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Abstract

The aim of this work is to show the ability of stochastic regular grammars to
generate accurate language models which can be well integrated, allocated and
handled in a continuous speech recognition system. For this purpose, a syntactic
version of the well-knownn-gram model, calledk-testable language in the strict
sense (k-TSS), is used. The complete definition of ak-TSS stochastic finite state
automaton is provided in the paper. One of the difficulties arising in representing a
language model through a stochastic finite state network is that the recursive
schema involved in the smoothing procedure must be adopted in the finite state
formalism to achieve an efficient implementation of the backing-off mechanism.
The use of the syntactic back-off smoothing technique applied tok-TSS language
modelling allowed us to obtain a self-contained smoothed model integrating
severalk-TSS automata in a unique smoothed and integrated model, which is also
fully defined in the paper. The proposed formulation leads to a very compact
representation of the model parameters learned at training time: probability
distribution and model structure. The dynamic expansion of the structure at
decoding time allows an efficient integration in a continuous speech recognition
system using a one-step decoding procedure.

An experimental evaluation of the proposed formulation was carried out on two
Spanish corpora. These experiments showed that regular grammars generate
accurate language models (k-TSS) that can be efficiently represented and managed
in real speech recognition systems, even for high values ofk, leading to very good
system performance.

c© 2001 Academic Press

1. Introduction

Continuous speech recognition (CSR) systems transcribe speech signals into sequences of
linguistic units� ≡ ω1ω2 . . . ω|�|, usually words, from some previously established finite
vocabulary6 = {ω j }, j = 1 . . . |6|. Given a sequence of acoustic measurementsA =
a1a2 . . .a|A|, the recognizer must find the sequence of linguistic units that maximizes the
probability that the sequence�was spoken, given that the acoustic sequenceA was observed
(Jelinek, 1985). Thus, the following optimization problem has to be solved:

�̂ = arg max
�

P(�/A). (1)
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Using the well-known Bayes’ formula,P(�/A) can be rewritten as

�̂ = arg max
�

P(�)P(A/�) (2)

where P(�) is the probability that the word sequence� will be uttered andP(A/�) is
the probability of the sequence of acoustic observationsA for a given sequence of words
�. ProbabilitiesP(A/�) are represented by an acoustic model, usually hidden Markov
models (HMM). Thea priori probabilitiesP(�) are given by a language model (LM).

The most successful parsing method for dealing with Equation (2) is the time-synchronous
decoding achieved by the Viterbi algorithm (Rabiner & Juang, 1993). This algorithm finds
the most likely path, i.e. the optimal state sequence through the trellis (Forney, 1973). This
path will lead through a sequence of word models that do not necessarily correspond to the
string �̂ defined in Equation (2) (Jelinek, 1999). A second approach is the stack decoding
algorithm. This finds the best sequence of words defined in (2) by exploring the tree of lin-
guistic hypotheses (Jelinek, 1976, 1999). However, the problems arising in defining adequate
heuristic functions to prune all the word hypotheses make this algorithm difficult to use for
speech recognition applications (Bahl, de Genaro, Gopalakrishnan & Mercer, 1993; Riccardi,
Pieraccini & Bocchieri, 1996; Jelinek, 1999).

Multipass searches have also been proposed. A simple language model (bigram) is used in
a first decoding step to obtain a pruned lattice of word hypotheses. More accurate language
models can then be applied to the reduced graph to construct a new trellis. This strategy
can be extended for better, and more complex, language models (Schwartz & Austin, 1991).
However, the pruning strategies can affect the search for the best word sequence (Bahlet al.,
1993; Riccardiet al., 1996; Jelinek, 1999).

The language model used determines the complexity of the final search network (Jelinek,
1999). Thus, many authors share the objective of obtaining accurate language models that can
be well integrated into the maximization procedure in Equation (2), and can be handled in
a one-step decoding procedure (Placeway, Schwartz, Fung & Nguyen, 1993; Riccardiet al.,
1996; Bonafonte & Marĩno, 1998; Llorens, 2000). This is also one of the main goals of our
work (Bordel, Torres & Vidal, 1994; Varona & Torres, 1999; Torres & Varona, 2000; Varona,
2000).

This work focuses on language modelling. Statistical methods have been used extensively
to generate the LM. They are based on the estimation of the probability of observing then−1
preceding lexical units (n-gram models):P(ωi /ω1 . . . ωn−1). The number of probabilities to
be taken into account is an exponential function ofn and therefore very large training corpora
are needed for their correct estimation. Thus, in practice, the use of this kind of model is
restricted to low values ofn, typically bigrams and trigrams in large-vocabulary recognition
tasks. In such a case, this formulation is only able to represent very local constraints and,
therefore, does not adequately model the inherent redundancy of language.

The use of stochastic automata to represent statistical language models (n-grams) has re-
cently been proposed (Placewayet al., 1993; Zhao, Kenny, Labute & O’Shoughnessy, 1993;
Riccardi, Bochieri & Pieraccini, 1995; Riccardi et al., 1996; Bonafonte & Marĩno, 1998;
Suzuki & Aso, 1999; Llorens, 2000) with the aim of handling accurate language models
in a one-step decoding procedure. But stochastic finite state automata (SFSA) are machines
which accept stochastic regular languages under a syntactic approach. Thus, these proposals
use syntactic tools (SFSA) to represent statistical models.

The use of a grammar formalism in language modelling presents several advantages (Vidal,
Casacuberta & Garcı́a, 1995; Pereira & Riley, 1997; Aubert, 2000) since language constraints
can be better modelled by using a syntactic approach. Regular languages can account forlocal
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or short-term constraints (such asn-grams) and also for moreglobalor long-term constraints
that often underlie in natural languages. Context free languages are much more powerful than
regular languages. They can properly account for subtle language constraints and admit very
compact representations (Fu, 1974; Hopcroft & Ullman, 1979; Vidal et al., 1995; Dupont &
Miclet, 1998). Consider the following utterances in a local telephone exchange task (Vidal
et al., 1995):

please, I wanted to talk to Mr. X
may I speak with Mr. Y, please

please, I would like to talk to Mr. Z, please

A very simple regular grammar can be considered to generate a language model that al-
lows the first and second sentences but not the third. The regular language can be expressed
as(please Gλ) ∪ (λ G please), where the whole grammarG represents the language of
phone requests andλ thenull string. In this example the grammarG needs to be replicated. A
more compact representation of the LM that avoids the grammar duplication can be obtained
through a context-free grammar (Vidal et al., 1995). Some formalisms based on regular gram-
mars and context free grammars have been used in LM (Jelinek, Lafferty & Mercer, 1992;
Vidal et al., 1995; Dupont & Miclet, 1998; Caseiro & Trancoso, 2000; Mohri, Pereira &
Riley, 2000).

