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Abstract. In Continuous Speech Recognition (CSR) systems a Language Model (LM) is required to represent the
syntactic constraints of the language. Then a smoothing technique needs to be applied to avoid null LM probabilities.
Each smoothing technique leads to a different LM probability distribution. Test set perplexity is usually used to
evaluate smoothing techniques but the relationship with acoustic models is not taken into account. In fact, it is
well-known that to obtain optimum CSR performances a scaling exponential parameter must be applied over LMs
in the Bayes’ rule. This scaling factor implies a new redistribution of smoothed LM probabilities. The shape of the
final probability distribution is due to both the smoothing technique used when designing the language model and
the scaling factor required to get the optimum system performance when integrating the LM into the CSR system.
The main object of this work is to study the relationship between the two factors, which result in dependent effects.
Experimental evaluation is carried out over two Spanish speech application tasks. Classical smoothing techniques
representing very different degrees of smoothing are compared. A new proposal, Delimited discounting, is also
considered. The results of the experiments showed a strong dependence between the amount of smoothing given by
the smoothing technique and the way that the LM probabilities need to be scaled to get the best system performance,
which is perplexity independent in many cases. This relationship is not independent of the task and available training
data.
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1. Introduction the seen combinations and redistributed among the un-

seen ones, i.e, a smoothing technique must be applied

Continuous Speech Recognition (CSR) systems re-
quire a Language Model (LM) to integrate the syn-
tactic and/or semantic constraints of the language. The
goal of an LM is to estimate the a priori probability
P(£2) of a sequence of words Q@ = wjw;...wq to
be pronounced. The most classical statistical methods
for generating LM’s are based on the estimation of the
probability of observing a word given the n — 1 preced-
ing lexical units (n-gram models): P(w;|w; ...w,—1)
(Rosenfeld, 2000). However, there are a high number
of sequences of words that do not appear in training cor-
pora (unseen events) and could appear in tests. Thus,
a certain mass of probability must be subtracted from

(Ney et al., 1997; Chen and Goodman, 1999; Chen and
Rosenfeld, 2000).

The test set perplexity (PP) is typically used to eval-
uate the quality of the LM (Ney et al., 1997; Chen and
Goodman, 1999) and the quality of the smoothing tech-
nique. Perplexity can be interpreted as the (geometric)
average branching factor of the language according to
the model. It is a function of both the task and the
model. It is supposed that the “best” models get the
“lowest” Word Error Rates (WER) in the CSR sys-
tem, but there are many contra examples in literature
(Rosenfeld, 2000). The ability of the test set perplexity
to predict the real behavior of a smoothing technique
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when the smoothed LM is working into a CSR system
could be questioned (Clarkson and Robinson, 1999)
since it does not take into account the relationship with
acoustic models. Several attempts have been made to
devise metrics that are better correlated with Word
Error Rates than perplexity (Clarkson and Robinson,
1999; Bimbot et al., 2001), but for now perplexity re-
mains the main metric for practical language model
construction (Rosenfeld, 2000). In fact, the quality of
the model must be ultimately measured by its effect on
the specific task for which it was designed, namely by
its effect on the system error rate. However, error rates
are typically non-linear and poorly understood func-
tions of language models (Rosenfeld, 2000). On the
other hand, a recent work (Klakow and Peters, 2002)
has shown good correlations between PP and WER
when the task and available training data allow LM
distributions close to the “true” distributions. In this
paper we try to analyse the effect of the smoothing
technique applied to the LM in the CSR system and to
show its real impact on final system error rates.

CSR systems are invariably based on the well-known
Bayes’ rule, i.e., the recognizer must find the word
sequence 2 that satisfies (Jelinek, 1985):

PN

Q = arg mgazlx P(Q)P(A| Q) (1)

where P(2) is the a priori probability of the word
sequence and P(A | ) is the probability of the se-
quence of acoustic observations given the sequence of
words 2. P(A|S2) represent the acoustic likelihoods
obtained through acoustic models, typically Hidden
Markov Models (HMM), whereas P(€2) are estimated
by the LM.

However, it is well known that the best performance
of a CSR system is obtained when LM probabilities are
modified by introducing an exponential scaling factor
(Jelinek, 1996; Rubio et al., 1997; Ogawa et al., 1998;
Mangu and Stolcke, 2000). This parameter is needed
because acoustic and LM probabilities are not real, but
rather approximations, and are estimated from differ-
ent knowledge sources (Jelinek, 1996). Other authors
have stated that the language model weight compen-
sates for the frame-independence assumption in HMM-
based acoustic models (Mangu and Stolcke, 2000). In
practice, the effect of the scaling factor is to attenuate
all the LM probabilities in an exponential way. A new
redistribution of the already smoothed LM probabili-
ties is then achieved at decoding time. Thus, the shape
of the final LM probability distribution depends on both

the distribution previously provided by the smoothing
technique and the score scaling applied at decoding
time. Thus, the final optimum value of the scaling factor
is not independent of the smoothing technique. More-
over, the effect of the smoothing technique on system
performance is not independent of the subsequent scal-
ing. The aim of this work is precisely to analyse the re-
lationship between the two effects and to establish their
related contribution to the final system performance. In
Section 2 we fully explain this relationship and the mo-
tives behind our work.

Section 3 presents a brief summary of the k-Testable
in the Strict Sense (k-TSS) languages (Garcia and
Vidal, 1990) used to generate LMs (Varona and Tor-
res, 1999). k-TSS languages are a subclass of regu-
lar languages (Garcia and Vidal, 1990). They can be
considered as a syntactic approach of classical n-gram
models derived from formal language theory.

