decrease the chances of getting local optima. On
the other hand,elitism(copying some of the fittest individuals to the
next generation) is applied to guarantee that the fitness function in-
creases monotonically with successive generations. If that increase
is smaller than a given threshold, or a maximum number of gen-
erations is reached, the algorithm stops and the optimalK-feature
subsetΓ̂ = { f̂1, f̂2, . . . , f̂K} is returned. Finally,̂Γ is evaluated on a
test corpus. The three datasets used in this procedure: training, de-
velopment and test, are independent and composed of disjoint sets
of utterances.

4. EXPERIMENTAL SETUP

4.1 Speech databases

Two series of experiments were carried out for two different
databases, emphAlbayzı́n andDihana, each partitioned in three
sets: (1) the training set, used to estimate the speaker models; (2)
the development set, used by the GA to compute the fitness func-
tion; and (3) the test set, used to evaluate the performance of the
optimalK-feature subset.

Albayzı́n is a phonetically and gender-balanced database in
Spanish, recorded at 16 KHz in laboratory conditions [2]. Itcon-
tains 204 speakers, each speaker contributing 25 utterances in a sin-
gle session, each utterance lasting an average of 3.55 seconds. The
25 utterances corresponding to each speaker are distributed as fol-
lows: 10 are taken for training, 7 for development and 8 for testing.
So, the training, development and test sets are composed of 2040,
1428 and 1632 utterances, respectively.

Dihana is a spontaneous task-specific speech corpus in Span-
ish, recorded at 8 kHz through telephone lines [1]. It contains
900 human-machine dialogues from 225 speakers (153 men, 72
women), acquired through aWizard of Ozsetup [9]. Additionally,
each speaker recorded 8 phonetically balanced and 8 task-specific
read utterances. So, each speaker contributes with 4 dialogues and
16 read utterances, recorded in one or more sessions. The training
set consists of 2 dialogues and 8 phonetically balanced readutter-
ances per speaker, and both the development and test sets consist
of 1 dialogue and 4 task-specific read utterances per speaker. The
training, development and test sets contain 4598, 2379 and 2897
utterances, respectively.

4.2 Speech processing

Speech is analysed in 25-millisecond frames, at intervals of 10 mil-
liseconds. A Hamming window is applied and an FFT computed,
whose length depends on the sampling frequency: 256 points for
signals sampled at 8 khz and 512 points for signals sampled at
16 kHz. FFT amplitudes are then averaged in 20 (8 kHz) or 24
(16 kHz) overlapped triangular filters, with central frequencies and
bandwidths defined according to the Mel scale. A Discrete Cosine
Transform is finally applied to the logarithm of the filter amplitudes,
obtaining 10 (8 kHz) or 12 (16 kHz) Mel-Frequency Cepstral Co-
efficients (MFCC). To increase robustness against channel distor-
tion, Cepstral Mean Normalization (CMN) [17] is applied on an
utterance-by-utterance basis. The first and second derivatives of the
MFCC, the frame energy (E) and its first and second derivatives
are also computed, thus yielding a 33-dimensional (8 khz) ora 39-
dimensional (16 kHz) feature vector.

4.3 Speaker models

The baseline system uses 32-mixture diagonal covariance GMM as
speaker models. The number of mixtures was tuned in prelimi-
nary experiments, aiming to get a suitable trade-off between com-
putational load and performance. ML estimates of model parame-
ters are computed from speaker samples by applying the iterative
Expectation-Maximization(EM) algorithm [6], starting from ran-
dom values. Though few iterations are enough for the model pa-
rameters to converge, the random nature of initialization implies
that different runs of the EM algorithm can lead to differentparam-
eter estimates. We discuss in Section 5 some issues related to this
fact.

