
Feature Selection Based on Genetic Algorithms

for Speaker Recognition

Maider Zamalloa, Germán Bordel, Luis Javier Rodríguez, Mikel Peñagarikano

Grupo de Trabajo en Tecnologías del Software

Departamento de Electricidad y Electrónica, Facultad de Ciencia y Tecnología, UPV/EHU

mzamalloa001@ikasle.ehu.es

Abstract

The Mel-Frequency Cepstral Coefficients (MFCC) and their

derivatives are commonly used as acoustic features for speaker

recognition. The issue arises of whether some of those features

are redundant or dependent on other features. Probably, not all

of them are equally relevant for speaker recognition. Reduced

feature sets allow more robust estimates of the model

parameters. Also, less computational resources are required,

which is crucial for real-time speaker recognition applications

using low-resource devices. In this paper, we use feature

weighting as an intermediate step towards feature selection.

Genetic algorithms are used to find the optimal set of weights

for a 38-dimensional feature set, consisting of 12 MFCC, their

first and second derivatives, energy and its first derivative. To

evaluate each set of weights, speaker recognition errors are

counted over a validation dataset. Speaker models are based

on empirical distributions of acoustic labels, obtained through

vector quantization. On average, weighting acoustic features

yields between 15% and 25% error reduction in speaker

recognition tests. Finally, features are sorted according to their

weights, and the K features with greatest average ranks are

retained and evaluated. We conclude that combining feature

weighting and feature selection allows to reduce costs without

degrading performance.1

1. Introduction

Feature extraction is a key issue for efficient speaker

recognition. Redundant and harmful information should be

removed from speech, retaining only those features relevant to

classification. Additionally, a reduced feature set would allow

more robust estimates of the model parameters, and less

computational resources would be required.

Best features are those that help to discriminate among

speakers. An optimal feature should have the following

properties: (1) high inter-speaker variation, (2) low intra-

speaker variation, (3) easy to measure, (4) robust against

mimicry, (5) robust against noise and (6) independent of other

features. Unfortunately, no single feature fulfils these

requirements. High-level speaker features, such as

pronunciation patterns, language use, etc., are robust against

noise but require speech recognition to get a sequence of

words, and a lot of data to estimate acoustic and language

models, which adds an intolerable complexity to the task of

speaker recognition. So, low-level acoustic features are the

most common choice, because are easy to extract, do not

1
 This work has been partially funded by the Basque Government,
under program SAIOTEK, project S-PE04UN18.

require speech recognition and a small amount of data is

enough to estimate good models. Their main inconvenience is

that may be easily corrupted by background noise and other

distortion sources.

State-of-the-art systems use the same short-term spectrum

features (Mel-Frequency Cepstral Coefficients, MFCC) for

speech and speaker recognition, because MFCC convey not

only the frequency distribution identifying sounds, but also the

glottal source and the vocal tract shape and length, which are

speaker specific features. Additionally, it has been shown that

dynamic information improves significantly the performance

of recognizers, so MFCC, energy and their first and second

derivatives are commonly used as features. Depending on the

acoustic front-end, the resulting feature vectors may have from

20 to 50 components.

Using the voice as a biometric to verify or search for the

identity of users is currently the most natural (non-intrusive)

way of solving the problem of unauthorized access to critical

or private resources (buildings, web accounts, etc.). High

security applications require speaker recognition to perform

almost perfectly, which is quite difficult, especially when

dealing with hundreds of speakers and thousands of possible

imposters. However, this issue can be conveniently addressed

with computationally powerful back-ends and high volumes of

speech data, which allow to estimate robust models even for

40-dimensional feature vectors. Companies adopting this

approach can generally afford the cost of computational

resources, and their employees/clients use to cooperate in the

sometimes tedious phase of speaker enrolment/profiling.

Other applications do not emphasize security but instead

automatic adaptation/customization of products and services.

Speaker identification is a natural way of customizing many

services, by first identifying and then retrieving information

about clients. Also, after identification, client choices or

activities can be tracked and stored, improving their profiles

for further interactions. In these applications, transparency and

naturalness is critical. Clients should be aware that their

activities are being tracked, their voice recorded and their

profile information stored, but these actions should not

interfere with the service itself. Depending on the interface,

speakers might be continuously tracked, or just identified

when the service is started. In any case, they cannot be asked

even for just a few seconds of speech data to create accurate

profiles, nor interactions delayed due to a computationally

expensive search of the client’s profile. Moreover, clients may

be accessing the service through a portable or embedded

device with low storage and computational capabilities. In this

case, real-time operation becomes the most critical issue to

allow naturalness and transparency.

For this latter kind of applications, 40-dimensional feature

vectors do not seem suitable. A further feature set reduction is

needed. The problem of feature extraction and selection is

sometimes formulated as a linear transformation which

projects feature vectors on a transformed subspace defined by

relevant directions. Given a D-dimensional feature vector X, a

K*D matrix A is applied to get a K-dimensional vector Y of

transformed features (K<D). The matrix A is estimated so that,

from the point of view of classification, redundancy is

removed and relevant information retained. This should, at

least, optimize the performance for the target value of K, but it

may even outperform the baseline feature set, due to the

removal of harmful or confusing features and, more probably,

to better (more robust) estimates of model parameters. The

following methods have been proposed (among others):

• Principal Component Analysis (PCA), an old technique of

multivariate statistical analysis [1], consists of computing the

eigenvectors of the D*D covariance matrix Σ, then sorting

them according to the corresponding eigenvalues, in

descending order, and finally building the projection matrix

A (called Karhunen-Loeve Transform, KLT) with the largest

K eigenvectors (i.e. the K directions of greatest variance).