Section 4 describes the syntactic back-off (Varona
and Torres, 1999; Torres and Varona, 2001) smoothing
techniques. The back-off formalism has been chosen
in this work because the recursive scheme involved
has been well integrated into syntactic formalism
(Torres and Varona, 2001). Furthermore, the difference
between recursively backing off to lower order n-
grams (Katz, 1987) and linearly interpolating n-grams
of different order (Jelinek and Mercer, 1980) matters
only when we go into the details of the mathematical
models (Ney et al., 1997). In this Section classical
discounting-distribution schemes (Kneser and Ney,
1995; Clarkson and Rosenfeld, 1997; Ney et al., 1997;
Chen and Goodman, 1999; Chen and Rosenfeld,
2000; Goodman, 2001) are defined under syntactic
formalism. A new discounting method, Delimited
discounting, is also presented. Delimited discounting
keeps the well-known Katz’s schema (Katz, 1987)
but avoids the problem associated with the lack of
an adequate distribution of the samples (Varona and
Torres, 2000). The smoothing techniques described
in this Section achieve very different probability
distributions, resulting in a wide range of smoothed
models, from very low to very high smoothed LMs.
This point, which concerns the main goal of our work,
is also analyzed in Section 4 when we describe each
discounting-distribution schema.

Section 5 presents the results of the experiment in
terms of both classical test set perplexity and CSR
system performance. The WER obtained through the
experiments as well as the computational cost in-
volved are considered in evaluating the CSR system



performance. Experiments were carried out over two
Spanish databases of very different difficulty. The first
one, called Bdgeo (Diaz et al., 1998), is a task oriented
speech corpus consisting of a medium size vocabulary.
It was specially designed to test speech understand-
ing systems with medium difficulty application tasks.
The second, called Info-tren (Bonafonte et al., 2000;
Rodriguez et al., 2001a), was collected from real users
of a human-machine dialogue system. It includes spon-
taneous speech and, thus, results in a high difficulty
application task.

Finally, some concluding remarks are given in
Section 6.

2. Introducing the LM into the CSR System

Within a CSR system there are several heuristic param-
eters that must be adjusted to obtain optimum perfor-
mances, such as the beam-search factor to reduce the
computational cost, etc. But, the most important factor
to be optimized, due to its great effect on final CSR
system performance (Jelinek, 1996; Rubio et al., 1997,
Ogawa et al., 1998; Mangu and Stolcke, 2000; Varona
and Torres, 2001, 2003), is the scaling factor « applied
over LM probabilities (P(w))*. From a theorical point
of view, this parameter is needed because acoustic and
LM probability distributions are not real but approxi-
mations (Jelinek, 1996). The two probability distribu-
tions in Baye’s rule (Eq. (1)) are estimated indepen-
dently using different stochastic models that represent
different knowledge sources. Moreover, the parameters
of the acoustic and language models are estimated on
the basis of speech and text data corpora, respectively.
Each corpus was designated with a different purpose,
and therefore has a different vocabulary, size, complex-
ity, etc. Thus, a balance parameter « needs to be applied
to reduce these effects and then obtain good system per-
formance. Other authors have stated that the language
model weight compensates for the frame-independence
assumption in HMM-based acoustic models, which un-
derestimate the joint likelihoods of correlated acoustic
observations (Mangu and Stolcke, 2000).

In practice, acoustic and LM have very different
ranges of values. The accumulated probabilities at the
end of each partial hypothesis in the Viterbi trellis is a
combination of acoustic and language model probabili-
ties. Acoustic probabilities are usually smaller than lan-
guage probabilities and are applied many more times.
The gap among accumulated probabilities is therefore
usually bigger than the gap among LM probabilities.
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The immediate consequence is that LM probabilities
are irrelevant in most situations for choosing the best
path1 (Varona and Torres, 2001). However, LM proba-
bilities are attenuated when they are raised to a power
a > 1, but this attenuation is higher for lower probabil-
ity values. A bigger gap is therefore obtained between
high and low probabilities and the LM probabilities are
then more relevant for deciding the next word combi-
nation.

At this point it is important to notice that the above
LM probability distribution depends on several fac-
tors such as the language, the task, the training corpus
composition, the language model order, etc. But the
smoothing defines a redistribution of the LM probabil-
ities by subtracting a certain mass of probability from
the seen events and by redistributing it among the un-
seen ones according to the specific technique and dis-
counting schema. As a consequence, the final optimum
value of the « scaling factor cannot be independent of
the smoothing technique. Moreover, the effect of the
smoothing technique on the system performance is not
independent of the subsequent scaling achieved at de-
coding time. Thus, it cannot be measured in terms of
test set perplexity. The relationship between the LM
probability redistribution achieved by the smoothing
technique discounting schema and the probability re-
distribution achieved at decoding time when weighting
the LM probabilities to be established. Our main mo-
tivation is to analyse the relationship between the two
effects and to establish their related contribution to the
final system performance.

It is well known that smoothing is a central issue in
language modeling, and thus, in CSR system construc-
tion and performance. However, all the comparisons
between smoothing techniques, even the most thorough
(Neyetal., 1997; Chen and Goodman, 1999), have been
carried out in terms of test set perplexities. As a con-
sequence, none of them has analyzed the interdepen-
dence between the smoothing technique, probability
scaling at decoding time and final system performance.
The argument is that the linear correlation between
test set perplexity and word error rate is very strong
(Chen and Goodman, 1999). However, this correla-
tion is dependent, once again, on the relationship being
analyzed.

