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Abstract 

The Mel-Frequency Cepstral Coefficients (MFCC) and their 

derivatives are commonly used as acoustic features for speaker 

recognition. The issue arises of whether some of those features 

are redundant or dependent on other features. Probably, not all 

of them are equally relevant for speaker recognition. Reduced 

feature sets allow more robust estimates of the model 

parameters. Also, less computational resources are required, 

which is crucial for real-time speaker recognition applications 

using low-resource devices. In this paper, we use feature 

weighting as an intermediate step towards feature selection. 

Genetic algorithms are used to find the optimal set of weights 

for a 38-dimensional feature set, consisting of 12 MFCC, their 

first and second derivatives, energy and its first derivative. To 

evaluate each set of weights, speaker recognition errors are 

counted over a validation dataset. Speaker models are based 

on empirical distributions of acoustic labels, obtained through 

vector quantization. On average, weighting acoustic features 

yields between 15% and 25% error reduction in speaker 

recognition tests. Finally, features are sorted according to their 

weights, and the K features with greatest average ranks are 

retained and evaluated. We conclude that combining feature 

weighting and feature selection allows to reduce costs without 

degrading performance.1 

 

1. Introduction 

Feature extraction is a key issue for efficient speaker 

recognition. Redundant and harmful information should be 

removed from speech, retaining only those features relevant to 

classification. Additionally, a reduced feature set would allow 

more robust estimates of the model parameters, and less 

computational resources would be required. 

Best features are those that help to discriminate among 

speakers. An optimal feature should have the following 

properties: (1) high inter-speaker variation, (2) low intra-

speaker variation, (3) easy to measure, (4) robust against 

mimicry, (5) robust against noise and (6) independent of other 

features. Unfortunately, no single feature fulfils these 

requirements. High-level speaker features, such as 

pronunciation patterns, language use, etc., are robust against 

noise but require speech recognition to get a sequence of 

words, and a lot of data to estimate acoustic and language 

models, which adds an intolerable complexity to the task of 

speaker recognition. So, low-level acoustic features are the 

most common choice, because are easy to extract, do not 
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require speech recognition and a small amount of data is 

enough to estimate good models. Their main inconvenience is 

that may be easily corrupted by background noise and other 

distortion sources. 

State-of-the-art systems use the same short-term spectrum 

features (Mel-Frequency Cepstral Coefficients, MFCC) for 

speech and speaker recognition, because MFCC convey not 

only the frequency distribution identifying sounds, but also the 

glottal source and the vocal tract shape and length, which are 

speaker specific features. Additionally, it has been shown that 

dynamic information improves significantly the performance 

of recognizers, so MFCC, energy and their first and second 

derivatives are commonly used as features. Depending on the 

acoustic front-end, the resulting feature vectors may have from 

20 to 50 components. 

Using the voice as a biometric to verify or search for the 

identity of users is currently the most natural (non-intrusive) 

way of solving the problem of unauthorized access to critical 

or private resources (buildings, web accounts, etc.). High 

security applications require speaker recognition to perform 

almost perfectly, which is quite difficult, especially when 

dealing with hundreds of speakers and thousands of possible 

imposters. However, this issue can be conveniently addressed 

with computationally powerful back-ends and high volumes of 

speech data, which allow to estimate robust models even for 

40-dimensional feature vectors. Companies adopting this 

approach can generally afford the cost of computational 

resources, and their employees/clients use to cooperate in the 

sometimes tedious phase of speaker enrolment/profiling. 

Other applications do not emphasize security but instead 

automatic adaptation/customization of products and services. 

Speaker identification is a natural way of customizing many 

services, by first identifying and then retrieving information 

about clients. Also, after identification, client choices or 

activities can be tracked and stored, improving their profiles 

for further interactions. In these applications, transparency and 

naturalness is critical. Clients should be aware that their 

activities are being tracked, their voice recorded and their 

profile information stored, but these actions should not 

interfere with the service itself. Depending on the interface, 

speakers might be continuously tracked, or just identified 

when the service is started. In any case, they cannot be asked 

even for just a few seconds of speech data to create accurate 

profiles, nor interactions delayed due to a computationally 

expensive search of the client’s profile. Moreover, clients may 

be accessing the service through a portable or embedded 

device with low storage and computational capabilities. In this 

case, real-time operation becomes the most critical issue to 

allow naturalness and transparency. 