Each feature vector X is then pre-processed according to the

expression Y=A(X–µ), where µ represents the mean feature

vector. KLT decorrelates the features and provides the

smallest possible reconstruction error among all linear

transforms, i.e. the smallest possible mean-square error

between the data vectors in the original D-feature space and

the data vectors in the projection K-feature space.

Unfortunately, this does not equal minimizing classification

error.

• Linear Discriminant Analysis (LDA) [2] attempts to find the

transform A that maximizes a criterion of class separability.

This is done by computing the within-class and between-

class variance matrices, W and B, then finding the

eigenvectors of W-1
B, sorting them according to the

eigenvalues, in descending order, and finally building the

projection matrix A with the largest K eigenvectors (which

define the K most discriminative hyperplanes). LDA assumes

that all classes share a common within-class covariance, and

a single Gaussian distribution per class. LDA also assumes

that classes are linearly separable. Additionally, as any

supervised approach, it requires labelling samples with

speaker identities.

• Independent Component Analysis (ICA) [3] is a more recent

technique that aims to reduce redundancy in the original

feature space. Whereas PCA removes second order

dependencies, ICA removes also higher order dependencies,

by minimizing the mutual information between the features,

thus projecting them on the directions of maximum

independence. In fact, ICA was originally designed to solve

the problem of blind source separation. Observed signals are

assumed to be a linear combination of some unknown

statistically independent non-Gaussian source signals. The

task of ICA is to recover the source signals from the

observed signals, i.e. to find those directions that are best for

separating the sources. Once the full D*D matrix is

estimated, the K projection vectors with greatest L2-norms

may be retained to build the transformation matrix A.

Though linear transforms combine in an elegant way feature

extraction and feature selection, these two steps are more

usually uncoupled. As noted above, MFCC and their

derivatives are a widely accepted representation in the speaker

recognition community. However, depending on the

application and the available computational resources, this

representation must be further reduced. Strictly speaking,

feature selection consists of determining an optimal subset of

features by exhaustively exploring all the 2D possible

combinations. Most feature selection procedures use the

classification error as the evaluation function. This makes

exhaustive search computationally infeasible in practice, even

for moderate values of D. The simplest method consists of

evaluating the D features individually and selecting the K most

discriminative features, but it does not take into account

dependencies among features. So a number of suboptimal

heuristic search techniques have been proposed in the

literature, which essentially trade-off the optimality of the

selected subset for computational efficiency [4].

Genetic Algorithms (GAs for short), introduced by Holland in

1975 [5], are randomized heuristic search techniques based on

biological evolution strategies, with three basic operations:

selection of the fittest, crossover and mutation. GAs are

usually applied in complex optimization problems. Candidate

solutions are represented by individuals (or chromosomes) in a

large population. Initial solutions may be randomly generated

or obtained by other means. Then GAs iteratively drive the

population to an optimal point according to a complex metric

(called fitness or evaluation function) that measures the

performance of the individuals in a target task. The fittest

individuals are selected and their chromosomes mixed,

mutated or taken unchanged to the next generation. A major

advantage of the GAs over other heuristic search techniques is

that they do not rely on any assumption about the properties of

the evaluation function. Multiobjective evaluation functions

(e.g. combining the accuracy and the cost of classification) can

be defined and used in a natural way [6] [7]. GAs can easily

encode decisions about selecting or not selecting features as

sequences of boolean values, allow to smartly explore the

feature space by retaining those decisions that benefit the

classification task, and simultaneously avoid local optima due

to their intrinsic randomness.

GAs have been recently applied to feature extraction and

selection in speaker recognition tasks [8] [9] [10].

Additionally, GAs can be easily generalized to feature

weighting, by encoding not boolean decisions but feature

weights, which is shown to improve recognition performance

[8]. In this work, a genetic algorithm is used to find the

optimal set of weights for a 38-dimensional feature set,

consisting of 12 MFCC, their first and second derivatives,

energy and its derivative. Weights are encoded as 8-bit

integers, so each individual (representing a set of weights) is

encoded by 304 bits. A speaker recognition benchmark is used

to evaluate the fitness of individuals. The fittest individual in

the last generation represents the optimal set of weights. Naive

speaker models are used, based on empirical distributions of

acoustic labels. A database of read speech in Spanish,

including 204 speakers, is used for the experiments. Finally,

feature selection is implemented by retaining the K best ranked

features according to their weights.

The rest of the paper is organized as follows. The speaker

recognition system and the GA-based search of the optimal

weights are described in Section 2. The experimental setup is

described in Section 3, including the speech database used to

train and test speaker models and the tuning phase of the GA.

Two series of speaker recognition experiments are presented

and discussed in Section 4: (1) using feature weights and (2)

selecting a varying number of features. Finally, Section 5

summarizes our approach and outlines some methodological

improvements we are currently working on.

