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Abstract

The  Mel-Frequency  Cepstral  Coefficients  (MFCC)  are  widely 
accepted  as  a  suitable  representation  for  speaker  recognition 
applications.  MFCC  are  usually  augmented  with  dynamic 
features, leading to high dimensional representations.  The issue 
arises  of  whether  some  of  those  features  are  redundant  or 
dependent  on  other  features.  Probably,  not  all  of  them  are 
equally  relevant  for  speaker  recognition.  In  this  work,  we 
explore  the  potential  benefit  of  weighting  acoustic  features  to 
improve  speaker  recognition  accuracy.  Genetic  algorithms 
(GAs)  are  used  to  find  the  optimal  set  of  weights  for  a  38-
dimensional  feature  set.  To  evaluate  each  set  of  weights, 
recognition error is  measured  over  a  validation  dataset.  Naive 
speaker  models  are  used,  based  on  empirical  distributions  of 
vector  quantizer  labels.  Weighting  acoustic  features  yields 
24.58%  and  14.68% relative error reductions  in two series  of 
speaker  recognition  tests.  These  results  provide  evidence  that 
further improvements in speaker recognition performance can be 
attained by weighting acoustic features.  They also validate the 
use of GAs to search for an optimal set of feature weights.1

Index  Terms: speaker  recognition,  feature  extraction,  genetic 
algorithms

1. Introduction

Feature  extraction  is  a  key  issue  for  efficient  speaker 
recognition.  Redundant  and  harmful  information  should  be 
removed from speech, retaining only those features relevant to 
classification. Many state-of-the-art speaker recognition systems 
use a set of short-term spectrum features called Mel-Frequency 
Cepstral  Coefficients  (MFCC).  Not  surprisingly,  MFCC’s  are 
also  used  for  speech  recognition,  since  they  not  only  convey 
information  about  the glottal  source and the vocal  tract  shape 
and  length,  which  are  speaker  specific  features,  but  also  the 
frequency  distribution  identifying  sounds.  Additionally,  it  has 
been shown that dynamic information improves significantly the 
performance  of  recognizers.  So,  MFCC,  energy and  their first 
and  second  derivatives  are  commonly  used  as  features. 
Depending  on  the  acoustic  front-end,  the  resulting  feature 
vectors may have from 20 to 50 components. The issue arises of 
whether some of those features are redundant or dependent on 
other features. Probably, not all of them are equally relevant for 
speaker recognition.  Some of  them may be even discarded.  In 
this work, the problem is addressed from the point of view of 
feature weighting.  An exhaustive search of the optimal weights 
is too costly even for a moderate number of features, so heuristic 
approaches must be applied.

1  Work  partially  funded  by  the  Government  of  the  Basque 
Country, under program SAIOTEK, project S-PE04UN18.
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Genetic Algorithms (GAs for short), introduced by Holland 
975 [1], are randomized heuristic search techniques based on 

logical  evolution  strategies,  with  three  basic  operations: 
ction of the fittest, crossover and mutation. GAs are usually 
lied in complex optimization problems.  Candidate solutions 
 represented  by  individuals  (or  chromosomes)  in  a  large 
ulation.  Initial  solutions  may  be  randomly  generated  or 
ained  by  other  means.  Then  GAs  iteratively  drive  the 
ulation to an optimal  point according  to a complex metric 

lled  fitness  or  evaluation  function)  that  measures  the 
formance  of  the  individuals  in  a  target  task.  The  fittest 
ividuals are selected and their chromosomes mixed, mutated 
aken unchanged to the next generation. A major advantage of 
 GAs over other heuristic search techniques is that they do not 
 on any  assumption  about  the properties  of  the evaluation 

ction.  Multiobjective  evaluation  functions  (e.g.  combining 
 accuracy and the cost of classification) can be defined and 
d  in  a  natural  way.  In  particular,  GAs  can  easily  encode 
ture  weights  as  sequences  of  integer  or  real  values  in  a 
omosome,  allow  to  smartly  explore  the  feature  space  by 
ining  those  values  that  benefit  the  classification  task  and 
ultaneously  avoid  local  optima  due  to  their  intrinsic 
domness.
In this work, a genetic algorithm is used to find the optimal 

