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Abstract

The aim of this work is to show the ability of stochastic regular grammars to
generate accurate language models which can be well integrated, allocated and
handled in a continuous speech recognition system. For this purpose, a syntactic
version of the well-knowm-gram model, calle#t-testable language in the strict
senseK-TSS), is used. The complete definition df-&'SS stochastic finite state
automaton is provided in the paper. One of the difficulties arising in representing a
language model through a stochastic finite state network is that the recursive
schema involved in the smoothing procedure must be adopted in the finite state
formalism to achieve an efficient implementation of the backing-off mechanism.
The use of the syntactic back-off smoothing technique appliédf8S language
modelling allowed us to obtain a self-contained smoothed model integrating
severak-TSS automata in a unique smoothed and integrated model, which is also
fully defined in the paper. The proposed formulation leads to a very compact
representation of the model parameters learned at training time: probability
distribution and model structure. The dynamic expansion of the structure at
decoding time allows an efficient integration in a continuous speech recognition
system using a one-step decoding procedure.

An experimental evaluation of the proposed formulation was carried out on two
Spanish corpora. These experiments showed that regular grammars generate
accurate language modelsTSS) that can be efficiently represented and managed
in real speech recognition systems, even for high valuéslefding to very good
system performance.

© 2001 Academic Press

1. Introduction

Continuous speech recognition (CSR) systems transcribe speech signals into sequences of
linguistic unitsQ = wiws ... w)q|, usually words, from some previously established finite
vocabularyX = {wj}, ] = 1...|Z|. Given a sequence of acoustic measureménts:

aiay ... aya), the recognizer must find the sequence of linguistic units that maximizes the
probability that the sequenéewas spoken, given that the acoustic sequekeas observed
(Jelinek 1985. Thus, the following optimization problem has to be solved:

Q = arg maxP (2/A). 1)
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Using the well-known Bayes’ formuld (2/A) can be rewritten as
Q= arg maxP () P(A/ ) 2)

where P(Q2) is the probability that the word sequenewill be uttered andP(A/ ) is

the probability of the sequence of acoustic observatiarfer a given sequence of words
Q. ProbabilitiesP(A/2) are represented by an acoustic model, usually hidden Markov
models (HMM). Thea priori probabilitiesP (2) are given by a language model (LM).

The most successful parsing method for dealing with Equa#ipis (he time-synchronous
decoding achieved by the Viterbi algorithiRgbiner & Juang1993. This algorithm finds
the most likely path, i.e. the optimal state sequence through the tfediiady 1973. This
path will lead through a sequence of word models that do not necessarily correspond to the
string 2 defined in Equation2) (Jelinek 1999. A second approach is the stack decoding
algorithm. This finds the best sequence of words define@)iby exploring the tree of lin-
guistic hypotheseslélinek 1976 1999. However, the problems arising in defining adequate
heuristic functions to prune all the word hypotheses make this algorithm difficult to use for
speech recognition applicatiorBghl, de Genaro, Gopalakrishnan & MercE993 Riccardi,
Pieraccini & Bocchieri1996 Jelinek 1999.

Multipass searches have also been proposed. A simple language model (bigram) is used in
a first decoding step to obtain a pruned lattice of word hypotheses. More accurate language
models can then be applied to the reduced graph to construct a new trellis. This strategy
can be extended for better, and more complex, language m@tHw/artz & Austin 1991).
However, the pruning strategies can affect the search for the best word sedpiahlct él.,

1993 Riccardiet al,, 1996 Jelinek 1999.

The language model used determines the complexity of the final search nedeliniek
1999. Thus, many authors share the objective of obtaining accurate language models that can
be well integrated into the maximization procedure in Equat®)ngnd can be handled in
a one-step decoding proceduRdgceway, Schwartz, Fung & Nguyetf93 Riccardiet al,,

1996 Bonafonte & Marfio, 1998 Llorens 2000. This is also one of the main goals of our
work (Bordel, Torres & Vida] 1994 Varona & Torres1999 Torres & Varona200Q Varona
2000.