2. Methodology

2.1. The speaker recognition system

2.1.1. Acoustic front-end

Speech, acquired at 16 kHz, is analysed in frames of 25

milliseconds (400 samples), at intervals of 10 milliseconds. A

Hamming window is applied and a 512-point FFT computed.

The FFT amplitudes are then averaged in 24 overlapped

triangular filters, with central frequencies and bandwidths

defined according to the Mel scale. A Discrete Cosine

Transform is finally applied to the logarithm of the filter

amplitudes, obtaining 12 Mel-Frequency Cepstral

Coefficients (MFCC). To increase robustness against channel

distortion, Cepstral Mean Normalization (CMN) [11] is

applied on an utterance-by-utterance basis. The first and

second derivatives of the MFCC, the frame energy (E) and its

derivative are also computed, thus yielding a 38-dimensional

feature vector.

2.1.2. Vector Quantization

Vector Quantization (VQ) [12] is applied to search for an

optimal codebook of L=256 centroids which minimizes the

average distortion (Euclidean distance) in quantifying feature

vectors in the training set (which includes all the speakers).

Then, each feature vector in the database is replaced by the

index of the closest centroid. The same procedure is applied

during recognition. Each input utterance is analysed to get a

sequence of feature vectors X={X(1),X(2),...,X(T)}, and each

X(i) is assigned the index of the nearest centroid in the

codebook, Y(i), obtaining a sequence of acoustic labels

Y={Y(1),Y(2),...,Y(T)}.

2.1.3. Speaker models

The classical VQ approach to speaker recognition consists of

training a specific codebook for each speaker. Then, input

utterances are classified by choosing the codebook for which

the accumulated distortion in quantifying acoustic vectors is

minimum. In this work, speaker models are not VQ

codebooks but distributions of VQ labels. A single codebook

is computed and shared by all the speakers, and the

frequencies of VQ labels stored as parameters. These simple

models have been successfully used for speaker adaptation

through speaker clustering in speech recognition tasks [13].

Let U(i) be the training subset corresponding to speaker i, c(i)

the number of VQ labels in U(i), and c(k,i) the number of

times the label k appears in U(i). Then, the conditional

probability P(k|i) can be empirically estimated as follows:

 ()
()
()ic

ikc
ikP

,
| = . (1)

Finally, assuming that successive labels are independent, the

conditional probability of a sequence of labels Y={Y(1),Y(2),

...,Y(T)}, given speaker i, can be computed as follows:

 () ()()∑
=

=
T

t

itYPiYP
1

|| . (2)

2.1.4. Speaker recognition

Assuming that input utterances are produced by S known

speakers, given the sequence of labels Y={Y(1),Y(2),...,Y(T)},

the most likely speaker is selected:

 (){ }YiPYi
Si

|maxarg)(ˆ
,...,1=

= . (3)

Applying the Bayes rule, it follows:

() ()
()

() (){ }iPiYP
YP

iPiYP
Yi

SiSi
|maxarg

|
maxarg)(ˆ

,...,1,...,1 ==
=









= , (4)

because maximizing over the set of speakers does not depend

on the acoustic sequence. Then, assuming that all speakers

have equal a priori probabilities, it follows:

 (){ }iYPYi
Si

|maxarg)(ˆ
,...,1=

= , (5)

and introducing (2) into (5):

()()

()()

()()








=









=









=

∑

∏

∏

=
=

=
=

=
=

T

t
Si

T

t
Si

T

t
Si

itYP

itYP

itYPYi

1
,...,1

1
,...,1

1
,...,1

|logmaxarg

|logmaxarg

|maxarg)(ˆ

. (6)

So, the computational cost of speaker recognition is linear

with the number of speakers (S) and with the length of the

input utterance (T), involving S×T memory accesses, S×(T-1)

sums and S-1 comparisons. For convenience, it is assumed

that label probabilities are stored in logarithmic form.

2.1.5. How do feature weighting and feature selection affect

speaker recognition?

Feature weighting affects speaker models only through the

VQ process. For each candidate set of feature weights

W={w1,w2,...,wD}, a different codebook C(W) is computed by

first weighting feature vectors in the training set and then

using the Euclidean distance to measure distortion in the

weighted space. So, C(W) consists of the L centroids that

minimize VQ distortion in the weighted space. Obviously,

labelling the database also depends on weighting: W is

applied to each feature vector X, and the resulting vector

X’=(w1x1,w2x2,…,wDxD) is replaced by the index k

corresponding to the closest centroid in C(W).

Feature selection takes place after the optimal weights are

found. It consists of retaining the K most relevant features, so

that a K-dimensional subspace is extracted from the original

D-dimensional feature space. The VQ codebook C(W,K) is

computed in the weighted K-dimensional subspace, and the

database is labelled by first picking the K most relevant

components of each feature vector, then applying the

corresponding weights and finally replacing the resulting

vector by the index of the closest centroid in C(W,K).

