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Abstract. In Continuous Speech Recognition (CSR) systems a Language Model (LM) is required to represent the

syntactic constraints of the language. Then a smoothing technique needs to be applied to avoid null LM probabilities.

Each smoothing technique leads to a different LM probability distribution. Test set perplexity is usually used to

evaluate smoothing techniques but the relationship with acoustic models is not taken into account. In fact, it is

well-known that to obtain optimum CSR performances a scaling exponential parameter must be applied over LMs

in the Bayes’ rule. This scaling factor implies a new redistribution of smoothed LM probabilities. The shape of the

final probability distribution is due to both the smoothing technique used when designing the language model and

the scaling factor required to get the optimum system performance when integrating the LM into the CSR system.

The main object of this work is to study the relationship between the two factors, which result in dependent effects.

Experimental evaluation is carried out over two Spanish speech application tasks. Classical smoothing techniques

representing very different degrees of smoothing are compared. A new proposal, Delimited discounting, is also

considered. The results of the experiments showed a strong dependence between the amount of smoothing given by

the smoothing technique and the way that the LM probabilities need to be scaled to get the best system performance,

which is perplexity independent in many cases. This relationship is not independent of the task and available training

data.
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1. Introduction

Continuous Speech Recognition (CSR) systems re-

quire a Language Model (LM) to integrate the syn-

tactic and/or semantic constraints of the language. The

goal of an LM is to estimate the a priori probability

P(�) of a sequence of words � ≡ ω1ω2 . . . ω|�| to

be pronounced. The most classical statistical methods

for generating LM’s are based on the estimation of the

probability of observing a word given the n −1 preced-

ing lexical units (n-gram models): P(ωi |ω1 . . . ωn−1)

(Rosenfeld, 2000). However, there are a high number

of sequences of words that do not appear in training cor-

pora (unseen events) and could appear in tests. Thus,

a certain mass of probability must be subtracted from

the seen combinations and redistributed among the un-

seen ones, i.e, a smoothing technique must be applied

(Ney et al., 1997; Chen and Goodman, 1999; Chen and

Rosenfeld, 2000).

The test set perplexity (PP) is typically used to eval-

uate the quality of the LM (Ney et al., 1997; Chen and

Goodman, 1999) and the quality of the smoothing tech-

nique. Perplexity can be interpreted as the (geometric)

average branching factor of the language according to

the model. It is a function of both the task and the

model. It is supposed that the “best” models get the

“lowest” Word Error Rates (WER) in the CSR sys-

tem, but there are many contra examples in literature

(Rosenfeld, 2000). The ability of the test set perplexity

to predict the real behavior of a smoothing technique
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when the smoothed LM is working into a CSR system

could be questioned (Clarkson and Robinson, 1999)

since it does not take into account the relationship with

acoustic models. Several attempts have been made to

devise metrics that are better correlated with Word

Error Rates than perplexity (Clarkson and Robinson,

1999; Bimbot et al., 2001), but for now perplexity re-

mains the main metric for practical language model

construction (Rosenfeld, 2000). In fact, the quality of

the model must be ultimately measured by its effect on

the specific task for which it was designed, namely by

its effect on the system error rate. However, error rates

are typically non-linear and poorly understood func-

tions of language models (Rosenfeld, 2000). On the

other hand, a recent work (Klakow and Peters, 2002)

has shown good correlations between PP and WER

when the task and available training data allow LM

distributions close to the “true” distributions. In this

paper we try to analyse the effect of the smoothing

technique applied to the LM in the CSR system and to

show its real impact on final system error rates.

CSR systems are invariably based on the well-known

Bayes’ rule, i.e., the recognizer must find the word

sequence �̂ that satisfies (Jelinek, 1985):

�̂ = arg max
�

P(�)P(A | �) (1)

where P(�) is the a priori probability of the word

sequence and P(A | �) is the probability of the se-

quence of acoustic observations given the sequence of

words �. P(A | �) represent the acoustic likelihoods

obtained through acoustic models, typically Hidden

Markov Models (HMM), whereas P(�) are estimated

by the LM.

However, it is well known that the best performance

of a CSR system is obtained when LM probabilities are

modified by introducing an exponential scaling factor

(Jelinek, 1996; Rubio et al., 1997; Ogawa et al., 1998;

Mangu and Stolcke, 2000). This parameter is needed

because acoustic and LM probabilities are not real, but

rather approximations, and are estimated from differ-

ent knowledge sources (Jelinek, 1996). Other authors

have stated that the language model weight compen-

sates for the frame-independence assumption in HMM-

based acoustic models (Mangu and Stolcke, 2000). In

practice, the effect of the scaling factor is to attenuate

all the LM probabilities in an exponential way. A new

redistribution of the already smoothed LM probabili-

ties is then achieved at decoding time. Thus, the shape

of the final LM probability distribution depends on both

the distribution previously provided by the smoothing

technique and the score scaling applied at decoding

time. Thus, the final optimum value of the scaling factor

is not independent of the smoothing technique. More-

over, the effect of the smoothing technique on system

performance is not independent of the subsequent scal-

ing. The aim of this work is precisely to analyse the re-

lationship between the two effects and to establish their

related contribution to the final system performance. In

Section 2 we fully explain this relationship and the mo-

tives behind our work.

Section 3 presents a brief summary of the k-Testable

in the Strict Sense (k-TSS) languages (Garcı́a and

Vidal, 1990) used to generate LMs (Varona and Tor-

res, 1999). k-TSS languages are a subclass of regu-

lar languages (Garcı́a and Vidal, 1990). They can be

considered as a syntactic approach of classical n-gram

models derived from formal language theory.

Section 4 describes the syntactic back-off (Varona

and Torres, 1999; Torres and Varona, 2001) smoothing

techniques. The back-off formalism has been chosen

in this work because the recursive scheme involved

has been well integrated into syntactic formalism

(Torres and Varona, 2001). Furthermore, the difference

between recursively backing off to lower order n-

grams (Katz, 1987) and linearly interpolating n-grams

of different order (Jelinek and Mercer, 1980) matters

only when we go into the details of the mathematical

models (Ney et al., 1997). In this Section classical

discounting-distribution schemes (Kneser and Ney,

1995; Clarkson and Rosenfeld, 1997; Ney et al., 1997;

Chen and Goodman, 1999; Chen and Rosenfeld,

2000; Goodman, 2001) are defined under syntactic

formalism. A new discounting method, Delimited

discounting, is also presented. Delimited discounting

keeps the well-known Katz’s schema (Katz, 1987)

but avoids the problem associated with the lack of

an adequate distribution of the samples (Varona and

Torres, 2000). The smoothing techniques described

in this Section achieve very different probability

distributions, resulting in a wide range of smoothed

models, from very low to very high smoothed LMs.

This point, which concerns the main goal of our work,

is also analyzed in Section 4 when we describe each

discounting-distribution schema.

Section 5 presents the results of the experiment in

terms of both classical test set perplexity and CSR

system performance. The WER obtained through the

experiments as well as the computational cost in-

volved are considered in evaluating the CSR system
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performance. Experiments were carried out over two

Spanish databases of very different difficulty. The first

one, called Bdgeo (Dı́az et al., 1998), is a task oriented

speech corpus consisting of a medium size vocabulary.

It was specially designed to test speech understand-

ing systems with medium difficulty application tasks.

The second, called Info-tren (Bonafonte et al., 2000;

Rodrı́guez et al., 2001a), was collected from real users

of a human-machine dialogue system. It includes spon-

taneous speech and, thus, results in a high difficulty

application task.

Finally, some concluding remarks are given in

Section 6.

2. Introducing the LM into the CSR System

Within a CSR system there are several heuristic param-

eters that must be adjusted to obtain optimum perfor-

mances, such as the beam-search factor to reduce the

computational cost, etc. But, the most important factor

to be optimized, due to its great effect on final CSR

system performance (Jelinek, 1996; Rubio et al., 1997;

Ogawa et al., 1998; Mangu and Stolcke, 2000; Varona

and Torres, 2001, 2003), is the scaling factor α applied

over LM probabilities (P(ω))α . From a theorical point

of view, this parameter is needed because acoustic and

LM probability distributions are not real but approxi-

mations (Jelinek, 1996). The two probability distribu-

tions in Baye’s rule (Eq. (1)) are estimated indepen-

dently using different stochastic models that represent

different knowledge sources. Moreover, the parameters

of the acoustic and language models are estimated on

the basis of speech and text data corpora, respectively.