3. The Syntactic Language Model

A syntactic approach of the well-known n-gram mod-
els, k-Testable in the Strict Sense (k-TSS) LMs, has
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been used in this work to be integrated into a CSR
system. The use of k-TSS regular grammars allows us
to obtain a deterministic Stochastic Finite State Au-
tomaton (SFSA) integrating K k-TSS models (with
k=1,2 ... K) into a self-contained model (Varona and
Torres, 1999; Torres and Varona, 2001).

Each Stochastic Finite State Automaton representing
a k-gram model can be directly obtained from a set of
training samples (Garcia and Vidal, 1990). Such an
automaton (k-TSS SFSA) is defined as the five-tuple
(X, 0%, qo, F, 8%) where:

o ¥ = {w;}, j = L...]X], is the vocabulary, that is
the set of words appearing in the training corpus.

e OF is the set of states associated with the model of
order k. Each state represents a string of k — 1 words
Wi—(k-1) - - - Wi—1, Where i stands for a generic index
in any string @) ...w; ... appearing in the training
corpus. Such a state is labeled as a)f::(lkfl).

the automaton has a unique initial state go € ok,
and F is the set of final states of the automaton and
represents the final substrings of length k£ — 1.

8% is the transition function &% oF x & —
OF x [0...1]. 8%(q, w;) = (qq, P(w; | q)) defines
a destination state g; € QF and a probability
P(wi|q) € [0...1] to be assigned to each ele-
ment (¢, w;) € QX x X. Each transition repre-
sents a k-gram; it is labeled by its last word w;
and connects two states labeled by £ — 1 words.
When the k-gram w;_g—n®i—(k—1)+1 - - - Wi—1w; 1S
observed, an outgoing transition from the first to the
second state is set and labeled by w;; P(w; |a)§f:(1k_1))
is the probability associated with the observed k-
gram w; —(k—1)Wj—(k—1)+1 - - - Wi—1W;. Thus:

8k(w5:(1k—1>v ‘Ui) = (w;:—(k—l)Jrl’ P(“’i |wf:(lk—1)))
)

The model defined above is a deterministic, and hence
unambiguous, stochastic finite state automaton (Garcia
and Vidal, 1990). Thus, the probability assigned to a
sentence 2 = w; ... w; of length /, i.e. the probability
of string Q2 being accepted by the automaton is obtained
as the product of the probabilities of the transitions used
to accept 2:

[
P@) =] P(orl/Th ) )
i=1

The unambiguity of the automaton also allows us to
obtain a maximum likelihood estimation of the proba-
bility of each transition 8k (a)f::(lkfl), ;) as (Chandhuri
and Booth, 1986):

N(a),- |“)5:(1k—1))
Zv@,ez N(w_/ | w;:(lk—l))

P(wilofZ4_y) = )

where N(w; | o)} :(1k_ 1y) is the number of times the word
w; appears at the end of the k-gram w; _—1y . . . w;—1w;,
that is the count associated with the transition la-
beled by w; coming from the state labeled as
w;:(lk—l)'

The k-TSS language model defined above can be
considered as a syntactic version of an n-gram. More-
over, it has been shown (Dupont and Miclet, 1998)
that the probability distribution obtained through an
n-gram model is equivalent to the distribution ob-
tained by a stochastic grammar generating k-TSS lan-
guage, where k plays the same role as n does in
n-grams. The main advantage of using automata to
represent n-grams is that the structural features are
explicitly developed in the formal language theory,
and thus, explicitly included in the model (Hopcroft
and Ullman, 1979; Torres and Varona, 2001). A com-
plete formulation of this formalism can be found in
Torres and Varona (2001).

4. Back-off Smoothing

The maximum likelihood estimation of the probability
P(a),- |a)1 . .a)n_]) is

N(wi | h)

Pyr(w; | h) = 72 New: (1)
wj J

®)

where h = (a)f:(ln_l)) is a history representing a se-
quence of n — 1 words, N(w; | k) is the number of times
the word w; appears after history A.

This estimation cannot deal with practical speech
recognition applications where new sequences of
words may be allowed, even if they do not appear (un-
seen events) in training corpora. The smoothing tech-
nique adjusts the maximum likelihood estimation in
order to assign a probability to any sequence of words.
A certain mass of probability is subtracted from seen
events (sequences of words appearing at training time)
and then redistributed among unseen events.



Smoothing algorithms use lower n-gram models to
assign a probability to unseen n-grams. There are two
basic approaches for combining n-grams of different
order: linear interpolation (Jelinek and Mercer, 1980)
and back-off (Katz, 1987). Interpolated models are ob-
tained as linear or non-linear combinations of the prob-
abilities of the model to be smoothed P(w; | ) and the
probabilities of a more general model P(w; | #*) in the
following way:

P(w; [h) = AP(w; |h) + (1 = M)P(wi | ") (6)

where h is a history representing a sequence of
n — 1 words and h* represents a history of words
shorter than 4. In general, A depends on the history
h. A is usually estimated using the forward-backward
algorithm.

In back-off smoothing (Katz, 1987) the probability to
be assigned to unseen n-grams is recursively obtained
from less accurate models, i.e. n — 1,..., 1. Under
this formalism, the probability P(w;|h) is estimated
according to:

P(w;|h)
N(w;ilh)
(=2 N N(wilh) #0
_ ( AN(w,-lh)) Pe;h*)
Voo [N(@; £ N Vw_/’Ngj|h)=0 P(wjlh*)
N(w;|h) =0
(7

where N(w; | h) is the number of times that word w;

appears after history h, N(h) = > N(w; | h)
Yo /N(w; | 1)#0
and P(w; | h*) is the estimated probability associated

with the same event in the more general model (n — 1,
n—2,...,1)and (1 — A) represents the discount factor,
that is, the amount of probability to be subtracted and
then redistributed among unseen events.