For this latter kind of applications, 40-dimensional feature 

vectors do not seem suitable. A further feature set reduction is 

needed. The problem of feature extraction and selection is 

sometimes formulated as a linear transformation which 

projects feature vectors on a transformed subspace defined by 

relevant directions. Given a D-dimensional feature vector X, a 

K*D matrix A is applied to get a K-dimensional vector Y of 

transformed features (K<D). The matrix A is estimated so that, 

from the point of view of classification, redundancy is 

removed and relevant information retained. This should, at 

least, optimize the performance for the target value of K, but it 

may even outperform the baseline feature set, due to the 

removal of harmful or confusing features and, more probably, 

to better (more robust) estimates of model parameters. The 

following methods have been proposed (among others): 

• Principal Component Analysis (PCA), an old technique of 

multivariate statistical analysis [1], consists of computing the 

eigenvectors of the D*D covariance matrix Σ, then sorting 

them according to the corresponding eigenvalues, in 

descending order, and finally building the projection matrix 

A (called Karhunen-Loeve Transform, KLT) with the largest 

K eigenvectors (i.e. the K directions of greatest variance).  

Each feature vector X is then pre-processed according to the 

expression Y=A(X–µ), where µ represents the mean feature 

vector. KLT decorrelates the features and provides the 

smallest possible reconstruction error among all linear 

transforms, i.e. the smallest possible mean-square error 

between the data vectors in the original D-feature space and 

the data vectors in the projection K-feature space. 

Unfortunately, this does not equal minimizing classification 

error. 

• Linear Discriminant Analysis (LDA) [2] attempts to find the 

transform A that maximizes a criterion of class separability. 

This is done by computing the within-class and between-

class variance matrices, W and B, then finding the 

eigenvectors of W-1
B, sorting them according to the 

eigenvalues, in descending order, and  finally building the 

projection matrix A with the largest K eigenvectors (which 

define the K most discriminative hyperplanes). LDA assumes 

that all classes share a common within-class covariance, and 

a single Gaussian distribution per class. LDA also assumes 

that classes are linearly separable. Additionally, as any 

supervised approach, it requires labelling samples with 

speaker identities. 

• Independent Component Analysis (ICA) [3] is a more recent 

technique that aims to reduce redundancy in the original 

feature space. Whereas PCA removes second order 

dependencies, ICA removes also higher order dependencies, 

by minimizing the mutual information between the features, 

thus projecting them on the directions of maximum 

independence. In fact, ICA was originally designed to solve 

the problem of blind source separation. Observed signals are 

assumed to be a linear combination of some unknown 

statistically independent non-Gaussian source signals. The 

task of ICA is to recover the source signals from the 

observed signals, i.e. to find those directions that are best for 

separating the sources. Once the full D*D matrix is 

estimated, the K projection vectors with greatest L2-norms 

may be retained to build the transformation matrix A. 

Though linear transforms combine in an elegant way feature 

extraction and feature selection, these two steps are more 

usually uncoupled. As noted above, MFCC and their 

derivatives are a widely accepted representation in the speaker 

recognition community. However, depending on the 

application and the available computational resources, this 

representation must be further reduced. Strictly speaking, 

feature selection consists of determining an optimal subset of 

features by exhaustively exploring all the 2D possible 

combinations. Most feature selection procedures use the 

classification error as the evaluation function. This makes 

exhaustive search computationally infeasible in practice, even 

for moderate values of D. The simplest method consists of 

evaluating the D features individually and selecting the K most 

discriminative features, but it does not take into account 

dependencies among features. So a number of suboptimal 

heuristic search techniques have been proposed in the 

literature, which essentially trade-off the optimality of the 

selected subset for computational efficiency [4]. 

Genetic Algorithms (GAs for short), introduced by Holland in 

1975 [5], are randomized heuristic search techniques based on 

biological evolution strategies, with three basic operations: 

selection of the fittest, crossover and mutation. GAs are 

usually applied in complex optimization problems. Candidate 

solutions are represented by individuals (or chromosomes) in a 

large population. Initial solutions may be randomly generated 

or obtained by other means. Then GAs iteratively drive the 

population to an optimal point according to a complex metric 

(called fitness or evaluation function) that measures the 

performance of the individuals in a target task. The fittest 

individuals are selected and their chromosomes mixed, 

mutated or taken unchanged to the next generation. A major 

advantage of the GAs over other heuristic search techniques is 

that they do not rely on any assumption about the properties of 

the evaluation function. Multiobjective evaluation functions 

(e.g. combining the accuracy and the cost of classification) can 

be defined and used in a natural way [6] [7]. GAs can easily 

encode decisions about selecting or not selecting features as 

sequences of boolean values,  allow to smartly explore the 

feature space by retaining those decisions that benefit the 

classification task, and simultaneously avoid local optima due 

to their intrinsic randomness. 

GAs have been recently applied to feature extraction and 

selection in speaker recognition tasks [8] [9] [10]. 

Additionally, GAs can be easily generalized to feature 

weighting, by encoding not boolean decisions but feature 

weights, which is shown to improve recognition performance 

[8]. In this work, a genetic algorithm is used to find the 

optimal set of weights for a 38-dimensional feature set, 

consisting of 12 MFCC, their first and second derivatives, 

energy and its derivative. Weights are encoded as 8-bit 

integers, so each individual (representing a set of weights) is 

encoded by 304 bits. A speaker recognition benchmark is used 

to evaluate the fitness of individuals. The fittest individual in 

the last generation represents the optimal set of weights. Naive 

speaker models are used, based on empirical distributions of 

acoustic labels. A database of read speech in Spanish, 

including 204 speakers, is used for the experiments. Finally, 

feature selection is implemented by retaining the K best ranked 

features according to their weights. 