This work focuses on language modelling. Statistical methods have been used extensively
to generate the LM. They are based on the estimation of the probability of observimg the
preceding lexical unitsncgram models)P (wj /w1 . . . wn—1). The number of probabilities to
be taken into account is an exponential function ahd therefore very large training corpora
are needed for their correct estimation. Thus, in practice, the use of this kind of model is
restricted to low values af, typically bigrams and trigrams in large-vocabulary recognition
tasks. In such a case, this formulation is only able to represent very local constraints and,
therefore, does not adequately model the inherent redundancy of language.

The use of stochastic automata to represent statistical language ntededs1(s) has re-
cently been proposedPlacewayet al,, 1993 Zhao, Kenny, Labute & O’Shoughnessy993
Riccardi, Bochieri & Pieraccinil995 Riccardiet al, 1996 Bonafonte & Mariio, 1998
Suzuki & Asq 1999 Llorens 2000 with the aim of handling accurate language models
in a one-step decoding procedure. But stochastic finite state automata (SFSA) are machines
which accept stochastic regular languages under a syntactic approach. Thus, these proposals
use syntactic tools (SFSA) to represent statistical models.

The use of a grammar formalism in language modelling presents several advaxtdgkes (
Casacuberta & Garg 1995 Pereira & Riley 1997 Aubert 2000 since language constraints
can be better modelled by using a syntactic approach. Regular languages can actoceit for
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or short-term constraints (suchmagrams) and also for mogobal or long-term constraints

that often underlie in natural languages. Context free languages are much more powerful than
regular languages. They can properly account for subtle language constraints and admit very
compact representationsy, 1974 Hopcroft & Ullman 1979 Vidal et al,, 1995 Dupont &

Miclet, 1998. Consider the following utterances in a local telephone exchange Ve (

etal, 1995:

please, | wanted to talk to Mr. X
may | speak with Mr. Y, please
please, | would like to talk to Mr. Z, please

A very simple regular grammar can be considered to generate a language model that al-
lows the first and second sentences but not the third. The regular language can be expressed
as(please GA) U (A G please, where the whole gramma#B represents the language of
phone requests andthenull string. In this example the gramm@rneeds to be replicated. A
more compact representation of the LM that avoids the grammar duplication can be obtained
through a context-free grammafidal et al,, 1995. Some formalisms based on regular gram-
mars and context free grammars have been used inJdiingk, Lafferty & Mercer1992
Vidal et al, 1995 Dupont & Miclet, 1998 Caseiro & Trancoso200Q Mohri, Pereira &

Riley, 2000.

The use of stochastic regular grammars to generate LM leads to the use of a corresponding
SFSA at decoding time. In this framework, the probabiftg2) is computed as the proba-
bility of the string 2 being accepted by the SFSA. A sequence of states is associated with
each string of words for a deterministic SFSA. Thus, any decoding algorithm based on a net-
work search is particularly effective for working with a SFSA and can potentially improve its
efficiency. In particular, speech recognition is performed by searching for the word sequence
that maximizes the probability that the sequefz@as spoken according to Equatia?).(
The Viterbi algorithm searches for the “best path” in a network. When the LM has been gen-
erated by a stochastic regular grammar such a network is composed of a set of two level finite
state networks: the SFSA representing the LM guiding the search procedure on the first level
and a chain of stochastic acoustic models, usually HMMs, replacing each word on the second
level. Thus, the maximization problem represented in Equaipogn be obtained in a one-
step decoding procedure. Moreover, additional structures such as categ@ams Brown,
deSouza, Mercer, dellaPietra & 1.4992 Niesler & Woodland1999, network representing
crossword constraintd/ohri et al,, 2000, etc., can be straightforwardly introduced into the
finite state networkAubert 2000 Caseiro & Trancosa2000), increasing the efficiency of
the decoder.

However, several difficulties arise in representing LM through an SFSA:

(1) A set of grammar inference techniques is required to obtain the structure and proba-
bility distributions of the SFSA from sets of training samples. Some examples can be
found in literature Garda & Vidal, 199Q Prieto & Vidal, 1992 Segarral993. How-
ever, only restricted systems are found in CSR applicatiBristo & Vidal, 1992 due
to the computational problems involve8dgarral993 Llorens 2000.