2.2. GA-based search for the optimal weights

The well-known Simple Genetic Algorithm (SGA) [14] is

employed to search for the optimal set of weights. As noted

above, for each candidate set of weights W={w1,w2,...,wD}, a

codebook C(W) is computed and the whole database labelled

according to W and C(W). Then, c(k,i) and c(i) are counted for

each training subset U(i), and the speaker models

M={P(k|i)|k∈[1..L],i∈[1..S]} are estimated using (1). Finally,
utterances in the validation set V={V(1),V(2),…,V(S)} are

classified, and the classification accuracy used as fitness

function:

 ()∑ ∑
= ∈∀

==
S

i iVY

iYiWF
1)(

)(ˆ)(δ , (7)

where:

 ()




=

=
=

falsexif

truexif
x

0

1
δ . (8)

Once all the candidates are evaluated, some of them (usually

the fittest ones) are selected, mixed and mutated in order to

get the population for the next generation. SGA allows a

number of individuals (the fittest ones) to survive for the next

generation, which is called elitism. The simplest case of

elitism, which consists of keeping the fittest individual, is

applied. This guarantees that the fitness of the fittest

individual increases monotonically with successive

generations. If that increase is smaller than a given threshold,

or a maximum number of generations is reached, the

algorithm stops and the fittest individual (i.e. the set of

weights yielding the highest classification accuracy) is

returned. Finally, a third independent set of utterances is used

to test the optimal set of weights.

The convergence properties of the SGA depend on several

parameters:

• Representation. Only relevant features should be encoded,

each allocated by a suitable number of bits. If too many bits

are allocated, some of them will be redundant (i.e. their

value will not affect fitness), computational resources will

be spent in exploring an oversized feature space and

convergence will be slowed down. Inversely, if not enough

bits are allocated, the algorithm will not be able to reach the

best solution.

• Population size. It must be large enough to ensure diversity

(i.e. capacity to evolve), which allows the algorithm to

avoid local optima and move towards the best solution. But

a large population causes the algorithm to converge slowly.

So a balance must be found between the ability to evolve

and the speed of convergence. In practice, population size

must be proportional to the size of the representation.

• Initial population. The first generation of individuals can be

randomly generated by the SGA, or obtained by other

means (for instance, by applying some simple initialisation

engine or some heuristic or prototypical knowledge).

• Selection procedure. Once all the individuals are evaluated,

pairs of them are selected to breed the next generation. The

most common approaches are fitness proportional selection

(also known as roulette-wheel selection), rank selection and

tournament selection. In fitness proportional selection the

probability of picking an individual is proportional to its

fitness value. In rank selection, the individuals are sorted by

fitness, and the probability of picking one of them is

proportional to its rank. Finally, in tournament selection

some individuals are randomly chosen and the fittest among

them is picked.

• Crossover type. The crossover operator recombines the

genes of two individuals to create two offspring. This is

typically accomplished by defining n breaking points and

dividing the original chromosomes into n+1 segments. Even

segments are then interchanged to get the offspring. The

number of breaking points determines the type of crossover:

one-point crossover, two-point crossover, etc.

• Mutation rate. Mutation consists of inverting the value of a

few random bits in the chromosome. It is used to introduce

small variations that help decreasing the chances of getting

to local optima. The mutation rate determines the

probability that mutations take place after crossover. It is

usually fixed to very low values, 0.05 or less.

2.3. Feature selection

Though feature weighting should probably improve the

performance of the speaker recognition system, this work is

focused on reducing storage and computational costs by

selecting the K most relevant features. Our approach is based

on the hypothesis that weights somehow measure the

contribution of features to the performance of the recognizer.

In other words, the more discriminative a feature is the higher

its weight will be. Under this assumption we can easily define

a reduced set of features by selecting those best ranked

according to their weights.

3. Experimental setup

3.1. The speech database

A phonetically balanced database in Spanish, called Albayzín

[15], is used for the experiments. Albayzín, recorded at 16 kHz

in laboratory conditions, was originally designed to train

acoustic models for speech recognition. It contains 204

speakers, each speaker contributing at least 25 utterances and

each utterance lasting 3.55 seconds on average.

Using the classification accuracy to evaluate feature weights

makes the optimization process very costly. To speed up the

evaluation of the proposed methodology, instead of using the

whole database, a partition Π1 is defined which consists of 10

partially overlapped subsets of 20 speakers, involving 164

speakers all together. Each subset is further divided into three

independent datasets: training (5 utterances per speaker),

validation (10 utterances per speaker) and test (10 utterances

per speaker). The training set is used to compute the VQ

codebook and to estimate speaker models. The validation set

is used by the GA to search for the optimal feature weights.

Finally, the test set is used to evaluate the performance of

weighted features in speaker recognition experiments.

As will be shown below, average feature ranks and weights,

computed over the 10 speaker subsets of Π1, are used,

respectively, to select and weight the K most relevant features,

for several values of K. To evaluate each set of K features a

new partition Π2 is defined, consisting of 12 partially

overlapped subsets of 20 speakers involving all the speakers in

the database. Two independent corpora are defined for each

subset of speakers: training (5 utterances per speaker) and test

(10 utterances per speaker). VQ codebooks and speaker

models are estimated using samples in the training corpus and

speaker recognition experiments are carried out over the test

corpus.

3.2. Tuning the GA

The SGA is implemented by using ECJ, a Java-based

Evolutionary Computation and Genetic Programming

Research System, presently developed at George Mason

University’s Evolutionary Computation Laboratory and

released under a special open source license [16]. ECJ shows

very interesting features, including a flexible breeding

architecture, arbitrary representations, fixed and variable

length genomes, several multiobjective optimization methods

and many selection operators.