4.4 GA implementation

The genetic algorithm was implemented by means of ECJ [8], a
Java-based Evolutionary Computation and Genetic Programming
Research System, developed at George Mason University’s Evolu-
tionary Computation Laboratory and released under a special open
source license. Preliminary experimentation was carried out to ad-
just the parameters that control the performance and convergence
of the GA. Population size is one of the most critical parameters:
high volume populations make the convergence of the algorithm
too slow, whereas too small populations could limit the search per-
formance. An optimal population size was determined for each K.
On the other hand, it was observed that 40 generations were enough
to converge in most cases, so no other convergence criterionwas
applied. The allowed gene values ranged from 0 to 255 (8 bits).
Offspring was bred by first selecting and then mixing two parents
in the current population. The first parent was selected according to
the fitness-proportional criterion, by picking the fittest from seven
randomly chosen individuals. The second parent was chosen in the
same way, but only from two randomly chosen individuals, to allow
diversity and avoid local optima. One-point crossover was applied
and the mutation probability was set to 0.01. Finally, the simplest
case of elitism was applied by keeping the fittest individualfor the
next generation.

4.5 PCA and LDA implementations

LNKnet [13], a public domain software developed at MIT Lincoln
Laboratory, was used to perform PCA. Regarding LDA, a custom
implementation was developed in Java. It computes the within-class
covariance matrixΣwc as a weighted average of the covariance ma-
trices of speakers, using the fraction of training samples correspond-
ing to each speaker as weight. Covariance matrices of speakers are
estimated from training data, assuming a single Gaussian density
model. The between-class covariance matrix is computed by sub-
tracting the within-class covariance matrix from the global covari-
ance matrix:Σbc = Σg−Σwc.

5. RESULTS AND DISCUSSION
5.1 Performance of the feature sets provided by the GA

Table 1 shows the mean speaker recognition error rates and the 95%
confidence intervals obtained with the optimal feature setsprovided
by the GA. Recognition results for three reference sets (MFCC,
MFCC+E and the full feature vector) are shown too. To illustrate
the consistency of the optimal sets provided by the GA, errorrates
for both the development and test sets are shown. Note that the
GA looks for the bestK-dimensional feature subset by performing
speaker recognition experiments on a development dataset,whereas
the performance of the optimal subset is measured on an indepen-
dent test set. The close correlation between the rates for both sets
supports the use of genetic algorithms for this kind of optimization
problems.

Confidence intervals allow significant performance compar-
isons among different feature sets. This deserves a brief expla-
nation. Model estimations start from random initializations. Pre-
liminary experimentation showed that, fixed the set of features and
the training database, random initializations led to slightly differ-
ent model parameters after convergence, and therefore slight dif-
ferences in speaker recognition performance were observed. This
uncertainty can be taken into account in performance comparisons
by computing the mean error rate and the corresponding confidence
interval in a significant number of experiments. In this study, the
whole process of training speaker models and carrying out speaker
recognition experiments on the test set was repeated 20 times, and
the 95% confidence interval was computed, assuming a Gaussian
distribution of error rates.

In the experiments for clean speech, the recognition error rate
decreases consistently as the number of features increasesfrom 6
to 12, but performance improvements become relatively smaller for
K > 12. Since optimal feature sets forK ≤ 12 consist exclusively
of a number of MFCCs plus the frame energy, this suggests that,



Table 1: Mean error rates and 95% confidence intervals in speaker recognition experiments for clean and telephone speechusing the optimal
K-dimensional feature subsets provided by the GA, forK = 6, 8, 10, 11, 12, 13, 20 and 30. Results using MFCC, MFCC+E andthe full
feature vector are shown too, for reference.

Clean speech Telephone speech
K

Development Test Development Test
6 7.64±0.12 5.71±0.09 31.76±0.16 34.23±0.12
8 2.86±0.12 1.81±0.09 21.99±0.13 23.90±0.14
10 2.24±0.11 0.94±0.04 17.91±0.16 19.70±0.12
11 0.81±0.06 0.35±0.04 17.64±0.11 19.32±0.14
12 1.23±0.07 0.30±0.04 17.37±0.09 19.27±0.14
13 1.05±0.06 0.36±0.03 17.30±0.12 19.12±0.14
20 0.67±0.09 0.16±0.02 17.59±0.09 19.99±0.11
30 0.57±0.05 0.13±0.02 16.05±0.14 19.10±0.14