The use of stochastic regular grammars to generate LM leads to the use of a corresponding
SFSA at decoding time. In this framework, the probabilityP̂(�) is computed as the proba-
bility of the string� being accepted by the SFSA. A sequence of states is associated with
each string of words for a deterministic SFSA. Thus, any decoding algorithm based on a net-
work search is particularly effective for working with a SFSA and can potentially improve its
efficiency. In particular, speech recognition is performed by searching for the word sequence
that maximizes the probability that the sequence� was spoken according to Equation (2).
The Viterbi algorithm searches for the “best path” in a network. When the LM has been gen-
erated by a stochastic regular grammar such a network is composed of a set of two level finite
state networks: the SFSA representing the LM guiding the search procedure on the first level
and a chain of stochastic acoustic models, usually HMMs, replacing each word on the second
level. Thus, the maximization problem represented in Equation (2) can be obtained in a one-
step decoding procedure. Moreover, additional structures such as categoryn-grams (Brown,
deSouza, Mercer, dellaPietra & Lai, 1992; Niesler & Woodland, 1999), network representing
crossword constraints (Mohri et al., 2000), etc., can be straightforwardly introduced into the
finite state network (Aubert, 2000; Caseiro & Trancoso, 2000), increasing the efficiency of
the decoder.

However, several difficulties arise in representing LM through an SFSA:

(1) A set of grammar inference techniques is required to obtain the structure and proba-
bility distributions of the SFSA from sets of training samples. Some examples can be
found in literature (Garćıa & Vidal, 1990; Prieto & Vidal, 1992; Segarra, 1993). How-
ever, only restricted systems are found in CSR applications (Prieto & Vidal, 1992) due
to the computational problems involved (Segarra, 1993; Llorens, 2000).

(2) Direct representation of the whole network representing the SFSA is usually prohibitive
even for small vocabulary tasks (Riccardiet al., 1996; Mohri et al., 2000; Varona &
Torres, 2000b).

(3) Smoothing procedures need to be developed under the syntactic approach (Bordel
et al., 1994; Riccardiet al., 1996; Varona & Torres, 1999, 2000a; Llorens, 2000). The
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recursive schema usually involved in the smoothing procedure must be adopted in the
finite state formalism to achieve efficient implementations while obtaining adequate
probability distributions.

This work deals with these problems. Its aim is to show the ability of stochastic regular gram-
mars to generate accurate language models which can be well integrated into the full scheme
given by Equation (2). For this purpose, a stochastic grammar generating a certain subclass
of regular languages calledk-testable language in the strict sense (k-TSS) (Garćıa & Vidal,
1990; Segarra, 1993; Bordelet al., 1994; Varona & Torres, 1999, 2000b; Torres & Varona,
2000) is considered. In previous works (Bordelet al., 1994; Varona & Torres, 1999) the use
of k-TSS language models has been proposed for integration into a CSR system. Given a pos-
itive sampleR+ of strings of an unknown language, the inference algorithm to obtain a deter-
ministic finite-state automaton that recognizes the smallestk-TSS language containingR+ is
proposed inGarćıa and Vidal(1990). The stochastic extension required to speech recognition
applications is supplied inSegarra(1993). This approach represents a syntactic formalism of
the well-knownn-grams derived from formal languages theory (Garćıa & Vidal, 1990). In
Section2 k-TSS languages are defined. The relationship betweenn-grams andk-TSS is also
considered in Section2. Then the correspondingk-TSS stochastic finite state automaton (k-
TSS, orn-gram, SFSA) is defined in Section3.

Difficulties (2) and (3) are sometimes addressed together since they are related subjects.
Some compact representations of the SFSA have been proposed to deal with problem (2)
(Zhaoet al., 1993; Riccardiet al., 1996; Bonafonte & Marĩno, 1998). However, they lie in
non-deterministic automata and as a consequence, several paths accepting the same string of
words can be found in the network. The Viterbi decoding algorithm searches for the “best”
sequence of states through the network. In such a case, the probability distribution obtained
through the non-deterministic automaton is only an approximation to that obtained when
the full deterministic SFSA is used (Zhaoet al., 1993; Riccardiet al., 1996; Bonafonte &
Mariño, 1998). Moreover, theif. . . then. . . elsemechanism required by any smoothing tech-
nique cannot be achieved, since it does not agree with a network which accepts a sequence of
words through several paths [problem (3)]. Thus, it can be considered that classical smooth-
ing techniques have not been fully formalized under a syntactic approach (Llorens, 2000). In
Sections4–6 we deal with problems (2) and (3).

In Section4 a syntactic back-off smoothing (Bordelet al., 1994) is applied to thek-TSS
SFSA modifying the probability distribution in order to consider those events not represented
in the training corpus, that is,unseenevents. The use of the syntactic back-off smooth-
ing technique applied tok-TSS language modelling allows us to obtain a self-contained
smoothed model integratingK k-TSS automata, wherek = 1, . . . , K . This formulation
leads to a very compact representation of the model parameters learned at training time, i.e.
probability distribution and model structure (Varona & Torres, 1999; Torres & Varona, 2000)
(see Section5). This compact structure allows non-deterministic parsing when used in a CSR
system leading to different probability distributions. However, the smoothedk-TSS SFSA
structure can be dynamically expanded at decoding time to implement the real back-off
mechanism. This proposal allows an efficient use of SFSA in CSR systems while keeping
the probability distributions as they were defined by smoothing techniques. It also allows the
use of the time-synchronous Viterbi algorithm for parsing each new sentence. These prob-
lems and proposals are fully explained in Section6.

An experimental evaluation of the proposed formulation was carried out on two Spanish
application tasks (Section7). These experiments showed thatk-TSS language models can be
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efficiently represented and managed in real CSR systems, even for high values ofk, leading
to very good system performances in terms of both word error rates and decoding times.
Finally, some concluding remarks are presented in Section8.

2. kkk-Testable in the strict sense languages

Let (6, Ik, Fk, Tk) be a four-tuple where6 is a finite alphabet,Ik andFk ⊆
⋃k−1

i=1 6
i are two

sets of initial and final segments, respectively, andTk ⊂ 6
k is a set of forbidden segments of

lengthk. A k-testable language in the strict senseLk-TSS is defined by a regular expression
as (Garćıa & Vidal, 1990; Segarra, 1993):

Lk-TSS= {ω ∈ 6
∗/ω ∈ Ik6

∗
∩6∗Fk −6

∗Tk6
∗
}. (3)

Thus,Lk-TSS is a subset of6∗ consisting of all the strings{ω ∈ 6∗} such that:

• initial segments ofω belong to a given setIk, which consists of strings of length up to
k− 1;
• final substrings ofω belong to a given setFk, which consists of strings of length up to

k− 1;
• ω does not include any substring of a given setTk, which consists of strings of lengthk.

k-TSS languages are a subclass of regular languages and can be inferred from a set of positive
samples by an inference algorithm (Garćıa & Vidal, 1990). In such a procedure, the language
inferred for a particular value ofk is included in the one inferred fork − 1: Lk-TSS ⊆

L(k−1)-TSS ⊆ · · · ⊆ L1-TSS. Thus, a series ofk-TSS languages can be inferred from a set
of positive samples fromk = 1 to a certain maximum value ofk. This maximum value is
achieved when the inferred language matches the sample strings; higher values ofk would
infer the same language. The 1-TSS language corresponds to the free monoidL1-TSS= 6