 of weights for a 38-dimensional feature set, consisting of 12 
CC,  their  first  and  second  derivatives,  energy  and  its  first 
ivative.  Weights  are  encoded  as  8-bit  integers,  so  each 
ividual (representing a set of weights) is encoded by 304 bits. 
aker recognition error, measured over a validation dataset, is 
d  as  evaluation  function.  Naive  speaker  models  are  used, 
ed on empirical distributions of acoustic labels.  A database 
read speech in Spanish,  including 204 speakers, is used for 
 experiments. The approach presented in this paper is related 
other  works  applying  GAs  to  feature  selection  [2],  feature 
raction [3]  and feature weighting [4]  in speaker recognition 
ks.
The rest of the paper is organized as  follows.  The speaker 

ognition  system  and  the  GA-based  search  of  the  optimal 
ights  are  described  in  Section  2.  Experimental  setup  is 
cribed in Section  3,  including  the speech  database  used to 
n and test speaker models and the tuning phase of the GA. 
aker  recognition  results  using  non-weighted  and  weighted 

tures  are  presented  and  discussed  in  Section  4.  Finally, 
tion 5 summarizes our approach and outlines future work.

September 17-21, Pittsburgh, Pennsylvania



2. Methodology

2.1. The speaker recognition system

2.1.1. Acoustic front-end
Speech,  acquired  at  16  kHz,  is  analysed  in  frames  of  25 
milliseconds  (400 samples),  at intervals  of  10 milliseconds.  A 
Hamming  window is applied and a 512-point  FFT computed. 
The  FFT  amplitudes  are  then  averaged  in  24  overlapped 
triangular  filters,  with  central  frequencies  and  bandwidths 
defined  according  to  the  Mel  scale.  A  Discrete  Cosine 
Transform  is  finally  applied  to  the  logarithm  of  the  filter 
amplitudes,  obtaining  12  Mel-Frequency  Cepstral  Coefficients 
(MFCC).  To  increase  robustness  against  channel  distortion, 
Cepstral  Mean  Normalization  (CMN)  [5]  is  applied  on  an 
utterance-by-utterance basis. The first and second derivatives of 
the  MFCC,  the  frame  energy  (E)  and  its  derivative  are  also 
computed, thus yielding a 38-dimensional feature vector.

2.1.2. Vector Quantization
Vector Quantization (VQ) [6][7] is applied, yielding an optimal 
codebook  of  L=256 centroids  which  minimizes  the  average 
distortion (Euclidean distance) in quantifying feature vectors in 
the  training  set.  Then,  each  feature  vector  in  the  database  is 
replaced by the index of  the closest  centroid.  So, each speech 
utterance is first  analysed to get a sequence of  feature vectors 
X={x1,x2,...,xT}, and then, by applying VQ, transformed into a 
sequence of acoustic labels Y={y1,y2,...,yT} corresponding to the 
closest VQ centroids.

2.1.3. Speaker models
Speaker  models  are  distributions  of  VQ labels.  These  simple 
models  have  been  successfully  used  for  speaker  adaptation 
through speaker clustering in speech recognition tasks  [8].  Let 
U(i) be the training subset corresponding to speaker  i,  c(i) the 
number of VQ labels in U(i), and c(k,i) the number of times the 
label  k appears in U(i). Then, the conditional probability  P(k|i) 
can be empirically estimated as follows:

   
 ic

ikc
ikP

,
|  . (1)

Finally, assuming that successive labels are independent, the 
conditional  probability  of  a  sequence of  labels  Y={y1,y2,...,yT}, 
given speaker i, can be computed as follows:
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2.1.4. Speaker recognition
Assuming  that  input  utterances  are  produced  by  S known 
speakers, given the sequence of labels  Y={y1,y2,...,yT}, the most 
likely speaker is selected:
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Applying the Bayes rule, it follows:
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ause maximizing over the set of speakers does not depend on 
 acoustic  sequence.  Then,  assuming  that  all  speakers  have 
al a priori probabilities, it follows:

  iYPYi
Si

|maxarg)(ˆ
,...,1

 , (5)

 introducing (2) into (5):
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So, the computational  cost  of  speaker recognition is linear 
h the number of speakers (S) and with the length of the input 
rance (T),  involving  S×T memory  accesses,  S×(T-1) sums 
 S-1 comparisons.  For convenience, it is assumed that label 
babilities are stored in logarithmic form.

