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Abstract

This paper presents a simple approach to phonotactic dialect
recognition which uses lattices of time-synchronous phone co-
occurrences at the frame level. In previous works, we success-
fully applied cross-decoder phone co-occurrences to improve
performance in language recognition experiments on the 2007
NIST LRE database. We call phone co-occurrence to the si-
multaneous (time-synchronous) presence of two phone units
coming from two different phone decoders. In this work, the
approach is ported to a Dialect Recognition task based on the
assumption that co-occurrences can better represent the tiny
differences among the dialects. Besides, a slightly different
approach is presented, based on the simultaneous presence of
two phone units in the lattice produced by a single decoder
(intra-decoder phone co-occurrences). For evaluating the ap-
proach, a choice of open software (Brno University of Technol-
ogy phone decoders, HTK, SRILM, LIBLINEAR and FoCal)
was used, and experiments were carried out on the Arabic di-
alects of the NIST 2011 LRE database. The approach based
on cross-decoder phone co-occurrences outperformed the base-
line phonotactic system, yielding around 8% relative improve-
ment. The fusion of both systems yielded 7.31% EER and
CLLR = 0.497, meaning 19% relative improvement.
Index Terms: Phonotactic Dialect Recognition, Phone Co-
occurrences, Phone Lattices, Support Vector Machines.

1. Introduction
In the last years, Spoken Language Recognition (SLR) has ex-
perienced great progress since it is demanded by many ap-
plications such as: spoken language translation, multilingual
speech recognition, spoken document retrieval, etc. NIST Lan-
guage Recognition Evaluations (LRE) [1] have significantly
contributed to the development of SLR technology since 1996
until today. Dialect Recognition (DR) is considered an even
more challenging problem, since differences among dialects are
more subtle than those found among different languages. In
the last NIST LREs, some DR tasks have been also included:
Chinese in NIST 2007 LRE, English (American and Indian) in
NIST 2007, 2009 and 2011 LRE, and Arabic (Iraqi, Levantine,
MSA and Maghrebi) in the last NIST 2011 LRE.

The techniques applied to Dialect Recognition are usually
ported from Language Recognition. Two main complementary
approaches are typically used: low level acoustic modeling and
high level phonotactic modeling. To model the target language,
low level acoustic systems take information from the spectral
characteristics of the audio signal as in [2], whereas high level
phonotactic systems use sequences of phones produced by Par-

allel Phone Recognizers (PPR) as in [3, 4, 5]. An hybrid ap-
proach has been recently proposed in [6].

Nowadays, the most common phonotactic approach uses
counts of phone n-grams to build a feature vector which feeds
a classifier based on Support Vector Machines (SVM) [7]. Sys-
tem performance can be improved with the use of phone lattices
instead of 1-best phone strings [8], since lattices provide richer
and more robust information.

In previous works, we have presented a new approach to
phonotactic language recognition which uses statistics of Cross-
Decoder Phone Co-occurrences (CDPC) at the frame level start-
ing from 1-best phone strings in [9], and from lattices in [10].
CDPC take into account the simultaneous (time-synchronous)
presence of two phone units (co-occurences) coming from two
different phone decoders. Not all the co-occurrences must be
considered: in [10] we showed that using the 200 most likely
co-occurences was a good compromise to get optimum perfor-
mance. Experiments were carried out on the NIST 2007 LRE
database yielded 15% of relative improvements.

In this work, this approach is ported to a Dialect Recogni-
ton task. We start from the assumption that co-occurrences can
better represent the tiny differences among dialects. Besides, a
variant of the CDPC approach that can be applied using a sin-
gle decoder, is presented: Intra-Decoder Phone Co-occurrences
(IDPC) which take into account the simultaneous presence of
two phone units in the phone lattice produced by a single de-
coder. Systems have been developed by means of open software
(BUT phone decoders, HTK, SRILM, LIBLINEAR and FoCal)
and evaluated on a relevant database: the Arabic dialects of the
NIST 2011 LRE (Iraqi, Levantine, MSA and Maghrebi).