∗.
Figure1 shows an example ofk-TSS languages inferred from a given set of positive sam-

plesR+ = {abba,aaabba,bbaaa,bba}. The graph representing the finite network for each
k-TSS language inferred is shown in the figure. Nodes are labelled by strings appearing in
R+ with length up tok − 1. Arcs are labelled by symbols of the alphabet appearing in the
training corpus at the end of the string labelling the source node. The initial state is labelled
by λ; final states are represented by a double circle. The inference algorithm evaluates each
sample string setting arcs and new nodes when needed (Garćıa & Vidal, 1990). In the exam-
ple of Figure1, only five differentk-TSS languages can be inferred fromR+ sinceL5-TSS
consists of exactly the four samples inR+. Thus,L5-TSS⊆ L4-TSS⊆ · · · ⊆ (L1-TSS= 6

∗).
Thek-TSS language model defined above can be considered as a syntactic version of an

n-gram. Moreover, it has been shown (Segarra, 1993; Dupont & Miclet, 1998) that the proba-
bility distribution obtained through ann-gram model is equivalent to the distribution obtained
by a stochastic grammar generatingk-TSS language, wherek plays the same role asn does
in n-grams. But whilen-gram probability distributions are defined over fixed length strings,
stochastick-TSS languages, as with any regular language, are defined over6∗. In fact, spe-
cial symbols are often added ton-grams to simulate the behaviour of grammars (Clarkson &
Rosenfeld, 1997). Thus, the formal equivalence betweenn-grams and stochastick-TSS lan-
guages is an open problem and remains to be established.N-gram models were first defined
in the context of information theory (Channon & Weaver, 1981), whereask-TSS languages
come from the formal language theory and grammar inference background.N-gram models
do not include any of the structural features found ink-TSS. A recent work (Llorens, 2000)
presents an interesting formalization of ann-gram as a SFSA and opens up a new way
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Figure 1. L1-TSS, L2-TSSandL3-TSS inferred from a set of positive samples
R+ = {abba,aaabba,bbaaa,bba} and an alphabet6 = {a,b}. I = {initial
substrings of length up tok− 1}, F = {final substrings of length up tok− 1} and
T = {excluding substrings of lengthk}. Each inferredk-TSS language is included in
the inferredk− 1 languageL3-TSS⊆ L3-TSS⊆ L1-TSS. The 1-TSS language is
equal to6∗. L5-TSSconsists of exactly the four samples inR+.

to analyse the formal differences betweenn-grams andk-TSS languages. In Section3 the
k-TSS SFSA is presented and some of these questions are outlined.

However, from a practical point of view, choosingk-TSS orn-grams is just a matter of rep-
resentational convenience since, as mentioned above, the probability distributions obtained
through the two models are equivalent (Segarra, 1993; Bordelet al., 1994; Dupont & Miclet,
1998; Varona & Torres, 1999). As a consequence, the representation problems of the SFSA
and the lack of syntactic smoothing1 techniques (see Section1) are shared byk-TSS and
n-gram language models, whenn-grams are represented through SFSA. Sections4–6 deal
with these problems.

3. Thekkk-TSS stochastic finite state automaton

In the syntactic approach, stochastick-TSS grammars can be used to generate language mod-
els (Bordelet al., 1994; Bordel, 1996). These models need to be integrated with the stochastic
acoustic models previously estimated from a set of speech training samples in a CSR system
[Equation (2)]. Therefore, the correspondingk-TSS stochastic finite state automaton (k-TSS
SFSA) needs to be defined and fully formalized.

1Syntactic smoothing≡ smoothing technique developed to work correctly over an automaton representing a syn-
tactic LM (Bordelet al., 1994).
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Figure 2. Two states of the automaton labelled byωi−(k−1)ωi−(k−1)+1 . . . ωi−1 and
ωi−(k−1)+1 . . . ωi−1ωi . When thek-gramωi−(k−1)ωi−(k−1)+1 . . . ωi−1ωi is
observed, an outgoing transition from the first to the second state is set and labelled
byωi .

A stochastic finite state automaton representing ak-gram model can be directly obtained
from a set of training samples (Garćıa & Vidal, 1990; Segarra, 1993; Bordel, 1996). Such an
automaton (k-TSS SFSA) is defined as the five-tuple(6, Qk,q0k, F, δk) where:

• 6 = {ω j }, j = 1 . . . |6|, is the vocabulary, that is the set of words appearing in the
training corpus.
• Qk is the set of states associated with the model of orderk. Each state represents a

string ofk−1 wordsωi−(k−1) . . . ωi−1, wherei stands for a generic index in any string
ω1 . . . ωi . . . appearing in the training corpus. Such a state is labelled asωi−1

i−(k−1). A

subset ofQk represents initial substrings shorter thank− 1 corresponding to strings of
length up tok − 1 in setIk of the correspondingLk-TSS (see Section2). These states
are labelled asωi−1

i− j , where j = 1 . . . k− 2.

• The automaton has a unique initial stateq0 ∈ Qk, which is labelled asλ and represents
the null string.
• F is the set of final states of the automaton and represents the final substrings of length

k − 1. These substrings, along with final substrings with length up tok − 1, belong to
the setFk of the correspondingLk-TSS (see Section2).
• δk is the transition functionδk

: Qk
×6→ Qk

×[0 . . . 1]. δk(q, ωi ) = (qd, P(ωi /q))
defines a destination stateqd ∈ Qk and a probabilityP(ωi /q) ∈ [0 . . . 1] to be as-
signed to each element(q, ωi ) ∈ Qk

× 6. Each transition represents ak-gram; it is
labelled by its last wordωi and connects two states labelled byk − 1 words. Figure2
represents two states of the automaton labelled byωi−(k−1)ωi−(k−1)+1 . . . ωi−1 and
ωi−(k−1)+1 . . . ωi−1ωi . When thek-gramωi−(k−1)ωi−(k−1)+1 . . . ωi−1ωi is observed,
an outgoing transition from the first to the second state is set and labelled byωi ;
P(ωi /ω

i−1
i−(k−1)) is the probability associated with the observedk-gram

ωi−(k−1)ωi−(k−1)+1 . . . ωi−1ωi . Thus

δk(ωi−1
i−(k−1), ωi ) = (ω

i
i−(k−1)+1, P(ωi /ω

i−1
i−(k−1))). (4)

The stochastic constraints require that∑
∀ω∈6

P(ω/q) = 1 ∀q ∈ Qk. (5)

Under this formalism, the 1-gram involves a single state, labelled byλ, representing the
null string, and a number of outgoing transition equal to|6|. The probabilityP(ω j /λ) is the
estimated probabilityP(ω j ) and represents the frequency ofω j in the training corpus

δk(λ, ω j ) = (λ, P(ω j /λ)) = (λ, P(ω j )) ∀ω j ∈ 6. (6)
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Figure 3. Selected training corpus for thek-TSS automata of Figure4.