Each corpus was designated with a different purpose,

and therefore has a different vocabulary, size, complex-

ity, etc. Thus, a balance parameter α needs to be applied

to reduce these effects and then obtain good system per-

formance. Other authors have stated that the language

model weight compensates for the frame-independence

assumption in HMM-based acoustic models, which un-

derestimate the joint likelihoods of correlated acoustic

observations (Mangu and Stolcke, 2000).

In practice, acoustic and LM have very different

ranges of values. The accumulated probabilities at the

end of each partial hypothesis in the Viterbi trellis is a

combination of acoustic and language model probabili-

ties. Acoustic probabilities are usually smaller than lan-

guage probabilities and are applied many more times.

The gap among accumulated probabilities is therefore

usually bigger than the gap among LM probabilities.

The immediate consequence is that LM probabilities

are irrelevant in most situations for choosing the best

path1 (Varona and Torres, 2001). However, LM proba-

bilities are attenuated when they are raised to a power

α > 1, but this attenuation is higher for lower probabil-

ity values. A bigger gap is therefore obtained between

high and low probabilities and the LM probabilities are

then more relevant for deciding the next word combi-

nation.

At this point it is important to notice that the above

LM probability distribution depends on several fac-

tors such as the language, the task, the training corpus

composition, the language model order, etc. But the

smoothing defines a redistribution of the LM probabil-

ities by subtracting a certain mass of probability from

the seen events and by redistributing it among the un-
seen ones according to the specific technique and dis-

counting schema. As a consequence, the final optimum

value of the α scaling factor cannot be independent of

the smoothing technique. Moreover, the effect of the

smoothing technique on the system performance is not

independent of the subsequent scaling achieved at de-

coding time. Thus, it cannot be measured in terms of

test set perplexity. The relationship between the LM

probability redistribution achieved by the smoothing

technique discounting schema and the probability re-

distribution achieved at decoding time when weighting

the LM probabilities to be established. Our main mo-

tivation is to analyse the relationship between the two

effects and to establish their related contribution to the

final system performance.

It is well known that smoothing is a central issue in

language modeling, and thus, in CSR system construc-

tion and performance. However, all the comparisons

between smoothing techniques, even the most thorough

(Ney et al., 1997; Chen and Goodman, 1999), have been

carried out in terms of test set perplexities. As a con-

sequence, none of them has analyzed the interdepen-

dence between the smoothing technique, probability

scaling at decoding time and final system performance.

The argument is that the linear correlation between

test set perplexity and word error rate is very strong

(Chen and Goodman, 1999). However, this correla-

tion is dependent, once again, on the relationship being

analyzed.

3. The Syntactic Language Model

A syntactic approach of the well-known n-gram mod-

els, k-Testable in the Strict Sense (k-TSS) LMs, has
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been used in this work to be integrated into a CSR

system. The use of k-TSS regular grammars allows us

to obtain a deterministic Stochastic Finite State Au-

tomaton (SFSA) integrating K k-TSS models (with

k=1, 2 . . . K ) into a self-contained model (Varona and

Torres, 1999; Torres and Varona, 2001).

Each Stochastic Finite State Automaton representing

a k-gram model can be directly obtained from a set of

training samples (Garcı́a and Vidal, 1990). Such an

automaton (k-TSS SFSA) is defined as the five-tuple

(�, Qk, q0, F, δk) where:

• � = {ω j }, j = 1. . . |�|, is the vocabulary, that is

the set of words appearing in the training corpus.

• Qk is the set of states associated with the model of

order k. Each state represents a string of k −1 words

ωi−(k−1) . . . ωi−1, where i stands for a generic index

in any string ω1 . . . ωi . . . appearing in the training

corpus. Such a state is labeled as ωi−1
i−(k−1).

• the automaton has a unique initial state q0 ∈ Qk ,

and F is the set of final states of the automaton and

represents the final substrings of length k − 1.

• δk is the transition function δk : Qk × � →
Qk × [0 . . . 1]. δk(q, ωi ) = (qd , P(ωi | q)) defines

a destination state qd ∈ Qk and a probability

P(ωi | q) ∈ [0 . . . 1] to be assigned to each ele-

ment (q, ωi ) ∈ Qk × �. Each transition repre-

sents a k-gram; it is labeled by its last word ωi

and connects two states labeled by k − 1 words.

When the k-gram ωi−(k−1)ωi−(k−1)+1 . . . ωi−1ωi is

observed, an outgoing transition from the first to the

second state is set and labeled by ωi ; P(ωi |ωi−1
i−(k−1))

is the probability associated with the observed k-

gram ωi−(k−1)ωi−(k−1)+1 . . . ωi−1ωi . Thus:

δk
(
ωi−1

i−(k−1), ωi
) = (

ωi
i−(k−1)+1, P

(
ωi | ωi−1

i−(k−1)

))
(2)

The model defined above is a deterministic, and hence

unambiguous, stochastic finite state automaton (Garcı́a

and Vidal, 1990). Thus, the probability assigned to a

sentence � ≡ ω1 . . . ωl of length l, i.e. the probability

of string � being accepted by the automaton is obtained

as the product of the probabilities of the transitions used

to accept �:

P(�) =
l∏

i=1

P
(
ωi | ωi−1

i−(k−1)

)
(3)

The unambiguity of the automaton also allows us to

obtain a maximum likelihood estimation of the proba-

bility of each transition δk(ωi−1
i−(k−1), ωi ) as (Chandhuri

and Booth, 1986):

P
(
ωi | ωi−1

i−(k−1)

) = N
(
ωi | ωi−1

i−(k−1)

)∑
∀ω j ∈� N

(
ω j | ωi−1

i−(k−1)

) (4)

where N (ωi | ωi−1
i−(k−1)) is the number of times the word

ωi appears at the end of the k-gram ωi−(k−1) . . . ωi−1ωi ,

that is the count associated with the transition la-

beled by ωi coming from the state labeled as

ωi−1
i−(k−1).

The k-TSS language model defined above can be

considered as a syntactic version of an n-gram. More-

over, it has been shown (Dupont and Miclet, 1998)

that the probability distribution obtained through an

n-gram model is equivalent to the distribution ob-

tained by a stochastic grammar generating k-TSS lan-

guage, where k plays the same role as n does in

n-grams. The main advantage of using automata to

represent n-grams is that the structural features are

explicitly developed in the formal language theory,

and thus, explicitly included in the model (Hopcroft

and Ullman, 1979; Torres and Varona, 2001). A com-

plete formulation of this formalism can be found in

Torres and Varona (2001).

4. Back-off Smoothing

The maximum likelihood estimation of the probability

P(ωi | ω1 . . . ωn−1) is

PM L (ωi | h) = N (ωi | h)∑
ω j

N (ω j | h)
(5)

where h = (ωi−1
i−(n−1)) is a history representing a se-

quence of n−1 words, N (ωi | h) is the number of times

the word ωi appears after history h.

This estimation cannot deal with practical speech

recognition applications where new sequences of

words may be allowed, even if they do not appear (un-
seen events) in training corpora. The smoothing tech-

nique adjusts the maximum likelihood estimation in

order to assign a probability to any sequence of words.

A certain mass of probability is subtracted from seen
events (sequences of words appearing at training time)

and then redistributed among unseen events.
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Smoothing algorithms use lower n-gram models to

assign a probability to unseen n-grams. There are two

basic approaches for combining n-grams of different

order: linear interpolation (Jelinek and Mercer, 1980)

and back-off (Katz, 1987). Interpolated models are ob-

tained as linear or non-linear combinations of the prob-

abilities of the model to be smoothed P(ωi | h) and the

probabilities of a more general model P(ωi | h∗) in the

following way:

P(ωi | h) = λP(ωi | h) + (1 − λ)P(ωi | h∗) (6)

where h is a history representing a sequence of

n − 1 words and h∗ represents a history of words

shorter than h. In general, λ depends on the history

h. λ is usually estimated using the forward-backward

algorithm.