(2) Directrepresentation of the whole network representing the SFSA is usually prohibitive
even for small vocabulary taskRiccardiet al, 1996 Mohri et al, 200Q Varona &

Torres 200).

(3) Smoothing procedures need to be developed under the syntactic appBzadel (

et al, 1994 Riccardiet al,, 1996 Varona & Torres1999 200(; Llorens 2000. The
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recursive schema usually involved in the smoothing procedure must be adopted in the
finite state formalism to achieve efficient implementations while obtaining adequate
probability distributions.

This work deals with these problems. Its aim is to show the ability of stochastic regular gram-
mars to generate accurate language models which can be well integrated into the full scheme
given by EquationZ). For this purpose, a stochastic grammar generating a certain subclass
of regular languages callddtestable language in the strict senkel §S) Garda & Vidal,

1990 Segarral993 Bordelet al, 1994 Varona & Torres 1999 200(; Torres & Varona

2000 is considered. In previous workBgrdelet al, 1994 Varona & Torres1999 the use

of k-TSS language models has been proposed for integration into a CSR system. Given a pos-
itive sampleR™ of strings of an unknown language, the inference algorithm to obtain a deter-
ministic finite-state automaton that recognizes the smalldsS language containiri@™ is
proposed irGarda and Vidal1990. The stochastic extension required to speech recognition
applications is supplied iBegarrg1993. This approach represents a syntactic formalism of

the well-knownn-grams derived from formal languages theo@a(da & Vidal, 1990. In
Section2 k-TSS languages are defined. The relationship betwegnams an&k-TSS is also
considered in SectioB. Then the correspondirigTSS stochastic finite state automatén (

TSS, orn-gram, SFSA) is defined in Secti@

Difficulties (2) and (3) are sometimes addressed together since they are related subjects.
Some compact representations of the SFSA have been proposed to deal with problem (2)
(Zhaoet al,, 1993 Riccardiet al,, 1996 Bonafonte & Marfio, 1998. However, they lie in
non-deterministic automata and as a consequence, several paths accepting the same string of
words can be found in the network. The Viterbi decoding algorithm searches for the “best”
sequence of states through the network. In such a case, the probability distribution obtained
through the non-deterministic automaton is only an approximation to that obtained when
the full deterministic SFSA is usedlfaoet al., 1993 Riccardiet al., 1996 Bonafonte &

Marifio, 1998. Moreover, thdf.. . then.. . elsenechanism required by any smoothing tech-
nigue cannot be achieved, since it does not agree with a network which accepts a sequence of
words through several paths [problem (3)]. Thus, it can be considered that classical smooth-
ing techniques have not been fully formalized under a syntactic approbekifs 2000. In
Sectiong4—6 we deal with problems (2) and (3).

In Section4 a syntactic back-off smoothin@6rdelet al, 1994 is applied to the&k-TSS
SFSA modifying the probability distribution in order to consider those events not represented
in the training corpus, that isjnseenevents. The use of the syntactic back-off smooth-
ing technique applied t&-TSS language modelling allows us to obtain a self-contained
smoothed model integrating k-TSS automata, where = 1, ..., K. This formulation
leads to a very compact representation of the model parameters learned at training time, i.e.
probability distribution and model structurégrona & Torres1999 Torres & Varona2000
(see Sectiol). This compact structure allows non-deterministic parsing when used in a CSR
system leading to different probability distributions. However, the smookh€8S SFSA
structure can be dynamically expanded at decoding time to implement the real back-off
mechanism. This proposal allows an efficient use of SFSA in CSR systems while keeping
the probability distributions as they were defined by smoothing techniques. It also allows the
use of the time-synchronous Viterbi algorithm for parsing each new sentence. These prob-
lems and proposals are fully explained in Section