Examples of severalk-TSS automata are shown in Figure4. A famous poem by the Spanish
poet Miguel Herńandez has been selected to act as the sample text corpus. Figure3 shows this
poem, the corresponding training setR+ and vocabulary6. Figure4 shows severalk-TSS
automata,k = 1 . . . 4, obtained fromR+ and6 in Figure3.

The model defined above is a deterministic, and hence unambiguous, stochastic finite state
automaton (Garćıa & Vidal, 1990). Thus, the probability assigned to a sentence� ≡ ω1 . . . ωl

of lengthl , i.e. the probability of string� being accepted by the automaton is obtained as the
product of the probabilities of the transitions used to accept�:

P(�) =
l∏

i=1

P(ωi /ω
i−1
i−(k−1)). (7)

The unambiguity of the automaton also allows us to obtain a maximum likelihood estimation
of the probability of each transitionδk(ωi−1

i−(k−1), ωi ) as (Chandhuri & Booth, 1986)

P(ωi /ω
i−1
i−(k−1)) =

N(ωi /ω
i−1
i−(k−1))∑

∀ω j∈6
N(ω j /ω

i−1
i−(k−1))

(8)

whereN(ωi /ω
i−1
i−(k−1)) is the number of times the wordωi appears at the end of thek-gram

ωi−(k−1) . . . ωi−1ωi , that is the count associated with the transition labelled byωi coming
from the state labelled asωi−1

i−(k−1).
Such a model can only associate a probability with strings of words (k-grams) that have

been observed in the samples available, i.e. seen events. Thus, large vocabulary CSR systems
require a model able to associate a probability with any string of words in the vocabulary, i.e.
6∗, and to take into accountk-grams that have not been observed in the available set of data:
unseen events. Consequently, a smoothing technique is needed.
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4. The syntactic back-off smoothing procedure

In classical smoothing techniques, a specific probability mass is reserved to be shared among
unseen events, i.e.k-grams not appearing in the training corpus. In back-off smoothing (Katz,
1987) the probability to be assigned to unseenk-grams is recursively obtained from less ac-
curate models, i.e.k−1, . . . ,1. At each step of the recursion different formulations (Clarkson
& Rosenfeld, 1997; Ney, Martin & Wessel, 1997) can be applied to estimate the discounted
probability. In any case, the same discount is established for allk-grams having the same
counts.

In previous works (Bordelet al., 1994; Bordel, 1996) a syntactic back-off smoothing pro-
cedure was developed. The syntactic approach suggested a state-dependent estimation of the
total discount. The symmetry principle was then locally applied to give a more accurate dis-
tribution of the probability to be assigned to unseen events (Bordelet al., 1994). Under this
syntactic formalism, the probabilityP(ωi /q) to be associated with a transitionδk(q, ωi ) is
estimated according to

P(ωi /q) =


N(ωi /q)

N(q)+|6q|
ωi ∈ 6q

|6q|

N(q)+|6q|

P(ωi /bq)

1−
∑

∀ωi ∈6q
P(ω j /bq)

ωi ∈ (6 −6q)
(9)

where6q is the vocabulary associated with stateq, consisting of the set of words appearing
after the string labelling stateq in the training corpus, i.e. words labelling the set of seen
outgoing transitions from stateq; N(ωi /q) is the number of times that wordωi appears after
the string labelling stateq; N(q) =

∑
∀ωi∈6q

N(ω/q); |6q| is the size of6q andP(ωi /bq)

is the estimated probability associated with the same event in the (k− 1)-TSS model; thus, if
stateq is labelled asωi−1

i−(k−1), andq ≡ ωi−1
i−(k−1) ∈ Qk, then its associated back-off statebq

is labelled asωi−1
i−(k−1)+1, andωi−1

i−(k−1)+1 ∈ Qk−1. In previous works (Bordel et al., 1994;
Varona & Torres, 2000b), this discounting was experimentally compared to other classical
back-off methods leading to a significant decrease in test-set perplexity.

By using Equation (9) instead of Equation (8) the stochastic finite state automaton defined
above is now smoothed and can associate a probability with any string of words in the vo-
cabulary, i.e.6∗. However, in such a scheme a set of|6| transitions, representing each word
of the vocabulary, needs to be handled at each state. The smoothing function [Equation (9)]
estimates|Qk

| × |6| parameters that need to be allocated a large amount of space, which
is prohibitive even for small vocabulary tasks. Thus, a straightforward full network repre-
sentation is not possible due to the high number of parameters to be handled. As mentioned
above (Riccardiet al., 1996), this is one of the difficulties arising in representing ann-gram
language model through a stochastic finite state network. The syntactic formulation along
with syntactic back-off smoothing can be represented in such a way that only transitions seen
at training time need to be explicitly represented (Varona & Torres, 1999; Torres & Varona,
2000).

In Equation (9) the probabilities to be associated with the set of words appearing after the
string labelling stateq in the training corpus—the vocabulary of the state6q—are explic-
itly estimated by calculatingN(ωi /q), ∀ωi ∈ 6q, and N(q). The remaining(|6| − |6q|)

transition probabilities corresponding to those events not represented in the training corpus
are estimated according to a more general probability distribution in the (k− 1)-TSS model.
These transitions do not need to be explicitly estimated or represented at each state. The
structure of the above automaton along with the back-off smoothing technique leads them to
become grouped into a unique transition to a back-off statebq. In Equation (9) the stochastic
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condition should also be satisfied:∑
∀ω∈6

P(ω/q) = 1 ∀q ∈ Qk. (10)

The probability to be assigned to the transition from each state to its back-off state,P(bq/q),
can then be easily estimated from Equations (9) and (10). Thus

P(bq/q) =
|6q|

N(q)+ |6q|

1

1−
∑

∀ω j∈6q

P(ω j /bq)
. (11)

This transition connects each stateq with its back-off statebq that represents the same event
in the (k− 1)-TSS model. Thus, if stateq is labelled byωi−1

i−(k−1) then statebq is labelled by

ωi−1
i−(k−1)+1. The probability to be associated with each event not represented in the training

corpusP(ω j /q) ∀ω j ∈ (6 −6q) is estimated according to

P(ω j /q) = P(bq/q)P(ω j /bq) ∀ω j ∈ (6 −6q). (12)

This procedure reduces the number of parameters to be handled from|Qk
| × |6| to |Qk

| ×

|6q|. This formulation is the application of a classical back-off smoothing schema (Katz,
1987) to a syntactic LM represented through an SFSA, where the symmetry principle is lo-
cally applied (Bordelet al., 1994). The discounting in Equations (9) and (11) is analogous to
the Witten–Bell discounting procedure appearing inClarkson and Rosenfeld(1997). Alter-
natively, other discounting procedures have also been applied in the same syntactic back-off
framework (Varona, 2000; Varona & Torres, 2000a).