The difference between interpolation and back-off
matters fundamentally in the details of the mathemat-
ical models (Ney et al., 1997; Chen and Goodman,
1999). Moreover, a back-off version of an interpo-
lated algorithm can be created in a straightforward
way (Chen and Goodman, 1999). In this work back-
off smoothing has been chosen because the recursive
scheme involved has been better integrated into the fi-
nite state formalism used to build the language model.

Scaling Smoothed Language Models 345

A full definition and implementation of this formalism
can be found in Torres and Varona (2000) and Torres
and Varona (2001).

The discount factor (1 — 1) has many different for-
mulations (Ney et al., 1997; Chen and Goodman, 1999;
Chen and Rosenfeld, 2000; Clarkson and Rosenfeld,
1997; Goodman, 2001) leading to a wide range of
probability distributions, from very low to very high
smoothed models. In high-smoothed LMs the proba-
bility reserved by the smoothing technique for the un-
seen events is bigger than in low-smoothed LM. As
a consequence the gap between LM probabilities in
high-smoothed LMs is smaller than in low-smoothed
models. This variability is strongly related to the opti-
mum scaling of LM probabilities required at decoding
time to get good system performances. We now review
classical smoothing discountings under this point of
view. We first present techniques where the discount
is applied to the whole set of seen events in the train-
ing corpus, as suggested in Eq. (7). We then deal with
the Kneser-Ney discount, which is considered by many
authors as the most reliable smoothing technique. Fi-
nally we deal with the Katz’s back-off proposal where
the discount is only applied over scarcely seen events.
The new Delimited discounting, defined by the authors
in previous works (Varona and Torres, 2000), is also
included in this case.

4.1. Discounting Over all Seen Events

The most classical approaches are Witten-Bell, Add-
one, Absolute and Linear discountings (Clarkson and
Rosenfeld, 1997). In Absolute and Linear proposals
the mass of probability (1 — A) subtracted from seen
events depends on certain parameter values that should
be optimized. Thus, LMs with very different degrees
of smoothing can be obtained.

Witten-Bell Discounting. In Witten-Bell, the dis-
count (1 — A) basically depends on the number of
different events 7' (h) following the history A. That
is:

N
" N(h) +T(h)

®)

It is widely used since it leads to low test set perplexi-
ties when compared to other classical back-off methods
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(Jurafsky and Martin, 2000; Bordel et al., 1994;
Clarkson and Rosenfeld, 1997). However, a depen-
dence has been found (Chen and Goodman, 1999) be-
tween perplexity and the size of the training of the LMs
when Witten-Bell discounting is used.

In this case a quite important mass of probability
is assigned to unseen events (high-smoothing) and the
gap between seen and unseen probabilities is reduced.
Combinations of words unseen in training can have a
relatively high probability in tests.

Add-one Discounting. This is a very simple dis-
counting method, adding one to all the counts. It is
calculated as:

N(h)

l—A=——
N(h) + 1

C))

This method does not usually perform well and thus
is not commonly used by itself Jurafsky and Martin
(2000). It is usually applied as part of more complex
methods? (Ney et al., 1997)

Since 1 < T, the mass of probability to be dis-
counted and then redistributed among unseen events is
smaller (low smoothing) when using Add-one discount
then when using Witten-Bell one. The gap among LM
probabilities is therefore bigger using Add-One dis-
counting.

Absolute Discounting. This discounting schema
(Ney et al., 1997) consists of subtracting a con-
stant b from each count N(w;|h) in the following
way:

_ N |h)—b

2= N {10

Thus, (1 — XA) depends on the value of the count
N(w; | h). Parameter b regulates the degree of smooth-
ing, that is the amount of probability discounted and
then distributed. In general parameter b depends on the
history 4. High values of b lead to high smoothed mod-
els. The version included in the CMU toolkit (Clarkson
and Rosenfeld, 1997) uses a previously established
value of b (Ney et al., 1997) to get a discount similar
to the Good—Tulring3 (Katz, 1987; Chen and Goodman,
1999) one: b = n;/(n; + 2n,), where n; is the number
of events seen i times. However, this value is imprac-
ticable in many situations, such as when using cut-
offs, where it needs to be rectified. Parameter b is
experimentally optimized to get low perplexity LMs

(Ney et al., 1997; Chen and Goodman, 1999). The
Bounded discount (Ney et al., 1997) is a variant of the
Absolute discount where high counts are not modified
(Ney et al., 1997).

Linear Discounting. In this case a quantity propor-
tional to each count is subtracted from the count itself
in the following way:

1—A=(1-D (11)

The value of the parameter / regulates the degree of
smoothing, being the discounting factor independent
of any count, history or vocabulary size. The value of /
established (Ney et al., 1997) to get a discount similar
to the Good-Turing discount (Katz, 1987) and used by
the CMU toolkit (Clarkson and Rosenfeld, 1997) is
| = ny/N(h). Once again, this value is impracticable in
many situations.