.5. Feature weighting and speaker recognition
ture weighting do not affect speaker models directly, but only 
ugh  the  VQ  process.  For  each  candidate  set  of  feature 

ights  W={w1,w2,...,wD},  a  different  codebook  C(W) is 
puted by first  weighting feature vectors  in the training set 
 then using the Euclidean distance to measure distortion in 
 weighted space.  So,  C(W) consists  of  the  L centroids  that 
imize  VQ  distortion  in  the  weighted  space.  Obviously, 

elling the database also depends on weighting: W is applied 
 each  feature  vector  X,  and  the  resulting  vector 
(w1x1,w2x2,…,wDxD) is replaced by the index k corresponding 

he closest centroid in C(W).

. GA-based search for the optimal weights

 well-known  Simple  Genetic  Algorithm (SGA)  [9]  is 
ployed  to  search  for  the  optimal  set  of  weights.  As  noted 
ve,  for  each  candidate  set  of  weights  W={w1,w2,...,wD},  a 
ebook  C(W) is  computed  and  the whole  database  labelled 
ording to W and C(W). Then, c(k,i) and c(i) are counted for 
h  training  subset  U(i),  and  speaker  models  M={P(k|i)|k
.L],  i[1..S]} estimated using (1).  Finally,  utterances  in the 
idation  set  V={V(1),V(2),…,V(S)}  are  classified,  and  the 
ssification accuracy used as fitness function:
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Once all the candidates are evaluated, some of them (usually 
 fittest ones) are selected, mixed and mutated in order to get 
 population for the next generation. SGA allows a number of 
ividuals  to survive for  the next  generation,  which  is called 
ism. The simplest case of elitism, which consists of keeping 
 fittest individual, is applied. This guarantees that the fitness 
the fittest individual increases monotonically with successive 
erations. If that increase is smaller than a given threshold, or 
aximum  number  of  generations  is  reached,  the  algorithm 



stops and the fittest individual (i.e.  the set of  weights  yielding 
the  highest  classification  accuracy  over  validation  data)  is 
returned. Finally, a third independent set of utterances is used to 
test the optimal set of weights.

3. Experimental setup

3.1. The speech database
A phonetically  balanced  database  in Spanish,  called Albayzin 
[10], is used for the experiments.  Albayzin was recorded at 16 
kHz  in  laboratory  conditions  and  was  originally  designed  to 
train  acoustic  models  for  speech  recognition.  It  contains  204 
speakers, each contributing at least 25 utterances, each utterance 
lasting 3.55 seconds on average.

Using  the  classification  rate  to  evaluate  feature  weights 
makes  the optimization  process  very  costly.  To  speed  up  the 
evaluation  of  the proposed  methodology,  instead  of  using  the 
whole database, 10 partially overlapped subsets are defined, each 
containing  20  speakers,  which  amounts  to  164  speakers  all 
together.  Each  subset is further divided into three independent 
datasets:  training (5  utterances  per  speaker),  validation (10 
utterances per speaker) and test (10 utterances per speaker). The 
training set is used to compute the VQ codebook and to estimate 
speaker models. The validation set is used by the GA to search 
for the optimal  feature weights.  Finally, the test set is used to 
evaluate  the  performance  of  weighted  features  in  speaker 
recognition experiments.