The rest of the paper is organized as follows. The speaker 

recognition system and the GA-based search of the optimal 

weights are described in Section 2. The experimental setup is 

described in Section 3, including the speech database used to 

train and test speaker models and the tuning phase of the GA. 

Two series of speaker recognition experiments are presented 

and discussed in Section 4: (1) using feature weights and (2) 

selecting a varying number of features. Finally, Section 5 

summarizes our approach and outlines some methodological 

improvements we are currently working on. 

2. Methodology 

2.1. The speaker recognition system 

2.1.1. Acoustic front-end 

Speech, acquired at 16 kHz, is analysed in frames of 25 

milliseconds (400 samples), at intervals of 10 milliseconds. A 

Hamming window is applied and a 512-point FFT computed. 

The FFT amplitudes are then averaged in 24 overlapped 

triangular filters, with central frequencies and bandwidths 

defined according to the Mel scale. A Discrete Cosine 

Transform is finally applied to the logarithm of the filter 

amplitudes, obtaining 12 Mel-Frequency Cepstral 

Coefficients (MFCC). To increase robustness against channel 

distortion, Cepstral Mean Normalization (CMN) [11] is 

applied on an utterance-by-utterance basis. The first and 

second derivatives of the MFCC, the frame energy (E) and its 

derivative are also computed, thus yielding a 38-dimensional 

feature vector. 

2.1.2. Vector Quantization 

Vector Quantization (VQ) [12] is applied to search for an 

optimal codebook of L=256 centroids which minimizes the 

average distortion (Euclidean distance) in quantifying feature 

vectors in the training set (which includes all the speakers). 

Then, each feature vector in the database is replaced by the 

index of the closest centroid. The same procedure is applied 

during recognition. Each input utterance is analysed to get a 

sequence of feature vectors X={X(1),X(2),...,X(T)}, and each 

X(i) is assigned the index of the nearest centroid in the 

codebook, Y(i), obtaining a sequence of acoustic labels 

Y={Y(1),Y(2),...,Y(T)}. 

2.1.3. Speaker models 

The classical VQ approach to speaker recognition consists of 

training a specific codebook for each speaker. Then, input 

utterances are classified by choosing the codebook for which 

the accumulated distortion in quantifying acoustic vectors is 

minimum. In this work, speaker models are not VQ 

codebooks but distributions of VQ labels. A single codebook 

is computed and shared by all the speakers, and the 

frequencies of VQ labels stored as parameters. These simple 

models have been successfully used for speaker adaptation 

through speaker clustering in speech recognition tasks [13]. 

Let U(i) be the training subset corresponding to speaker i, c(i) 

the number of VQ labels in U(i), and c(k,i) the number of 

times the label k appears in U(i). Then, the conditional 

probability P(k|i) can be empirically estimated as follows: 
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Finally, assuming that successive labels are independent, the 

conditional probability of a sequence of labels Y={Y(1),Y(2), 

...,Y(T)}, given speaker i, can be computed as follows: 
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2.1.4. Speaker recognition 

Assuming that input utterances are produced by S known 

speakers, given the sequence of labels Y={Y(1),Y(2),...,Y(T)}, 

the most likely speaker is selected: 
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Applying the Bayes rule, it follows: 

( ) ( )
( )

( ) ( ){ }iPiYP
YP

iPiYP
Yi

SiSi
|maxarg

|
maxarg)(ˆ

,...,1,...,1 ==
=









= , (4) 

because maximizing over the set of speakers does not depend 

on the acoustic sequence. Then, assuming that all speakers 

have equal a priori probabilities, it follows: 
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and introducing (2) into (5): 
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So, the computational cost of speaker recognition is linear 

with the number of speakers (S) and with the length of the 

input utterance (T), involving S×T memory accesses, S×(T-1) 

sums and S-1 comparisons. For convenience, it is assumed 

that label probabilities are stored in logarithmic form. 

2.1.5. How do feature weighting and feature selection affect 

speaker recognition? 

Feature weighting affects speaker models only through the 

VQ process. For each candidate set of feature weights 

W={w1,w2,...,wD}, a different codebook C(W) is computed by 

first weighting feature vectors in the training set and then 

using the Euclidean distance to measure distortion in the 

weighted space. So, C(W) consists of the L centroids that 

minimize VQ distortion in the weighted space. Obviously, 

labelling the database also depends on weighting: W is 

applied to each feature vector X, and the resulting vector 

X’=(w1x1,w2x2,…,wDxD) is replaced by the index k 

corresponding to the closest centroid in C(W). 

