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ABSTRACT
Speaker verification is usually performed by comparing the
likelihood score of the target speaker model to the likelihood
score of an universal background model (UBM), and then ap-
plying a suitable threshold. For the UBM to be effective, it
must be estimated from a large number of speakers. How-
ever, it is not always possible to gather enough data to esti-
mate a robust UBM, and the verification performance may
degrade if impostors, or whatever sources that generate the
input signals, were not suitably modelled by the UBM. In
this work, a new normalization technique is proposed, based
on a shallow source model (SSM) estimated from the in-
put utterance. A linear combination of the likelihood scores
of the SSM and the UBM is used to normalize the speaker
score. Speaker verification experiments were carried out on a
clean-speech dataset including 204 speakers. Also, a sizeable
amount of noisy, speech and non-speech signals was used to
test the robustness to large training-test mismatch. Three nor-
malization techniques were tested: UBM, smoothed UBM
and the proposed combination of UBM and SSM. This lat-
ter approach yielded the best performance. The difference in
performance was specially significant in the large training-
test mismatch condition.

1. INTRODUCTION
Speaker verification consists of deciding whether an input
utterance X was actually produced by the claimed speaker
or not. This task naturally arises in environments requiring
biometric authentication of any potential user. In fact, us-
ing the voice as a biometric is probably the most natural way
of authenticating people. Another interesting application is
speaker tracking in broadcast news: the audio signal is seg-
mented into homogeneous sections (usually speaker turns),
which are then automatically labelled either with the name
of a target speaker or with the name of a default category
corresponding to unknown speakers and other sources (mu-
sic, noise, etc.).

Though speaker characteristics are reflected at many lev-
els (acoustic, phonetic, phonological, prosodic, syntactic or
even pragmatic), most systems take into account only the
physiological information conveyed by the acoustic param-
eters extracted from the speech signal, and use an acoustic
model to gather the statistics of the power spectrum specific
to each speaker. It is assumed that speech data are available
for the target speaker, so that an acoustic model λ can be
estimated. An input utterance is represented by a sequence
of acoustic vectors X = {x1,x2, . . . ,xT }. From a practical

point of view, the verification task can be reduced to com-
puting the posterior probability P(λ |X) and comparing it to
a fixed threshold τ . The input utterance X is accepted as
coming from the claimed speaker if the verification inequal-
ity P(λ |X) > τ holds; otherwise, it is rejected. The deci-
sion threshold τ can be heuristically adjusted to get a suitable
trade-off between false acceptance and false rejection errors.

Applying the Bayes rule, the verification inequality can
be written as follows:

P(X |λ )P(λ )

P(X)
> τ

Since the prior probability P(λ ) does not depend on
X , and taking logarithms, the verification inequality can be
rewritten in terms of a log-likelihood ratio:

LLR1(X) = logP(X |λ )− logP(X) > τ1 (1)

In most cases, the conditional probability P(X |λ ) is rep-
resented by means of a Gaussian Mixture Model (GMM) [7].
The normalizing term P(X) is the probability of the input ut-
terance X . To compute P(X), a source model λS is needed
which accounts for all the potential input utterances, so that
P(X) = P(X |λS). If the source was known, a large, diverse
and balanced database of audio samples coming from that
source might be used to estimate a suitable acoustic model
λS.

From the point of view of decision theory, the verifica-
tion task consists of deciding between the H0 hypothesis (X
belongs to the claimed speaker) or the alternative H1 hy-
pothesis (X does not belong to the claimed speaker). This
may be accomplished by computing the posterior probabili-
ties P(H0|X) and P(H1|X) and accepting H0 if the likelihood
ratio is greater than a given threshold:

P(H0|X)

P(H1|X)
> τ ′

Since the prior probabilities P(H0) and P(H1) do not de-
pend on X , applying the Bayes rule and taking logarithms, a
log-likelihood ratio is obtained:

LLR2(X) = logP(X |H0)− logP(X |H1) > τ2 (2)

In this case, the speaker score P(X |H0) is normalized by
the score of an impostor model, since it represents the alter-
native to the claimed speaker (i.e. impostors). Note that Eqs.



