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Resumen: En este trabajo se presentan resultados de verificación sobre las cuatro
lenguas oficiales españolas: castellano, catalán, euskera y gallego. Se analizan los
resultados obtenidos en tests cerrados y abiertos (estos últimos incluyendo segmen-
tos en frances, portugés, aleman o inglés) y considerando segmentos de voz de 30
segundos. Se realiza también un estudio detallado del rendimiento del sistema por
cada lengua objetivo. Se usa la base de datos KALAKA creada especialmente para
la Evaluación Albayźın 2008 de sistemas de verificación de la lengua.
El sistema de verificación principal resulta de la fusión de un sistema acústico y 6
subsistemas fonotácticos. El sistema acústico toma información de las caracteŕısti-
cas espectrales de la señal de audio, mientras que los sistemas fonotácticos utilizan
secuencias de fonemas producidas por varios decodificadores acústicos. En este tra-
bajo se alcanza una tasa EER= 3,58% y un coste CLLR= 0.30 en test cerrado, lo
que implica una mejora relativa del 24,5% con respecto a los mejores resultados
obtenidos en la evaluación Albayzin 2008 VL.
Palabras clave: Verificación de la lengua, Gaussian Mixture Models, Support Vec-
tor Machines

Abstract: This paper presents language recognition results obtained for the four
official Spanish languages: Spanish, Catalan, Basque and Galician. Results were
obtained in closed and open tests (these latter including segments in French, Portu-
guese, German or English) on a subset of 30 second segments. A detailed study per
target language is also included. Experiments were carried out on the KALAKA da-
tabase, especially recorded for The Albayzin 2008 Language Recognition Evaluation.
The main verification system resulted from the fusion of an acoustic system and
6 phonotactic subsystems. To model the target language, the acoustic subsystem
takes information from the spectral characteristics of the audio signal, whereas pho-
notactic subsystems use sequences of phones produced by several acoustic-phonetic
decoders. The best fused system attained a 3,58% EER and CLLR= 0.30 in closed
tests, which means 24,5% improvement with regard to the best result obtained in
the Albayzin 2008 LRE.
Keywords: Language Verification/Recognition, Gaussian Mixture Models, Support
Vector Machines

1. Introducction

As for the National Institute of Standards
and Technology (NIST) evaluations (Martin
and Le, 2008), the language detection task
can be stated as follows: given a segment
of speech and a language of interest (tar-
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get language), determine whether or not that
language is spoken in the segment, based on
an automated analysis of the data contained
in the segment. Performance is computed by
presenting the system a set of trials. Each
trial comprises the following elements: (1) a
segment of audio containing speech in a sin-
gle language; (2) the target language; and (3)
the non-target languages, that is, those lan-
guages that may be spoken in the segment.
For each trial, the system must output: (1) a



hard decision (yes/no) about whether or not
the target language is spoken in the segment;
and (2) a score indicating how likely is for the
system that the target language is spoken in
the segment, the higher the score the greater
the confidence that the segment contains the
target language.

In NIST Language Recognition Evalua-
tions (LRE), test data included narrow-
band (8kHz) segments for conventional re-
corded conversational telephone speech (in
all LRE) as well as narrow-band segments
from worldwide Voice of America broadcast
(only in 2009 LRE). The number of tar-
get languages was 14 in NIST 2007 LRE
and 23 in NIST 2009 LRE. In both evalua-
tions, best results were obtained by the sys-
tems submitted by the Massachusetts Institu-
te of Technology (MIT) Lincoln Laboratory
(Torres-Carrasquillo et al., 2008), (Torres-
Carrasquillo et al., 2010). Our experience in
those evaluations has been very positive (Pe-
nagarikano et al., 2007) (Penagarikano et al.,
2009). Further developments made on the
NIST 2007 LRE have been published in (Pe-
nagarikano et al., 2010b) and (Penagarikano
et al., 2010a).