An experimental evaluation of the proposed formulation was carried out on two Spanish
application tasks (Sectiof). These experiments showed thaf SS language models can be
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efficiently represented and managed in real CSR systems, even for high vakjésaafing
to very good system performances in terms of both word error rates and decoding times.
Finally, some concluding remarks are presented in Seétion

2. k-Testable in the strict sense languages

Let(Z, Ik, Fk, Tx) be a four-tuple wher& is a finite alphabetx andF C U:‘;ll i are two
sets of initial and final segments, respectively, apd- =X is a set of forbidden segments of
lengthk. A k-testable language in the strict serserssis defined by a regular expression
as Garda & Vidal, 1990 Segarral993:

Li-Tss={w € T*/w € xkT* N T*F — T*Tk2*). 3)
Thus,Lk-Tssis a subset ob* consisting of all the stringgy € ~*} such that:

e initial segments of» belong to a given sdi, which consists of strings of length up to

k-1,
e final substrings ofv belong to a given sef, which consists of strings of length up to
k-1,

e w does not include any substring of a givenBgtwhich consists of strings of lengkh

k-TSS languages are a subclass of regular languages and can be inferred from a set of positive
samples by an inference algorith@4rda & Vidal, 1990. In such a procedure, the language
inferred for a particular value df is included in the one inferred fdt — 1: Ly-1ss €
Lk-1-Tss € -+ € Li-tss Thus, a series df-TSS languages can be inferred from a set

of positive samples frork = 1 to a certain maximum value & This maximum value is
achieved when the inferred language matches the sample strings; higher vatuesudél

infer the same language. The 1-TSS language corresponds to the free mgregig= *.

Figurel shows an example ¢TSS languages inferred from a given set of positive sam-
plesR* = {abba aaabba bbaaa bba}. The graph representing the finite network for each
k-TSS language inferred is shown in the figure. Nodes are labelled by strings appearing in
R* with length up tok — 1. Arcs are labelled by symbols of the alphabet appearing in the
training corpus at the end of the string labelling the source node. The initial state is labelled
by A; final states are represented by a double circle. The inference algorithm evaluates each
sample string setting arcs and new nodes when nedaladé & Vidal, 1990. In the exam-
ple of Figurel, only five differentk-TSS languages can be inferred frdRi sincels-tss
consists of exactly the four samplesRt. Thus,Ls-1ss € L4-1ssC -+ € (L1-Tss= 7).

Thek-TSS language model defined above can be considered as a syntactic version of an
n-gram. Moreover, it has been show8egarral993 Dupont & Miclet, 1998 that the proba-
bility distribution obtained through amgram model is equivalent to the distribution obtained
by a stochastic grammar generatkyd SS language, wheteplays the same role asdoes
in n-grams. But whilen-gram probability distributions are defined over fixed length strings,
stochastik-TSS languages, as with any regular language, are defineddvén fact, spe-
cial symbols are often added megrams to simulate the behaviour of gramma&tatkson &
Rosenfeld1997). Thus, the formal equivalence betweasigrams and stochasticTSS lan-
guages is an open problem and remains to be establishgdam models were first defined
in the context of information theoryChannon & Weaverl981), whereak-TSS languages
come from the formal language theory and grammar inference backgrbugchm models
do not include any of the structural features foun#4mSS. A recent workl{lorens 2000
presents an interesting formalization of afgram as a SFSA and opens up a new way
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K=1 K=3
I=F=T=1 I ={a,b,aa,ab,bb}
Li_rss = (a+b)* =%* F = {a,aa,ba}
T = {aba, bab, bbb}
a L3 7ss = (a+ abb + bb)a™* (bba)*
K=2

I ={a,b}F ={a}T =10
Ly_75s = (a+b)*a

Figure 1. Li-1ss Lo-TssandLs-tssinferred from a set of positive samples

RT = {abba aaabba bbaaa bba} and an alphabet = {a, b}. | = {initial
substrings of length up to— 1}, F = {final substrings of length up to— 1} and

T = {excluding substrings of lengl}. Each inferrek-TSS language is included in
the inferredk — 1 language.3-1ss € L3-Tss € L1-Tss The 1-TSS language is
equal tox*. Ls.Tggconsists of exactly the four samplesRt .

to analyse the formal differences betwaegrams ank-TSS languages. In Sectidghthe
k-TSS SFSA is presented and some of these questions are outlined.