Preliminary experimentation has been carried out to adjust the

parameters that control the performance and the convergence

of the SGA. It has been observed that populations of 50

individuals need at most 30 generations to converge, so no

convergence criterion is applied and a fixed number of 30

generations is established. Chromosomes consist of 38 genes,

each encoding a feature weight. To reduce computational

costs as much as possible, 8 bits have been allocated for each

weight. So, allowed gene values range from 0 to 255.

Offspring is bred by first selecting and then mixing two

parents in the current population. One of the parents is

selected according to the fitness-proportional criterion. The

second is selected according to the tournament method, by

picking the fittest of 7 randomly chosen individuals (the

choice of 7 has proven good in the experiments and is also

suggested by the manufacturers of the toolkit). This mixed

approach seems suitable because fitness-proportional

selection guarantees that the fittest individuals are picked, and

tournament selection introduces diversity, which is good for

avoiding local optima. Crossover type and mutation

probability have been established by picking those values

yielding the best speaker recognition results. Finally, as noted

above, the simplest case of elitism is applied by keeping the

fittest individual for the next generation. Tuned values are

shown in Table 1.

4. Experimental results

4.1. Feature weighting

Two series of experiments were carried out by using 2 and 3

training utterances per speaker over Π1. Hereafter we will

refer to them as the 2U and 3U experiments, respectively.

GA-based optimization was applied, using the settings shown

in Table 1, to get the optimal set of feature weights for each

configuration.

Table 2 shows the average performance obtained using non-

weighted and weighted features for the test and validation

corpora in the 2U and 3U experiments. Error rates over the

test corpora using weighted features were, on average, 2.95

and 1.05 points lower than those achieved using non-

weighted features, which means error reductions of 24.58%

and 14.68%, respectively. As may be expected, error rates

over the validation corpora were significantly lower, since

feature weights were searched specifically to maximize the

performance over them. In the 2U experiments, recognition

rates using weighted features were, on average, 7.5 points

better than those achieved using non-weighted features, which

means a 61.22% error reduction. The average error reduction

was even larger in the 3U experiments (70.63%, 4.45 points).

These results provide evidence that further improvements in

speaker recognition performance can be attained by weighting

acoustic features. They also validate the use of GAs to search

for an optimal set of feature weights.

Table 1. Tuned settings of the SGA parameters.

Parameter Setting

Population size 50

Number of generations 30

Chromosome size (number of genes) 38

Minimum 0
Gene Values

Maximum 255

Type Two-point
Crossover

Rate 0.8 Genetic operations
Mutation Rate 0.05

First Parent Fitness-Proportional
Selection

Second Parent Tournament (Size: 7)

Elitism 1

Table 2. Average speaker recognition error rates over 10

different sets of 20 speakers, using non-weighted and weighted

features for the 2U/3U experiments (2/3 utterances for training,

10 utterances for validation and 10 utterances for test).

 Test set Validation set

 Non-Weighted Weighted Non-Weighted Weighted

2U 12.00 9.05 12.25 4.75

3U 7.15 6.10 6.30 1.85

Table 3. Average feature weights, computed over 20 sets of GA-

based optimal weights, corresponding to the 2U/3U experiments.

F
ea

tu
re

W
ei

gh
t

F
ea

tu
re

W
ei

gh
t

F
ea

tu
re

W
ei

gh
t

F
ea

tu
re

W
ei

gh
t

c01 103 d01 106 dd01 158 E 89

c02 170 d02 151 dd02 82 dE 137

c03 142 d03 63 dd03 178

c04 155 d04 69 dd04 199

c05 123 d05 94 dd05 103

c06 177 d06 100 dd06 152

c07 186 d07 200 dd07 177

c08 215 d08 133 dd08 106

c09 234 d09 197 dd09 97

c10 231 d10 111 dd10 117

c11 173 d11 169 dd11 185

c12 146 d12 118 dd12 164

Finally, a single set of weights was computed by averaging

the optimal weights obtained over Π1 in the 2U and 3U

experiments. As shown in Table 3, the MFCC c08, c09, c10

and the MFCC first derivative d07 seem to be the most

relevant features, with average weights greater or equal than

200. Additionally, 15 features have average weights in the

range [150,199]: 5 MFCC, 3 MFCC first derivatives and 7

MFCC second derivatives. The least relevant features seem to

be the MFCC first derivatives d03, d04 and d05, the MFCC

second derivatives dd02 and dd09, and energy (E), with

average weights lower than 100. Of course, if we ran the GA-

based optimization for all the 164 speakers involved in Π1, a

different set of weights would be probably obtained.

However, taking into account that 10 different validation sets

and two models per validation set have been averaged, these

weights are fair indicators of the relative importance of each

feature for speaker recognition, and will be considered

hereafter as globally optimal weights.