But we are mainly interested in recogni-
zing the Spanish official languages. In 2008,
we organized and coordinated the Albayzin
2008 Language Recognition Evaluation which
was held as part of the 5th Biennial Works-
hop on Speech Technology (JTH, 2008). The
Albayzin 2008 LRE was inspired by NIST
2007 LRE, but with only 4 target languages
(Spanish, Catalan, Basque and Galician) and
using wide-band audio signals (16kHz). For
Albayzin 2008 LRE, the KALAKA databa-
se was recorded from TV shows (Rodriguez-
Fuentes et al., 2010b). In this competition
there were 4 participant groups and preli-
minary results showed the difficulty of the
task despite having only four target langua-
ges (Rodriguez-Fuentes et al., 2010a).

In this work, a language recogni-
tion/verification system has been built
based on the train and development sets of
KALAKA and the materials implicitly used
to built phone decoders (see subsection 2.2).
The system consists of a hierarchical fusion
of 7 individual subsystems. An acoustic
(“low-level”) subsystem and 6 phonotactic
(“high-level” ) subsystems. To model each
target language, the acoustic subsystem
takes information from the spectral cha-

racteristics of the audio signal, whereas
phonotactic subsystems use sequences of
phones produced by three acoustic-phonetic
decoders, developed by the Brno University
of Thechnology (BUT) for Czech, Hungarian
and Russian (Schwarz, 2008). As we shall
see, these two types of language recognition
systems (acoustic and phonotactic) provides
complementary information and their fusion
leads to best results.

The rest of the paper is organized as fo-
llows. Section 2 presents the language recog-
nition/verification systems used in this work.
Section 3 defines the measures used to evalua-
te language verification system performance.
The KALAKA database is described in Sec-
tion 4. Section 5 summarizes results attained
on KALAKA in closed-set and open-set tests.
Finally, conclusions are outlined in Section 6.

2. Language recognition/
verification technology

The main system consists of a hierarchical
fusion of 7 individual subsystems, an acoustic
subsystem, and 6 phonotactic subsystems.

2.1. The acoustic subsystem

For the acoustic subsystem, 7-2-3-7 SDC-
MFCC were used as acoustic parameters and
Gaussian Mixture Models (GMM) were used
as acoustic models by means of the Sautre-
la toolbox (Penagarikano and Bordel, 2005).
Then a Support Vector Machine (SVM) clas-
sifier is applied on the vector space defined by
GMM parameters. The GMM corresponding
to a target language is constructed by using
training samples of that language to adapt
the means of a Universal Background Mo-
del (UBM) consisting of 1024 mixture compo-
nents. Maximum A Posteriori (MAP) adap-
tation is performed using a relevance factor
of τ = 16. The adapted means are normali-
zed using UBM parameters and stacked to
construct the so called GMM supervectors
which feed the SVM classifier (Campbell et
al., 2006). The SVM was developed using
SVMtorch (Collobert and Bengio, 2001)

2.2. The phonotactic subsystems

Phonotactic language recognizers exploit
the ability of phone decoders to convert a
speech utterance into a sequence of symbols
containing acoustic, phonetic and phonolo-
gical information. Models for target langua-
ges are built by decoding hundreds or even



thousands of training utterances and using
the phone-sequence (or phone-lattice) statis-
tics (typically, counts of n-grams) in diffe-
rent ways. The most common phonotactic
approaches are the so called PPRLM (Para-
llel Phone Recognizers followed by Langua-
ge Models) (Zissman, 1996), referred to as
Phone-LM in this paper, and Phone-SVM
(Support Vector Machines applied on counts
of phone n-grams) (Campbell et al., 2006).
In both cases, N phone decoders are applied
to the input utterance, and each output i

(i ∈ [1, N ]) is scored for each target lan-
guage j (j ∈ [1, L]), by applying the mo-
del λ(i, j) (estimated using the outputs of
the phone decoder i for the subset of the
training database corresponding to langua-
ge j). Scores for the subsystem i are calibra-
ted, typically by means of a Gaussian bac-
kend. A t-norm (Auckenthaler, Carey, and
Lloyd-Thomas, 2000) is applied before cali-
bration. Finally, N × L calibrated scores are
fused using the FoCal toolkit (FoCal, 2008).
A linear logistic regression was applied, to get
L final scores for which a minimum expec-
ted cost Bayes decision is taken, according
to application-dependent language priors and
costs (see (Brümmer and du Preez, 2006) for
details). Figure 1 shows the structure of a
phonotactic language recognizer.

Figure 1: A phonotactic language recognition
system.