Feature selection takes place after the optimal weights are 

found. It consists of retaining the K most relevant features, so 

that a K-dimensional subspace is extracted from the original 

D-dimensional feature space. The VQ codebook C(W,K) is 

computed in the weighted K-dimensional subspace, and the 

database is labelled by first picking the K most relevant 

components of each feature vector, then applying the 



corresponding weights and finally replacing the resulting 

vector by the index of the closest centroid in C(W,K). 

2.2. GA-based search for the optimal weights 

The well-known Simple Genetic Algorithm (SGA) [14] is 

employed to search for the optimal set of weights. As noted 

above, for each candidate set of weights W={w1,w2,...,wD}, a 

codebook C(W) is computed and the whole database labelled 

according to W and C(W). Then, c(k,i) and c(i) are counted for 

each training subset U(i), and the speaker models 

M={P(k|i)|k∈[1..L],i∈[1..S]} are estimated using (1). Finally, 
utterances in the validation set V={V(1),V(2),…,V(S)} are 

classified, and the classification accuracy used as fitness 

function: 
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Once all the candidates are evaluated, some of them (usually 

the fittest ones) are selected, mixed and mutated in order to 

get the population for the next generation. SGA allows a 

number of individuals (the fittest ones) to survive for the next 

generation, which is called elitism. The simplest case of 

elitism, which consists of keeping the fittest individual, is 

applied. This guarantees that the fitness of the fittest 

individual increases monotonically with successive 

generations. If that increase is smaller than a given threshold, 

or a maximum number of generations is reached, the 

algorithm stops and the fittest individual (i.e. the set of 

weights yielding the highest classification accuracy) is 

returned. Finally, a third independent set of utterances is used 

to test the optimal set of weights. 

The convergence properties of the SGA depend on several 

parameters: 

• Representation. Only relevant features should be encoded, 

each allocated by a suitable number of bits. If too many bits 

are allocated, some of them will be redundant (i.e. their 

value will not affect fitness), computational resources will 

be spent in exploring an oversized feature space and 

convergence will be slowed down. Inversely, if not enough 

bits are allocated, the algorithm will not be able to reach the 

best solution. 

• Population size. It must be large enough to ensure diversity 

(i.e. capacity to evolve), which allows the algorithm to 

avoid local optima and move towards the best solution. But 

a large population causes the algorithm to converge slowly. 

So a balance must be found between the ability to evolve 

and the speed of convergence. In practice, population size 

must be proportional to the size of the representation. 

• Initial population. The first generation of individuals can be 

randomly generated by the SGA, or obtained by other 

means (for instance, by applying some simple initialisation 

engine or some heuristic or prototypical knowledge). 

• Selection procedure. Once all the individuals are evaluated, 

pairs of them are selected to breed the next generation. The 

most common approaches are fitness proportional selection 

(also known as roulette-wheel selection), rank selection and 

tournament selection. In fitness proportional selection the 

probability of picking an individual is proportional to its 

fitness value. In rank selection, the individuals are sorted by 

fitness, and the probability of picking one of them is 

proportional to its rank. Finally, in tournament selection 

some individuals are randomly chosen and the fittest among 

them is picked. 

• Crossover type. The crossover operator recombines the 

genes of two individuals to create two offspring. This is 

typically accomplished by defining n breaking points and 

dividing the original chromosomes into n+1 segments. Even 

segments are then interchanged to get the offspring. The 

number of breaking points determines the type of crossover: 

one-point crossover, two-point crossover, etc. 

• Mutation rate. Mutation consists of inverting the value of a 

few random bits in the chromosome. It is used to introduce 

small variations that help decreasing the chances of getting 

to local optima. The mutation rate determines the 

probability that mutations take place after crossover. It is 

usually fixed to very low values, 0.05 or less. 

2.3. Feature selection 

Though feature weighting should probably improve the 

performance of the speaker recognition system, this work is 

focused on reducing storage and computational costs by 

selecting the K most relevant features. Our approach is based 

on the hypothesis that weights somehow measure the 

contribution of features to the performance of the recognizer. 

In other words, the more discriminative a feature is the higher 

its weight will be. Under this assumption we can easily define 

a reduced set of features by selecting those best ranked 

according to their weights. 

3. Experimental setup 

3.1. The speech database 

A phonetically balanced database in Spanish, called Albayzín 

[15], is used for the experiments. Albayzín, recorded at 16 kHz 

in laboratory conditions, was originally designed to train 

acoustic models for speech recognition. It contains 204 

speakers, each speaker contributing at least 25 utterances and 

each utterance lasting 3.55 seconds on average. 

Using the classification accuracy to evaluate feature weights 

makes the optimization process very costly. To speed up the 

evaluation of the proposed methodology, instead of using the 

whole database, a partition Π1 is defined which consists of 10 

partially overlapped subsets of 20 speakers, involving 164 

speakers all together. Each subset is further divided into three 

independent datasets: training (5 utterances per speaker), 

validation (10 utterances per speaker) and test (10 utterances 

per speaker). The training set is used to compute the VQ 

codebook and to estimate speaker models. The validation set 

is used by the GA to search for the optimal feature weights. 