5. The smoothed and integrated model

One of the main problems to be addressed when representing ann-gram language model
through a stochastic finite state network (Riccardiet al., 1996; Varona & Torres, 1999) is that
the recursive schema usually involved in the smoothing procedure must be adopted in the
finite state formalism to achieve efficient implementation of the back-off mechanism. The use
of the syntactic back-off smoothing technique applied tok-TSS language modelling allowed
us to obtain a unique model integrating the required recursive structure: a smoothed and
integratedK -TSS SFSA. A smoothedK -TSS SFSA is a self-contained model that integrates
K k-TSS automata, wherek = 1, . . . , K in a unique automaton. Such a model is fully defined
in the Appendix.

The smoothed and integrated automaton includes the definition of a set of|6q| + 1 tran-
sitions associated with each state of the automaton.|6q| of these transitions are associated
with k-grams,k = 1, . . . , K seen at training time [types (a) to (e) in the definition in the
Appendix]. Each state of the automatonq ∈ QK , except the state labelled byλ, should then
add a new transition to its back-off statebq:

δK (q,U ) = (bq, P(bq/q)) (13)

whereU represents any unseen event associated with stateq which is labelled by a word
ω j in (6′ − 6q). TransitionδK (q,U ) has a destination state,bq, clearly defined in the
(k− 1)-TSS model (see Appendix) and an associated probability,P(bq/q), calculated ac-
cording to Equation (11). The probability to be associated with those events not seen in the
training corpus is then calculated according to Equation (12). Figure5 shows such a struc-
ture for a stateq labelled asωi−1

i−(K−1). The transitions labelled by the|6q| words observed



138 I. Torres and A. Varona

wi−( K −1)

i−1

wi−( K −1)+1

1

w
i−( K −1)+1

∑ q

wi−( K −1)−1

i−1

w1

w
∑ q

(K-1)_TS submodel

.

.

.

.

.

.
K_TS submodel

(K-2)_TS submodel

U

U

U

Figure 5. Syntactic back-off smoothing integrated in the automaton structure:
transitions labelled by seen events(ω j ∈ 6q) connect each state to states in the same
k-TSS submodel, withk = 1, . . . , K . Transitions labelled by unseen events connect to
their back-off states in the (k− 1)-TSS submodel.

at training time after theK -gram labellingq connect it to other states in the sameK -TSS
submodel. The transition labelled byU connects stateq to its back-off state,ωi−1

i−(K−1)+1in
the (K − 1)-TSS submodel.

Figure6 shows the whole finite network representing the structure of the smoothed and in-
tegrated automaton forK = 4 when the training setR+ and the vocabulary6 of Figure3 are
used. In this figure, each node of the network represents a state of the automaton. Transitions
from the state labelled byλ, which represents a void string of words, are represented by links
between the rootλ and its child nodes. Links connecting node $ (see Appendix) to its chil-
dren represent transitions from the initial state. Transitions that correspond to strings of words
shorter thanK are represented by|6q| links connecting each node of thek = 1, . . . , K − 2
levels to its|6q| children. Nodes ofK − 1 level represent the states associated with word
strings of length equal toK − 1 labelled asωi−1

i−(k−1). For the sake of clarity, transitions to
the final state established for all nodes each time the symbol $ appears in the training corpus
are not drawn in the figure. Instead, nodes representing states with transitions to the node
labelled as $ (see the Appendix) are outlined.

An important advantage of this formulation is that it leads to a very efficient representation
of the model parameters learned at training time: probability distributions and model struc-
ture. In a first step the structure of a smoothed and integratedK -TSS SFSA is represented by
a finite network (see Fig.6 for an example). This network is derived from an initial trie built
from the training set. Then, the initial trie nature of the network allows both the structure of
the Smoothed SFSA and the probability distributions to be allocated in a simple linear array.
The whole array consists of|QK

| × (|6q| + 1) positions. Eachk-TSS model,k = 1, . . . , K ,
is represented by a set of states equal to the number ofk-grams appearing in the training
corpus. A state of the automaton is represented by|6q| + 1 array rows, each representing
one outgoing transition. Each position of the array represents a pair(q, ω) whereq ∈ QK

andω ∈ 6q ∪ {U }. It stores the destination stateqd for eachωi ∈ 6q ∪ {U } and the value of
P(ω/q) according to Equations (9) and (11). Thus, the smoothedK -TSS SFSA defined in
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the Appendix is fully represented and stored in the array. Conventional back-offn-grams do
not include any structural parameters. The CMU LM toolbox only associates one probabil-
ity value and a back-off weight to eachn-gram (Clarkson & Rosenfeld, 1997). A complete,
detailed procedure for obtaining the representation of the smoothedK -TSS SFSA defined in
the Appendix can be found inTorres and Varona(2000) andVarona(2000).

6. Using the smoothed SFSA in a CSR system

As mentioned above, the SFSA defined in Section3 is deterministic and unambiguous. Thus,
each string of words accepted by the automaton labels a unique path from the initial state to
a final state. The string� = la de la vida, � ∈ 6∗ and� ∈ L4-TSS, is recognized by the
k = 4 automaton of Figure4 through the sequence of state transitions:

(λ)
la
−→ (la)

de
−→ (lade)

la
−→ (ladela)

vida
−→ ((delavida)). (14)

Thus, at the state labelled asladela there is only one arc available when the wordvida ap-
pears. The probability associated with the string of words� = la de la vida is obtained
through Equations (7) and (8). The size of this automaton is|Qk

| × |6q| ∀q ∈ Qk. However,
it cannot recognize strings of words, i.e.k-grams, which do not appear in the training sample.

Using Equation (9) instead of (8), this automaton can associate a probability with any
string of words in the vocabulary. The smoothed automaton is also a deterministic automaton
but now its size is|QK

|× |6|, which is prohibitive. The compact representation presented in
Section5 reduces the size of the structure from|QK

| × |6| to |QK
| × (|6q| + 1) ∀q ∈ QK .

However, the automaton is now non-deterministic. Transitions to back-off states are not la-
belled by any word of the vocabulary and act as null-transitions. Thus, each string of words
accepted by the automaton labels several paths from the initial state to a final state. The string
� = la de la vida, � ∈ 6∗ and� ∈ L4-TSS, is now recognized by the smoothed automaton
of Figure6 through several sequences of state transitions. The probability associated with the
string of words� = la de la vidashould be calculated considering the probabilities associ-
ated with all the paths leaving the initial state ($), reaching a final state and being labelled
by this sequence of words, including null-transitions (Fu, 1974). Thus, the non-deterministic
automaton is not equivalent to the deterministic one (Llorens, 2000) since the probabilities
assigned to the same sequence of words are not the same. As an example, Figure7 shows
a part of the model in Figure6. Suppose the state labelled by(ladela) has been reached. If
vida is the next word in the sequence then the state labelled as[(delavida)] can be reached
by two paths: (a) the direct arc labelled byvida or (b) the backoff transition to state labelled
as(dela) followed by the outgoing transition labelled byvida. Two more valid paths can be
found to reach the state labelled as[(lavida)] and two more reaching the state labelled as
[(vida)] (see Fig.7).