In back-off smoothing (Katz, 1987) the probability to

be assigned to unseen n-grams is recursively obtained

from less accurate models, i.e. n − 1, . . . , 1. Under

this formalism, the probability P(ωi |h) is estimated

according to:

P(ωi |h)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − λ)
N (ωi |h)

N (h)
N (ωi |h) �= 0

( ∑
∀ω j /N (ω j |h)�=0

λ
N (ω j |h)

N (h)

)
P(ωi |h∗)∑

∀ω j N (ω j |h)=0

P(ω j |h∗)

N (ωi |h) = 0

(7)

where N (ωi | h) is the number of times that word ωi

appears after history h, N (h) = ∑
∀ω/N (ωi | h)�=0

N (ωi | h)

and P(ωi | h∗) is the estimated probability associated

with the same event in the more general model (n − 1,

n −2, . . . , 1) and (1−λ) represents the discount factor,

that is, the amount of probability to be subtracted and

then redistributed among unseen events.

The difference between interpolation and back-off

matters fundamentally in the details of the mathemat-

ical models (Ney et al., 1997; Chen and Goodman,

1999). Moreover, a back-off version of an interpo-

lated algorithm can be created in a straightforward

way (Chen and Goodman, 1999). In this work back-

off smoothing has been chosen because the recursive

scheme involved has been better integrated into the fi-

nite state formalism used to build the language model.

A full definition and implementation of this formalism

can be found in Torres and Varona (2000) and Torres

and Varona (2001).

The discount factor (1 − λ) has many different for-

mulations (Ney et al., 1997; Chen and Goodman, 1999;

Chen and Rosenfeld, 2000; Clarkson and Rosenfeld,

1997; Goodman, 2001) leading to a wide range of

probability distributions, from very low to very high

smoothed models. In high-smoothed LMs the proba-

bility reserved by the smoothing technique for the un-
seen events is bigger than in low-smoothed LM. As

a consequence the gap between LM probabilities in

high-smoothed LMs is smaller than in low-smoothed

models. This variability is strongly related to the opti-

mum scaling of LM probabilities required at decoding

time to get good system performances. We now review

classical smoothing discountings under this point of

view. We first present techniques where the discount

is applied to the whole set of seen events in the train-

ing corpus, as suggested in Eq. (7). We then deal with

the Kneser-Ney discount, which is considered by many

authors as the most reliable smoothing technique. Fi-

nally we deal with the Katz’s back-off proposal where

the discount is only applied over scarcely seen events.

The new Delimited discounting, defined by the authors

in previous works (Varona and Torres, 2000), is also

included in this case.

4.1. Discounting Over all Seen Events

The most classical approaches are Witten-Bell, Add-

one, Absolute and Linear discountings (Clarkson and

Rosenfeld, 1997). In Absolute and Linear proposals

the mass of probability (1 − λ) subtracted from seen

events depends on certain parameter values that should

be optimized. Thus, LMs with very different degrees

of smoothing can be obtained.

Witten-Bell Discounting. In Witten-Bell, the dis-

count (1 − λ) basically depends on the number of

different events T (h) following the history h. That

is:

1 − λ = N (h)

N (h) + T (h)
(8)

It is widely used since it leads to low test set perplexi-

ties when compared to other classical back-off methods
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(Jurafsky and Martin, 2000; Bordel et al., 1994;

Clarkson and Rosenfeld, 1997). However, a depen-

dence has been found (Chen and Goodman, 1999) be-

tween perplexity and the size of the training of the LMs

when Witten-Bell discounting is used.

In this case a quite important mass of probability

is assigned to unseen events (high-smoothing) and the

gap between seen and unseen probabilities is reduced.

Combinations of words unseen in training can have a

relatively high probability in tests.

Add-one Discounting. This is a very simple dis-

counting method, adding one to all the counts. It is

calculated as:

1 − λ = N (h)

N (h) + 1
(9)

This method does not usually perform well and thus

is not commonly used by itself Jurafsky and Martin

(2000). It is usually applied as part of more complex

methods2 (Ney et al., 1997)

Since 1 ≤ T , the mass of probability to be dis-

counted and then redistributed among unseen events is

smaller (low smoothing) when using Add-one discount

then when using Witten-Bell one. The gap among LM

probabilities is therefore bigger using Add-One dis-

counting.

Absolute Discounting. This discounting schema

(Ney et al., 1997) consists of subtracting a con-

stant b from each count N (ωi | h) in the following

way:

1 − λ = N (ωi | h) − b

N (ωi | h)
(10)

Thus, (1 − λ) depends on the value of the count

N (ωi | h). Parameter b regulates the degree of smooth-

ing, that is the amount of probability discounted and

then distributed. In general parameter b depends on the

history h. High values of b lead to high smoothed mod-

els. The version included in the CMU toolkit (Clarkson

and Rosenfeld, 1997) uses a previously established

value of b (Ney et al., 1997) to get a discount similar

to the Good-Turing3 (Katz, 1987; Chen and Goodman,

1999) one: b = n1/(n1 + 2n2), where ni is the number

of events seen i times. However, this value is imprac-

ticable in many situations, such as when using cut-

offs, where it needs to be rectified. Parameter b is

experimentally optimized to get low perplexity LMs

(Ney et al., 1997; Chen and Goodman, 1999). The

Bounded discount (Ney et al., 1997) is a variant of the

Absolute discount where high counts are not modified

(Ney et al., 1997).

Linear Discounting. In this case a quantity propor-

tional to each count is subtracted from the count itself

in the following way:

1 − λ = (1 − l) (11)

The value of the parameter l regulates the degree of

smoothing, being the discounting factor independent

of any count, history or vocabulary size. The value of l
established (Ney et al., 1997) to get a discount similar

to the Good-Turing discount (Katz, 1987) and used by

the CMU toolkit (Clarkson and Rosenfeld, 1997) is

l = n1/N(h). Once again, this value is impracticable in

many situations.

4.2. Kneser-Ney smoothing

The Kneser-Ney smoothing is an extension of abso-

lute smoothing introduced by Kneser and Ney (1995).

In it, the discount is also applied over the whole set

of seen events. The highest-order distribution is ex-

actly the same as that obtained in absolute smoothing.

But lower-order distributions are modified: the prob-

ability distribution P(ωi | h∗) in Eq. (7) is substituted

by distribution β(ωi | h∗) = C(ωi | h∗)/C(h∗) where

C(ωi | h∗) is the count of the number of different con-

texts in which the sequence of words ωi
i−(n−2) appears

and C(h∗) = ∑
∀ω j /C(ω j | bq ) �=0

C(ω j | bq ). As a conse-

quence, the unigram probability is not proportional to

the number of occurrences of a word, but to the number

of different preceding words. Thus, Eq. (7) is now:

P(ωi | h)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(1 − λ)
N (ωi |h)

N (h)
N (ωi |h) �= 0( ∑

∀ω j /N (ω j |h)�=0

λ
N (ω j |h)

N (h)

)
β(ωi |h∗)∑

∀ω j N (ω j |h)=0

β(ω j |h∗)

N (ωi |h) = 0

(12)

where history h ≡ ωi−1
i−(n−1) represents a sequence of

n − 1 words and the shorter history h∗ ≡ ωi−1
i−(n−2)

represents a sequence of n − 2 words.
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Kneser-Ney smoothing really proposes to change

distribution P(ωi |h∗) by distribution β(ωi |h∗) in

Eq. (7). Then, any discount could be applied. In

this work only the Absolute discount is used as

it proposed in the relevant literature. Many authors

have stated that Kneser-Ney smoothing outperforms

all other smoothing techniques (Goodman, 2001)

even with high-order n-grams. New variants of this

smoothing have also been more recently proposed

(Chen and Goodman, 1999).

4.3. Katz’s Schema: Discounting Over Scarcely
Seen Events

The well known Good-Turing formula (Katz, 1987) is

based on the assumption that high counts are better esti-

mated than low counts. Katz extended this idea to back-

off smoothing by including combinations with more

general probability distributions, i.e., with lower order

models n − 1, n − 2, . . . , 1. According to this formal-

ism the probability associated with events occurring

more than a fixed number of times, say r times, is esti-

mated under a maximum likelihood criterion whereas

events occurring less than r times, N (ωi | h) ≤ r , are

discounted a certain mass of probability (Katz, 1987).