Finally, the test set is used to evaluate the performance of 

weighted features in speaker recognition experiments. 

As will be shown below, average feature ranks and weights, 

computed over the 10 speaker subsets of Π1, are used, 

respectively, to select and weight the K most relevant features, 

for several values of K. To evaluate each set of K features a 



new partition Π2 is defined, consisting of 12 partially 

overlapped subsets of 20 speakers involving all the speakers in 

the database. Two independent corpora are defined for each 

subset of speakers: training (5 utterances per speaker) and test 

(10 utterances per speaker). VQ codebooks and speaker 

models are estimated using samples in the training corpus and 

speaker recognition experiments are carried out over the test 

corpus. 

3.2. Tuning the GA 

The SGA is implemented by using ECJ, a Java-based 

Evolutionary Computation and Genetic Programming 

Research System, presently developed at George Mason 

University’s Evolutionary Computation Laboratory and 

released under a special open source license [16]. ECJ shows 

very interesting features, including a flexible breeding 

architecture, arbitrary representations, fixed and variable 

length genomes, several multiobjective optimization methods 

and many selection operators. 

Preliminary experimentation has been carried out to adjust the 

parameters that control the performance and the convergence 

of the SGA. It has been observed that populations of 50 

individuals need at most 30 generations to converge, so no 

convergence criterion is applied and a fixed number of 30 

generations is established. Chromosomes consist of 38 genes, 

each encoding a feature weight. To reduce computational 

costs as much as possible, 8 bits have been allocated for each 

weight. So, allowed gene values range from 0 to 255. 

Offspring is bred by first selecting and then mixing two 

parents in the current population. One of the parents is 

selected according to the fitness-proportional criterion. The 

second is selected according to the tournament method, by 

picking the fittest of 7 randomly chosen individuals (the 

choice of 7 has proven good in the experiments and is also 

suggested by the manufacturers of the toolkit). This mixed 

approach seems suitable because fitness-proportional 

selection guarantees that the fittest individuals are picked, and 

tournament selection introduces diversity, which is good for 

avoiding local optima. Crossover type and mutation 

probability have been established by picking those values 

yielding the best speaker recognition results. Finally, as noted 

above, the simplest case of elitism is applied by keeping the 

fittest individual for the next generation. Tuned values are 

shown in Table 1. 

4. Experimental results 

4.1. Feature weighting 

Two series of experiments were carried out by using 2 and 3 

training utterances per speaker over Π1. Hereafter we will 

refer to them as the 2U and 3U experiments, respectively. 

GA-based optimization was applied, using the settings shown 

in Table 1, to get the optimal set of feature weights for each 

configuration. 

Table 2 shows the average performance obtained using non-

weighted and weighted features for the test and validation 

corpora in the 2U and 3U experiments. Error rates over the 

test corpora using weighted features were, on average, 2.95 

and 1.05 points lower than those achieved using non-

weighted features, which means error reductions of 24.58% 

and 14.68%, respectively. As may be expected, error rates 

over the validation corpora were significantly lower, since 

feature weights were searched specifically to maximize the 

performance over them. In the 2U experiments, recognition 

rates using weighted features were, on average, 7.5 points 

better than those achieved using non-weighted features, which 

means a 61.22% error reduction. The average error reduction 

was even larger in the 3U experiments (70.63%, 4.45 points). 

These results provide evidence that further improvements in 

speaker recognition performance can be attained by weighting 

acoustic features. They also validate the use of GAs to search 

for an optimal set of feature weights. 

Table 1. Tuned settings of the SGA parameters. 

Parameter Setting 

Population size 50 

Number of generations 30 

Chromosome size (number of genes) 38 

Minimum 0 
Gene Values 

Maximum 255 

Type Two-point 
Crossover 

Rate 0.8 Genetic operations 
Mutation Rate 0.05 

First Parent Fitness-Proportional 
Selection 

Second Parent Tournament (Size: 7) 

Elitism 1 

 

 

Table 2. Average speaker recognition error rates over 10 

different sets of 20 speakers, using non-weighted and weighted 

features for the 2U/3U experiments (2/3 utterances for training, 

10 utterances for validation and 10 utterances for test). 

 Test set Validation set 

 Non-Weighted Weighted Non-Weighted Weighted 

2U 12.00 9.05 12.25 4.75 

3U 7.15 6.10 6.30 1.85 
 

 

Table 3. Average feature weights, computed over 20 sets of GA-

based optimal weights, corresponding to the 2U/3U experiments. 