Another point to be addressed is that the recursive mechanism required by the back-off
smoothing technique [see Equation (9)] is not well integrated in the compact representation.
In the example of Figure7, the path that gives the probability corresponding to the smooth-

ing technique [Equation (9)] is [(ladela)]
vida
−→ [(delavida)] sincevida is a seenevent at

state labelled by(ladela). However, all possible paths are considered to associate a proba-
bility with a word sequence through a non-deterministic automaton (Fu, 1974). Thus, theif
. . . then . . . elsestructure required by any smoothing technique cannot be implemented in a
non-deterministic background (Llorens, 2000) due to the multiple path choice for the same
string of words.
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Figure 6. The finite network representing the structure of the smoothed and
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Figure 7. Part of the model in Figure6. Several paths represent the string of words
� = la de la vida.

The Viterbi decoding algorithm finds the most likely path through a trellis. Thus, only the
best sequence of states is considered when obtaining�̂ through Equation (2). If the LM is
represented by a non-deterministic SFSA, then the decoding algorithm is taking the final de-
cision about valid or non valid sequences of states, and consequently sequences of words, by
considering only the most likely state sequences. This procedure does not guarantee the same
probability distribution as the deterministic model (Riccardiet al., 1996; Llorens, 2000). The
path leading to the correct application of the smoothing technique is not guaranteed to be
chosen in this case (Riccardiet al., 1996; Llorens, 2000). Some proposals to address this
problem chose compact representations, i.e. non-deterministic automata, due to the major
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Figure 8. A simple search function to compute Equation (15).

savings in memory. But they also use the non-deterministic network at decoding time. In
such cases, only approximaten-gram probability distributions are managed (Placewayet al.,
1993; Riccardiet al., 1996; Bonafonte & Marĩno, 1998; Suzuki & Aso, 1999; Llorens, 2000).

One way to deal with these problems is to develop a specific parsing method which imple-
ments the smoothing technique in an exact way while keeping the compact representation of
the automaton. This procedure should guarantee that the probability to be assigned to a given
k-gram is the same as the probability assigned by the full deterministic automaton. This goal
is achieved by a simple search function through the array representing the non-deterministic
and smoothed SFSA in Figure5 (Torres & Varona, 2000; Varona, 2000).

To complete the model representation the transition functionδ of the smoothed and inte-
gratedK -TSS automaton (see the Appendix) should then be established and represented for
each stateq ∈ QK and for eachω ∈ 6′. This transition function defines a destination state
qd and a probabilityP(ω/q) associated with each pair(q, ω) ∀q ∈ QK and∀ω ∈ 6′:

δ(q, ω) = (qd, P(ω/q)) ∀q ∈ QK
∧ ∀ω ∈ 6′ qd ∈ QK . (15)

When seen events appear the destination stateqd corresponds to a state in the samek-TSS
submodel (see Fig.5). Thus, it can be directly found as the destination index of the array
position(ω,q) (Torres & Varona, 2000). In the same way the value ofP(ω/q), computed
according to Equation (9) for ω ∈ 6q, can be directly found as the probability value at
the array position(ω,q) (Torres & Varona, 2000). However, when unseen events appear
qd should be found in the(k − 1)-TSS submodel and thus neitherqd nor P(ω/q) values
are directly found in the array. A simple search function through the array is then required.
This function, represented in Figure8, searches backwards across the back-off states, i.e.
transitions through theU symbol, until the wordω is found as a seen event for a stateq in
a lower level (k < K ), i.e.ω ∈ 6q (see Fig.5). Stateq will be then the destination stateqd

searched for. TheP(ω/q) value should be computed according to Equation (12) in this case.
Thus, Equation (12) is recursively calculated whileqd is found by the search function. This
procedure, represented by Equation (15), is described by functionδ in Figure8: δd stands for
the destination stateqd andδP for the probabilityP(ω/q).

When the next word to be processed is known, as in text processing, the function repre-
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sented in Figure8 is the best way to compute the smoothed probability while keeping the
compact representation. In speech recognition applications the word to be processed is un-
known and as a consequence the structure needs to be dynamically expanded at decoding
time (Varona, 2000). The search function provides in this case an array representing differ-
ent sequences of decoded words obtained by Equation (15). However, this search function is
needed for active paths only when a simple beam search strategy (Ney, 1992; Steinbiss, Tran
& Ney, 1994) is used to reduce the computational cost. As a consequence, the size of the
real search space does not increase, even when high values ofK are used. The experimental
evaluation carried out (see Section7) shows this behaviour.

7. Experimental evaluation

An experimental evaluation ofk-TSS languages models was carried out on two Spanish
databases. The first one was first presented in English (Feldman, Lakoff, Stolcke & Weber,
1990) and consists of a set of simple Spanish sentences describing visual scenes (minia-
ture language acquisition task—MLA). The training set consisted of 9150 sentences that
were randomly generated by using a context-free model of the language. It includes 147 002
words and a very limited vocabulary size (29 words). The second corpus (BDGEO) is a task-
oriented Spanish speech corpus (Dı́azet al., 1993) with a medium size vocabulary of 1212
words. This corpus represents a set of queries to a Spanish geography database. This is a
specific task designed to test integrated systems (acoustic, syntactic and semantic modelling)
in automatic speech understanding. The training corpora also consisted of 9150 sentences
including 82 000 words in this case.

TablesI andII show the number of states,|QK
|, for severalK -TSS integrated models,

with K = 1 . . . 6 for MLA and BDGEO tasks respectively. The increase of|QK
| with K

depends on the corpus size and corpus structure. However, the rate between the number of
seen events and the number of possible events decreases withK in any case. Consequently,
the increase of|QK

| with K remains quite limited. The smoothedK -TSS SFSA formulation
presented in Section5 along with the proposed representation (see Fig.5) reduces the number
of parameters to be handled from|QK

| × |6| to |QK
| × (|6q| + 1). TablesI andII show

that this reduction leads to memory requirements that can be easily managed even when high
values ofK are considered. These tables also show the test set perplexity when Equation (9)
was used to estimate the probability distributions for severalK -TSS models. A set of 500
new sentences including 8397 words was used to evaluate the test set perplexity of the MLA
corpus and a set of 1193 new sentences and 13 687 words was used to evaluate the test set
perplexity of the BDGEO corpus. Perplexity values decrease asK increases, even for high
values ofK , for MLA corpus (see TableI). This behaviour is due to the simplicity of the
syntactic structure of these sentences, especially for high values ofK . The perplexity values
are stable forK > 3 for BDGEO corpus (see TableII ).