Thus the probability P(ωi | h) is estimated according

to:

P(ωi |h) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N (ωi |h)

N (h)
N (ωi |h) �= 0 ∧ N (ωi |h) > r

(1 − λ)
N (ωi |h)

N (h)
N (ωi |h) �= 0 ∧ N (ωi |h) ≤ r( ∑

∀ω j /
N (ω j |h)�=0

λ
N (ω j |h)

N (h)

)
P(ωi |h∗)∑

∀ω j /
N (ω j |h)=0

P(ω j |h∗)
N (ωi |h) = 0

(13)

This schema has been applied along with alterna-

tive estimations for the discount due to the draw-

backs of the Turing formula in practical applications.

The final Katz proposal keeps the total probability as-

signed to unseen events proposed by the Good-Turing

formula, i.e. n1/N (h), while estimating the discount

as:

1 − λ =
(N (ωi |h)+1)nN (ωi |h)+1

N (ωi |h)nN (ωi |h)
− (r+1)nr+1

n1

1 − (r+1)nr+1

n1

(14)

Delimited Discounting. In Turing discounting, the

discounted mass of probability depends on n1, n2,

. . . , nr+1, being ni the number of events which oc-

cur i times. This approach puts some constraints

to the relative values of n1, n2, . . . , nr+1 which are

not always satisfied by n-gram models with medium

and high values of n, due to the lack of an ad-

equate distribution of the samples. To avoid these

problems, Delimited discounting was proposed in

Varona and Torres (2000). As in Katz’s model (see

Eq. (13)), the discounting operation is limited to

low counts, i.e. N (ωi |h) < r , in the following

way:

(1−λ) = d−τ (r − N (ωi |h)) τ, d < 1 ∧ τ <<< d

(15)

Discounting depends on d and τ parameter val-

ues, which must be less than one. When the count

N (ωi | h) ≤ r is high the discount applied is

low (low smoothing). The minimum discount is ap-

plied for N (ωi | h) = r and only depends on

parameter d. However, when N (ωi | h) = 1 the

maximum discount, (d − τ (r − 1)), is applied.

Another problem to be addressed when using Katz’

discounting is that additional checks are required for

those histories for which all the events are seen more

than r times (see Eq. (13)). The remedy used in the

CMU toolkit is to increase the count N (h) by one using

the gained probability mass 1
(N (h)+1)

to be redistributed

over unseen events’ probabilities, which does not agree

with Katz’s discounting philosophy. In Delimited dis-

counting, only the minimum counts are decremented

(discounting only depends on parameter d) in the fol-

lowing way:
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P(ωi |h) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N (ωi |h)

N (h)

N (ωi |h) �= 0 ∧ N (ωi |h) > min
∀ωi

((N (ωi |h))

d
N (ωi |h)

N (h)
N (ωi |h) �= 0 ∧ N (ωi |h) = min

∀ωi

((N (ωi |h))( ∑
∀ω j /N (ω j |h)=0

∧1≤N (ω j |h)≤r

[1 − d]
N (ω j |h)

N (h)

)
P(ωi |h∗)∑

∀ω j /
N (ω j |h)=0

P(ω j |h∗)
N (ωi |h) = 0 (16)

In Delimited discounting the parameter d mainly

regulates the amount of probability discounted and

then distributed, that is, the degree of smoothing of

the model.

5. Experimental Evaluation

Experimental evaluation was carried out with two

Spanish databases of very different degrees of diffi-

culty. The first, Bdgeo, is a task-oriented corpus repre-

senting a set of queries to a Spanish geography database

(Dı́az et al., 1998). It was designed to test integrated

systems (acoustic, syntactic and semantic modeling) in

automatic speech understanding and includes a vocab-

ulary of 1208 words. Speech utterances were recorded

in laboratory environments at 16 KHz. The second

database, Info tren, consisted of 227 Spanish dialogues

on train information that were recorded by a consortium

of Spanish research groups as part of a project to de-

velop a human-machine dialogue system (Rodrı́guez

et al., 2001a). The dialogues were uttered in a sponta-

neous way and thus included acoustic, lexical and syn-

tactic disfluencies. They were recorded at 8 KHz across

telephone lines applying the well known Wizard of Oz

mechanism. Info tren task (Bonafonte et al., 2000) has

a vocabulary of around 2000 words plus 15 different

acoustic types of disfluencies including noises, filled

pauses, lengthenings, etc. (Rodrı́guez et al., 2001).

In these experiments, the smoothing and discount-

ing techniques reviewed in Section 4 were applied to

each LM to be evaluated. The final probability dis-

tribution, and thus the degree of smoothing, is regu-

lated by a parameter in Absolute (Ad), Linear (Ld),

Kneser-Ney (KNd) and Delimited (Dd) discounts. Pa-

rameters b, l, b and d respectively (see Section 4), are

optimized to get the lowest perplexity values for each

database. Then two more values leading to a lower and

a higher smoothed Language Model are also consid-

ered for each smoothing technique. As a consequence,

a wide range of probability distributions, from very low

to very high smoothed language models, is evaluated.

Finally, Witten-Bell (WBd) and Add-one (AOd) dis-

countings are also considered in the experiments. No

parameter regulates the degree of smoothing in these

cases. However, a smaller mass of probability is re-

distributed among unseen events when using Add-one

than when using Witten-Bell discounting.

In a first series of experiments (Section 5.1) the eval-

uation is carried out in terms of the test set perplexity

(PP). In the second series of experiments (Section 5.2)

the language models obtained are directly integrated

into the CSR system (Rodrı́guez et al., 2000). System

performances are measured in terms of both the Word

Error Rate and the Average number of Active Nodes

in the trellis needed to decode a sentence. Finally, in a

third series of experiments (Section 5.3), LM probabil-

ities are modified by introducing an exponential scaling

factor P(�)α (Jelinek, 1996). The object of these ex-

periments is to get the lowest WER by selecting the

adequate value of α. These experiments show that this

optimization is also dependent of the smoothing tech-

nique and is not independent of the task and available

training data.

5.1. Evaluating the Test Set Perplexity

The evaluation of an LM and its suitability to each ap-

plication task should be carried out in terms of final

system performance. However they are usually evalu-

ated in terms of perplexity. The test set Perplexity (PP)

is based on the mean log probability that a LM assigns
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Table 1. Perplexity (PP) evaluation of k-TSS LMs with k = 2 . . . 6 for the Bdgeo task. Parameters regulating

the degree of smoothing are optimized to get optimum PP. Then a lower and a higher smoothed model are also

considered. AOd discounting can be considered a lower smoothing version of WBd.

Absolute (Ad) Linear (Ld)

Witten-Bell Low Optimum High Low Optimum High

(WBd) smoothing smoothing smoothing smoothing smoothing smoothing

k b = 0.01 b = 0.4 b = 0.9 l = 0.01 l = 0.1 l = 0.3

2 13.10 13.74 12.87 13.45 13.24 13.72 15.06

3 7.54 9.38 7.42 8.21 8.47 7.79 9.22

4 7.17 10.01 6.86 8.07 9.01 7.29 8.22

5 7.22 12.52 6.84 8.49 10.44 7.45 8.02

6 7.37 14.01 6.85 8.86 11.60 7.66 7.97

Kneser-Ney (KNd) Delimited (Dd)

Add-One Low Optimum High Low Optimum High

(AOd) smoothing smoothing smoothing smoothing smoothing smoothing

k b = 0.01 b = 0.3 b = 0.8 d = 0.99 d = 0.7 d = 0.4

2 13.89 13.65 12.78 13.12 13.41 13.01 14.11

3 8.30 10.75 8.87 10.61 8.76 7.60 9.23
4 7.72 13.22 9.44 13.27 9.41 7.01 9.29

5 8.15 16.54 10.28 16.65 11.08 7.02 9.73

6 8.43 18.10 11.62 18.23 12.31 7.13 10.20

Table 2. Perplexity (PP) evaluation of k-TSS LMs with k = 2 . . . 6 for the Info tren task. Parameters regulating

the degree of smoothing are optimized to get optimum PP. Then a lower and a higher smoothed model are also

considered. AOd discounting can be considered a lower smoothing version of WBd.