4.2. Kneser-Ney smoothing

The Kneser-Ney smoothing is an extension of abso-
lute smoothing introduced by Kneser and Ney (1995).
In it, the discount is also applied over the whole set
of seen events. The highest-order distribution is ex-
actly the same as that obtained in absolute smoothing.
But lower-order distributions are modified: the prob-
ability distribution P(w; | h*) in Eq. (7) is substituted
by distribution B(w; | h*) = C(w; | h*)/C(h*) where
C(w; | h*) is the count of the number of different con-
texts in which the sequence of words {_,_,, appears
and C(h*) = > C(w;|by). As a conse-
Vo, /Clwj | by)7#0
quence, the unigram probability is not proportional to
the number of occurrences of a word, but to the number

of different preceding words. Thus, Eq. (7) is now:

P(w; | h)
N(wi|h)
(1—A)W N(wilh) #0
_ ( AN(w,»|h>> Bleilh)
Vo, N0 NUD wa%‘h)zoﬁ(a)ﬂh*)
N(w;ilh) =0
(12)

where history h = wf:(ln_l) represents a sequence of
n — 1 words and the shorter history h* = wé:(ln_z)

represents a sequence of n — 2 words.



Kneser-Ney smoothing really proposes to change
distribution P(w;|h*) by distribution B(w;|h*) in
Eq. (7). Then, any discount could be applied. In
this work only the Absolute discount is used as
it proposed in the relevant literature. Many authors
have stated that Kneser-Ney smoothing outperforms
all other smoothing techniques (Goodman, 2001)
even with high-order n-grams. New variants of this
smoothing have also been more recently proposed
(Chen and Goodman, 1999).

4.3. Katz’s Schema: Discounting Over Scarcely
Seen Events

The well known Good-Turing formula (Katz, 1987) is
based on the assumption that high counts are better esti-
mated than low counts. Katz extended this idea to back-
off smoothing by including combinations with more
general probability distributions, i.e., with lower order
modelsn — 1,n — 2, ..., 1. According to this formal-
ism the probability associated with events occurring
more than a fixed number of times, say r times, is esti-
mated under a maximum likelihood criterion whereas
events occurring less than r times, N(w; | h) < r, are
discounted a certain mass of probability (Katz, 1987).
Thus the probability P(w; | k) is estimated according
to:
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Delimited Discounting. In Turing discounting, the
discounted mass of probability depends on 7y, ny,
...,N,41, being n; the number of events which oc-
cur i times. This approach puts some constraints
to the relative values of ny,n,,...,n,4; which are
not always satisfied by n-gram models with medium
and high values of n, due to the lack of an ad-
equate distribution of the samples. To avoid these
problems, Delimited discounting was proposed in
Varona and Torres (2000). As in Katz’s model (see
Eq. (13)), the discounting operation is limited to
low counts, i.e. N(w;lh) < r, in the following
way:

(1=A)=d—t(r — N(wilh)) t,d <1 AT <<<d
(15)

Discounting depends on d and t parameter val-
ues, which must be less than one. When the count
N(w;|h) < r is high the discount applied is
low (low smoothing). The minimum discount is ap-

plied for N(w;|h) = r and only depends on
parameter d. However, when N(w; |h) = 1 the
maximum discount, (d — t(r — 1)), is applied.

N(wilh)
(1 =yl Nearlh) # 0 A N(@lh) < r
Plohy = Nz(vh<) m\ Pl (42
w; w;|h*
r— d N(w;ilh) =0
Z; N(h) ) > P(wjlh®) “
New;In#0 Voy/
N(wj\h):()

This schema has been applied along with alterna-
tive estimations for the discount due to the draw-
backs of the Turing formula in practical applications.
The final Katz proposal keeps the total probability as-
signed to unseen events proposed by the Good-Turing
formula, i.e. ny/N(h), while estimating the discount
as:

(N(@ilW+DnN(@;|h)+1 — (r+Dnq
N(w;|h)nN (wi|h) n
1— (r+Dnyq

n

1-A=

(14)

Another problem to be addressed when using Katz’
discounting is that additional checks are required for
those histories for which all the events are seen more
than r times (see Eq. (13)). The remedy used in the
CMU toolkit is to increase the count N (/) by one using
the gained probability mass m to be redistributed
over unseen events’ probabilities, which does not agree
with Katz’s discounting philosophy. In Delimited dis-
counting, only the minimum counts are decremented
(discounting only depends on parameter ) in the fol-
lowing way:
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N(w;lh) N(w;ilh) # 0 A N(w;|h) > min((N(w;|h))
N(h) Vwi
N (ilh) o |
Pl — dW N(wilh) # 0 A N(wilh) = r\rflﬂ]((N(w’ 7))
- g M@l ) _ Pedh’) o (16)
Vo i /N(@;j1h)=0 N(h) Z P(a)jlh*)
A=N(wjl=r Vo /
N(wji=0

In Delimited discounting the parameter d mainly
regulates the amount of probability discounted and
then distributed, that is, the degree of smoothing of
the model.

5. Experimental Evaluation

Experimental evaluation was carried out with two
Spanish databases of very different degrees of diffi-
culty. The first, Bdgeo, is a task-oriented corpus repre-
senting a set of queries to a Spanish geography database
(Diaz et al., 1998). It was designed to test integrated
systems (acoustic, syntactic and semantic modeling) in
automatic speech understanding and includes a vocab-
ulary of 1208 words. Speech utterances were recorded
in laboratory environments at 16 KHz. The second
database, Info_tren, consisted of 227 Spanish dialogues
on train information that were recorded by a consortium
of Spanish research groups as part of a project to de-
velop a human-machine dialogue system (Rodriguez
et al., 2001a). The dialogues were uttered in a sponta-
neous way and thus included acoustic, lexical and syn-
tactic disfluencies. They were recorded at 8 KHz across
telephone lines applying the well known Wizard of Oz
mechanism. Info_tren task (Bonafonte et al., 2000) has
a vocabulary of around 2000 words plus 15 different
acoustic types of disfluencies including noises, filled
pauses, lengthenings, etc. (Rodriguez et al., 2001).