These experiments were also carried out using standard back-offn-gram models along with
the Witten–Bell discounting. TablesI andII show the test set perplexity obtained through the
CMU toolkit (Clarkson & Rosenfeld, 1997) for severaln-gram models, withn = 1, . . . ,6 for
MLA and BDGEO tasks.K -TSS andn-gram models achieved similar results, as expected.
TablesI andII also show that the smoothed and integratedK -TSS model needs only a lit-
tle more memory than a conventional back-offn-gram using the CMU toolkit (Clarkson &
Rosenfeld, 1997). In fact, conventional back-offn-grams do not include any structural pa-
rameters. Only a probability value and a back-off weight is associated with eachn-gram in
the CMU toolkit. However, the structure ofK -TSS SFSA defined in the Appendix is fully
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TABLE I. Perplexity evaluation and sizes of severalK -TSS, withK = 1 . . . 6 (see Fig.5) and CMU
n-grams models (Clarkson & Rosenfeld, 1997) for MLA task. For comparison purposes, the size of a

theoretic and deterministic full network is also provided

K |QK
| Full network K -TSS n-grams (CMU)

|QK
| × |6| |QK

| × (|6q| + 1) Memory (Kb) PP Memory (Kb) PP
2 31 899 214 3.0 3.25 2.04 4.03
3 173 8590 850 11.9 3.08 8.33 3.12
4 643 18647 2542 35.6 2.76 25.5 2.90
5 1808 52432 6642 93.0 2.62 69.75 2.77
6 4518 131022 15614 218.6 2.56 176.68 2.61

TABLE II. Perplexity evaluation and sizes of severalK -TSS, with K = 1 . . . 6 (see Fig.5) and CMU
n-grams models (Clarkson & Rosenfeld, 1997) for BDGEO task. For comparison purposes, the size of a

theoretic and deterministic full network is also provided

K |QK
| Full network K -TSS n-grams (CMU)

|QK
| × |6| |QK

| × (|6q| + 1) Memory (Mb) PP Memory (Mb) PP
2 1213 14.60 105 9285 0.13 13.10 0.09 13.03
3 7479 90.34 105 30714 0.43 7.53 0.32 7.54
4 21551 26.03 106 67857 0.95 6.95 0.80 7.17
5 42849 51.76 106 120714 1.69 6.90 1.52 7.22
6 69616 80.09 106 182142 2.55 6.90 2.61 7.37

represented and stored. A destination stateqd and the value ofP(ω/q) [see (9) and (11)] are
stored for eachωi ∈ 6q ∪ {U } (Torres & Varona, 2000). This leads to a more effective net-
work search at decoding time. It also allows a straightforward integration of other knowledge
sources.

In a second series of experiments, theK -TSS SFSA were integrated into a CSR system.
Each transition of the automaton was replaced by a chain of hidden Markov models repre-
senting the acoustic model of each phonetic unit of the word. Then the decoding scheme rep-
resented in Equation (2) was approximated by using the time-synchronous Viterbi algorithm.
In such a scheme, the transition through each word of the vocabulary should be evaluated
each time the system considers an LM state transitionδ(q/ω). Thus, the search function pre-
sented in Figure8 was used to obtain for stateq the following stateqd and the associated
probability P(ω/q) for all the words in the vocabulary.

Two new test sets were used in this case: the first consisted of 1600 sentences from
the MLA task, uttered by 16 speakers, and the second of 600 sentences from the BDGEO
task, uttered by 12 speakers. In both cases the acoustic models were previously trained over
1529 sentences, phonetically balanced and uttered by 47 different speakers, involving around
60 000 phones.

A Silicon Graphics O2 machine with an R10000 processor was used in these experiments.
In order to reduce the computational cost a beam-search algorithm was applied with three
different widths: a narrow beam factor (bf) of 0.6, an intermediate of 0.5 and a wide one of
0.4. The beam-search algorithm eliminates the less probable paths of the trellis. The word
error rate (WER) obtained when severalK -TSS languages were integrated into the described
CSR system is shown in TableIII (MLA task) and TableIV (BDGEO task). These tables also
show the average time required to decode a frame (in mseconds) and the average number of
active nodes in the lattice, including acoustic and language model states.

TablesIII andIV show that the use of the proposed smoothed SFSA representation pro-
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TABLE III. Experimental results when severalK -TSS models were integrated into a CSR system:
MLA task

K Average number of Average time per WER
active nodes frame (msec)

bf = 0.6 bf = 0.5 bf = 0.4 bf = 0.6 bf = 0.5 bf = 0.4 bf = 0.6 bf = 0.5 bf = 0.4
2 21 39 64 1 3 4 7.53 5.01 4.60
3 26 47 80 2 3 5 7.48 4.83 4.36
4 28 50 87 2 4 6 7.17 4.33 3.62
5 29 52 92 2 4 7 6.76 3.64 3.26
6 30 54 98 3 5 7 6.82 3.51 2.68

TABLE IV. Experimental results when severalK -TSS models were integrated into a CSR system:
BDGEO task

K Average number of Average time per WER
active nodes frame (msec)

bf = 0.6 bf = 0.5 bf = 0.4 bf = 0.6 bf = 0.5 bf = 0.4 bf = 0.6 bf = 0.5 bf = 0.4
2 114 218.21 526.28 6.6 11.8 20.54 25.1 15.95 14.29
3 90 179.01 467.66 6.0 10.9 17.51 25.5 10.85 9.45
4 89 177.99 469.60 6.2 11.2 16.71 26.3 10.12 8.58
5 90 180.57 478.33 6.5 11.6 16.73 27.0 10.25 8.72
6 91 182.32 490.50 6.8 12.0 16.51 27.1 10.66 9.07

vides additional time reductions since the search function through the array (Fig.8) is only
needed for active paths. Thus, smoothedK -TSS models with high values ofK need more
memory (see TablesI andII ) but they can be easily integrated into a CSR system with no
significant increase in the decoding time, since the average number of active nodes does not
increase as|QK

| does. This is a very important result since it demonstrates that a compact
representation of the non-deterministic model (see Fig.5) can be dynamically expanded at
decoding time at a feasible computational cost. The use of the function in Figure8 along
with a simple beam-search algorithm results in a relatively constant size of the search space
whereas the performance of the system increases withk. In this way, the Viterbi decoding
algorithm can be used to decode a compact and non-deterministic SFSA which obtains the
same probability distributions as the deterministic SFSA. Moreover, the probability assigned
by the smoothing technique is guaranteed to be considered at each step of the LM decoding
procedure.

These experiments also show that both the system performance and the average number
of active nodes increase withK for the MLA task (TableIII ). The lowest word error rates
were achieved forK = 6. However, the system performance behaviour is not the same for
the BDGEO task. In this case, both the WER and the average number of active node values
decreased asK increased up to a certain value ofK (see TableIV); subsequently, both values
remain practically constant. The lowest word error rates were achieved forK = 4 in this task.

8. Concluding remarks

The aim of a CSR system is to find the best interpretation of the input speech data in terms of
knowledge sources such as language model, pronunciation lexicon and inventory of subword
units. This objective is represented by the well-known Bayes’ formula, which represents an
integrated model involving global decisions that explicitly take account of the constraints
given by the knowledge sources. It is well known that a straightforward way of dealing with
such an integration is to use SFSA. On the other hand, language constraints are better mod-
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elled under a syntactic approach. The aim of this work is to show the ability of stochastic reg-
ular grammars to generate accurate LMs which can be well integrated into this scheme. For
this purpose, a syntactic version of the well-knownn-gram models,k-TSS language models,
has been used. The complete definition of ak-TSS SFSA is provided in the paper. A syntac-
tic back-off smoothing technique has been applied to the SFSA, modifying the probability
distribution to consider unseen events. Finally, a self-contained smoothed model integrating
K k-TSS automata, wherek = 1, . . . , K , has been also defined. This formulation leads to
a very compact representation of the model parameters learned at training time: probability
distribution and model structure.