3.2. Tuning the GA
The  SGA  is  implemented  by  using  ECJ,  a  Java-based  
Evolutionary  Computation  and  Genetic  Programming  
Research  System,  presently  developed  at  George  Mason 
University’s Evolutionary Computation Laboratory and released 
under  a  special  open  source  license  [11].  ECJ  shows  very 
interesting  features,  including  a  flexible  breeding  architecture, 
arbitrary  representations,  fixed  and  variable  length  genomes, 
several multiobjective optimization methods and many selection 
operators.

Preliminary experimentation has  been carried out to adjust 
the parameters that control the performance and the convergence 
of  the  SGA.  It  has  been  observed  that  populations  of  50 
individuals  need  at  most  30  generations  to  converge,  so  no 
convergence  criterion  is  applied  and  a  fixed  number  of  30 
generations  is  established.  Chromosomes  consist  of  38  genes, 
each encoding a feature weight. To reduce computational costs 
as much as possible, 8 bits have been allocated for each weight. 
So, allowed gene values range from 0 to 255. Offspring is bred 
by  first  selecting  and  then  mixing  two  parents  in  the  current 
population.  One  of  the  parents  is  selected  according  to  the 
fitness-proportional  criterion.  The second is selected according 
to the tournament method, by picking the fittest of 7 randomly 
chosen  individuals  (the  choice  of  7  has  proven  good  in  the 
experiments and is also suggested by the manufacturers of the 
toolkit).  This  mixed  approach  seems  suitable  because  fitness-
proportional  selection guarantees that  the fittest individuals  are 
picked, and tournament selection introduces diversity, which is 
good  for  avoiding  local  optima.  Crossover  type  and  rate and 
mutation rate have been heuristically established to get a good 
balance between performance and convergence. Finally, as noted 
above,  the  simplest  case  of  elitism  is  applied  by  keeping  the 
fittest  individual  for  the  next  generation.  Tuned  settings  are 
summarized in Table 1.
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4. Experimental results

o series of  experiments  were carried out, by using 2 and 3 
ning utterances per speaker, respectively, over 10 subsets of 
speakers. Hereafter, we will refer to them as the 2U and 3U 
eriments,  respectively.  GA-based  optimization  was  applied, 

ng the settings  shown in Table 1, to get the optimal  set of 
ture weights for each configuration.

Table 1. Tuned settings of the SGA parameters.

arameter Setting
opulation size 50
umber of generations 30
hromosome size (number of genes) 38

ene Values
Minimum 0
Maximum 255

enetic operations
Crossover

Type Two-point
Rate 0.8

Mutation Rate 0.05

election
First Parent Fitness-Proportional
Second Parent Tournament (Size: 7)

litism 1

Tables 2 and 3 show speaker recognition results using non-
ighted and weighted features for the test and validation sets in 
 2U  and  3U  experiments,  respectively.  Note  that  using 

ighted features did not always improve performance over the 
 sets, as  in the case  of  the set  of  speakers  ss09 in the 2U 
eriments,  and  the  sets  ss03,  ss08  and  ss10  in  the  3U 
eriments.  This  is  probably  due  to a  lack  of  robustness  of 
aker models, which do not generalize well to data on the test 
. However, weighted features led in most cases (16/20, 80%) 

higher recognition rates.  This  reveals  that  searching  for  the 
ture  weights  that  maximize  classification  performance  over 
idation data can help to compensate for the lack of robustness 
speaker models.  As a result, classification performance was 
o  improved  over  independent  test  sets.  On  average, 
ognition  rates  using  weighted  features  were 2.95  and  1.05 
nts  better than  those achieved  using  non-weighted features, 
 the 2U and 3U experiments, representing error reductions of 
58%  and  14.68%,  respectively.  As  may  be  expected,  the 
re  robust  the  speaker  models  are  the  more  difficult  is  to 
rove their performance by feature weighting.

le  2. Speaker  recognition  error  rates  with  non-weighted  and 
ghted features for the 2U experiments (2 utterances for training, 10 
rances for validation and 10 utterances for test) over 10 different sets 
peakers (ss01, ss02, etc.).