4.2. Feature selection

To select a subset of K features we rank them according to

their relative importance for speaker recognition. Assuming

that the assigned weights are fair estimates of the importance

of features, a straightforward procedure could be defined

based on the average weights shown in Table 3. First, features

would be sorted according to their average weights, and then

the K best ranked features would be selected. However,

optimal weights depend highly on the speaker models and the

validation dataset used by the GA. Average weights over the

2U and 3U experiments show a high variability (i.e. high

standard deviations), since 20 different configurations are

considered. So, average weights are not a good choice to rank

features. They only approximate the weight values but not

their ranks. In other words, it does not seem suitable in this

case to define a feature rank as the rank of the average feature

weight. A feature rank can be also defined as the average of

the optimal weight ranks in the 2U and 3U experiments. This

appears to be a more suitable approach, since optimal weight

ranks include accurate information about the relative

importance of features. Summarizing, for selecting features

we will take into account not the values but the ranks of

optimal weights.

Table 4 shows the global and partial average ranks computed

over the 2U and 3U experiments. Besides the feature name,

each row includes the average rank computed over a set of

experiments: 2U+3U (global ranking), 2U and 3U. Partial

rankings do not match exactly, but most features appear

reasonably close in both columns. If the global ranking based

on average ranks and the ranking that can be obtained from

average weights (Table 3) are compared, some similarities can

be observed. Among the 10 best ranked features, 8 are present

in both rankings: c06, c07, c08, c09, c10, d07, d09 and dd04.

It is interesting to note that 5 of them are medium/high-index

MFCC. The three best ranked features are in both cases c08,

c09 and c10, though ranked in different order: c09, c10 and

c08 attending to the average weights, and c09, c08 and c10

attending to the average ranks. Additionally, it must be noted

that c08, c09 and c10 are consistently ranked as the best

features, because their optimal weights are among those with

the lowest standard deviations. Finally, in both cases energy

(E) is ranked as one of the worst features. Its derivative (dE)

is better ranked: 22 attending to the average weight, and 11

attending to the average rank. This latter result is somehow

surprising, but can be explained by examining the partial

ranks corresponding to experiments 2U and 3U in Table 4: dE

is assigned rank 3 in the 2U experiments and rank 29 in the

3U experiments. So, dE seems to be useful only when few

enrolment data are available to estimate speaker models.

Table 4. Average feature ranks for the 2U+3U, 2U and 3U

experiments.

 2U+3U 2U 3U

Rank Feature
Average

Rank
 Feature

Average

Rank
 Feature

Average

Rank

1 c09 3.97 c09 3.38 c09 4.57

2 c08 8.79 c08 10.00 c08 7.57

3 c10 11.40 dE 10.88 c10 11.29

4 c07 13.60 c10 11.50 d07 11.29

5 dd04 15.00 c07 14.25 c07 12.86

6 d07 15.50 d09 15.00 dd04 13.71

7 c06 15.70 c11 15.75 d11 14.14

8 dd07 15.80 c06 15.88 dd07 14.86

9 c02 16.10 c02 16.13 c06 15.43

10 d09 16.10 dd03 16.25 c02 16.00

11 dE 16.90 dd04 16.38 d02 16.00

12 dd03 17.10 dd07 16.75 d09 17.29

13 c11 17.30 dd11 17.25 dd11 17.43

14 dd11 17.30 d06 17.88 dd03 17.86

15 d02 17.60 dd12 17.88 c11 18.86

16 dd12 18.40 dd01 18.38 c04 19.00

17 d11 18.80 d02 19.25 dd12 19.00

18 dd01 19.90 d07 19.63 c12 19.29

19 c12 20.10 dd06 19.88 d12 19.43

20 c04 20.20 c03 20.13 dd09 20.57

21 c03 20.60 d08 20.38 c03 21.14

22 dd06 20.70 c12 21.00 d08 21.14

23 d08 20.80 dd08 21.00 c05 21.29

24 d01 21.30 dd05 21.25 d01 21.29

25 d10 22.40 c04 21.38 dd01 21.43

26 dd08 22.90 d01 21.38 dd06 21.43

27 c05 23.10 d10 21.75 c01 21.71

28 d06 23.30 dd10 23.00 d05 21.71

29 dd10 23.40 d11 23.50 dE 22.86

30 dd09 23.50 dd02 23.75 d10 23.00

31 d12 24.20 E 24.00 dd10 23.86

32 c01 24.50 d04 24.38 dd08 24.86

33 dd02 25.00 c05 24.88 dd02 26.29

34 dd05 25.30 d03 25.63 E 27.14

35 d05 25.30 dd09 26.38 d04 28.00

36 E 25.60 c01 27.25 d06 28.71

37 d04 26.20 d05 28.88 dd05 29.29

38 d03 27.50 d12 28.88 d03 29.43

4.3. Evaluating reduced sets of features

Based on the global ranking shown in Table 4, speaker

recognition experiments were run over Π2, using reduced sets

of K weighted and non-weighted features. First, for each

subset of speakers in Π2, specific VQ codebooks and speaker

models were estimated, by using R training utterances per

speaker (R = 2, 3, 4 and 5). Then, for each set of K weighted

and non-weighted features, for each training size R and for

each subset of speakers, recognition experiments were run

over the corresponding test corpus. Finally, the recognition

accuracy was averaged over the 12 subsets of speakers to get

a global and more reliable performance measure. Initially,

experiments were carried out for K = 35, 30, 25, 15, 10 and 5.

However, after analysing the results, we found it convenient

to get more resolution for lower values of K (between 5 and

10). So, four new experiments were carried out for K = 6, 7,

8, and 9. Table 5 shows the average error rates obtained in

those experiments, using K weighted and non-weighted

features and 4 levels of training (from 2 to 5 utterances per

speaker).