1 and 2 differ only in the normalizing term. In fact, P(X |λ ) =
P(X |H0) and P(X) = P(X |H0)P(H0)+P(X |H1)P(H1).

Here, we follow the approach given by Eq. 1. The
source model P(X) is usually called background model, since
it provides acoustic coverage for a wide range of input ut-
terances. Various alternatives have been proposed in the
literature to define a suitable source model. One of them
consists of defining the source as a combination of known
sources: a cohort of background speakers selected according
to a given criterion of closeness, remoteness, competitiveness
or the like, with regard to the target speaker [9]. An acous-
tic model is estimated for each source, and the likelihood
score P(X) is computed as a function (usually the arithmetic
mean) of the likelihood scores of the potential sources. Two
issues arise with this approach: (1) a suitable cohort of back-
ground speakers must be selected and combined for each tar-
get speaker; and (2) it is not easy to cover all the potential
input utterances with just a few background speakers.

The most common approach to modelling the source
consists of using a large pool of speakers to train a single
speaker-independent model, called Universal Background
Model (UBM), usually a GMM with a large number of com-
ponents [6], designed to match the statistics of any potential
input utterance. The UBM approach has several advantages:
(1) a single model is used to normalize the likelihood scores
of all the target speakers; (2) it provides universal acoustic
coverage for speech signals; and (3) it can be used as the
basis for estimating speaker models through Bayesian adap-
tation, thus yielding more robust speaker models. However,
it is not always possible to gather enough data to estimate
such a robust UBM. Note also that, depending on the appli-
cation (for example, speaker tracking), the source could be
non-human (music, noise, etc.). In this case, and whenever
the source that generates the input utterance was not suit-
ably modelled by the UBM, neither the speaker model nor
the UBM would cover the input utterance, the log-likelihood
ratio would not be reliable and the verification performance
would degrade.

In this work, we aim to improve the source model given
by the UBM. Instead of taking as reference only an esti-
mation of what input signals should be like (the UBM),
we also take as reference an estimation of the source based
on the input signal. We estimate an acoustic model of the
source that generates the input utterance, that we call Shal-
low Source Model (SSM), and then use a linear combination
of the likelihood scores of the UBM and the SSM to nor-
malize the speaker score. This approach solves the issue of
coverage, since the SSM just attempts to model the source
that generates the input utterance. Raw SSM normalization
(without UBM) was originally applied to speaker tracking in
broadcast news [8]. More recently, the mixed UBM-SSM
approach has been successfully applied to open-set speaker
identification [13]. In this paper we go more deeply into that
line of research, by changing the focus to speaker verifica-
tion, using more up-to-date speaker models (MAP-adapted
from the UBM) and including performance comparison to a
similar approach by other authors.

Few alternatives to the UBM, such as the one presented in
this paper, can be found in the literature. The same principle
of using a weak or low acoustic resolution model to normal-
ize speaker scores, instead of a large high-resolution UBM,
has been previously applied in text-dependent speaker verifi-
cation by Siohan et al. [10], and in text-independent speaker

verification by Tran [11]. In both cases, authors try to cir-
cumvent the need for a large speaker-independent database
by exploiting the enrollment data of target speakers in a smart
way, but input utterances are not used in any way. On the
other hand, Hsu, Yu and Yang [5] estimate an acoustic model
from the input utterance and take it as reference to make a
decision. However, the verification procedure they propose,
based on the tolerance interval analysis, use speaker samples
instead of speaker models. Finally, Tran and Wagner [12]
present experimental results supporting the claim that a size-
able number of false acceptances can be avoided by smooth-
ing the UBM likelihood score with a constant membership
value ε . This constant plays the same role as the SSM, but in
a blind way, since no information is extracted from the input
utterance.

The rest of the paper is organized as follows. Section 2
briefly describes the SSM and presents a way of combining
the UBM and the SSM to get a more robust source model.
Section 3 gives details about the datasets and the baseline
system used in the speaker verification experiments. Results
are presented and discussed in Section 4. Finally, conclu-
sions are given in Section 5.