F
ea

tu
re

 

W
ei

gh
t 

 

F
ea

tu
re

 

W
ei

gh
t 

 

F
ea

tu
re

 

W
ei

gh
t 

 

F
ea

tu
re

 

W
ei

gh
t 

c01 103  d01 106  dd01 158  E 89 

c02 170  d02 151  dd02 82  dE 137 

c03 142  d03 63  dd03 178    

c04 155  d04 69  dd04 199    

c05 123  d05 94  dd05 103    

c06 177  d06 100  dd06 152    

c07 186  d07 200  dd07 177    

c08 215  d08 133  dd08 106    

c09 234  d09 197  dd09 97    

c10 231  d10 111  dd10 117    

c11 173  d11 169  dd11 185    

c12 146  d12 118  dd12 164    

 

 

Finally, a single set of weights was computed by averaging 

the optimal weights obtained over Π1 in the 2U and 3U 

experiments. As shown in Table 3, the MFCC c08, c09, c10 



and the MFCC first derivative d07 seem to be the most 

relevant features, with average weights greater or equal than 

200. Additionally, 15 features have average weights in the 

range [150,199]: 5 MFCC, 3 MFCC first derivatives and 7 

MFCC second derivatives. The least relevant features seem to 

be the MFCC first derivatives d03, d04 and d05, the MFCC 

second derivatives dd02 and dd09, and energy (E), with 

average weights lower than 100. Of course, if we ran the GA-

based optimization for all the 164 speakers involved in Π1, a 

different set of weights would be probably obtained. 

However, taking into account that 10 different validation sets 

and two models per validation set have been averaged, these 

weights are fair indicators of the relative importance of each 

feature for speaker recognition, and will be considered 

hereafter as globally optimal weights. 

4.2. Feature selection 

To select a subset of K features we rank them according to 

their relative importance for speaker recognition. Assuming 

that the assigned weights are fair estimates of the importance 

of features, a straightforward procedure could be defined 

based on the average weights shown in Table 3. First, features 

would be sorted according to their average weights, and then 

the K best ranked features would be selected. However, 

optimal weights depend highly on the speaker models and the 

validation dataset used by the GA. Average weights over the 

2U and 3U experiments show a high variability (i.e. high 

standard deviations), since 20 different configurations are 

considered. So, average weights are not a good choice to rank 

features. They only approximate the weight values but not 

their ranks. In other words, it does not seem suitable in this 

case to define a feature rank as the rank of the average feature 

weight. A feature rank can be also defined as the average of 

the optimal weight ranks in the 2U and 3U experiments. This 

appears to be a more suitable approach, since optimal weight 

ranks include accurate information about the relative 

importance of features. Summarizing, for selecting features 

we will take into account not the values but the ranks of 

optimal weights. 

Table 4 shows the global and partial average ranks computed 

over the 2U and 3U experiments. Besides the feature name, 

each row includes the average rank computed over a set of 

experiments: 2U+3U (global ranking), 2U and 3U. Partial 

rankings do not match exactly, but most features appear 

reasonably close in both columns. If the global ranking based 

on average ranks and the ranking that can be obtained from 

average weights (Table 3) are compared, some similarities can 

be observed. Among the 10 best ranked features, 8 are present 

in both rankings: c06, c07, c08, c09, c10, d07, d09 and dd04. 

It is interesting to note that 5 of them are medium/high-index 

MFCC. The three best ranked features are in both cases c08, 

c09 and c10, though ranked in different order: c09, c10 and 

c08 attending to the average weights, and c09, c08 and c10 

attending to the average ranks. Additionally, it must be noted 

that c08, c09 and c10 are consistently ranked as the best 

features, because their optimal weights are among those with 

the lowest standard deviations. Finally, in both cases energy 

(E) is ranked as one of the worst features. Its derivative (dE) 

is better ranked: 22 attending to the average weight, and 11 

attending to the average rank. This latter result is somehow 

surprising, but can be explained by examining the partial 

ranks corresponding to experiments 2U and 3U in Table 4: dE 

is assigned rank 3 in the 2U experiments and rank 29 in the 

3U experiments. So, dE seems to be useful only when few 

enrolment data are available to estimate speaker models. 

Table 4. Average feature ranks for the 2U+3U, 2U and 3U 

experiments. 

