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Abstract1

Continuous Speech Recognition systems require a
Language Model (LM) to represent the syntactic
constraints of the language. In LMs development a
smoothing technique needs to be applied to also consider
events not represented in the training corpus. In this work,
several back-off smoothing approaches have been
compared: classical discounting-distribution schema
including Witten-Bell, Absolute and Linear discounting
and a new proposal, the Delimited discounting. Delimited
discounting deals with the Turing discounting problems
while keeping the Katz´s smoothing scheme. The
experimental evaluation was carried out over a Spanish
speech application task, showing that an increase of the
test set perplexity of a LM does not always mean a
degradation in the model performance when integrated into
a CSR system. Besides, there is a strong dependence
between the amount of probability reserved by the
smoothing technique to be assigned to unseen events and
the value of the balance parameter applied to the LM
probabilities in the Bayes´s rule needed to get the best
system performance.

1. Introduction
Continuous Speech Recognition (CSR) Systems require a
Language Model (LM) to integrate the syntactic and/or
semantic constraints of the language. In this work, a
syntactic approach of the well-known n-gram models is
used to get suitable LMs: the k-Testable in the Strict
Sense (k-TSS) LM [1] which are a sub-class of regular
machines. Conventional n-grams do not include any
structural parameter whereas k-TSS automata is fully
represented and stored [2]. Thus, choosing k-TSS or n-
grams is just a matter of representation convenience [3].
LM are usually get from large text databases. Then a
smoothing technique needs to be applied to also estimate
the probabilities to be assigned to those events not
represented in the training corpus, that is, unseen events
[4] [5]. Backing-off smoothing was chosen in previous
works [6] because the involved recursive scheme has been
well integrated into the finite state formalism. In this
work, several back-off smoothing approaches have been
evaluated and compared: classical discounting-distribution
scheme including Witten-Bell, Absolute and Linear
discounting a new proposal, the Delimited discounting [7].
In Witten-Bell, Absolute and Linear discounting,
discounting factors are applied to the whole set of seen
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events in the training corpus. As a consequence, the mass
of probability to be assigned to unseen events could be
overestimated. On the contrary, in the new Delimited
proposal, discounting factors are only applied to those
events scarcely observed in the training corpus. That is, it
is based on the well-known Turing discounting [8] but
avoiding its associate problems.
The evaluation was carried out using the test set perplexity
and the obtained %WER in the CSR system.
Nevertheless, the ability of the test set perplexity to
predict the real behavior of a smoothing technique when
working in a CSR system could be questioned [9] because
it has not take into account the relationship with acoustic
models.
Usually, heuristic parameters are applied to the Bayes´ rule
to obtain optimum CSR performances [10] [11]. In this
work, the effect of applying a balance exponential factor to
the LM probabilities was also evaluated. This evaluation
shows a strong relationship between the amount of
probability reserved by the smoothing technique to be
assigned to unseen events and the value of the scaling
factor required to obtain the best CSR system
performance.
Section 2 deals with back-off smoothing proposals to be
evaluated: the classical Witten-Bell, Absolute Linear and
the new Delimited discounting. In section 3 the
experimental evaluation of the smoothing techniques was
evaluated in terms of both, perplexity and WER. Finally,
some concluding remarks are showed in Section 4.

2. Back-off smoothing techniques
As mentioned above, the k-Testable in the Strict Sense (k-
TSS) languages are a sub-class of the regular languages.
The use of regular grammars allowed to obtain a
deterministic k-TSS stochastic finite state automaton that
can be efficiently integrated in a CSR system [1] [3]. In
such a model, each state of the automaton represents a
string of words wi-(k-1)wi-(k-1)...wi-1 and it is labeled as
wi k

i

− −
−
( )1

1 , where i stands for a generic index in any string

w1...wi... appearing in the training corpus. Each transition
represents a k-gram, it is labeled by its last word wi and
connects two states labeled up to with k-1 words.
The probability associated with each transition
representing seen events can be estimated under a
maximum likelihood criterion. However, a probability
needs also to be associated with unseen events. To deal
with this problem, backing-off smoothing was chosen in
previous works [6] because the involved recursive scheme
has been well integrated in the finite state formalism. The
modified probability P(w/q) to be associated with a
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transition is estimated according to:

P w q

N w q

N q
w

N w q

N q

P w b

P w b
w

q

i

w

q

i q
w

q

i q

i q

( / )

( / )

( )

( / )

( )

( / )

( / )

=

−[ ] ∈∑






 −
∈∑−∑














∀ ∈∑
∀ ∈∑

∑ ∑

1

1

λ

λ
(1)

where: Σ is the vocabulary of the task, that is, the set of
words appearing in the training corpus; Σq is the

vocabulary associated with state q and consists of the set
of words appearing after the string labeling state q, i.e.
words labeling the set of seen outgoing transitions from
state q; N(w/q) is the number of times that word wi

appears after the string labeling state q; N q P w q
w q

( ) ( / )=
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∑ ,

and P(w/bq) is the estimated probability associated with

the same event in the (k-1)-TSS model. In this schema,
(1-λ) represents the discount factor, that is, the amount of
probability to be subtracted  and then be redistributed
among unseen events. Figure 1 represents this schema for
a state q labeled as wi k
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Figure 1: |Σq| seen events and |Σ|-|Σq| unseen events can be

found at each  state q labeled as wi k
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associated with unseen events is recursively obtained from
less accurate models (k-1, k-2,…1) using Equation 1.