MFCC 1.27±0.08 0.40±0.06 17.91±0.16 19.70±0.12
MFCC+E 0.90±0.05 0.22±0.04 19.76±0.14 22.34±0.10

Full feature vector 0.77±0.09 0.20±0.03 15.66±0.16 18.69±0.15

when dealing with clean laboratory speech, the informationabout
speaker characteristics contained in dynamic features (first and sec-
ond derivatives) is less relevant than that contained in static features.
It does not mean that dynamic features are useless. Many studies
have demonstrated that including them improves performance. It
only means that when reduced sets must be defined, static features
are the best choice.

Results for telephone speech also support this conclusion:the
optimal feature sets forK ≤ 10 are composed exclusively by
MFCCs, and performance improvements forK > 10 are very small.
It is worth noting the case of the reference subset composed of 10
MFCC and the frame energy, whose performance is 1.85 absolute
points worse than that of the subset composed exclusively by10
MFCC. This result reveals the lack of robustness of the frameen-
ergy when dealing with telephone speech, an issue that was already
discovered by the GA in the selection experiments, since theopti-
mal feature subsets forK ≤ 13 did not include the frame energy.

5.2 Comparing GA to PCA and LDA

GA-based feature selection projects the originalD-dimensional fea-
ture space into a reducedK-dimensional subspace by just selecting
K features. PCA and LDA not only reduce but also scale and rotate
the original feature space, through a transformation matrix A which
optimizes a given criterion on the training data. From this point of
view, PCA and LDA generalize feature selection, but the criteria
applied to computeA (the highest variance in PCA, and the highest
ratio of between to within class variances in LDA) do not match
the criterion applied in evaluation (the highest speaker recognition
accuracy). This is the strong point of GA, since feature selection is
performed in order to maximize the speaker recognition rateon an
independent development corpus.

GA-based feature selection, PCA and LDA were tested in
speaker recognition experiments on clean and telephone speech.
First, D-dimensional feature vectors were transformed into re-
ducedK-dimensional feature vectors, according to the optimal sub-
set/transformation given by GA, PCA or LDA, then speaker models
were estimated on the training corpus and finally speaker recogni-
tion experiments were carried out on the test corpus. Results are
shown in Table 2 (results for GA are the same shown in Table 1).
Again, the mean error rate and the 95% confidence interval in 20
different experiments are given, to account for the uncertainty in-
trinsic to the estimation of GMM parameters.

In the case of clean speech, neither PCA nor LDA outperformed
GA. PCA yielded lower error rates than LDA forK > 12. ForK ≤
12, LDA outperformed PCA. However, the error rates are too low
and the differences in performance too small for these conclusions
to be statistically significant.

Error rates for telephone speech were much higher than those
obtained for clean speech. Besides considering the presence of
channel and environment noise, it can be argued that a large part of

that corpus consists of spontaneous speech. The presence ofnoise
makes PCA and LDA more suitable than GA, because feature se-
lection cannot compensate for noise, whereas linear transforms can
do it to a certain extent. This may explain why either PCA or LDA
outperformed GA in all cases but forK = 8. LDA was the best ap-
proach in most cases (forK = 10, 11, 12, 13 and 20), whereas GA
was the second best approach forK = 6, 10, 11, 12 and 13. On the
other hand, the lowest error rate (15.97%) was obtained forK = 30
using PCA.

In summary, the GA-based feature selection scheme proposed
in this paper seems to be competitive only when dealing with clean
speech, though it performs quite well even for telephone-channel
speech when the targetK is small. Authors that argue against GA
optimization say that it is too costly, since it requires iteratively eval-
uating candidate solutions in classification experiments over a de-
velopment dataset. It must be noted, however, that GA optimization
is done off-line, so the computational cost is not an issue inprac-
tice. Moreover, during recognition, feature selection is less costly
than feature transformation.