The rest of the paper is organized as follows. Section
2 presents the main features of the lattice-based phonotactic
recognition system used as baseline in this work. Section 3 de-
scribes the proposed approach, based on the use of lattices to
compute statistics of time-synchronous phone co-occurrences.
The experimental setup is briefly described in Section 4. Re-
sults obtained in dialect recognition experiments on Arabic di-
alects of the NIST 2011 LRE are presented in Section 5. Finally,
conclusions are outlined in Section 6.

2. Baseline: Phonotactic Recognition
A phonotactic dialect recognizer based on phone lattices and
SVM scoring is used as baseline system. An energy-based
voice activity detector is applied in first place, which splits and
removes long-duration non-speech segments from the signals.
Then, the Temporal Patterns Neural Network (TRAPs/NN)
phone decoders, developed by the Brno University of Technol-
ogy (BUT) for Czech (CZ), Hungarian (HU) and Russian (RU)



[11], are applied to compute phone lattices. Regarding channel
compensation, noise reduction, etc. all the systems presented
in this paper rely on the acoustic front-end provided by BUT
decoders.

BUT decoders do not generate phone lattices but phoneme
posterior probabilities, which are stored and later processed
with the HVite decoder of HTK [12]. BUT decoders take into
account three non-phonetic units: int (intermittent noise), pau
(short pause) and spk (non-speech speaker noise) along with 42,
58 and 49 phonetic units of Czech, Hungarian and Russian re-
spectively. For each unit, a three-state model is used, so three
posterior probabilities per frame are calculated and stored.

Before generating phone lattices, non-phonetic units int,
pau and spk are integrated into a single 9-state model (pau).
After that, the number of units is 43 for Czech, 59 for Hungar-
ian and 50 for Russian. Then, posterior probabilities are used as
input to HVite to produce phone lattices, which encode multiple
hypotheses with acoustic likelihoods. Finally, the lattice-tool of
SRILM [13] is used to produce the expected counts of phone
n-grams.

3. Time-Synchronous Phone
Co-occurrences

Two different approaches are considered: (1) Cross-Decoder
Phone Co-occurrences (CDPC) [10] which take into account the
simultaneous (time-synchronous) presence of two phone units
(co-occurences) coming from two different phone decoders;
and (2) Intra-decoder Phone Co-occurrences (LDPC) which
take into account the simultaneous presence of two phone units
in the phone lattice of a single decoder.

3.1. Cross-Decoder Phone Co-occurrences

Let us consider a choice of two decoders A and B from the
set of 3 possible decoders (CZ, HU and RU). Lattices of time-
synchronous cross-decoder phone co-occurrences can be ob-
tained by composing the posterior probabilities of two phone
models i, j (i from decoder A and j from decoder B) at each
frame t, thus creating a single unit on the lattice which repre-
sents the time-synchronous co-occurrence of both phones.

BUT decoders produce a sequence of numbers representing
the posterior probabilities pti,s for each one of the three states s
of each phone i at each frame t, encoded in the following way:

x(pti,s) =
√

−2 log pti,s (1)

To combine posterior probabilities of two phones, i from de-
coder A and j from decoder B, at each state s and each frame t,
the following expression can be applied:

x(ptij,s) = x(pti,s, p
t
j,s) =

√
−2 log (pti,sp

t
j,s)

=
√

−2(log pti,s + log ptj,s)

=
√

x2(pti,s) + x2(ptj,s) (2)

Therefore, the new composite model ij, corresponding to the
time-synchronous co-occurrence of phones i and j, has the
same number of states than the models i and j. All the pho-
netic units of decoder A can be combined with all the phonetic
units of decoder B, resulting composite models of three states.
However, the pau model, which is always present in both de-
coders for any choice of A and B, is not taken into account.