Table 5. Error rates in speaker recognition experiments for

reduced sets of weighted and non-weighted features, using 4

levels of training (2-5 utterances per speaker). Results with the

full 38-dimensional feature vectors are shown too for reference.

Number of features
38 30 25 20 15 10 9 8 7 6 5

T
ra

in
in

g

Non-weighted

2 10.54 14.42 15.58 17.21 20.88 21.29 22.33 29.88 31.71 41.33 41.75

3 6.96 8.75 10.46 11.42 13.96 13.92 14.04 21.29 22.33 32.58 31.13

4 5.00 6.63 8.04 8.92 11.54 11.88 11.67 18.38 18.29 26.88 25.67

5 4.33 4.38 6.50 6.17 8.08 8.17 8.67 15.04 14.79 22.42 21.88

 Weighted

2 8.88 10.83 13.71 15.21 19.04 20.38 19.42 28.08 28.38 41.79 42.25

3 5.71 6.96 8.00 8.71 12.67 11.67 12.13 19.92 20.00 31.92 29.96

4 3.63 4.71 5.83 7.00 9.21 8.79 9.88 16.13 15.75 24.96 24.92

5 2.83 3.33 3.92 4.79 6.83 7.04 6.96 12.88 13.00 22.71 22.08

As shown in Figure 1, speaker recognition performance

degraded at a small pace and kind of linearly from K=38 to

K=10. Lower values of K led to large degradations,

suggesting that the 10 best ranked features contain the most

relevant information about speaker identity. A more detailed

inspection reveals that performance degraded monotonically

as the number of features was reduced from 38 to 15. Then,

from 15 to 10 features the performance improved slightly in

some cases (in particular, when using 3 and 4 utterances per

speaker), suggesting that the feature ranking could be further

adjusted in that range. Finally, from 10 to 5 features the

performance degraded fast and irregularly, suggesting the lack

of relevant features and possibly a higher sensitivity to rank

disorder. For instance, moving from 9 to 8 features (i.e.

discarding c02) produced a large degradation, whereas

moving from 8 to 7 features (i.e. discarding dd07) did hardly

affect performance.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0510152025303540

Feature vector size

E
r
r
o
r
 r

a
te

2

3

4

5

Figure 1. Error rates increase as the feature vector is reduced. A

sharp change in slope takes place for K=10.

Finally, after verifying that feature weighting can be suitably

applied to improve speaker recognition performance, and

combined with feature selection to reduce storage and

computational costs, Table 5 reveals that performance can be

also improved by increasing the robustness of speaker models

(i.e. by increasing the number of training utterances per

speaker). For instance, with 10 weighted features, the error

rate reduces from 20% when using 2 training utterances, to

7% when using 5 training utterances. This means that a

suitable balance can always be found between the number of

training utterances and the number of features. In this case,

using 10 weighted features with 4 training utterances per

speaker yields the same performance as using 38 weighted

features with 2 training utterances per speaker. In other

words, increasing the robustness of speaker models allows to

reduce storage and computational costs without degrading

performance, as can be graphically seen in Figure 2.

0%

5%

10%

15%

20%

25%

2 3 4 5

38

10

38. trend

10. trend.

Figure 2. Error rates in speaker recognition experiments using 38

and 10 weighted features, as a function of the number of

utterances used to estimate speaker models. Graphs are fitted to

quadratic functions that show trends in both cases.

5. Conclusions and future work

For speaker recognition applications requiring real-time

operation or running on low-resource devices, reducing the

number of features is crucial, since storage and computational

costs may be lightened. Additionally, model parameters may

be estimated more robustly. GAs can be suitably applied to

search for the most relevant features, or more generally, to

search for an optimal set of feature weights.

In this work, we followed a hybrid approach, by first

obtaining the optimal weights and then using them to cut the

representation. Empirical distributions of VQ labels were

used as speaker models. A phonetically balanced database in

Spanish, containing 204 speakers, was used as benchmark.

First, the potential benefit of weighting acoustic features for

speaker recognition was evaluated over a partition Π1

consisting of 10 subsets of 20 speakers. Two series of

experiments were carried out by using 2 and 3 training

utterances per speaker to estimate VQ codebooks and speaker

models. A genetic algorithm was applied to search for the

weights minimizing speaker recognition errors over validation

datasets. It was found that using weighted features reduced

error rates by 20%, on average, in speaker recognition

experiments over independent test data. Finally, a single set of

feature weights was computed by averaging the optimal

weights obtained for the 10 subsets of speakers in the two

series of experiments.

A feature selection procedure was designed based on the

average ranks of features. Features were sorted in descending

order according to the weights obtained in the previous

experiments. Then the K features with greatest average ranks

were selected. Speaker recognition experiments were run over

a second partition Π2, consisting of 12 subsets of 20 speakers,

to investigate how the accuracy was affected as the feature

vector was reduced, by selecting the K most relevant features,

for K=30, 25, 20, 15, 10, 9, 8, 7, 6 and 5. Four series of

experiments were carried out by using 2, 3, 4 and 5 training

utterances per speaker. It was found that reducing K degraded

performance in most cases. Average error rates grew slowly

from K=30 to K=10 and rapidly from K=10 to K=5. This

may indicate that the 10 best ranked features contain the most

relevant information about speaker identity. On the other

hand, as for Π1, weighting features yielded significant error

reductions. Also, speaker models provided better performance

as the size of the training dataset increased. For instance, with

10 weighted features, the error rate reduced from 20% when

using 2 training utterances per speaker, to 7% when using 5

training utterances per speaker. Finally, important savings in

storage and computational costs can be attained by combining

feature selection and feature weighting.