2.1.- Discounting over all seen events
In the first place, the discounting factor (1-λ) can be
applied to the whole set of seen events in the training
corpus, as it is suggested in Equation 1. Absolute and
Linear discounting are classical proposals in which the
discounting factors depend on respective parameter values,
whereas the Witten-Bell discounting does not depend on
any parameter.
Witten-Bell discounting
The discounting depends on the number of different events
following the particular context labeling a state q, i.e. the
size of the state vocabulary |Σq|, and on the number of

seen events appearing at this context N(q):

 1− =
+ ∑

λ N q

N q q

( )

( )
(2)

Absolute discounting
This discounting schema consists on subtracting a
constant b from each count N(w/q) in the following way:

1− = −λ N w q b

N w q

( / )

( / )
(3)

Linear discounting
In this case a quantity proportional to each count is
subtracted from the count itself in the following way:
1 1− = −λ l (4)

2.2.- Discounting over scarcely seen events.
On the other hand, discounting factor could be only
applied to the scarcely observed seen events: Katz
discounting. The scheme devised by Katz [8] combines
Turing discounting with backing-off. According to this
formalism the probability associated with events occurring
more than a fixed number of times, say r times, are
estimated under a maximum likelihood criterion whereas
events occurring less than r times, N(wi/q)<r, are
discounted a certain mass of probability. Thus:
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In Turing discounting the discounted mass of probability
depends on n1, n2, ...,nr+1, (being ni the number of events
which occur i times). The lower the count N(w/q) is, the
bigger discounting is applied, because higher counts are
supposed to be better estimated. This approach puts some
constrains to the relative values of n1, n2, ...,nr+1, which
are not always satisfied by k-grams models with medium
and high values of k, due to the lack of an adequate
distribution of the samples.
Delimited discounting
To avoid the Katz discounting problems, the Delimited
discounting [7] can be used. As in the Katz model, the
discounting operation was limited to low counts, i.e.,
N w q r( / ) ≤  in the following way:
1 1− = − − < ∧ <<<λ τ τ τd r N w q d d( ( / )) ,                     (6)

Discounting depends on d and τ parameters’ values, which
must be minor than one. The bigger the count was
(N(w/q)≤r) the lower discounting was applied. When
N(w/q)=r, the discounting was the minimum (only
depends on d parameter), and when N(w/q)=1, the
discounting applied was the maximum (d-t(r-1)).

3.- Experimental evaluation.
Previously presented back-off smoothing techniques were
evaluated and compared over a set of k-TSS language
models in terms of test set perplexity and WER in a CSR
system [12]. Since k-TSS LM are a syntactic
representation of classical n-grams, the obtained results in
this work are valid for both aproximations.
The experiments were carried out over a task-oriented
Spanish speech corpus [13], consisting in 82,000 words
and a vocabulary of 1,208 words. This corpus represents a
set of queries to a Spanish geography database. The
training corpus used to obtain the k-TSS models,
consisted in 9150 sentences. The text test set consisted in
200 different sentences. These sentences were then uttered
by 12 speakers resulting in a total of 600 sentences that
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composed the speech test set. Uttered sentences were
decoded by the time-synchronous Viterbi algorithm with a
fixed beam-search to reduce the computational cost. A
chain of Hidden Markov models representing the acoustic
model of the word phonetic chain replaced each transition
of the k-TSS automaton.
In a first series of experiments test set perplexities (PP)
were obtained. Absolute (Ad), Linear (Ld) and Delimited
(Dd) discounting depend on values of b, l, and d parameters
respectively. For each discounting method, two values
were chosen to be evaluated: those which got a “good” LM
(low PP) and a “bad” LM (high PP). Besides, in Delimited
discounting τ  parameter was fixed (τ=0.01) and the
minimum number of times r required for a maximum
likelihood estimation of event probabilities (Equation 5)
was also set to r≈7. Witten-Bell (WBd) is not depending
on any parameter.
Figure 2 shows the results of this first series of
experiments. Techniques involving a low smoothing
degree (Ad b=0.01, Dd d=0.99 and Ld l=0.01) achieved
high perplexity values, whereas techniques involving a
high smoothing degree (Ad b=0.4, WBd and Dd d=0.70)
achieved low perplexity values, being constant for high
values of k.
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Figure 2. - a) PP obtained by several Smoothed k-TSS LM
using Witten-Bell (WBd), Absolute (Ad), Linear (Ld) and
Delimited (Dd) discounting methods. b) A detail of Figure 2a
for PP values around 7.