2. THE SHALLOW SOURCE MODEL
This approach consists of estimating a source model λX from
the input utterance X , computing the score P(X |λX) and us-
ing it to normalize the speaker score. Since X is usually short
(2-10 seconds), a low-order (shallow) model must be defined,
to allow robust estimates and avoid overtraining. Note that
we do not aim to model the input utterance but the source
(for instance, the speaker, but also other kind of sources),
and using too many mixtures would model utterance-specific
variations instead of source-generic features. In summary, a
very simple and shallow model (currently, a GMM), which
we call Shallow Source Model (SSM), is estimated to model
the source.

If the SSM λX (estimated from the input utterance X)
was a perfect source model, then, for any speaker model λ
(estimated from independent training samples), it should be:

P(X |λX) > P(X |λ ) (3)

In these conditions, the log-likelihood ratio:

LLR(X) = logP(X |λ )− logP(X |λX)

would be always negative or zero, and it would be zero only
in the case the speaker model λ perfectly matched the source
model λX . Clearly, in this latter case the input utterance
should be accepted, but the same decision should be made
if the log-likelihood ratio was close enough to zero. In fact,
using the source model score to normalize the speaker model
score gives a measure of how well the speaker model ap-
proximates the source model: if the log-likelihood ratio was
greater than a given threshold, then the input utterance would
be accepted as belonging to the claimed speaker; otherwise,
it would be rejected.

In practice, however, λX is not a perfect but a shallow
source model and the inequality 3 does not hold. Speaker
models are acoustically rich GMMs, trained on much more
data than the SSM, so some of them may cover the input
utterance better than the SSM. Nevertheless, the likelihood
score of the SSM may still be taken as a reference to normal-
ize speaker scores, and a suitable threshold applied to make



a decision. The same interpretation given above holds in this
case: the SSM provides a reference to measure how well the
speaker model approximates the source. Moreover, if the in-
put utterance X was not suitably covered by speaker models
(because it comes from an impostor, or from a non-human
source), the SSM would still guarantee a minimum acoustic
coverage (playing the same role as the constant ε proposed
by Tran and Wagner in [12]). Its likelihood score would be
higher than that of the speaker model, and X would be reli-
ably classified as an impostor utterance.

2.1 Combining the UBM and the SSM
The SSM approach solves the issue of acoustic coverage and
does not need lots of data as the UBM does, but SSM param-
eter estimates may be highly influenced by utterance-specific
variations so that the SSM would not be robustly modelling
the source. In fact, previous experimentation has shown that
the UBM clearly outperforms the SSM in this kind of tasks
[13].

To overcome the coverage issue of the UBM and the ro-
bustness issue of the SSM, the background model may be
estimated by Bayesian adaptation of the UBM to the input
utterance (see [2]). However, this approach takes more com-
putation than simply estimating the SSM. Alternatively, the
likelihood score of the input utterance can be approximated
by a suitable linear combination of the likelihood scores of
the UBM and the SSM, as follows:

P(X) ≈ αP(X |λUBM)+(1−α)P(X |λX) (4)

where α is a heuristically fixed mixing factor (i.e. the opti-
mal value of α is that yielding the best performance on the
test set). Equation 4 expresses the assumption that X is gen-
erated either by the UBM, which robustly accounts for a wide
range of speakers, or the SSM, which provides a weak esti-
mation of whatever other sources. From this point of view,
the SSM guarantees full acoustic coverage of the input utter-
ances. Finally, this approach can be applied to any database,
since it only requires estimating an SSM for each input ut-
terance, and then combining the SSM score with that of the
UBM. There is only an issue, related to the mixing factor α ,
whose optimal value should be fixed by optimizing the per-
formance on a validation dataset.

3. EXPERIMENTAL SETUP
3.1 Datasets
A phonetically balanced database in Castilian Spanish, called
Albayzı́n [3], recorded at 16 kHz in laboratory conditions,
was used in the experiments. The database contains 204
speakers, each contributing at least 25 read utterances, and
each utterance lasting an average of 3.55 seconds. Albayzı́n
was originally designed to train acoustic models for speech
recognition and may be considered similar in characteristics
to TIMIT. Nowadays, it is the most widely used acoustic-
phonetic database in Spanish.