Future work includes two methodological improvements to

the work presented in this paper:

• Finding optimal weights for each K. In this paper, an

optimal set of feature weights is found for a 38-dimensional

feature space. So, weights are optimal only when using the

full representation. If the same procedure was applied for a

subset of K features, it would very probably lead to a

different set of weights. If feature weights are only the

means to select the K most relevant features and K non-

weighted features are eventually used, the proposed

methodology is a good alternative. But applying the

optimal weights obtained for a 38-dimensional feature

space to a reduced subset of K features is just a suboptimal

approximation. So, finding the optimal set of weights

specifically for each K-dimensional feature subspace should

lead to further improvements.

• Extending feature weighting to feature transformation.

Weighting can be seen as a special case of linear

transformation for which the transformation matrix is

diagonal. So, feature weighting can be generalized to

feature transformation in a straightforward way. As noted

above, such a transformation can be estimated according to

different criteria: least mean-square reconstruction error

(PCA), maximum class separability (LDA), maximum

independence (ICA), etc. But none of those approaches

guarantees that classification error is minimized. Genetic

algorithms would search, instead, for the transformation

that minimizes classification error over validation data,

projecting the original features onto an optimal K-

dimensional subspace.

6. References

[1] I.T. Jolliffe. “Principal Component Analysis (Second

Edition)”, Springer, 2002.

[2] R.O. Duda, P.E. Hart, D.G. Stork. “Pattern

Classification (Second Edition)”, Wiley Interscience,

2000.

[3] E. Oja, A. Hyvarinen, J. Karhunen. ”Independent

Component Analysis”, John Wiley & Sons, 2001.

[4] A.K. Jain, R.P.W. Duin, J. Mao. “Statistical Pattern

Recognition: A Review”, IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 22, No. 1, pp.

4—37, January 2000.

[5] J.H. Holland. “Adaptation in natural and artificial

systems”. University of Michigan Press, 1975 (reprinted

in 1992 by MIT Press, Cambridge, MA).

[6] J. Yang, V. Honavar. “Feature subset selection using a

genetic algorithm”, IEEE Intelligent Systems, Vol. 13,

No. 2, pp. 44—49, March 1998.

[7] L.S. Oliveira, R. Sabourin, F. Bortolozzi, C.Y. Suen. “A

Methodology for Feature Selection Using Multiobjective

Genetic Algorithms for Handwritten Digit String

Recognition”, International Journal of Pattern

Recognition and Artificial Intelligence, Vol. 17, No. 6,

pp. 903—929, 2003.

[8] D. Charlet, D. Jouvet. “Optimizing feature set for

speaker verification”, Pattern Recognition Letters, Vol.

18, No. 9, pp. 873—879, September 1997.

[9] M. Demirekler, A. Haydar. “Feature Selection Using a

Genetics-Based Algorithm and its Application to Speaker

Identification”, Proceedings of the IEEE ICASSP’99, pp.

329—332, Phoenix, Arizona, 1999.

[10] C. Charbuillet, B. Gas, M. Chetouani, J.L. Zarader.

“Filter Bank Design for Speaker Diarization Based on

Genetic Algorithms” to appear in Proceedings of the

IEEE ICASSP’06, Toulouse, France, May 2006.

[11] A.E. Rosenberg, C.H. Lee, F.K. Soong. “Cepstral

Channel Normalization Techniques for HMM-Based

Speaker Verification”, Proceedings of the ICSLP’94, pp.

1835—1838, Yokohama, Japan, 1994.

[12] Y. Linde, A. Buzo, R.M. Gray. “An Algorithm for Vector

Quantizer Design”, IEEE Transactions on

Communications, Vol. 28, No. 1, pp. 84—95, January

1980.

[13] L.J. Rodríguez, M.I. Torres. “A Speaker Clustering

Algorithm for Fast Speaker Adaptation in Continuous

Speech Recognition”, in P. Sojka, I. Kopecek and K. Pala

Eds., Proceedings of the 7th International Conference on

Text, Speech and Dialogue (Brno, Czech Republic,

September 2004), pp. 433—440, LNCS/LNAI 3206,

Springer-Verlag, 2004.

[14] D.E. Goldberg. “Genetic Algorithms in Search,

Optimization and Machine Learning”, Addison-Wesley,

1989.

[15] F. Casacuberta, R. García, J. Llisterri, C. Nadeu, J.M.

Pardo, A. Rubio. “Development of Spanish Corpora for

Speech Research (Albayzín)”, in G. Castagneri Ed.,

Proceedings of the Workshop on International

Cooperation and Standardization of Speech Databases

and Speech I/O Assessment Methods, Chiavari, Italy, 26-

28 September 1991, pp. 26—28.

[16] ECJ 13, http://cs.gmu.edu/~eclab/projects/ecj/.