However, from a practical point of view, choosikgl' SS om-grams is just a matter of rep-
resentational convenience since, as mentioned above, the probability distributions obtained
through the two models are equivaleBegarral993 Bordelet al, 1994 Dupont & Miclet,

1998 Varona & Torres1999. As a consequence, the representation problems of the SFSA
and the lack of syntactic smoothihgechniques (see Sectidn are shared bk-TSS and
n-gram language models, whargrams are represented through SFSA. Seciibsdeal

with these problems.

3. Thek-TSS stochastic finite state automaton

In the syntactic approach, stocha#ti® SS grammars can be used to generate language mod-
els Bordelet al,, 1994 Bordel 1996. These models need to be integrated with the stochastic
acoustic models previously estimated from a set of speech training samples in a CSR system
[Equation @)]. Therefore, the correspondihgTSS stochastic finite state automat&ATSS

SFSA) needs to be defined and fully formalized.

1Syntactic smoothing= smoothing technique developed to work correctly over an automaton representing a syn-
tactic LM (Bordelet al, 1994.
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Figure 2. Two states of the automaton labelleddyy (k_1ywj —k—1)+1- - - @j—1 and

O —(K=1)+1 - - - @ —10; - When_thek-gramwi —(k—1) @i —(k—1)+1 - - - Wi — 10} IS

observed, an outgoing transition from the first to the second state is set and labelled
by wj .

A stochastic finite state automaton representitkggaam model can be directly obtained
from a set of training sampleSarda & Vidal, 199Q Segarral993 Bordel 1996. Such an
automatonK-TSS SFSA) is defined as the five-tug®, QK, qox, F, 5) where:

¥ = {wj}, ] = 1...|%|, is the vocabulary, that is the set of words appearing in the
training corpus.

QK is the set of states associated with the model of okd€tach state represents a
string ofk — 1 wordswj —k—1) - . . wi—1, Wherei stands for a generic index in any string
w1 ...wj ... appearing in the training corpus. Such a state is Iabelleqza&_l). A

subset ofQK represents initial substrings shorter than 1 corresponding to strings of
length up tok — 1 in setly of the corresponding k-Tss (See Sectior?). These states
are labelled aa)::j ,wherej =1...k—2.

The automaton has a unique initial stggec QX, which is labelled as and represents

the null string.

F is the set of final states of the automaton and represents the final substrings of length
k — 1. These substrings, along with final substrings with length up-tal, belong to

the setFy of the corresponding -Tss (see Sectior).

X is the transition functiod® : QK x = — QK x [0...1]. 8¥(q, wi) = (4, P(wi /q))
defines a destination statg € QX and a probabilityP(w; /q) € [0...1] to be as-
signed to each elemer, w;j) € QX x . Each transition representskegram; it is
labelled by its last word; and connects two states labellediby 1 words. Figure?
represents two states of the automaton labelledbyk—1)wi—k-1)+1-..wi-1 and
Wi—(k=1)+1 - - - @i —10j . When thek-gramwj _ k—1ywi —k—1+1 . - - wi—1wj iS observed,

an outgoing transition from the first to the second state is set and labelleg; by

P (wj /a)i'j(lkfl)) is the probability associated with the observedgram

O — (k—1) Wi —(k—1)+1 - - - Wi—1wj. Thus

8@ ~§ ) 1) = (@] _g_p) 1. P(@i /o] §_1)). (4)
The stochastic constraints require that
Y Pl/@=1 vgeQ« )
YoeX

Under this formalism, the 1-gram involves a single state, labelled, bgpresenting the
null string, and a number of outgoing transition equaXd. The probabilityP (wj /1) is the
estimated probability? (wj) and represents the frequencywfin the training corpus