As it was shown in a previous work [10], not all the phone
co-occurrences must be considered, but only the most likely.
To determine which 2-phone combinations should be used, the
sum of posterior probabilities for each composite unit ij was
calculated on the entire training set of the Arabic NIST 2011
LRE database (see Subsection 4.1 for details) in the following
way:

pij =

S∑
s=1

T∑
t=1

ptij,s (3)

where S is the number of states corresponding to each com-
posite unit ij and T is the total number of frames in the training
database. Once pij has been calculated for all the combinations,
a ranked list is created by sorting the values of pij from highest
to lowest. In this work, a set of 200 co-occurrences has been
considered a good compromise to get optimum performance.
We have found that this set of 200 co-occurrences differs by
more than 25% from the set of 200 units that was chosen by
using general SLR databases, that is, it seems that the set of co-
occurrences has adapted to the language under study (Arabic).

Once the new sequence of posterior probabilities represent-
ing the phone co-occurrences is obtained, the HVite decoder
can be used to get the composite lattice. The symbols associ-
ated to the arcs of the lattice represent the co-occurrence of two
units, but the computational process is exactly the same as in
the baseline system.

3.2. Intra-Decoder Phone Co-occurrences

Let us consider one decoder A from the set of 3 possible de-
coders (CZ, HU and RU). Lattices of time-synchronous intra-
decoder phone co-occurrences can be obtained by composing
the posterior probabilities of two phone models i, j (both i
and j from decoder A) at each frame t, thus creating a single
unit on the lattice which represents the time-synchronous co-
occurrence of both phones. The process is exactly the same as
that used to generate cross-decoder phone co-occurrences (see
Subsection 3.1).

4. Experimental Setup
4.1. Training, development and test datasets

In the NIST 2011 LRE, 24 target languages were considered,
and among them, four Arabic dialects: Iraqi, Levantine, MSA
and Maghrebi. Development data specifically collected for the
NIST 2011 LRE was sent to participants [14], including 100
30-second segments for each of the four Arabic dialects. For a
better coverage, we split Arabic subsets into two disjoint sub-
sets (each having approximately half the segments for each di-
alect): one half was used to train specific models for the Arabic
dialects, and the other was used to estimate backend and fusion
parameters.

To train more robust models, we added data from databases
distributed by the LDC, some of them containing conversa-
tional telephone speech (LDC2006S45 for Arabic Iraqi and
LDC2006S29 for Arabic Levantine). We also added data ex-
tracted from wideband broadcast news recordings, dowsam-
pling them to 8 kHz and applying the Filtering and Noise-
adding Tool1 FANT to simulate a telephone channel. Arabic
MSA was extracted from Al Jazeera broadcasts included in the
Kalaka-2 database created for the Albayzin 2010 LRE [15]. Fi-
nally, broadcasts were also captured from video archives in TV

1http://dnt.kr.hsnr.de/download.html



websites to get speech segments in Arabic Maghrebi (Arrabia
TV, http://www.arrabia.ma). TV broadcasts were fully audited,
so that only reasonably clean speech segments were selected
for training. Evaluation was carried out on the Arabic signals of
the 2011 LRE evaluation corpus, specifically on the 30-second,
closed-set condition. Table 1 summarizes the datasets used in
the experiments.

Table 1: Dialect data used in the experiments.

Hours # 30s cuts
Arabic Train Devel Eval
Dialects Other Sources NIST LRE 2011

Iraqi 20.24 0.48 48 308
Levantine 27.56 0.47 49 308

MSA 1.87 0.47 51 306
Maghrebi 1.79 0.41 54 305

4.2. Evaluation measures

In this work, systems will be compared in terms of: (1) Equal
Error Rate (EER); and (2) the so called CLLR [16], an alterna-
tive performance measure used in NIST evaluations. We inter-
nally consider CLLR as the most relevant performance indica-
tor, because it allows to evaluate system performance globally
by means of an application independent single numerical value.
CLLR does not depend on application costs; instead, it depends
on the calibration of scores, an important feature of detection
systems. CLLR has higher statistical significance than EER,
since it is computed starting from verification scores (in contrast
to EER, which depends only on Accept/Reject decisions).