In this work, the phonotactic systems we-
re based on the phone decoders developed
and made available by the Brno Univer-
sity of Thechnology (BUT) for Czech, Hun-

garian and Russian (Schwarz, 2008). BUT
decoders have been previously used by ot-
her groups −besides BUT (Matejka et al.,
2007), the MIT Lincoln Laboratory (Torres-
Carrasquillo et al., 2008)− as the backend
for phonotactic language recognition, yiel-
ding high recognition accuracies. Each BUT
decoder runs its own acoustic front-end, so
it can be seen as a black box which takes a
speech signal as input and gives the 1-best
phone decoding as output.

BUT decoders were designed to process 8
kHz raw PCM signals. Therefore, the original
16 kHz signals were downsampled to 8 kHz.
Prior to phone tokenization, an energy ba-
sed Voice Activity Detector (VAD) was used
to split and remove low-energy (presumably
non-speech) segments from the signals. Non-
phonetic units appearing in phone sequences
were all mapped to silence, leading to inven-
tories of 43, 59 and 49 phonetic units for
Czech, Hungarian and Russian, respectively.

Two different phone sequence modeling
techniques were applied:

Phone-LM : 4-gram LMs with Witten-
Bell smoothing. It was used the SRI Lan-
guage Model toolkit (Stolcke, 2002) to
estimate phone sequence n-gram models.

Phone-SVM : SVM built on bag-of-N-
gram vectors (including up to 4-grams),
weighted as proposed in (Richardson and
Campbell, 2008). It was used the libLi-
near (Fan et al., 2008)

3. Performance measures

The language recognition task defined in
this evaluation considers two types of errors:
(1) misses, those for which the correct answer
is yes but the system says no; and (2) false
alarms, those for which the correct answer
is no but the system says yes. Therefore, for
any test condition the corresponding error ra-
tes can be computed as the fraction of target
trials that are rejected (miss rate, Pmiss) and
the fraction of impostor trials that are accep-
ted (false alarm rate, Pfa), and suitable cost
functions can be defined as combinations of
these basic error rates.

3.1. Graphical evaluation: DET

curves

Detection Error Tradeoff (DET) curves
(Martin et al., 1997) provide a straightfor-
ward way of comparing global performance



of different systems for a given test condi-
tion. A DET curve is generated by computing
Pmiss and Pfa for a wide range of operation
points (thresholds), based on the scores yiel-
ded by the analyzed system for a given test
set. DET curves are used in NIST evaluations
to support system performance comparisons.
In this work, DET curves were generated by
means of NIST software.

3.2. Equal Error Rates

The most common performance measure
is the Equal Error Rate (EER), which reports
system performance when the false acceptan-
ce probability (Pmiss) is equal to the missed
detection probability (Pfa). EER is a very
simple measure, useful in many context but
it does not allow to compare the global per-
formance of two systems.

3.3. Log-Likelihood Ratio average

cost CLLR

When scores represent (or can be inter-
preted) as log-likelihood ratios, it is possible
to evaluate systems also in terms of the so
called CLLR (Brümmer and du Preez, 2006),
which is used as an alternative performan-
ce measure in NIST evaluations. CLLR shows
two important features: (1) it allows to eva-
luate system performance globally by means
of a single numerical value, which is somehow
related to the area below the DET curve, pro-
vided that scores can be interpreted as log-
likelihood ratios; and (2) CLLR does not de-
pend on application costs; instead, it depends
on the calibration of scores, an important fea-
ture of detection systems. To compute CLLR,
the FoCal toolkit can be used (FoCal, 2008).

Let LR(X, i) be the likelihood ratio corres-
ponding to segment X and target language
i. The likelihood ratio can be expressed in
terms of the conditional probabilities of X

with regard to the alternative target and non-
target hypotheses, as follows:

LR(X, i) =
prob(X|i)

prob(X|¬i)
(1)

Let consider an evaluation set E, consis-
ting of the union of L + 1 disjoint subsets:
Ej (j ∈ [1, L]) containing segments in
the target language j, and E0 containing
segments in unknown languages. Pairwise
costs CLLR(i, j), for i ∈ [1, L] and j ∈ [0, L],
are defined as follows:

CLLR(i, j) =











1

|Ei|

∑

X∈Ei

log2(1 + LR(X, i)−1) j = i

1

|Ej|

∑

X∈Ej

log2(1 + LR(X, i)) j 6= i

(2)
Finally, the average cost CLLR is compu-

ted by adding the pairwise costs for all the
combinations of target and non-target (inclu-
ding Out-Of-Set) languages, as follows:

CLLR =
1

L

L
∑

i=1

{Ptarget · CLLR(i, i)

+
L
∑

j=1

j 6=i

Pnon−target · CLLR(i, j)

+ POOS · CLLR(i, 0)} (3)

where Ptarget is the prior probability of
target languages, Pnon−target is the prior pro-
bability of non-target languages and POOS

is the prior probability of unknown (Out-Of-
Set) languages. In this work, the same values
used in the two last NIST LRE (2007 and
2009) are applied:

POOS =

{

0,0 closed-set
0,2 open-set

Ptarget = 0,5

Pnon−target =
1− Ptarget − POOS

L− 1

The cost function CLLR returns an un-
bounded non-negative value which can be in-
terpreted as information bits, with lower va-
lues representing better performance, the va-
lue 0 corresponding to a perfect system and
the value log2(L) corresponding to a system
which just relies on (uniform) priors, thus
providing no information to decide a trial.
Further details about the reasons for using
and the interpretation of CLLR can be found
in (Brümmer and du Preez, 2006; Brümmer
and van Leeuwen, 2006).

4. The KALAKA database

The KALAKA speech database
(Rodriguez-Fuentes et al., 2010b) allows
to build language recognition systems with
four target languages: Basque, Catalan,
Galician and Spanish. These are all official
languages in Spain, though only Spanish is
spoken in the whole territory. Due to the
interaction between these languages, the



task of distinguishing them can be more
difficult than expected.

KALAKA consists of wide-band (16kHz) seg-
ments extracted from TV shows, including
both planned and spontaneous speech in di-
verse environment conditions involving a var-
ying number of speakers. Various types of
TV shows were recorded, with prevalence of
broadcast news, talk shows and debates.

The training set contains around 9 hours of
speech per target language, which amounts
to around 36 hours of training data.

Both development and evaluation data inclu-
de utterances in target and unknown langua-
ges, so that closed-set and open-set evalua-
tions can be carried out.

The development dataset consists of
1800 speech segments, distributed in th-
ree subsets, each containing 600 seg-
ments with nominal durations of 30, 10
and 3 seconds, respectively. Each subset
consists of 120 segments per target lan-
guage and 120 additional segments from
unknown languages (70 for French, 10
for Portuguese and 40 for Enghish).

The evaluation dataset has the same
structure, except for the distribution of
non-target languages (10 for French, 70
for Portuguese and 40 for German).

Development and evaluation sets contains
around 7.7 hours of speech each: more than
90 minutes of speech per target language and
more than 90 minutes of speech for unknown
languages all together.

5. Results

In this work, closed-set and open-set tests
were carried out on the subset of 30-second
speech segments of KALAKA. In closed-set
verification, the set of trials is limited to seg-
ments containing speech in one of the tar-
get languages, and scores are computed ba-
sed on those trials. In open-set verification,
scores are computed based on the whole set
of trials for a given test, including those co-
rresponding to segments containing speech in
an unknown (Out-Of-Set) language.

5.1. Closed-set evaluation

Table 1 shows results (EER and CLLR)
using various single language verification sub-

systems and systems resulting from diffe-
rent fusions. DET curves for the GMM-SVM
subsystem, the Phone-LM fused system, the
Phone-SVM fused system and the main sys-
tem (fusing all the previous subsystems) are
shown in Figure 2.

Table 1: EER and CLLR of single and fused lan-
guage recognition systems on the closed-set eva-
luation subset of 30-second speech segments.

EER CLLR

GMM-SVM (A) 16.11% 0.96

CZ 16,08% 0,94

HU 13,19% 0,80
Phone-LM

RU 14,17% 0,86
(B)

Fusion 7,53% 0,49

CZ 7,95% 0,58

HU 8,44% 0,59
Phone-SVM

RU 10,10% 0,68
(C)

Fusion 5,45% 0,42

(A+B) 5,52% 0,38
Partial (A+C) 4,06% 0,35
Fusions

(B+C) 4,83% 0,38

Fusion (A+B+C) 3,58% 0,30
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Figure 2: Pooled DET curves of various subsys-
tems: GMM-SVM, Phone-LM, Phone-SVM and
the fusion of all of them, on the closed-set eva-
luation subset of 30-second speech segments.