5.3 Empirical time savings

To check empirically the time savings that could be attainedby
reducing the number of features, recognition times were recorded
for several values ofK in two different computers (see Figure 1).
As expected, the running timet grew linearly withK. In the case
of Albayzı́n (clean/laboratory/read speech), using 13-dimensional
feature vectors took on average around 40% the time of using
full 39-dimensional feature vectors. In the case of Dihana (tele-
phone/office/spontaneous speech), similar savings were observed
when comparing the running times of 10-dimensional and 33-
dimensional feature vectors.

6. CONCLUSIONS

In this work, genetic algorithms were applied to search for the sub-
set ofK features maximizing the recognition performance. Alterna-
tively, two well-known feature dimensionality reduction techniques,
PCA and LDA, were applied and their performance compared to
that of the GA-based feature selection approach. Experiments
were carried out for two speech databases in Spanish, contain-
ing read speech in laboratory conditions and spontaneous speech
through telephone lines, respectively, applying a standard GMM-
based speaker recognition system.

Feature selection based on GA suggests that static featuresare
more discriminant than dynamic features for speaker recognition
applications. If a reduced set of features had to be selected(due
to storage or computational restrictions), MFCC would be the best
choice, augmented with the frame energy when dealing with clean-
laboratory speech. In the case of telephone speech, the smallest
feature subsets (K ≤ 13) did not include the frame energy, which
reveals that channel and/or environment noise is distorting the infor-



Table 2: Mean error rates and 95% confidence intervals in speaker recognition experiments on test data for clean and telephone speech,
using the optimalK-dimensional feature sets provided by GA, PCA nd LDA, forK = 6, 8, 10, 11, 12, 13, 20 and 30.

Clean speech Telephone speech
K

GA PCA LDA GA PCA LDA
6 5.71±0.09 14.37±0.15 8.11±0.14 34.23±0.16 33.23±0.12 35.52±0.14
8 1.81±0.09 5.86±0.12 2.64±0.09 23.90±0.14 24.19±0.13 25.06±0.13
10 0.94±0.04 2.73±0.12 1.21±0.06 19.70±0.12 20.67±0.12 19.43±0.12
11 0.35±0.04 1.61±0.07 1.12±0.06 19.32±0.14 20.27±0.13 18.10±0.13
12 0.30±0.04 0.94±0.06 0.79±0.06 19.27±0.14 19.75±0.16 18.18±0.12
13 0.33±0.05 0.56±0.05 0.88±0.04 19.12±0.11 19.63±0.10 17.66±0.10
20 0.16±0.02 0.19±0.02 0.39±0.04 19.99±0.11 17.61±0.13 17.24±0.11
30 0.13±0.02 0.15±0.03 0.33±0.04 19.10±0.14 15.97±0.15 18.17±0.12
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Figure 1: Average running times (real-time factor, xRT) forseveral
values ofK, in speaker recognition experiments carried out in two
different computers (machine 1: 2 x Quad Core Intel Xeon E5320,
1.86GHz, 1066MHZ FSB, 4GB FB 667MHz; machine 2: 2 x AMD
Opteron270 64bit Dual Core 2.0Ghz, 4GB).

mation it conveys. Regarding the methodology, the consistency of
the feature selection results across the development and test datasets
validates the use of GA for this kind of optimization problems.

GA outperformed PCA and LDA only when dealing with clean
speech, whereas PCA and LDA outperformed GA in most cases
when dealing with telephone speech, probably due to some kind
of noise compensation implicit in linear transforms, whichcannot
be accomplished just by selecting a subset of features. In any case,
since applying a linear transform is more costly than selecting a sub-
set of features, depending on the targetK, the gain in performance
might not be worth the additional effort.

At the end of this study, we were tempted to combine the strong
points of GA and linear transforms by applying GA to search for the
linear transform that maximized the speaker recognition rate on a
development set. However, such an approach was found unfeasible
in practice, because determiningK ·D floating-point transform coef-
ficients (instead of justK feature indices) requires a huge amount of
training and development data (and a shocking amount of process-
ing time) for the GA to converge and provide a robust transform.
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