Bk(k,wj) =@, P(wj/A) =&, P(w))) Voj € X. (6)
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llego con tres heridas
la del amor

la de la muerte

la de la vida

con tres heridas viene
la de la vida

la del amor

la de la muerte

con tres heridas yo

Rt =

$ llego con tres heridas
$ la del amor

$ la de la muerte

$ la de la vida

$ con tres heridas viene
$ la de la vida

$ la del amor

$ la de la muerte

$ con tres heridas yo

$ la de la vida

$ la de la muerte

la de la vida $ la del amor

la de la muerte
la del amor

s { la, de, del, amor, muerte, vida,

Miguel Herndndez llego, con, tres, heridas, viene, yo

Figure 3. Selected training corpus for thkeTSS automata of Figuré

Examples of sever&- TSS automata are shown in FigureA famous poem by the Spanish
poet Miguel Herandez has been selected to act as the sample text corpus. Faaes this
poem, the corresponding training &t and vocabularng. Figure4 shows severak-TSS
automatak = 1...4, obtained fronR* andX in Figure3.

The model defined above is a deterministic, and hence unambiguous, stochastic finite state
automatonGarda & Vidal, 1990. Thus, the probability assigned to a sentefice w; . . . w
of lengthl, i.e. the probability of strin§2 being accepted by the automaton is obtained as the
product of the probabilities of the transitions used to ac€ept

|
PQ) =[] P(i /o 1) )

i=1
The unambiguity of the automaton also allows us to obtain a maximum likelihood estimation
of the probability of each transitiﬁ(w;:(lk_l), wj) as Chandhuri & Booth1986
N (@i /& “Ge_1))
i—1
ZijEE N(wj/wil—(k—l))

P(wi /w: :g-k,]_)) = (8)

whereN (wj /wi':(lk_l)) is the number of times the wokg appears at the end of thkegram
wi—k-1) - - - wi—1wj, that is the count associated with the transition labelledbgoming
from the state labelled ag ~j, ;.

Such a model can only associate a probability with strings of wdedgdms) that have
been observed in the samples available, i.e. seen events. Thus, large vocabulary CSR systems
require a model able to associate a probability with any string of words in the vocabulary, i.e.
¥*, and to take into accouktgrams that have not been observed in the available set of data:
unseen events. Consequently, a smoothing technique is needed.
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k=2

k=1
I=F=T=90

Li_7ss =(a

muerte

heridas

shorter than k-1

| Can
. . ! muerte
Initial substrings |
|

viene

Initial substrings
shorter than k-1

Figure 4. k-TSS automaté = 1. .. 4, obtained fromR™ andX in Figure3.
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4. The syntactic back-off smoothing procedure

In classical smoothing techniques, a specific probability mass is reserved to be shared among
unseen events, i.k-grams not appearing in the training corpus. In back-off smoottidadg(

1987 the probability to be assigned to unsdegrams is recursively obtained from less ac-
curate models, i.&k—1, ..., 1. At each step of the recursion different formulatioBtafkson

& Rosenfeld 1997 Ney, Martin & Wessel1997) can be applied to estimate the discounted
probability. In any case, the same discount is established fd-gidhms having the same
counts.

In previous worksBordelet al., 1994 Bordel 1996 a syntactic back-off smoothing pro-
cedure was developed. The syntactic approach suggested a state-dependent estimation of the
total discount. The symmetry principle was then locally applied to give a more accurate dis-
tribution of the probability to be assigned to unseen evedtsdel et al,, 1994). Under this
syntactic formalism, the probabilit (w; /q) to be associated with a transitioh(q, ;) is
estimated according to

N (wi /9)

N@+=ql wj € Xg
P(wi/q) = %] P (@i /bg) _ B ©)
i N@+%ql 1= Y. P /by @ € (2 —Xq)

Voj €Xq

whereXq is the vocabulary associated with stgteconsisting of the set of words appearing
after the string labelling statg in the training corpus, i.e. words labelling the set of seen
outgoing transitions from statg N (wj /q) is the number of times that word appears after
the string labelling statg; N(q) = ZVwiEEq N(w/Q); | Zql is the size ofZq and P (wj /by)

is the estimated probability associated with the same event ilkthe ]-TSS model; thus, if
stateq is labelled as.| “_y), andq = o] ~_,, € Q¥, then its associated back-off state

is labelled aau}j(lk_l)ﬂ, anda)i':(lk_lH1 € Q1. In previous works Bordelet al., 1994
Varona & Torres 200), this discounting was experimentally compared to other classical
back-off methods leading to a significant decrease in test-set perplexity.