In these experiments, the smoothing and discount-
ing techniques reviewed in Section 4 were applied to
each LM to be evaluated. The final probability dis-
tribution, and thus the degree of smoothing, is regu-
lated by a parameter in Absolute (Ad), Linear (Ld),
Kneser-Ney (KNd) and Delimited (Dd) discounts. Pa-
rameters b, [, b and d respectively (see Section 4), are

optimized to get the lowest perplexity values for each
database. Then two more values leading to a lower and
a higher smoothed Language Model are also consid-
ered for each smoothing technique. As a consequence,
awide range of probability distributions, from very low
to very high smoothed language models, is evaluated.
Finally, Witten-Bell (WBd) and Add-one (AOd) dis-
countings are also considered in the experiments. No
parameter regulates the degree of smoothing in these
cases. However, a smaller mass of probability is re-
distributed among unseen events when using Add-one
than when using Witten-Bell discounting.

In a first series of experiments (Section 5.1) the eval-
uation is carried out in terms of the test set perplexity
(PP). In the second series of experiments (Section 5.2)
the language models obtained are directly integrated
into the CSR system (Rodriguez et al., 2000). System
performances are measured in terms of both the Word
Error Rate and the Average number of Active Nodes
in the trellis needed to decode a sentence. Finally, in a
third series of experiments (Section 5.3), LM probabil-
ities are modified by introducing an exponential scaling
factor P(2)* (Jelinek, 1996). The object of these ex-
periments is to get the lowest WER by selecting the
adequate value of . These experiments show that this
optimization is also dependent of the smoothing tech-
nique and is not independent of the task and available
training data.

5.1. Evaluating the Test Set Perplexity

The evaluation of an LM and its suitability to each ap-
plication task should be carried out in terms of final
system performance. However they are usually evalu-
ated in terms of perplexity. The test set Perplexity (PP)
is based on the mean log probability that a LM assigns
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Perplexity (PP) evaluation of k-TSS LMs with k = 2...6 for the Bdgeo task. Parameters regulating

the degree of smoothing are optimized to get optimum PP. Then a lower and a higher smoothed model are also

considered. AOd discounting can be considered a lower smoothing version of WBd.

Absolute (Ad) Linear (Ld)
Witten-Bell Low Optimum High Low Optimum High
(WBd) smoothing smoothing smoothing smoothing smoothing  smoothing
k b=0.01 b=04 b=0.9 [=0.01 1=0.1 =03
2 13.10 13.74 12.87 13.45 13.24 13.72 15.06
3 7.54 9.38 7.42 8.21 8.47 7.79 9.22
4 717 10.01 6.86 8.07 9.01 7.29 8.22
5 7.22 12.52 6.84 8.49 10.44 7.45 8.02
6 7.37 14.01 6.85 8.86 11.60 7.66 7.97
Kneser-Ney (KNd) Delimited (Dd)
Add-One Low Optimum High Low Optimum High
(AOd) smoothing smoothing smoothing smoothing smoothing  smoothing
k b=10.01 b=03 b=0.38 d=0.99 d=0.7 d=04
2 13.89 13.65 12.78 13.12 13.41 13.01 14.11
3 8.30 10.75 8.87 10.61 8.76 7.60 9.23
4 7.72 13.22 9.44 13.27 9.41 7.01 9.29
5 8.15 16.54 10.28 16.65 11.08 7.02 9.73
6 8.43 18.10 11.62 18.23 12.31 7.13 10.20

Table 2. Perplexity (PP) evaluation of k-TSS LMs with k = 2...6 for the Info_tren task. Parameters regulating
the degree of smoothing are optimized to get optimum PP. Then a lower and a higher smoothed model are also

considered. AOd discounting can be considered a lower smoothing version of WBd.

Absolute (Ad) Linear (Ld)
Witten-Bell Low Optimum High Low Optimum High
(WBd) smoothing smoothing smoothing smoothing smoothing  smoothing
k b=0.1 b=0.7 b=09 1=0.1 =03 =05
2 36.84 46.54 37.08 38.86 39.29 41.74 53.49
3 34.88 63.79 35.14 38.07 48.08 40.17 46.58
4 36.37 80.76 36.23 40.06 59.23 43.29 47.54
5 36.83 86.96 36.46 40.48 63.58 44.47 47.97
6 36.89 87.89 36.53 40.68 64.31 44.61 47.98
Kneser-Ney (KNd) Delimited (Dd)
Add-One Low Optimum High Low Optimum High
(AOd) smoothing smoothing smoothing smoothing smoothing  smoothing
k b=0.1 b=0.6 b=038 d=0.9 d=04 d=02
2 57.22 43.86 35.13 37.12 44.63 37.04 43.78
3 69.87 69.12 43.15 55.88 62.11 35.02 45.78
4 71.73 91.34 50.80 77.52 78.59 37.15 47.81
5 98.15 100.74 55.32 93.13 86.76 38.42 48.27
6 118.15 123.17 61.10 110.12 85.7 39.86 48.3
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to a test set a)lL of size L, so that it is based exclusively
on the probability of words which actually occur in the
test as follows:

_ —1 > log(P(wilw|™")
PP=P(wt) = ' ! (17)

The test set perplexity measures the branching factor
associated with a task, which depends on the number of
different words in the text. Low perplexity values are
obtained when high probabilities are assigned to the
test set events by the LM being evaluated. Therefore,
the relationship with acoustic models in a CSR system
is not taken into account.