Absolute (Ad) Linear (Ld)

Witten-Bell Low Optimum High Low Optimum High

(WBd) smoothing smoothing smoothing smoothing smoothing smoothing

k b = 0.1 b = 0.7 b = 0.9 l = 0.1 l = 0.3 l = 0.5

2 36.84 46.54 37.08 38.86 39.29 41.74 53.49

3 34.88 63.79 35.14 38.07 48.08 40.17 46.58
4 36.37 80.76 36.23 40.06 59.23 43.29 47.54

5 36.83 86.96 36.46 40.48 63.58 44.47 47.97

6 36.89 87.89 36.53 40.68 64.31 44.61 47.98

Kneser-Ney (KNd) Delimited (Dd)

Add-One Low Optimum High Low Optimum High

(AOd) smoothing smoothing smoothing smoothing smoothing smoothing

k b = 0.1 b = 0.6 b = 0.8 d = 0.9 d = 0.4 d = 0.2

2 57.22 43.86 35.13 37.12 44.63 37.04 43.78
3 69.87 69.12 43.15 55.88 62.11 35.02 45.78

4 77.73 91.34 50.80 77.52 78.59 37.15 47.81

5 98.15 100.74 55.32 93.13 86.76 38.42 48.27

6 118.15 123.17 61.10 110.12 85.7 39.86 48.3
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to a test set ωL
1 of size L, so that it is based exclusively

on the probability of words which actually occur in the

test as follows:

PP = P
(
ωL

1

)−1/L = e
− 1

L

L∑
i=1

log(P(ωi |ωi−1
1 ))

(17)

The test set perplexity measures the branching factor

associated with a task, which depends on the number of

different words in the text. Low perplexity values are

obtained when high probabilities are assigned to the

test set events by the LM being evaluated. Therefore,

the relationship with acoustic models in a CSR system

is not taken into account.

For this series of experiments, the Bdgeo training

corpus used to obtain the language models consisted

of 9150 sentences, including 82,000 words. The test

set consisted of 200 different sentences. These sen-

tences were then uttered by 12 speakers resulting in a

total of 600 sentences that composed the speech test

set to be used in the next series of experiments (see

Sections 5.2 and 5.3). On the other hand, the train-

ing test for the Info tren application task consists of

the transcription of 1349 user turns. They correspond

to 191 dialogues uttered by 63 speakers and result

in 16500 words and 5000 disfluencies. The test set

consisted of the transcription of 36 dialogues (308

user turns) corresponding to 12 new speakers (4000

words plus around 500 disfluencies). The correspond-

ing utterances composed the speech test to be used

to evaluate CSR system performance (Sections 5.2

and 5.3).

Tables 1 and 2 show the results of the evaluation of

smoothed k-TSS Language Models with k = 2 . . . 6,

in terms of test set perplexity (PP), over Bdgeo (Table

1) and Info tren (Table 2) application tasks.

For the Bdgeo application task, Table 1 shows that

the Kneser-Ney (KNd) smoothing technique obtains

optimum PP values with k = 3, Witten-Bell (WBd),

Linear (Ld), Add-One (AOd) and Delimited discounts

obtain optimum PP for k = 4 and Absolute discount

(Ad) performs better for k = 5. The lowest PP (6.84)

for the Bdgeo task is obtained by a 5-TSS language

model smoothed by an Absolute (Ad) discount. How-

ever, differences around optimum values are not very

significant.

Table 2 shows the evaluation through the Info tren

database. In this case, disfluencies are included in the

vocabulary. LMs are trained and tested with differ-

ent sets of transcribed spontaneous dialogues and thus

the mismatch between training and test is quite high

(Rodrı́guez et al., 2001): there are a high number of

sequences of k words in the test not appearing in the

training set. As a consequence, the Perplexity values

associated with this task are quite high (see Table 2)

especially for high values of k. Table 2 also shows ma-

jor differences among perplexity values when different

smoothing techniques are applied. In this case, the Add-

One (AOd) and Kneser-Ney (KNd) discounting tech-

niques obtain optimum PP values with k = 2 whereas

Witten-Bell (WBd), Absolute (Ad), Linear (Ld) and

Delimited (Dd) obtain optimum PP values for k = 3

models. The lowest PP (34.88) for the Info tren task

is obtained by a 3-TSS language model smoothed by

Witten-Bell (WBd) discount.

Results of the experiment shown in Tables 1 and 2

are plotted on the left side of Figs. 1 and 2 respec-

tively. The pictures on the right side only plot a trace

per smoothing technique which corresponds to the op-

timum perplexity. Figure 1 shows that low-smoothing

techniques show a degradation of PP values for k > 3

models in the Bdgeo task. The number of seen events,

i.e. k-grams, appearing in both the training and test sets

quickly decreases as k increases. Thus, a big mass of

probability (high smoothing) needs to be redistributed

among unseen events to get good perplexity behavior.

However, the picture on the right side of Fig. 1 shows

that for optimized smoothing PP remains quite consis-

tent as k increases. This picture also shows higher PP

values when the Kneser-Ney (KNd) discount is applied

over k > 2 models.

Figure 2 shows a similar behavior of the smooth-

ing techniques with k-TSS language models for the

Info tren database. However, k = 3 models do not per-

form much better than k = 2 models due to the lack of

training data for this difficult task. The right side picture

confirms a more consistent behavior of PP for high val-

ues of k when optimized smoothed models are applied.

However, this picture shows higher PP values when

Add-One (AOd) and Kneser-Ney (KNd) discounts are

applied over k > 2 models.

5.2. Integrating the Smoothed Models into the CSR
System

In the second series of experiments the language mod-

els evaluated in previous Section are directly inte-

grated into the CSR system (Rodrı́guez et al., 2000).

The uttered sentences of each test set are decoded by

the time-synchronous Viterbi algorithm with a fixed

beam-search to reduce the computational cost (Varona
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Figure 1. Perplexity (PP) evaluation of k-TSS LMs with k = 2 . . . 6 for Bdgeo. The picture on the left side plots results in Table 1. That on the

right side only plots a trace per smoothing technique which corresponds to optimum PP.
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Figure 2. Perplexity (PP) evaluation of k-TSS LMs with k = 2 . . . 6 for Info tren. The picture on the left side plots results in Table 2. That on

the right side only plots a trace per smoothing technique which corresponds to optimum PP.

and Torres, 2000). A chain of Hidden Markov Models

(HMM) representing the acoustic model of the word

phonetic chain replaces each transition of the k-TSS au-

tomaton. System performances are measured in terms

of both the Word Error Rate (WER) and the Average

number of Active Nodes (ANN) in the trellis (including

acoustic and LM states) needed to decode a sentence.

For these experiments, the LM probabilities are not

modified when they are integrated into the CSR sys-

tem, i.e. the exponential scaling factor α is set to 1 in

P(�)α .

Figures 3 and 4 show the WER and AAN values ob-

tained through this series of experiments for the Bdgeo

and Info tren databases respectively. The PP evaluation

of these LM is represented on the left side of Figs. 1

and 2, respectively.

Figures 3 and 4 show that low smoothing techniques

obtain the best WER in both databases. As mentioned

in Section 2, the gap among accumulated probabilities

is usually bigger than the gap among LM probabilities

when the LM is directly integrated into the CSR sys-

tem (α = 1). In that case, LM probabilities are often
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Figure 3. WER and AAN obtained for Bdgeo when k-TSS LMs with k = 2 . . . 6 are directly (no scaling of LM probabilities: α = 1) integrated

into the CSR system. The PP evaluation of these models is shown on the left side of Fig. 1.
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Figure 4. WER and AAN obtained for Info tren when k-TSS LMs with k = 2 . . . 6 are directly (no scaling of LM probabilities: α = 1)

integrated into the CSR system. The PP evaluation of these models is shown on the left side of Fig. 2.

irrelevant in the maximization procedure involved in

the Viterbi algorithm. However, in low smoothed lan-

guage models the gap among LM probabilities is bigger

than in high smoothed ones and, as a consequence, LM

probabilities are more competitive and relevant in the

trellis. Thus, low smoothed LMs lead to lower WER

when they are directly integrated into the CSR system

(α = 1) than high smoothed ones.