By using Equationg) instead of Equation8) the stochastic finite state automaton defined
above is now smoothed and can associate a probability with any string of words in the vo-
cabulary, i.eX*. However, in such a scheme a setBf transitions, representing each word
of the vocabulary, needs to be handled at each state. The smoothing function [Eq@ition (
estimateg QK| x || parameters that need to be allocated a large amount of space, which
is prohibitive even for small vocabulary tasks. Thus, a straightforward full network repre-
sentation is not possible due to the high number of parameters to be handled. As mentioned
above Riccardiet al, 1996, this is one of the difficulties arising in representingragram
language model through a stochastic finite state network. The syntactic formulation along
with syntactic back-off smoothing can be represented in such a way that only transitions seen
at training time need to be explicitly represent®drpona & Torres1999 Torres & Varona
2000.

In Equation @) the probabilities to be associated with the set of words appearing after the
string labelling state in the training corpus—the vocabulary of the stalg—are explic-
itly estimated by calculatindN (wj /q), Yo € Xq, andN(q). The remaining(|Z| — |Xq])
transition probabilities corresponding to those events not represented in the training corpus
are estimated according to a more general probability distribution irkthel)-TSS model.
These transitions do not need to be explicitly estimated or represented at each state. The
structure of the above automaton along with the back-off smoothing technique leads them to
become grouped into a unique transition to a back-off statén Equation @) the stochastic
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condition should also be satisfied:
Y Pl/@=1 vqeQ« (10)
YweX

The probability to be assigned to the transition from each state to its back-offBtaigq),
can then be easily estimated from Equatid®)safd (L0). Thus

| Zq] 1
N(@) +[Zgl1— > P(wj/by)’

VwjeZq

P(bq/q) = (11)

This transition connects each statavith its back-off sta_tels)q that represents the same event
in the K — 1)-TSS model. Thus, if statgis labelled byw;:(lk_l) then statdyg is labelled by

wii:(lk_l)+1. The probability to be associated with each event not represented in the training
corpusP(wj/q) Yo € (¥ — Xq) is estimated according to

P(wj/q) = P(bg/9)P(wj/bg) Voj € (X — Zg). (12)

This procedure reduces the number of parameters to be handled®am |=| to | QK| x

|Zql. This formulation is the application of a classical back-off smoothing schétatz,(

1987 to a syntactic LM represented through an SFSA, where the symmetry principle is lo-
cally applied Bordelet al., 1994. The discounting in Equation8)and (1) is analogous to

the Witten—Bell discounting procedure appearingiarkson and Rosenfeld997). Alter-
natively, other discounting procedures have also been applied in the same syntactic back-off
framework §arong 200Q Varona & Torres200@).

5. The smoothed and integrated model

One of the main problems to be addressed when representinggeam language model
through a stochastic finite state netwoRidcardiet al., 1996 Varona & Torres1999 is that
the recursive schema usually involved in the smoothing procedure must be adopted in the
finite state formalism to achieve efficient implementation of the back-off mechanism. The use
of the syntactic back-off smoothing technique appliel-fB6SS language modelling allowed
us to obtain a unique model integrating the required recursive structure: a smoothed and
integratedK -TSS SFSA. A smootheld -TSS SFSA is a self-contained model that integrates
K k-TSS automata, wheke= 1, ..., K in a unique automaton. Such a model is fully defined
in the Appendix.