Another difficulty arising in representing a language model through a stochastic finite state
network is that the recursive schema usually involved in the smoothing procedure must be
adopted in the finite state formalism to achieve an efficient implementation of the backing-
off mechanism. The dynamic expansion of the structure at decoding time allows the Viterbi
algorithm to correctly manage theif. . .then. . . elseschema of the back-off procedure. Thus, a
one-step decoding algorithm can be used to decode a compact and non-deterministic SFSA,
obtaining the same probability distributions as the deterministic one.

An experimental evaluation of the proposed formulation has been carried out on two Span-
ish corpora. These experiments show that the dynamic expansion of the structure at decoding
time do not lead to an increase in the size of the search space. The number of active nodes in
the lattice did not increase as|Qk

| did, whereas the system performance increased withk. The
system performance shown in the paper with high values ofk is consistent enough for good
system behaviour with large vocabulary tasks to be expected, even though experiments of this
kind may also be required. In fact, from a computational point of view, increasing the value
of k could be considered as equivalent to increasing the size of the vocabulary of the task.

This work shows that regular grammars can generate accurate language models,k-TSS,
that can be efficiently represented and managed in real speech recognition systems, even for
high values ofk, leading to very good system performances. Thus, efficient integration of
LM generated by more powerful regular grammars can be attempted in the same way. Future
works also include straightforward integration of other knowledge sources.

The authors would like to thanks Dr F. Casacuberta and Dr E. Vidal for their comments and suggestions
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Appendix: The smoothed and integrated model

A smoothedK -TSS SFSA is a self-contained model that integratesK k-TSS automata, where
k = 1, . . . , K in a unique automaton. It is defined by a five-tuple(6′, QK ,q0,q f , δ

K )

where:

• 6′ = 6 ∪ {$} being6 = {ω j }, j = 1, . . . , |6|, is the vocabulary, that is the set of
words appearing in the training corpus. Null symbol $ has been included in the training
corpus to isolate each sentence from its neighbors. This symbol can be considered as
the first and last word of each sentence.
• QK is the state set of the automaton. Each state represents a string of words
ωi−kωi−(k−1), . . . , ωi−1, k = 1, . . . , K − 1, with a maximum length ofK − 1, where
i stands for a generic index in any stringω1 . . . ωi . . . appearing in the training corpus.
Such a state is labelled asωi−1

i−k. States representing the initial strings of training sen-

tences are labelled as $ωi−1
i−k wherek = 1, . . . , K − 2 to guarantee a maximum length

of K − 1. A special state labelled asλ represents a void string of words.
• The automaton has a unique initial and final stateq0 ≡ q f ∈ QK , which is labelled as

$. This allows us consecutively to parse sets of sentences, while discarding contextual
information between them. The initial state is different from the state labelled asλ

because the probabilityP(ωi /λ) is the estimated probabilityP(ωi ), whereasP(ωi /$)
is the probability associated withωi when it is the initial word in a sentence. The only
exception is the 1-TSS model with a unique stateλ, which is the initial and final state.
• δK is the transition functionδK

: QK
× (6′ ∪ {U }) → QK

× [0 . . . 1]. δK (q, ωi ) =

(qd, P(ωi /q)) defines a destination stateqd ∈ QK and a probabilityP(ωi /q) ∈
[0 . . . 1] to be assigned to each element(q, ωi ) ∈ QK

× (6 ∪ {$U }). Each transi-
tion represents ak-gram,k = 1, . . . , K ; it is labelled by its last wordωi and connects
two states labelled with up toK − 1 words. Several kinds of transition can be found in
the model:
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(a) Transitions from the special state labelled asλ, which represents a void string
of words, to the|6| states labelled by each word of the vocabularyω j ∈ 6,
j = 1, . . . , |6|. The probability associated with each transition represents the
frequency of the corresponding word in the training corpus:

δK (λ, ω j ) = (ω j , P(ω j /λ)) = (ω j , P(ω j )) j = 1, . . . , |6|. (16)

(b) Transitions from the initial state labelled as $ that correspond to the set of words
appearing in initial position of a sentence:

δK ($, ωi ) = ($ωi , P(ωi /$)). (17)

(c) Transitions that correspond to strings of words shorter thanK connecting states
associated with string lengths up toK − 2:{

δK (ωi−1
i−k, ωi ) = (ω

i
i−k, P(ωi /ω

i−1
i−k)) k = 1, . . . , K − 2

δK ($ωi−1
i−k, ωi ) = ($ωi

i−k, P(ωi /$ω
i−1
i−k)) k = 1, . . . , K − 3.

(18)

These transitions come from theK − 1 automata corresponding tok-TSS models
with k < K .

(d) Regular transitions that correspond to strings of words of lengthK connecting
states associated with string lengths equal toK − 1:{

δK (ωi−1
i−(K−1), ωi ) = (ω

i
i−(K−1)+1, P(ωi /ω

i−1
i−(K−1)))

δK ($ωi−1
i−(K−2), ωi ) = ($ωi

i−(K−2), P(ωi /$ω
i−1
i−(K−2))).

(19)

(e) Transitions to the final stateq f (≡ q0) labelled by $:{
δK (ωi−1

i−k,$) = (q f , P($/ωi−1
i−k)) k = 1, . . . , K − 1

δK ($ωi−1
i−k,$) = (q f , P($/$ωi−1

i−k)) k = 1, . . . , K − 2.
(20)

(f) Transitions to the back-off state: under the syntactic back-off smoothing proce-
dure (see Section4), the probabilityP(ωi /q) to be associated with a transition
δK (q, ωi ) is estimated according to Equation (9). Each state of the automaton
q ∈ QK , except the state labelled byλ, should add a new transition to its back-off
statebq:

δK (q,U ) = (bq, P(bq/q)) (21)

whereU represents any unseen event associated with stateq which is labelled by
a wordω j in (6′ −6q). The back-off statebq associated with each stateq can be
found in the(k− 1)-TSS model. Thus, for states associated with string lengths up
to K − 2:

q ≡ ωi−1
i−k ⇒ bq ≡ ω

i−1
i−k+1 k = 1, . . . , K − 2

q ≡ $ωi−1
i−k ⇒ bq ≡ $ωi−1

i−k+1 k = 1, . . . , K − 3 (22)

and for ordinary states associated with string lengths equal toK − 1:

q ≡ ωi−1
i−(K−1)⇒ bq ≡ ω

i−1
i−(K−1)+1

q ≡ $ωi−1
i−(K−2)⇒ bq ≡ $ωi−1

i−(K−2)+1. (23)

Finally, the back-off state associated with the initial, and final, state labelled as $
is the special state labelled asλ. This state has no associated back-off state since it
represents the void string.
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