4.3. SVM modeling

All systems developed in this work follow a SVM phonotac-
tic approach. SVM vectors consist of counts of features repre-
senting the phonotactics of an input utterance: phone 3-grams
(baseline), 3-grams of cross-decoder phone co-occurrences (co-
oc X-Y) and 3-grams of intra-decoder phone co-occurrences
(co-oc X-X). A sparse representation was used, which involved
only the most frequent features. That is, instead of using a full
space representation, features were ranked according to their
counts on the training dataset using a feature selection algorithm
based on frequency [17], and only those with the M = 20000
highest counts were considered. Counts were stacked in a single
vector and an L2-regularized L1-loss Support Vector Machine
(SVM) classifier was estimated and applied, by means of LI-
BLINEAR [18], which was modified by adding some lines of
code to compute regression values. Finally, systems were built
by fusing the scores of three calibrated SVM-based phonotac-
tic subsystems (one per phone decoder). The FoCal toolkit was
used for calibration and fusion (see [19] for details).

5. Experimental Results
Phonotactic systems described in Sections 2 and 3 were devel-
oped and evaluated on the Arabic Dialects of the NIST 2011
LRE (see Subsection 4.1 for details). Table 2 shows EER and
CLLR performance in dialect recognition experiments apply-
ing the baseline system, the proposed cross-decoder phone co-
occurrence systems (co-oc X-Y) and intra-decoder phone co-
occurrence systems (co-oc X-X). Note that we call system to the
fusion of three subsystems, each corresponding to one phone
decoder in the baseline and co-oc X-X systems (CZ, HU, RU
and CZ-CZ, HU-HU, RU-RU respectively) and to a 2-decoder
choice in the co-oc X-Y systems (CZ-HU, CZ-RU, HU-RU).

Baseline performance (9.03% EER and 0.613 CLLR) was

improved by the use of the proposed co-oc X-Y system (8.29%
EER and 0.569 CLLR) meaning around 8% relative improve-
ment. When the proposed co-oc X-X was applied, a slight
degradation was observed with regard to the baseline system
(9.69% EER and 0.646 CLLR). It seems that cross-decoder
phone co-occurrences provide more information than the phone
co-occurrences computed on a single decoder. This result was
somehow expected, since time-synchronous phone likelihoods
in a single decoder could probably be strongly correlated, i.e.
their distribution may depend more on the decoder than on the
language/dialect.

Fusions involving the baseline and the two co-occurrence
systems are also presented in Table 2. Fusions led to better
performance in all cases. Best performance was achieved by
fusing the baseline and co-oc X-Y systems (7.31% EER and
CLLR = 0.497, meaning 19% relative improvement).

Table 2: Performance (EER and CLLR) for the baseline system, the
proposed cross-decoder phone co-occurrence (co-oc X-Y) and intra-
decoder phone co-occurrence (co-oc X-X) systems, and different fu-
sions.

System EER CLLR

(1) CZ 13.01 0.881
(2) HU 14.24 0.920
(3) RU 13.51 0.878

Baseline = (1)+(2)+(3) 9.03 0.613
(4) CZ-HU 11.94 0.805
(5) CZ-RU 12.20 0.805
(6) HU-RU 10.75 0.733

Co-oc X-Y = (4)+(5)+(6) 8.29 0.569
(7) CZ-CZ 14.99 0.969
(8) HU-HU 14.81 0.974
(9) RU-RU 14.39 0.909

Co-oc X-X = (7)+(8)+(9) 9.69 0.646

Baseline + Co-oc X-X 8.60 0.557
Baseline + Co-cc X-Y 7.31 0.497

Co-oc X-X + Co-oc X-Y 7.64 0.527
Baseline + Co-oc X-X + Co-oc X-Y 7.39 0.492

For the sake of completeness, Table 3 and Table 4 show the
performance of subsystems and fusions if only phone lattices
of one-decoder or two-decoders were available. First, if only
one decoder was available, the obtained results would be those
of Table 3. Co-oc X-X subsystems led to worse performance
than baseline subsystems, which is fully in line with previous
results. But the fusion of baseline and co-oc X-X subsystems
led to better performance: 4% and 9% for CZ, 8.5% and 8% for
HU and 7.5% and 9.5% for RU relative improvements in EER
and CLLR, respectively.