The low-level (acoustic) subsystem is
clearly worse than the high-level (phonotac-
tic) subsystems. But it can be seen that the
fusion of both types of language recognition
systems takes advantage from complemen-
tary information and leads to the best re-
sults. These are the main comments on these
results:



The acoustic GMM-SVM subsystem
yields the worst result.

Individual phone-LM subsystems yield
quite poor results but their fusion was
quite successful.

Individual phone-SVM subsystems yield
quite good results (specially CZ) and
their fusion was very successful.

The partial fusion of the acoustic subsys-
tem with phone-ML provides around
26,7% and 24,4% of improvement in
terms of EER and CLLR respectively,
with regard to results obtained exclusi-
vely with phone-ML.

The partial fusion of the acoustic subsys-
tem with phone-SVM provides around
25,5% and 19% of improvement in terms
of EER and CLLR respectively, with re-
gard to results obtained with phone-
SVM.

The partial fusion between Phone-LM
and Phone-SVM provides around 11,5%
of improvement with regard to the re-
sults obtained with phone-SVM.

The best result is obtained when the th-
ree systems are fused: EER= 3,58% and
CLLR=0,30 (around 12% of improvement
with regard to the best partial fusion). The
performance of this system is remarkably bet-
ter than those of the most competitive sys-
tems submitted to the Albayzin 2008 LRE,
yielding around 24,5% relative improvements
in terms of EER (Rodriguez-Fuentes et al.,
2010a).

EER and DET curves are similar to tho-
se attained in NIST LRE, which deals with
much more data and target languages (Pe-
nagarikano et al., 2010b). Since we are not
comparing the same systems on two different
tasks, but different systems on different tasks,
we cannot extract conclusions. Anyway, the-
se results may indicate that this task is, in
fact, more difficult than expected, taking in-
to account that we are dealing with wide-
band (good quality) speech signals and just 4
target languages. This difficulty may be due
to the presence of various sources of varia-
bility (speakers, environment, channel, etc.)
but more probably to the acoustic and lexical
similarity among the target languages, which
evolved jointly in different regions of the Ibe-

rian Peninsula, being Castilian Spanish the
shared and most influential language.

Table 2 shows a detailed analysis of the
behaviour of the main fused system for each
target language (see DET curves per langua-
ge in Figure 3). Note that, since the number
of segments for each target language is 120,
an error of 0,83% means that only one seg-
ment is missed.

Table 2: Percentage of errors per target language
(miss probability in the diagonal and false alarm
probability out of the diagonal) for the closed-set
tests, using the main fused system.

Target

Spanish Catalan Basque Galician

Spanish 8,33 1,67 5,00 15,00

Catalan 0,83 0,83 1,67 0,83

Basque 0,83 0.00 0,83 0,83
S
e
g
m
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n
t

Galician 12,50 4,17 0.00 4,17
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Figure 3: DET curves for target languages, using
the main fused system in the closed-set test con-
dition.

Clearly, system performance was not ho-
mogeneous when disaggregated for all the
target languages. The best recognition per-
formances were obtained for Basque and Ca-
talan. In both cases, only one of the 120 tar-
get segments was missed and few segments
were taken as false alarms for other target
languages. On the other hand, it appears that
Spanish and Galician were confused each ot-
her, also showing a significant miss rate.



5.2. Open-set evaluation

Results in open-set tests are presented in
Table 3 and Figure 4. System performance is
remarkably worse in open-set than in closed-
set verification tests. But the relative beha-
vior of single and fused systems is similar to
that observed in closed-set verification tests.

The acoustic GMM-SVM subsystem
yields the worst result.

Individual phone-LM subsystems yield
quite poor results but their fusion was
successful.

Individual phone-SVM subsystems yield
quite good results (specially CZ) and
their fusion was quite successful.

The partial fusion of the acoustic subsys-
tem with phone-ML provides around
18% and 11% of EER and CLLR impro-
vements, respectively.