For this series of experiments, the Bdgeo training
corpus used to obtain the language models consisted
of 9150 sentences, including 82,000 words. The test
set consisted of 200 different sentences. These sen-
tences were then uttered by 12 speakers resulting in a
total of 600 sentences that composed the speech test
set to be used in the next series of experiments (see
Sections 5.2 and 5.3). On the other hand, the train-
ing test for the Info_tren application task consists of
the transcription of 1349 user turns. They correspond
to 191 dialogues uttered by 63 speakers and result
in 16500 words and 5000 disfluencies. The test set
consisted of the transcription of 36 dialogues (308
user turns) corresponding to 12 new speakers (4000
words plus around 500 disfluencies). The correspond-
ing utterances composed the speech test to be used
to evaluate CSR system performance (Sections 5.2
and 5.3).

Tables 1 and 2 show the results of the evaluation of
smoothed k-TSS Language Models with k = 2...6,
in terms of test set perplexity (PP), over Bdgeo (Table
1) and Info_tren (Table 2) application tasks.

For the Bdgeo application task, Table 1 shows that
the Kneser-Ney (KNd) smoothing technique obtains
optimum PP values with k = 3, Witten-Bell (WBd),
Linear (Ld), Add-One (AOd) and Delimited discounts
obtain optimum PP for k = 4 and Absolute discount
(Ad) performs better for k = 5. The lowest PP (6.84)
for the Bdgeo task is obtained by a 5-TSS language
model smoothed by an Absolute (Ad) discount. How-
ever, differences around optimum values are not very
significant.

Table 2 shows the evaluation through the Info_tren
database. In this case, disfluencies are included in the
vocabulary. LMs are trained and tested with differ-
ent sets of transcribed spontaneous dialogues and thus
the mismatch between training and test is quite high

(Rodriguez et al., 2001): there are a high number of
sequences of k words in the test not appearing in the
training set. As a consequence, the Perplexity values
associated with this task are quite high (see Table 2)
especially for high values of k. Table 2 also shows ma-
jor differences among perplexity values when different
smoothing techniques are applied. In this case, the Add-
One (AOd) and Kneser-Ney (KNd) discounting tech-
niques obtain optimum PP values with k = 2 whereas
Witten-Bell (WBd), Absolute (Ad), Linear (Ld) and
Delimited (Dd) obtain optimum PP values for k = 3
models. The lowest PP (34.88) for the Info_tren task
is obtained by a 3-TSS language model smoothed by
Witten-Bell (WBd) discount.

Results of the experiment shown in Tables 1 and 2
are plotted on the left side of Figs. 1 and 2 respec-
tively. The pictures on the right side only plot a trace
per smoothing technique which corresponds to the op-
timum perplexity. Figure 1 shows that low-smoothing
techniques show a degradation of PP values for k > 3
models in the Bdgeo task. The number of seen events,
i.e. k-grams, appearing in both the training and test sets
quickly decreases as k increases. Thus, a big mass of
probability (high smoothing) needs to be redistributed
among unseen events to get good perplexity behavior.
However, the picture on the right side of Fig. 1 shows
that for optimized smoothing PP remains quite consis-
tent as k increases. This picture also shows higher PP
values when the Kneser-Ney (KNd) discount is applied
over k > 2 models.

Figure 2 shows a similar behavior of the smooth-
ing techniques with k-TSS language models for the
Info_tren database. However, k = 3 models do not per-
form much better than & = 2 models due to the lack of
training data for this difficult task. The right side picture
confirms a more consistent behavior of PP for high val-
ues of kK when optimized smoothed models are applied.
However, this picture shows higher PP values when
Add-One (AOd) and Kneser-Ney (KNd) discounts are
applied over k > 2 models.

5.2.  Integrating the Smoothed Models into the CSR
System

In the second series of experiments the language mod-
els evaluated in previous Section are directly inte-
grated into the CSR system (Rodriguez et al., 2000).
The uttered sentences of each test set are decoded by
the time-synchronous Viterbi algorithm with a fixed
beam-search to reduce the computational cost (Varona
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and Torres, 2000). A chain of Hidden Markov Models
(HMM) representing the acoustic model of the word
phonetic chain replaces each transition of the k-TSS au-
tomaton. System performances are measured in terms
of both the Word Error Rate (WER) and the Average
number of Active Nodes (ANN) in the trellis (including
acoustic and LM states) needed to decode a sentence.
For these experiments, the LM probabilities are not
modified when they are integrated into the CSR sys-
tem, i.e. the exponential scaling factor « is set to 1 in
P(Q2)*.

Figures 3 and 4 show the WER and AAN values ob-
tained through this series of experiments for the Bdgeo
and Info_tren databases respectively. The PP evaluation
of these LM is represented on the left side of Figs. 1
and 2, respectively.

Figures 3 and 4 show that low smoothing techniques
obtain the best WER in both databases. As mentioned
in Section 2, the gap among accumulated probabilities
is usually bigger than the gap among LM probabilities
when the LM is directly integrated into the CSR sys-
tem (¢ = 1). In that case, LM probabilities are often
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Figure 4. 'WER and AAN obtained for Info_tren when k-TSS LMs with & = 2...6 are directly (no scaling of LM probabilities: « = 1)
integrated into the CSR system. The PP evaluation of these models is shown on the left side of Fig. 2.

irrelevant in the maximization procedure involved in
the Viterbi algorithm. However, in low smoothed lan-
guage models the gap among LM probabilities is bigger
than in high smoothed ones and, as a consequence, LM
probabilities are more competitive and relevant in the
trellis. Thus, low smoothed LMs lead to lower WER
when they are directly integrated into the CSR system
(o« = 1) than high smoothed ones.