  2U+3U  2U  3U 

Rank  Feature 
Average 

Rank 
 Feature 

Average 

Rank 
 Feature 

Average 

Rank 

1 c09 3.97 c09 3.38 c09 4.57 

2 c08 8.79 c08 10.00 c08 7.57 

3 c10 11.40 dE 10.88 c10 11.29 

4 c07 13.60 c10 11.50 d07 11.29 

5 dd04 15.00 c07 14.25 c07 12.86 

6 d07 15.50 d09 15.00 dd04 13.71 

7 c06 15.70 c11 15.75 d11 14.14 

8 dd07 15.80 c06 15.88 dd07 14.86 

9 c02 16.10 c02 16.13 c06 15.43 

10 d09 16.10 dd03 16.25 c02 16.00 

11 dE 16.90 dd04 16.38 d02 16.00 

12 dd03 17.10 dd07 16.75 d09 17.29 

13 c11 17.30 dd11 17.25 dd11 17.43 

14 dd11 17.30 d06 17.88 dd03 17.86 

15 d02 17.60 dd12 17.88 c11 18.86 

16 dd12 18.40 dd01 18.38 c04 19.00 

17 d11 18.80 d02 19.25 dd12 19.00 

18 dd01 19.90 d07 19.63 c12 19.29 

19 c12 20.10 dd06 19.88 d12 19.43 

20 c04 20.20 c03 20.13 dd09 20.57 

21 c03 20.60 d08 20.38 c03 21.14 

22 dd06 20.70 c12 21.00 d08 21.14 

23 d08 20.80 dd08 21.00 c05 21.29 

24 d01 21.30 dd05 21.25 d01 21.29 

25 d10 22.40 c04 21.38 dd01 21.43 

26 dd08 22.90 d01 21.38 dd06 21.43 

27 c05 23.10 d10 21.75 c01 21.71 

28 d06 23.30 dd10 23.00 d05 21.71 

29 dd10 23.40 d11 23.50 dE 22.86 

30 dd09 23.50 dd02 23.75 d10 23.00 

31 d12 24.20 E 24.00 dd10 23.86 

32 c01 24.50 d04 24.38 dd08 24.86 

33 dd02 25.00 c05 24.88 dd02 26.29 

34 dd05 25.30 d03 25.63 E 27.14 

35 d05 25.30 dd09 26.38 d04 28.00 

36 E 25.60 c01 27.25 d06 28.71 

37 d04 26.20 d05 28.88 dd05 29.29 

38 d03 27.50 d12 28.88 d03 29.43 

 

 

4.3. Evaluating reduced sets of features 

Based on the global ranking shown in Table 4, speaker 

recognition experiments were run over Π2, using reduced sets 

of K weighted and non-weighted features. First, for each 

subset of speakers in Π2, specific VQ codebooks and speaker 

models were estimated, by using R training utterances per 

speaker (R = 2, 3, 4 and 5). Then, for each set of K weighted 

and non-weighted features, for each training size R and for 

each subset of speakers, recognition experiments were run 

over the corresponding test corpus. Finally, the recognition 

accuracy was averaged over the 12 subsets of speakers to get 

a global and more reliable performance measure. Initially, 



experiments were carried out for K = 35, 30, 25, 15, 10 and 5. 

However, after analysing the results, we found it convenient 

to get more resolution for lower values of K (between 5 and 

10). So, four new experiments were carried out for K = 6, 7, 

8, and 9. Table 5 shows the average error rates obtained in 

those experiments, using K weighted and non-weighted 

features and 4 levels of training (from 2 to 5 utterances per 

speaker). 

Table 5. Error rates in speaker recognition experiments for 

reduced sets of weighted and non-weighted features, using 4 

levels of training (2-5 utterances per speaker). Results with the 

full 38-dimensional feature vectors are shown too for reference. 

Number of features 
38 30 25 20 15 10 9 8 7 6 5 

T
ra

in
in

g 

Non-weighted 

2 10.54 14.42 15.58 17.21 20.88 21.29 22.33 29.88 31.71 41.33 41.75 

3 6.96 8.75 10.46 11.42 13.96 13.92 14.04 21.29 22.33 32.58 31.13 

4 5.00 6.63 8.04 8.92 11.54 11.88 11.67 18.38 18.29 26.88 25.67 

5 4.33 4.38 6.50 6.17 8.08 8.17 8.67 15.04 14.79 22.42 21.88 

 Weighted 

2 8.88 10.83 13.71 15.21 19.04 20.38 19.42 28.08 28.38 41.79 42.25 

3 5.71 6.96 8.00 8.71 12.67 11.67 12.13 19.92 20.00 31.92 29.96 

4 3.63 4.71 5.83 7.00 9.21 8.79 9.88 16.13 15.75 24.96 24.92 

5 2.83 3.33 3.92 4.79 6.83 7.04 6.96 12.88 13.00 22.71 22.08 

 
As shown in Figure 1, speaker recognition performance 

degraded at a small pace and kind of linearly from K=38 to 

K=10. Lower values of K led to large degradations, 

suggesting that the 10 best ranked features contain the most 

relevant information about speaker identity. A more detailed 

inspection reveals that performance degraded monotonically 

as the number of features was reduced from 38 to 15. Then, 

from 15 to 10 features the performance improved slightly in 

some cases (in particular, when using 3 and 4 utterances per 

speaker), suggesting that the feature ranking could be further 

adjusted in that range. Finally, from 10 to 5 features the 

performance degraded fast and irregularly, suggesting the lack 

of relevant features and possibly a higher sensitivity to rank 

disorder. For instance, moving from 9 to 8 features (i.e. 

discarding c02) produced a large degradation, whereas 

moving from 8 to 7 features (i.e. discarding dd07) did hardly 

affect performance. 
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Figure 1. Error rates increase as the feature vector is reduced. A 

sharp change in slope takes place for K=10. 