Pictures on the right side of Figs. 3 and 4 show that

AAN behaves similarly WER: low smoothing LMs

lead to low WER and to low AAN in the lattice. The

beam-search needs to keep a lower number of active

paths in the lattice when the LM probabilities become

significant, (low smoothing techniques) resulting in

lower computational costs. Moreover, the number of

AAN does not increase as k does, even if the size of the

language model increases (Torres and Varona, 2001).

Figures 5 and 6 only plot a trace per smoothing tech-

nique which corresponds to the best WER for the Bdgeo

and Info tren databases respectively.

Figures 5 and 6 show that models that optimize the

test set perplexity (see Figs. 1 and 2) do not lead to
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Figure 6. Selection of best WER for Info tren from Fig. 4: only a trace per smoothing technique. The PP evaluation of these models is shown

on the right side of Fig. 2.

the best system performances. In the Bdgeo task, the

Absolute discount (WER = 19.76% for the k = 4

model), followed by Delimited discount, achieved the

best system performances. In the Info tren database

the Add-One discount (WER = 55.38% for the k = 5

model) leads to the best results. Moreover, the best PP

is obtained by k = 3 models in this database.

5.3. Optimizing the System Performance

LM probabilities are modified in the third series of ex-

periments by introducing an exponential scaling fac-

tor P(�)α (Jelinek, 1996). Our main goal is to op-

timize the final system performance by selecting the

right value of α. Tables 3 and 4 show the WER and

AAN obtained for the Bdgeo and Info tren databases

respectively, when k-TSS LM’s with k = 2, . . . , 4

are integrated into the CSR system. Different values

of the scaling exponential parameter (α = 1. . . 7)

are evaluated. Optimum performances are empha-

sized and underlined. Then, for k = 5 and k = 6

only model system performances corresponding to the

α = 1 (no scaling of LM probabilities) and to the

value of α minimizing (α = optimum) the WER are

included.
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Table 3. WER and AAN obtained for Bdgeo through k-TSS LMs with k = 2 . . . 6. Note that parameters regulating the degree of

smoothing are optimized to get optimum PP; then a lower and a higher smoothed model are also considered (see Table 1 for PP

evaluation). Scaling parameter values α = 1, . . . , 7 are tested.

Absolute (Ad) Linear (Ld)

Witten-Bell Low Optimum High Low Optimum High

(WBd) smoothing smoothing smoothing smoothing smoothing smoothing

b = 0.01 b = 0.4 b = 0.9 l = 0.01 l = 0.1 l = 0.3

α WER AAN WER AAN WER AAN WER AAN WER AAN WER AAN WER AAN

1 41.62 3964 29.33 1270 38.76 3430 41.44 3950 34.73 2232 41.88 4565 45.72 4713

2 25.80 2588 19.29 813 24.22 2061 25.65 2544 22.26 1488 26.69 3192 30.64 3464

3 20.22 1508 16.1 533 18.54 1145 20.02 1449 17.34 923 20.9 1976 24.52 2335

4 16.99 764 14.54 359 16.00 591 17.06 701 15.44 509 17.95 996 21.13 1339

5 15.80 380 15.29 240 15.17 306 16.25 338 14.63 284 16.70 469 19.85 683

6 15.95 218 16.77 168 15.28 185 16.23 192 15.87 180 16.66 253 17.85 357
7 17.01 143 18.81 124 17.36 127 18.45 128 17.99 127 17.29 159 19.10 212

1 38.85 5189 19.78 1273 35.28 4462 39.31 5152 28.21 2801 38.39 5723 43.17 6136

2 21.86 2984 11.96 610 19.34 2274 22.17 2939 15.67 1442 21.35 3472 26.24 4172

3 15.35 1529 10.69 347 13.34 1084 15.41 1487 11.25 728 15.24 1890 19.22 2599

4 11.74 702 12.11 226 10.54 499 12.00 659 10.50 349 12.63 859 15.71 1382

5 10.82 328 13.93 146 10.30 241 11.61 305 11.63 182 11.24 388 13.78 654

6 10.85 179 18.2 102 11.56 140 12.17 166 14.98 114 11.72 199 13.04 333
7 13.04 114 21.88 77 14.13 95 14.67 107 18.4 82 13.15 119 13.49 190

1 38.50 5374 19.76 1258 35.16 4624 39.39 5344 27.89 2838 38.37 5868 42.72 118

2 21.86 3053 12.57 566 18.57 2316 21.59 3036 14.63 1376 20.76 3464 25.50 6326

3 14.44 1544 12.06 313 12.76 1083 15.32 1534 11.33 670 14.37 1827 18.05 4248

4 10.92 704 13.75 202 10.22 492 12.55 683 11.13 312 11.92 812 14.70 2606

5 10.24 328 17.09 129 9.49 236 11.93 317 13.24 161 10.84 363 12.59 1363

6 10.22 177 21.38 89 11.11 137 12.72 173 18.18 100 11.03 183 12.36 637
7 12.48 113 24.94 67 13.84 92 14.84 111 22.1 72 13.38 109 12.22 323

1 38.53 5410 19.81 1242 35.21 4656 40.10 5430 28.17 2860 38.39 5910 42.90 7213

op 10.24 212 11.83 325 10.02 240 12.17 397 13.11 345 11.02 381 13.98 721

1 38.56 5432 19.83 1265 35.23 5673 40.95 5461 28.19 2893 38.40 5936 43.13 7287

op 10.51 218 12.10 247 10.10 243 12.21 415 14.56 361 11.21 392 14.01 736

Kneser-Ney (KNd) Delimited (Dd)

Add-One Low Optimum High Low Optimum High

(AOd) smoothing smoothing smoothing smoothing smoothing smoothing

b = 0.01 b = 0.3 b = 0.8 d = 0.99 d = 0.7 d = 0.4

α WER AAN WER AAN WER AAN WER AAN WER AAN WER AAN WER AAN

1 33.29 2209 31.28 1944 40.54 4575 43.27 4714 32.93 1709 39.11 3458 41.14 3979

2 21.60 1207 19.76 1003 24.86 3120 27.05 3374 21.01 1045 24.06 2088 25.37 2581

3 17.33 684 16.28 575 18.63 1840 20.67 2156 16.37 645 18.58 1156 19.38 1478

4 14.98 416 14.57 366 15.94 855 16.87 1086 14.71 397 16.03 592 16.92 714

5 15.20 258 15.32 240 14.59 366 15.79 494 15.05 249 15.33 305 15.69 338
6 15.93 173 16.79 168 15.48 186 15.94 218 16.47 169 15.73 185 16.24 191

7 18.14 126 18.85 124 17.76 124 17.30 128 18.64 123 15.95 127 17.90 125

(Continue on next page)
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Table 3. (Continued.)

Kneser-Ney (KNd) Delimited (Dd)

Add-One Low Optimum High Low Optimum High

(AOd) smoothing smoothing smoothing smoothing smoothing smoothing

b = 0.01 b = 0.3 b = 0.8 d = 0.99 d = 0.7 d = 0.4

α WER AAN WER AAN WER AAN WER AAN WER AAN WER AAN WER AAN

1 28.3 2935 28.83 4085 41.64 6139 46.23 6387 24.57 1954 35.28 4479 38.22 5209

2 16.49 1325 14.68 1938 23.76 4093 28.62 4586 13.33 879 19.39 2292 21.46 3024

3 12.5 633 11.52 969 15.79 2496 19.69 3058 10.83 454 13.3 1088 15.16 1551

4 10.98 339 11.69 416 12.39 1423 15.76 1940 11.14 258 10.64 498 11.84 693

5 11.04 193 14.01 251 11.30 671 13.44 1081 12.72 157 10.13 240 10.65 315
6 13.08 123 16.80 185 11.40 352 12.84 518 15.65 106 12.31 140 12.19 173

7 15.67 88 22.59 147 13.34 212 13.87 259 19.6 79 14.39 95 14.34 110

1 28.59 3058 29.89 4373 42.89 6467 48.53 6703 24.28 1957 35.43 4634 38.11 5403

2 16.03 1356 15.80 2097 25.11 4402 31.37 4933 13.22 825 18.63 2326 20.87 3129

3 11.91 640 13.02 1042 16.72 2756 22.82 3411 11.06 410 12.46 1083 14.30 1610

4 10.89 339 12.93 437 13.31 1616 19.27 2260 11.52 229 10.13 490 11.19 726

5 10.67 190 16.34 250 12.89 794 16.80 1338 15.13 139 9.74 235 10.53 335
6 13.44 120 21.60 180 12.96 415 16.17 686 19.38 93 11.79 136 11.87 184

7 10.89 85 27.64 140 14.73 243 17.28 348 23.08 69 14.18 92 14.63 118

1 29.10 3200 30.02 3512 44.00 5530 49.10 6810 24.61 2013 35.61 4713 38.45 5432

op 11.03 213 13.51 451 13.31 802 17.90 723 11.56 432 10.01 240 10.91 345

1 29.23 3249 30.23 3658 45.31 5610 50.61 6835 24.85 2038 35.62 4747 38.64 5497

op 11.21 125 14.05 468 14.17 867 18.63 785 112.38 456 10.51 256 10.98 360

Tables 3 and 4 show that, for any k-TSS model, major

decreases in word error rates (down to a minimum) can

be observed when the balance parameter α is increased.