Table 3: Performance (EER and CLLR) for the baseline subsystems
(CZ, HU, RU), the proposed intra-decoder phone co-occurrence sub-
systems (co-oc X-X: CZ-CZ, HU-HU, RU-RU) and fusions of baseline
systems and co-oc X-X subsystems.

System EER CLLR

CZ 13.01 0.881
CZ-CZ 14.99 0.969

CZ + CZ-CZ 12.52 0.801
HU 14.24 0.920

HU-HU 14.81 0.974
HU + HU-HU 13.02 0.842

RU 13.51 0.878
RU-RU 14.39 0.909

RU + RU-RU 12.53 0.794



Then, if only two decoders were available, the obtained re-
sults would be those of Table 4. Again, co-oc X-Y subsystems
led to worse performance than baseline systems (fusion of two
baseline subsystems), which is also consistent with previous re-
sults. But the fusion of the baseline and the co-oc X-Y subsys-
tems led to better performance: 14% and 13% for (CZ, HU),
11% and 11% for (CZ, RU) and 20% and 16.5% for (HU,RU)
relative improvements in EER and CLLR, respectively.

Table 4: Performance (EER and CLLR) for the baseline subsystems
(CZ+HU, CZ+RU, HU+RU), the proposed cross-decoder phone co-
occurrence subsystems (co-oc X-Y: CZ-HU, CZ-RU, HU-RU) and fu-
sions of baseline and co-oc X-Y subsystems

System EER CLLR

CZ + HU 10.65 0.699
CZ-HU 11.94 0.805

CZ + HU + CZ-HU 9.11 0.609
CZ + RU 10.26 0.696
CZ-RU 12.20 0.805

CZ + RU + CZ-RU 9.12 0.618
HU + RU 10.56 0.699
HU-RU 10.75 0.733

HU + RU + HU-RU 8.37 0.584

We have carried out another series of experiments on the
American vs. Indian English dialects. Training and develop-
ment data were limited to those distributed by NIST to 2007
LRE participants: 10 conversations per language were ran-
domly selected for development (204 American English, 84 In-
dian English and 174 Hindi 30-second cuts) and the remaining
conversations were used for training (130.7 hours of American
English, 13 hours of Indian English and 59.3 hours of Hindi).
We evaluated these systems on the official 2007 NIST LRE Test
Set (30-second task) including 80 American English and 160 In-
dian English signals. The baseline system yielded 7.81% EER,
the co-oc X-Y system yielded 7.34% EER and the fusion of
both yielded 7.03% EER meaning a 10% relative improvement
and better performance (on the same task) than that reported
by state-of-the-art phonotactic systems [3], acoustic systems [2]
and hybrid systems [6], thus supporting the use of cross-decoder
dependencies for dialect recognition. However, due to the small
number of test trials, these results are not as significant as those
presented above for the Arabic dialects.

6. Conclusions
In this paper, the latest developments under two ap-
proaches using lattices of cross-decoder and intra-decoder time-
synchronous phone co-occurrences in SVM-based phonotactic
dialect recognition have been presented and evaluated. The pro-
posed approaches rely on the assumption that co-occurrence in-
formation is somehow specific to each dialect and represents
just a means to extract more information from existing de-
codings. The proposed cross-decoder co-occurrence approach
outperformed the baseline phonotactic system yielding around
19% relative improvement in terms of CLLR. The fusion of the
baseline system and the cross-decoder co-occurrence approach
yielded 7.31% EER and CLLR = 0.497, meaning also 19%
relative improvement. This support our assumption that the use
of co-occurrences help to better represent the tiny differences
among dialects.
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