Finally, after verifying that feature weighting can be suitably 

applied to improve speaker recognition performance, and 

combined with feature selection to reduce storage and 

computational costs, Table 5 reveals that performance can be 

also improved by increasing the robustness of speaker models 

(i.e. by increasing the number of training utterances per 

speaker). For instance, with 10 weighted features, the error 

rate reduces from 20% when using 2 training utterances, to 

7% when using 5 training utterances. This means that a 

suitable balance can always be found between the number of 

training utterances and the number of features. In this case, 

using 10 weighted features with 4 training utterances per 

speaker yields the same performance as using 38 weighted 

features with 2 training utterances per speaker. In other 

words, increasing the robustness of speaker models allows to 

reduce storage and computational costs without degrading 

performance, as can be graphically seen in Figure 2. 
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Figure 2. Error rates in speaker recognition experiments using 38 

and 10 weighted features, as a function of the number of 

utterances used to estimate speaker models. Graphs are fitted to 

quadratic functions that show trends in both cases. 

5. Conclusions and future work 

For speaker recognition applications requiring real-time 

operation or running on low-resource devices, reducing the 

number of features is crucial, since storage and computational 

costs may be lightened. Additionally, model parameters may 

be estimated more robustly. GAs can be suitably applied to 

search for the most relevant features, or more generally, to 

search for an optimal set of feature weights. 

In this work, we followed a hybrid approach, by first 

obtaining the optimal weights and then using them to cut the 

representation. Empirical distributions of VQ labels were 

used as speaker models. A phonetically balanced database in 

Spanish, containing 204 speakers, was used as benchmark. 

First, the potential benefit of weighting acoustic features for 

speaker recognition was evaluated over a partition Π1 

consisting of 10 subsets of 20 speakers. Two series of 

experiments were carried out by using 2 and 3 training 

utterances per speaker to estimate VQ codebooks and speaker 

models. A genetic algorithm was applied to search for the 

weights minimizing speaker recognition errors over validation 

datasets. It was found that using weighted features reduced 

error rates by 20%, on average, in speaker recognition 

experiments over independent test data. Finally, a single set of 



feature weights was computed by averaging the optimal 

weights obtained for the 10 subsets of speakers in the two 

series of experiments. 

A feature selection procedure was designed based on the 

average ranks of features. Features were sorted in descending 

order according to the weights obtained in the previous 

experiments. Then the K features with greatest average ranks 

were selected. Speaker recognition experiments were run over 

a second partition Π2, consisting of 12 subsets of 20 speakers, 

to investigate how the accuracy was affected as the feature 

vector was reduced, by selecting the K most relevant features, 

for K=30, 25, 20, 15, 10, 9, 8, 7, 6 and 5. Four series of 

experiments were carried out by using 2, 3, 4 and 5 training 

utterances per speaker. It was found that reducing K degraded 

performance in most cases. Average error rates grew slowly 

from K=30 to K=10 and rapidly from K=10 to K=5. This 

may indicate that the 10 best ranked features contain the most 

relevant information about speaker identity. On the other 

hand, as for Π1, weighting features yielded significant error 

reductions. Also, speaker models provided better performance 

as the size of the training dataset increased. For instance, with 

10 weighted features, the error rate reduced from 20% when 

using 2 training utterances per speaker, to 7% when using 5 

training utterances per speaker. Finally, important savings in 

storage and computational costs can be attained by combining 

feature selection and feature weighting. 

Future work includes two methodological improvements to 

the work presented in this paper: 

• Finding optimal weights for each K. In this paper, an 

optimal set of feature weights is found for a 38-dimensional 

feature space. So, weights are optimal only when using the 

full representation. If the same procedure was applied for a 

subset of K features, it would very probably lead to a 

different set of weights. If feature weights are only the 

means to select the K most relevant features and K non-

weighted features are eventually used, the proposed 

methodology is a good alternative. But applying the 

optimal weights obtained for a 38-dimensional feature 

space to a reduced subset of K features is just a suboptimal 

approximation. So, finding the optimal set of weights 

specifically for each K-dimensional feature subspace should 

lead to further improvements. 

• Extending feature weighting to feature transformation. 

Weighting can be seen as a special case of linear 

transformation for which the transformation matrix is 

diagonal. So, feature weighting can be generalized to 

feature transformation in a straightforward way. As noted 

above, such a transformation can be estimated according to 

different criteria: least mean-square reconstruction error 

(PCA), maximum class separability (LDA), maximum 

independence (ICA), etc. But none of those approaches 

guarantees that classification error is minimized. Genetic 

algorithms would search, instead, for the transformation 

that minimizes classification error over validation data, 

projecting the original features onto an optimal K-

dimensional subspace. 
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