Pictures on the right side of Figs. 3 and 4 show that
AAN behaves similarly WER: low smoothing LMs
lead to low WER and to low AAN in the lattice. The

beam-search needs to keep a lower number of active
paths in the lattice when the LM probabilities become
significant, (low smoothing techniques) resulting in
lower computational costs. Moreover, the number of
AAN does not increase as k does, even if the size of the
language model increases (Torres and Varona, 2001).

Figures 5 and 6 only plot a trace per smoothing tech-
nique which corresponds to the best WER for the Bdgeo
and Info_tren databases respectively.

Figures 5 and 6 show that models that optimize the
test set perplexity (see Figs. 1 and 2) do not lead to
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Figure 6. Selection of best WER for Info_tren from Fig. 4: only a trace per smoothing technique. The PP evaluation of these models is shown

on the right side of Fig. 2.

the best system performances. In the Bdgeo task, the
Absolute discount (WER = 19.76% for the k = 4
model), followed by Delimited discount, achieved the
best system performances. In the Info_tren database
the Add-One discount (WER = 55.38% forthe k = 5
model) leads to the best results. Moreover, the best PP
is obtained by k£ = 3 models in this database.

5.3.  Optimizing the System Performance

LM probabilities are modified in the third series of ex-
periments by introducing an exponential scaling fac-

tor P(2)* (Jelinek, 1996). Our main goal is to op-
timize the final system performance by selecting the
right value of «. Tables 3 and 4 show the WER and
AAN obtained for the Bdgeo and Info_tren databases
respectively, when k-TSS LM’s with k = 2,...,4
are integrated into the CSR system. Different values
of the scaling exponential parameter (« = 1...7)
are evaluated. Optimum performances are empha-
sized and underlined. Then, for kK = Sand k = 6
only model system performances corresponding to the
o = 1 (no scaling of LM probabilities) and to the
value of @ minimizing (¢« = optimum) the WER are
included.
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Table 3. WER and AAN obtained for Bdgeo through k-TSS LMs with k = 2...6. Note that parameters regulating the degree of
smoothing are optimized to get optimum PP; then a lower and a higher smoothed model are also considered (see Table 1 for PP

evaluation). Scaling parameter values o = 1, ..., 7 are tested.
Absolute (Ad) Linear (Ld)
Witten-Bell Low Optimum High Low Optimum High
(WBd) smoothing smoothing smoothing smoothing smoothing smoothing
b=0.01 b=04 b=0.9 1=0.01 1=0.1 =03
[ WER AAN WER AAN WER AAN WER AAN WER AAN WER AAN WER AAN
1 41.62 3964 2933 1270 38.76 3430 41.44 3950 3473 2232 41.88 4565 4572 4713
2 25.80 2588 19.29 813 2422 2061 2565 2544 2226 1488  26.69 3192  30.64 3464
3 2022 1508  16.1 533 18.54 1145 20.02 1449 1734 923 20.9 1976 2452 2335
4 16.99 764 14.54 359 16.00 591 17.06 701 1544 509 17.95 996 21.13 1339
5 15.80 380 1529 240 1517 306 16.25 338 14.63 284 16.70 469 19.85 683
6 1595 218 16.77 168 15.28 185 16.23 192 1587 180 16.66 253 17.85 357
7 17.01 143 18.81 124 17.36 127 18.45 128 1799 127 1729 159 19.10 212
1 3885 5189 19.78 1273 3528 4462 3931 5152 2821 2801 3839 5723 43.17 6136
2 21.86 2984 1196 610 19.34 2274 2217 2939 15.67 1442 2135 3472 2624 4172
3 1535 1529  10.69 347 1334 1084 1541 1487 11.25 728 1524 1890  19.22 2599
4 11.74 702 12.11 226 10.54 499 12.00 659 1050 349 12.63 859 15.71 1382
5 10.82 328 1393 146 10.30 241 11.61 305 11.63 182 11.24 388 13.78 654
6 10.85 179 18.2 102 11.56 140 12.17 166 1498 114 11.72 199 13.04 333
7 13.04 114 21.88 77 14.13 95 14.67 107 184 82 13.15 119 13.49 190
1 3850 5374 19.76 1258  35.16 4624 3939 5344 27.89 2838 3837 5868 42.72 118
2 21.86 3053 1257 566 18.57 2316 21.59 3036 14.63 1376  20.76 3464 2550 6326
3 14.44 1544 12.06 313 1276 1083 1532 1534 1133 670 1437 1827  18.05 4248
4 10.92 704 13.75 202 1022 492 12.55 683 11.13 312 11.92 812 14.70 2606
5 1024 328 17.09 129 9.49 236 11.93 317 1324 161 10.84 363 12.59 1363
6 1022 177 2138 89 .11 137 12.72 173 18.18 100 11.03 183 12.36 637
7 1248 113 2494 67 13.84 92 14.84 11 221 72 1338 109 12.22 323
1 3853 5410 19.81 1242 3521 4656 40.10 5430 28.17 2860 3839 5910 4290 7213
op 1024 212 11.83 325 10.02 240 12.17 397 1311 345 11.02 381 13.98 721
1 3856 5432 19.83 1265 3523 5673 4095 5461 28.19 2893  38.40 5936  43.13 7287
op 1051 218 12.10 247 10.10 243 12.21 415 1456 361 11.21 392 14.01 736
Kneser-Ney (KNd) Delimited (Dd)
Add-One Low