Test set Validation set
Non-Weighted Weighted Non-Weighted Weighted

ss01 18.00 13.00 18.50 8.00
ss02 13.50 10.00 20.00 7.50
ss03 14.00 13.50 12.50 4.50
ss04 16.00 9.50 13.00 4.00
ss05 11.00 7.50 10.00 4.00
ss06 10.50 7.50 5.50 3.00
ss07 11.00 6.00 11.00 4.50
ss08 6.50 4.00 8.00 3.00
ss09 10.00 11.50 15.50 6.00
ss10 9.50 8.00 8.50 3.00

Average 12.00 9.05 12.25 4.75



Error rates over validation sets were significantly lower than 
those achieved over test sets, since feature weights were searched 
specifically to maximize the performance over validation data. 
So,  as  shown  in  Tables  2  and  3,  weighted  features  always 
provided better performance  than non-weighted features  in the 
2U  and  3U  experiments  over  validation  sets.  In  the  2U 
experiments, recognition rates using weighted features were, on 
average,  7.5  points  better  than  those   achieved  using  non-
weighted features,  which  represents  a  61.22% error reduction. 
The  average  error  reduction  was  even  larger  in  the  3U 
experiments  (70.63%,  4.45  points).  These  results  provide 
evidence  that  further  improvements  in  speaker  recognition 
performance  can  be  attained  by  weighting  acoustic  features. 
They also validate the use of GAs to search for an optimal set of 
feature weights.

Table  3. Speaker  recognition  error  rates  with  non-weighted  and 
weighted features for the 3U experiments (3 utterances for training, 10 
utterances for validation and 10 utterances for test) over 10 different sets 
of speakers (ss01, ss02, etc.).

Test set Validation set
Non-Weighted Weighted Non-Weighted Weighted

ss01 8.50 6.00 9.00 1.50
ss02 6.50 3.50 9.00 2.50
ss03 5.00 11.50 4.50 3.50
ss04 12.00 4.00 7.50 1.50
ss05 6.50 6.00 8.50 1.00
ss06 7.00 3.50 3.50 1.00
ss07 9.00 8.50 4.00 2.00
ss08 4.50 6.00 6.00 1.50
ss09 7.50 6.00 6.50 0.50
ss10 5.00 6.00 6.50 3.50

Average 7.15 6.10 6.30 1.85

5. Conclusions and future work

Mel-Frequency  Cepstral  Coefficients  and  their  derivatives  are 
commonly  used  as  acoustic  features  in  speaker  recognition 
systems.  However, some of them may be redundant, dependent 
on  other  features  or  even  harmful.  In  this  work,  the  issue  is 
addressed from the point of view of feature weighting.  Genetic 
Algorithms  are applied to search for an optimal  set of  feature 
weights,  and  simple  distributions  of  acoustic  labels  (obtained 
through vector quantization) are used as speaker models.

The proposed methodology was evaluated over a database of 
clean speech in Spanish containing 204 speakers.  To speed up 
the  evaluation  process,  10  partially  overlapped  subsets  were 
defined, each containing 20 speakers, and results were averaged 
over them.  Two series of experiments were carried out, with 2 
and 3 training utterances per speaker.  A GA-based search was 
run  to get  the optimal  weights,  i.e.  those  minimizing  speaker 
recognition  errors  over  validation  data.  Finally,  weighted 
features  yielded,  on  average,  error  reductions  of  24.58%  and 
14.68%  in the two series  of  speaker  recognition  experiments, 
respectively. This demonstrates that improved performance can 
be attained by weighting acoustic features, and validates the use 
of Genetic Algorithms to search for an empirically optimal set of 
feature weights.

Future  work  includes  finding  the optimal  weights  for  the 
whole  database,  which  may  require  the  use  of  more  robust 
speaker  models,  since  the  probability  of  guessing  decreases 
drastically  from 1/20  to 1/204.  Also,  a  selection  procedure is 
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ng designed based on weights to retain the  K most relevant 
tures, thus reducing storage and computational costs, which is 
cial  for  speaker  recognition  applications  running  on  low-
ource devices.
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