Tables 3 and 4 also show that low smoothing tech-

niques perform better when α has not reached its op-

timum value (α < optimum). Moreover, they need a

lower scaling of LM probabilities, i.e. a lower value of

α, to get the optimum WER (bold typed) than PP opti-

mized and high-smoothing techniques. Low smoothing

techniques lead to a bigger gap among the LM probabil-

ities than high smoothing ones, and therefore the rela-

tive weight of LM probabilities in the trellis is higher. In

fact, the exponential scaling of LM probabilities leads

to a probability redistribution, as any smoothing tech-

nique does. Thus, LM scaling can be considered as

a new smoothing (exponential) applied to the previ-

ously smoothed LM probabilities needed to get opti-

mum CSR performances. As a consequence, the effect

of the smoothing technique in final system performance

should be analyzed along with the effect of the expo-

nential scaling of LM probabilities. In fact, there is a

strong dependence between the smoothing technique

and the value of the scaling parameter α needed to get

the best performance from the system, which is, indeed,

perplexity independent in many cases.

As the value of α is increases (up to the optimum

value), the differences among performances are re-

duced. When optimum values of α are reached, similar

optimum performances (WER and AAN) are obtained

for all smoothing techniques evaluated. This behav-

ior can be analyzed in Figures 7 and 8. They plot the

CSR system performances (WER and AAN) achieved

through all smoothed LM analyzed and optimum LM

scaling (emphasized values in Tables 3 and 4), for the

Bdgeo and Info tren task, respectively.

Figure 7 shows an important decrease of WER for

k > 2 and optimum WER for k = 3 and k = 4 models

in the Bdgeo task. It also shows a quite constant com-

putational cost (AAN) for any k-TSS model and most

smoothing techniques.

For the Info tren task, Fig. 8 shows a quite similar

optimum WER for any smoothing technique, in spite

of the great perplexity differences shown in Table 2

and Fig. 2. In this case, Perplexity seems not to be the

most adequate parameter for evaluating the quality of

a smoothing technique when the LM is designed to

be integrated into a CSR system. Figure 8 also shows

that the AAN needed to decode a sentence is twice

as much for k > 2 models as for k = 2 whereas

the WER remains nearly constant. For this database,
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Table 4. WER and AAN obtained for Info tren through k-TSS LMs with k = 2 . . . 6. Note that parameters regulating the degree

of smoothing are optimized to get optimum PP; then a lower and a higher smoothed model are also considered (see Table 2 for PP

evaluation). Scaling parameter values α = 1, . . . , 7 are tested.

Absolute (Ad) Linear (Ld)

Witten-Bell Low Optimum High Low Optimum High

(WBd) smoothing smoothing smoothing smoothing smoothing smoothing

b = 0.1 b = 0.7 b = 0.9 l = 0.1 l = 0.3 l = 0.5

α WER AAN WER AAN WER AAN WER AAN WER AAN WER AAN WER AAN

1 61.69 3260 56.80 3027 61.25 3186 61.56 3105 59.67 3202 61.56 3254 62.10 3266

2 50.23 2594 45.87 2202 48.78 2466 49.29 2364 48.35 2500 50.15 2614 50.71 2639

3 43.83 1912 41.06 1440 43.04 1743 43.37 1649 42.81 1800 43.94 1956 44.87 1988

4 41.08 1291 39.05 866 40.23 1122 40.85 1065 40.06 1182 41.45 1348 42.43 1379

5 39.60 799 38.60 504 38.81 667 40.46 659 38.66 714 40.15 854 41.62 877

6 40.32 467 40.58 331 38.68 401 40.14 402 39.69 420 40.05 500 41.11 506
7 41.75 294 42.46 237 40.99 251 42.21 250 41.49 271 41.56 306 43.23 301

1 58.69 6400 55.10 3210 59.23 3345 61.23 3295 56.23 4512 59.86 4620 61.90 4621

2 48.72 4668 43.27 2511 48.10 2642 54.32 2583 45.30 3987 47.99 4005 54.60 4015

3 42.14 3172 38.93 1883 45.76 1960 46.51 2015 43.37 2560 45.85 2615 46.79 2695

4 38.72 1978 37.89 993 41.45 1210 39.30 1681 37.55 1547 42.42 1675 43.89 1743

5 38.01 1135 40.10 534 37.99 995 38.36 994 37.69 830 37.79 1150 38.82 1219
6 38.41 631 44.67 334 38.02 568 39.33 579 39.94 464 38.79 641 39.02 676

7 41.58 378 49.83 231 41.13 338 41.41 344 44.71 289 40.70 375 41.44 386

1 58.80 6480 55.89 3265 60.10 3360 63.53 3390 57.10 4623 61.31 4720 62.58 4721

2 48.90 4720 47.01 2610 50.60 2683 57.30 2615 46.46 4001 49.15 4110 54.99 4113

3 42.25 3286 43.27 1943 53.21 2054 46.86 2140 43.70 2715 45.71 2762 46.52 2785

4 38.83 1815 38.93 1061 45.87 1355 43.80 1980 38.56 2287 43.34 1823 44.02 1940

5 37.84 1269 41.98 555 42.19 980 39.69 1135 38.86 1649 38.94 1237 38.72 1318

6 38.63 702 48.80 338 38.82 655 38.86 664 43.50 865 38.00 677 38.51 723
7 42.31 415 54.17 225 40.87 388 42.68 396 50.94 472 42.45 391 41.37 407

1 59.03 6512 56.03 3284 60.39 4411 64.50 3750 57.83 4723 61.91 4823 63.11 4930

op 38.01 1301 39.00 1115 39.03 702 38.91 698 38.91 2311 38.12 1438 39.90 741

1 59.17 6538 56.34 3312 60.85 4523 64.78 6831 58.91 4761 62.28 4915 63.41 5120

op 38.19 1340 39.17 1213 39.21 748 39.19 762 39.15 2348 38.35 1356 40.10 764

Kneser-Ney (KNd) Delimited (Dd)

Add-One Low Optimum High Low Optimum High

(AOd) smoothing smoothing smoothing smoothing smoothing smoothing

b = 0.1 b = 0.6 b = 0.8 d = 0.9 d = 0.4 d = 0.2

α WER AAN WER AAN WER AAN WER AAN WER AAN WER AAN WER AAN

1 56.75 2610 57.60 3164 61.78 3256 62.35 3227 57.84 3087 61.48 3191 61.92 3162

2 47.15 1827 47.14 2398 49.67 2594 50.20 2540 46.78 2295 49.24 2473 50.49 2422

3 42.13 1199 41.07 1641 43.22 1906 44.47 1833 40.95 1539 43.51 1751 44.49 1686

4 39.89 760 39.16 1011 40.32 1279 41.52 1211 39.03 940 41.08 1129 42.46 1069

5 40.75 484 39.45 563 38.73 778 40.40 733 38.54 540 38.86 665 41.84 630

6 42.30 335 40.97 338 39.14 440 40.19 445 40.37 341 38.57 404 41.35 398
7 43.92 245 43.75 237 41.48 260 42.50 286 42.72 239 42.01 253 43.63 250

(Continued to next page.)
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Table 4. (Continued.)