Figure 3 shows the system performance (WER) obtained
when these smoothed LMs were integrated in the CSR
system. The average number of active nodes in the trellis
(including acoustic and LM states) needed by every LM to
decode a sentence is also represented in Figure 3.
Figure 3 shows that low-smoothing techniques (Ad
b=0.01, Dd d=0.99 and Ld l=0.01) led to the best system
performances: low WER and average number of active
nodes. On the other hand, high-smoothing techniques led

to the worst system performances: Witten-Bell and Linear
discounting (l=0.1). Absolute discounting (b=0.4) and
Delimited discounting (d=0.70) had almost the same
behavior (it is very difficult to see the difference in Figure
3). In all discounting methods there was not difference
among the results obtained by k-TSS models with values
of k > 3.
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Figure 3. - a) System performance (WER) obtained for the
Smoothed k-TSS LMs in Figure 2. b) Average number of active
nodes at decoding time.

The word error rates shown in Figure 3 clearly disagree
with the perplexity behavior shown in Figure 2.
Moreover, the best system performances were obtained
when smoothing methods leading the highest perplexity
values were used [9].
In a second series of experiments the LM probabilities
were modified by introducing a balance parameter α  [10]
[11] in the Bayer’ rule: P(w)α. Figure 4 shows the system
performance (WER) obtained by two of the smoothed
language models (k=3 and 4) used in the first series of
experiments (Figures 2 and 3), when different values of the
balance parameter around the optimum performance (α=3,
4, 5 and 6) were considered.
Points at the bottom left corner of each plot represent the
best system performance: the lowest WER and the lowest
average number of active nodes in the lattice. For any k-
TSS model, important increases in both %WER rates (up
to a minimum) and in the average active nodes can be
observed (Figure 4) when the balance parameter α  was
increased.
The best performance for this task was reached by high-
smoothing techniques: Witten-Bell with α=6 and Absolute
(b=0.4) and Delimited (d=0.7) with α=5. Nevertheless, the
WER differences around the optimum WER value were not
significant. The system performance decreased when low-
smoothing techniques were used in this task: Absolute
(b=0.01), Delimited (d=0.99) and Linear (l=0.01)
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discounting. They reached their best system performance
with α values around 3.
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Figure 4. - %WER obtained by the Smoothed k-TSS LMs in
Figure 2 and 3 using different values of the α parameter.

The accumulated probabilities at the end of each word Ω is
a combination of acoustic P(A/Ω) and language P(Ω)
probabilities. Acoustic probabilities are usually smaller
than language probabilities and besides they are applied
much more times. So that, the gap among accumulated
probabilities is usually bigger than the gap among LM
probabilities. The immediate consequence is that LM
probabilities are irrelevant in most part of the situations to
decide the best way to follow. However, when the LM
probabilities are raised to a power α>1: (P(w))α, all of
them are attenuated, but this attenuation is higher for
lower probability values. So that, the gap between the
high and low probabilities is also bigger and then the LM
probabilities are more and more competitive with the
increase of α  values, up to a maximum where LM
probabilities are overvalued.
Since, high-smoothed LMs have a smaller gap among
probabilities, they reached their best performance for
values of α  higher than low-smoothed LM. As a
consequence, there is a strong dependence between the
smoothing technique and the value of the scaling
parameter α  needed to get the best performance of the
system (which is in many cases perplexity independent).
In fact, the use of a balance factor α can be understood as a
new smoothing (redistribution) of the LM probabilities.

4.-Concluding remarks.
Several back-off smoothing approaches have been tested
and evaluated over syntactic Language Models. Classical
discounting-distribution schema including Witten-Bell,
Absolute and Linear discounting and a new proposal, the
Delimited discounting, were evaluated and compared.

Delimited discounting deals with the Turing discounting
problems while keeping the Katz´s smoothing scheme.
The experimental evaluation was carried out over an
Spanish application task using both, the test set
perplexity and a CSR system performance (WER).
Experiments show that an increase of the test set
perplexity of a LM does not always means degradation in
the model performance which fundamentally depends on
empirical factors. In this work, several scalling factors
were applied to the estimated smoothed LM probabilities.
In all cases important decreases in both %WER and
average active nodes in the lattice were observed. In fact, it
was proved that there is a strong dependence between the
amount of probability reserved by the smoothing
technique to be assigned to unseen events and the value of
the balance parameter α  needed to get the best system
performance.
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