For the experiments presented in this paper, a gender-
balanced set of 34 target speakers and a gender-balanced set
of 68 impostors were considered, the remaining 102 being
used as background speakers. Three disjoint sets of utter-
ances were considered: (1) the training set, consisting of
10 utterances from each target speaker, was used to estimate

speaker models; (2) the background set, consisting of 25 ut-
terances from each background speaker, was used to estimate
the UBM; and (3) the test set, consisting of 15 utterances
from each target speaker and 15 utterances from each im-
postor, was used to evaluate the performance of the speaker
verification systems. So, the dataset consists of 340 training
utterances, 2550 background utterances and 1530 test utter-
ances (of which 510 correspond to target speakers and 1020
to impostors).

Besides Albayzı́n, a separate dataset, called Mismatched,
was used to test the robustness of speaker verification sys-
tems to signals not suitably covered by the training mate-
rial. Mismatched was designed to match the size and struc-
ture of the test set of Albayzı́n. It consists of 1920 utter-
ances (each lasting 3 seconds) resampled at 16 kHz. The
corpus is divided into three different subcorpora: (1) Mu-
sic, consisting of 576 song fragments taken at random from
a song database; (2) Telephone, consisting of 640 sponta-
neous speech fragments taken at random from Dihana [1],
a database of human-computer dialogues recorded at 8 kHz
through telephone lines; and (3) WWW, consisting of 664 au-
dio fragments (most of them including speech) taken at ran-
dom from the internet.
3.2 The baseline system
A state-of-the-art GMM/UBM speaker verification system
was applied in the experiments. Speaker models were es-
timated by MAP adaptation of the UBM to the training
dataset of each speaker [6]. The UBM was defined as a
1024-component GMM, whose parameters were estimated
by Maximum Likelihood from the set of background speak-
ers, using the EM algorithm and starting from random values.
Mel Frequency Cepstral Coefficients (MFCC) with mean
normalization were used as acoustic features. The frame en-
ergy was also computed, yielding a 13-dimensional feature
vector.

4. RESULTS AND DISCUSSION
4.1 Speaker verification on a test set fully covered by
training data
First, speaker verification experiments were run on the test
set of Albayzı́n, using the training and background datasets
to estimate the speaker models and the UBM, respectively.
Besides the UBM, two additional normalization techniques
were tested: the smoothed UBM proposed by Tran and Wag-
ner [12] and the linear combination of the UBM and SSM
likelihoods proposed in this paper.

A preliminary series of experiments was run to determine
the optimal size of the GMM used to represent the source in
the SSM approach. It was expected to be a low value, since a
large GMM would be less robust and would model utterance-
specific features. The best performance was obtained for a
SSM with 4 mixture components.

To compare the performance of speaker verification sys-
tems, results are presented in the form of DET (Detection
Error Trade-off ) curves. DET curves are generated by us-
ing the DET-Curve Plotting software provided by NIST [4].
As shown in Figure 1, a suitable linear combination of the
UBM and SSM likelihoods (mixing factor α = 0.97) slightly
improves the performance of the UBM (the EER decreas-
ing from 0.9% to 0.8%), whereas the smoothed UBM pro-
posed by Tran and Wagner (background membership con-
stant ε = 0.005) does not yield any improvement.
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Figure 1: DET curves for three speaker verification systems using MAP adapted speaker models and three normalization
methods: UBM, smoothed UBM (ε = 0.005) and a suitable combination of the UBM and SSM likelihoods (α = 0.97).
Experiments were carried out on the test set of Albayzı́n, which was suitably covered by the UBM.