The partial fusion of the acoustic subsys-
tem with phone-SVM provides around
7% and 5%of EER and CLLR improve-
ments, respectively.

As in the closed-set tests experiments, low-
level and high-level language recognition
systems provide complementary information
and their fusion leads to the best results.

The performance of the main fused sys-
tem (EER= 9,23%) is similar to those of
the most competitive systems submitted to
the Albayzin 2008 LRE (Rodriguez-Fuentes
et al., 2010a). The increase of EER with re-
gard to the best partial fusion (EER=8,33%)
is due to a local effect (as can be observed in
the shape of the DET curves). But, as noted
in subsection 3.3, CLLR allows us to evalua-
te the system globally and it reflects a 1,3%
improvement with regard to the best partial
fusion.

Table 4 shows the detailed analysis of the
behavior of the main fused system for each
target language (see DET curves in Figure
5). The best recognition performance was ob-
tained for Basque, whereas performance was
quite worse for the three other target langua-
ges.

In the open-set tests, the presence of im-
postor trials with unknown languages had
little impact in the performance for Basque
(which yielded again the best performance),
whereas the impact was quite remarkable for

Table 3: Performance (EER and CLLR) of single
and fused language recognition systems on the
open-set evaluation subset of 30-second speech
segments

EER CLLR

GMM-SVM (A) 20,04% 1,51

CZ 18,81% 1,42

HU 18,35% 1,33
Phone-LM

RU 17,48% 1,44
(B)

Fusion 13,75% 1,10

CZ 11,83% 1,03

HU 12,71% 1,08
Phone-SVM

RU 14,23% 1,12
(C)

Fusion 8,96% 0,82

(A+B) 11,27% 0,98
Partial (A+C) 8,33% 0,78
Fusions

(B+C) 9,48% 0,82

Fusion (A+B+C) 9,23% 0,77
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Figure 4: Pooled DET curves of various sys-
tems: GMM-SVM, Phone-LM, Phone-SVM and
the system fusing all of them, on the open-set
evaluation subset of 30-second speech segments.

Catalan. Note the high cost associated to Ca-
talan for impostor trials with unknown lan-
guages in the open-set tests.

The high performance for Basque may be
due to the different origins of Basque with
regard to the other target languages (which
are Romance languages). Basque has been in-
fluenced by Romance languages (specially by
Spanish and French), but has completely dif-
ferent roots, and its lexicon is quite different
from those of the other languages appearing
in KALAKA. On the other hand, the high
confusion of Catalan (and at a lower degree,



also of Galician) with the unknown languages
may be due to its similarity to French or Por-
tuguese (note that all of them are Romance
languages).

Table 4: Percentage of errors per target language
(miss probability in the diagonal and false alarm
probability out of the diagonal) for the open-set
tests, using the main fused system.

Target

Spanish Catala Basque Galician

Spanish 18,33 1,67 2,50 10,83

Catalan 0.00 11,67 0.00 0.83

Basque 0.00 0.00 1,67 0.00

Galician 15,83 2,50 0.0 6,67S
e
g
m
e
n
t

Unknown 3,33 35,00 11,67 21,67
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Figure 5: DET curves for target languages, using
the main fused system in the open-set test condi-
tion.

6. Conclusions

In this work, various systems were evalua-
ted on a language verification task defined
on the four Spanish official languages (Spa-
nish, Catalan, Basque and Galician. Closed-
set and open-set tests (these latter including
segments in French, Portuguese, German or
English) were performed on subsets of 30-
seconds speech segments obtained from TV
shows.

The main verification/recogniton system
resulted from the hierarchical fusion of an
acoustic subsystem and 6 phonotactic subsys-
tems. To model each target language, the

acoustic subsystem used spectral characte-
ristics of the audio signal whereas phono-
tactic subsystems used sequences of phones
produced by acoustic-phonetic decoders. The
best fused system attained 3,58% EER and
CLLR= 0.30 in closed-set tests (a 24,5% im-
provement with regard to previous results).
Performance was remarkably worse (9,23%
EER and CLLR= 0.77) in open-set tests.

Finally, system performance was not ho-
mogeneous when disaggregated for target
languages. In particular, the best recognition
performance was obtained for Basque, which
may be due to the different origins of Basque
with regard to the other target languages.
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