Kneser-Ney (KNd) Delimited (Dd)

Add-One Low Optimum High Low Optimum High

(AOd) smoothing smoothing smoothing smoothing smoothing smoothing

b = 0.1 b = 0.6 b = 0.8 d = 0.9 d = 0.4 d = 0.2

α WER AAN WER AAN WER AAN WER AAN WER AAN WER AAN WER AAN

1 55.60 5172 58.14 3750 62.94 3813 63.30 3986 56.22 3911 57.80 4351 61.02 4230

2 45.21 3233 45.80 2713 50.53 2998 51.12 3126 43.84 3213 44.30 3983 50.13 3710

3 41.50 1876 40.33 1973 43.76 2113 45.13 2250 39.78 2314 40.62 3001 44.53 2921

4 39.36 1060 38.42 1457 39.66 1915 42.10 1920 38.38 1097 37.91 1740 41.34 1666

5 40.24 610 41.03 806 38.51 1448 41.78 1346 39.48 579 38.16 979 40.32 955
6 43.13 386 44.95 484 40.06 898 42.49 846 44.39 349 39.12 569 41.53 579

7 47.41 269 50.87 312 41.15 553 45.36 538 49.06 236 43.72 340 44.26 350

1 55.20 5380 59.57 3816 63.64 4111 64.80 4221 56.72 3998 58.10 4561 61.83 4365

2 45.00 3410 46.52 2803 51.58 3214 53.31 3413 47.72 3345 52.01 4180 53.47 3867

3 41.04 2237 40.05 2111 45.66 2365 47.42 2462 43.57 2413 46.83 3943 48.03 3010

4 39.10 1250 39.87 1651 41.21 1965 45.13 2102 38.89 1170 44.58 2564 46.38 2501

5 41.24 708 43.27 898 39.68 1364 43.58 1374 41.18 603 38.88 1114 40.95 1090
6 43.70 436 48.04 517 40.71 1058 45.91 970 47.42 354 39.34 643 42.31 658

7 48.26 296 55.53 322 42.87 646 48.14 618 54.89 231 42.53 381 43.94 394

1 55.01 4647 60.03 3928 64.12 4217 65.10 4311 57.02 4198 58.91 4628 62.30 4481

op 40.13 1028 40.05 1707 40.10 1410 44.51 1370 39.03 1211 39.01 906 40.92 1001

1 55.38 4723 60.31 3965 64.54 5301 66.43 4428 57.15 4210 59.36 4713 62.48 4563

op 41.28 1243 40.17 1754 41.35 1507 45.30 1381 39.29 1316 39.87 987 41.05 1121

optimum WER is achieved by k = 2 and k = 3

models.

Info tren is a more difficult task than Bdgeo. More-

over, the relationship between the number of parame-

ters (k-grams) to be trained and the available training

material is poorer for Info tren than for Bdgeo. As a

consequence, k > 2 models do not exceed the perfor-

mance of k = 2 models in this database, because they

are all poorly trained. However, major PP increases are

found for high values of k for some of these models

(Fig. 2).

Figures 9 and 10 show a subset of plots in Figs. 7

and 8 respectively. They only plot a trace per smoothing

technique which corresponds to the best WER for the

Bdgeo and Info tren databases respectively.

Figures 9 and 10 show that models optimizing the

test set perplexity (Figs. 1 and 2) also lead to the best

system performance when the α parameter is opti-

mized. However, correlations between PP and WER

are not comparable to those reported in Klakow and

Peters (2002). In these tasks, as in many real applica-

tion tasks, the available training data do not allow us

to get LM probability distributions close to the “true”

distribution.

Figures 9 and 10 show similar WER for all smoothed

LMs. Differences among the computational costs in-

volved (AAN) are not very big but could be taken into

account when the CSR system needs to work in small,

low performance devices.

Kneser-Ney discounts lead to worse system perfor-

mances, especially in the Bdgeo database (Fig. 10).

In this database, they lead to higher WER for k > 3

models and to higher computational costs for k > 2

models. This behavior, predicted by the PP evalua-

tion, seems to show that this discount is less com-

petitive for high values of k. The number of differ-

ent contexts in which a sequence of words appears in-

creases quickly with k and therefore the distribution

β(ωi | h∗) = C(ωi | h∗)/C(h∗) in Eq. (12) could be

worse estimated than distribution P(ωi | h∗) in Eq. (7).

Note that in our paper the distribution β(ωi | h∗) =
C(ωi | h∗)/C(h∗) is included in a back-off smoothing

schema whereas in literature it is typically used in in-

terpolated models. On the other hand only the absolute

discount is implemented for the Kneser-Ney proposal.

Best results are summarized in Table 5 for both

databases. However, differences around the optimum

WER are not very significant in most cases.
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Figure 7. WER and AAN obtained for Bdgeo through the smoothed k-TSS LMs with k = 2 . . . 6. The scaling factor is set to its optimum

value in each case (emphasized values in Table 3). PP evaluation can be found in Fig. 1.
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Figure 8. WER and AAN obtained for Info tren through the smoothed k-TSS LMs with k = 2 . . . 6. The scaling factor is set to its optimum

value in each case (emphasized values in Table 4). PP evaluation can be found in Fig. 2.

6. Concluding Remarks

We have tried to analyse the effect of the smoothing

technique applied to the Language Model in the CSR

system and to show its real impact on final system error

rates. The effect of the smoothing technique on system

performance is not independent of subsequent scaling

of LM probabilities. This relationship between the two

effects has been analyzed in this work and their related

contribution to final system performance has been es-

tablished.

The back-off formalism is chosen because the re-

cursive scheme involved is well integrated into the

syntactic approach. Classical discounting-distribution

schemes, as well as the recently proposed Delimited

discount, have been compared in terms of both PP

and final system performance measured through WER

and the computational cost involved. To our knowl-

edge this is the first time that the interdependency be-

tween smoothing technique, probability scaling at de-

coding time and final system performance has been

analyzed.
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Table 5. Best results obtained

Bdgeo task Info tren task

k Smoothing WER ANN Smoothing WER ANN

2 Low absolute α = 4 14.54 359 Low absolute α = 4 38.60 504

3 Optimized delimited α = 5 10.13 240 Low linear α = 4 37.55 1547

4 Optimized absolute α = 5 9.49 236 Witten-Bell α = 5 37.84 1303

5 Optimized absolute α = 5 10.02 240 Witten-Bell α = 5 38.01 1301

6 Optimized absolute α = 5 10.10 246 Witten-Bell α = 5 38.19 1340
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Figure 9. Selection of best WER for Bdgeo from Fig. 7: only a trace per smoothing technique. The PP evaluation of these models is shown on

the right side of Fig. 1.
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Figure 10. Selection of best WER for Info tren from Fig. 8: only a trace per smoothing technique. The PP evaluation of these models is shown
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Experiments show that the selection of the α pa-

rameter to get the lowest WER is also dependent on

the smoothing technique and is not independent of the

task and available training data.

We have found a strong dependence between the

smoothing technique and the value of the scaling pa-

rameter α needed to get the best system performance,

which is, indeed, perplexity independent in many cases.

On the other hand, experiments have shown that large,

significant differences among PP values could lead

to small differences in final system WER, i.e., “bad

LMs” could also lead to quite good final system per-

formances.

The inter-dependences established in this work

should be considered when optimizing and adjusting

CSR systems to work on real tasks. In such cases, the

task and the available training data lead to LM probabil-

ity distributions far removed from the “real” distribu-

tion and thus PP and WER may not correlate very well.

Moreover, the computational cost involved should be

considered especially when real applications also re-

quire the integration of the CSR system into a small,

low performance device.
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Notes

1. This is also related to the problem of the negligible impact that

transition probabilities have in acoustic models.

2. This technique is applied in Katz’s discounting when all events

appear after a history h more than r times (Ney et al., 1997).

3. Good-Turing discount: (1 − λ) = [N (ωi |h) + 1]
nN (ωi |h)+1

nN (ωi |h)
where

ni is the number of events that occur exactly i times in the training

data. The final mass of probability assigned to unseen events is

equal to n1/N (h), where n1 is the number of events seen once

and N (h) is the total number of events after history h.
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