4.2 Speaker verification on a test set partially covered
by training data
A second series of experiments was run to evaluate the ro-
bustness of speaker verification systems to signals not cov-
ered by training data. The speaker and background mod-
els were the same applied in the experiments described in
Section 4.1. The test set was extended with the Mismatched
dataset. It comprised 3450 utterances, 510 coming from tar-
get speakers, 1020 from impostor speakers in matched con-
ditions and 1920 from impostor speakers and other sources
in uncovered/mismatched conditions (see Section 3.1 for de-
tails). In this way we tried to simulate the situation where a
relatively large amount of signals in mismatched conditions
must be processed. That is the case of speaker tracking appli-
cations, where input signals are segmented into acoustically
homogeneous regions, and these assigned either to a target
speaker or to a generic unknown source.

For each target speaker, the test set comprises 15 utter-
ances coming from the target speaker and 3435 coming from
impostor speakers and other sources not suitably covered by
training data. This amounts to 34 · 3450 = 117300 verifica-
tion tests, but only 510 of them are used to compute miss
rates, whereas 116790 are used to compute false alarm rates,
which makes miss rates less reliable than false alarm rates.
Figure 2 shows the DET curves resulting from speaker veri-
fication experiments on the extended test set using the three
normalization approaches described above.

Again, the linear combination of the UBM and SSM
likelihoods (α = 0.97) consistently outperformed UBM,
whereas the smoothing procedure proposed by Tran and
Wagner (ε = 0.005) yielded no significant improvement.
Differences in performance were larger at the high-
thresholds end of the DET curve (10% vs. 19% miss rate
at 0% false alarm rate), and became almost null at the low-
thresholds end (ranging between 1.6% and 1.7% false alarm
rate at 0% miss rate).

The linear combination of the UBM and SSM likelihoods

provided more significant improvements with regard to the
UBM when applied to the extended test set (0.4% vs. 0.6%
EER) than when applied to the baseline test set (0.8% vs.
0.9% EER). This means that the main contribution of the
SSM is helping reject utterances in uncovered/mismatched
conditions. As a result, the false alarm rates in Figure 2 are
lower than those in Figure 1 (e.g. moving from 0.9% to 0.4%
at 0.5% miss rate). The UBM also succeeds in rejecting a
sizeable amount of utterances in mismatched conditions, but
not so much as the combination of UBM and SSM. As a
result, the false alarm rates of UBM in Figure 2 do also de-
crease with regard to those in Figure 1, but to a lesser extent
(e.g. moving from around 1% to 0.65% EER at 0.5% miss
rate).

5. CONCLUSIONS
In this paper a new approach to the issue of normalizing
speaker scores in speaker verification is presented which
aims to improve the robustness to training-test mismatch.
Besides modelling a wide range of potential speakers by esti-
mating a Universal Background Model (UBM), a low-order
GMM —which we call Shallow Source Model (SSM)— is
estimated from the input utterance. Then, a suitable linear
combination of the UBM and SSM likelihoods is used to nor-
malize the speaker score. This approach solves the issue of
acoustic coverage, because it includes a model of the source
that generates the input utterance. On the other hand, esti-
mating the SSM and computing its likelihood do not increase
significantly the computational cost of speaker verification.

The proposed approach has been compared to the UBM
and a smoothed version of the UBM —which is reported to
be more robust to signals not covered by training data— in
two series of speaker verification experiments: (1) on a test
set fully covered by training data, and (2) on a test set includ-
ing a sizeable amount of signals not covered by training data.
In both cases, the proposed approach yielded better results
than the UBM, whereas the smoothed UBM did not yield
significant improvements with regard to the UBM. The im-
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Figure 2: DET curves for three speaker verification systems using MAP adapted speaker models and three normalization
methods: UBM, smoothed UBM (ε = 0.005) and a suitable combination of the UBM and SSM likelihoods (α = 0.97). In this
case, the test set of Albayzı́n was augmented with noisy, speech and non-speech signals not suitably covered by the UBM.

provement provided by the SSM was more noticeable when
dealing with signals not matching training data. Though the
UBM successfully rejected a sizeable amount of utterances
not covered by training data, the use of SSM helped reject
even more of them, leading to lower false alarm rates.

Current work includes testing the mixed UBM-SSM
approach in more realistic conditions, by using speaker
databases recorded on different channels and different ses-
sions. Also, the mixing factor α will be fixed by optimizing
the performance on a validation dataset.
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