The smoothed and integrated automaton includes the definition of a [Se4|of 1 tran-
sitions associated with each state of the automatdgl. of these transitions are associated
with k-grams,k = 1, ..., K seen at training time [types (a) to (e) in the definition in the
Appendix]. Each state of the automaigre QK, except the state labelled by should then
add a new transition to its back-off staig:

8%(q,U) = (by, P(bg/q)) (13)

whereU represents any unseen event associated with gtatkeich is labelled by a word
wj in (X' — Xq). TransitionsK (g, U) has a destination statbg, clearly defined in the
(k — 1)-TSS model (see Appendix) and an associated probabiithy/q), calculated ac-
cording to EquationX(1). The probability to be associated with those events not seen in the
training corpus is then calculated according to Equati®). (Figure5 shows such a struc-

ture for a statey labelled asz)ijl _ ... The transitions labelled by th&q| words observed
& i—(K—1) Yy theuq
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Figure 5. Syntactic back-off smoothing integrated in the automaton structure:
transitions labelled by seen evelits; € Xq) connect each state to states in the same
k-TSS submodel, withk =1, .. ., K. Transitions labelled by unseen events connect to
their back-off states in thek(— 1)-TSS submodel.

at training time after thé&-gram labellingg connect it to other states in the saideTSS
submodel. The transition labelled ki connects statq to its back-off stategu;:(lelHlin
the (K — 1)-TSS submodel.

Figure6 shows the whole finite network representing the structure of the smoothed and in-
tegrated automaton fa¢ = 4 when the training seR* and the vocabularg of Figure3 are
used. In this figure, each node of the network represents a state of the automaton. Transitions
from the state labelled by, which represents a void string of words, are represented by links
between the roat and its child nodes. Links connecting node $ (see Appendix) to its chil-
dren represent transitions from the initial state. Transitions that correspond to strings of words
shorter tharK are represented by | links connecting each node ofthe=1, ..., K —2
levels to its|Xq| children. Nodes oK — 1 level represent the states associated with word
strings of length equal t& — 1 labelled asw{:(lk_l). For the sake of clarity, transitions to
the final state established for all nodes each time the symbol $ appears in the training corpus
are not drawn in the figure. Instead, nodes representing states with transitions to the node
labelled as $ (see the Appendix) are outlined.

An important advantage of this formulation is that it leads to a very efficient representation
of the model parameters learned at training time: probability distributions and model struc-
ture. In a first step the structure of a smoothed and integiat@®S SFSA is represented by
a finite network (see Fig for an example). This network is derived from an initial trie built
from the training set. Then, the initial trie nature of the network allows both the structure of
the Smoothed SFSA and the probability distributions to be allocated in a simple linear array.
The whole array consists QX | x (IZql + 1) positions. Eaclk-TSS modelk =1, ..., K,
is represented by a set of states equal to the numbkrgohms appearing in the training
corpus. A state of the automaton is representedshy + 1 array rows, each representing
one outgoing transition. Each position of the array represents dqain whereq € QX
andw € Xq U {U}. It stores the destination staig for eachw; € Xq U {U} and the value of
P(w/q) according to Equation®) and (L1). Thus, the smoothel -TSS SFSA defined in
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the Appendix is fully represented and stored in the array. Conventional baokgoéfms do

not include any structural parameters. The CMU LM toolbox only associates one probabil-
ity value and a back-off weight to eachgram Clarkson & Rosenfeld1997). A complete,
detailed procedure for obtaining the representation of the smo#thESS SFSA defined in

the Appendix can be found iforres and Varoné2000 andVarona(2000).

6. Using the smoothed SFSA in a CSR system

As mentioned above, the SFSA defined in SecB@deterministic and unambiguous. Thus,
each string of words accepted by the automaton labels a unique path from the initial state to
a final state. The strin@ = la de la vidg Q@ € X* andQ € La-7ss, is recognized by the

k = 4 automaton of Figurd through the sequence of state transitions:

) ~2 (1a) % (lade) 22 (adela) Y% ((delavida)). (14)

Thus, at the state labelled klelathere is only one arc available when the werda ap-
pears. The probability associated with the string of wafds= la de la vidais obtained
through Equations7) and @). The size of this automaton K| x |Xql Vg € QK. However,
it cannot recognize strings of words, ikegrams, which do not appear in the training sample.
Using Equation ) instead of 8), this automaton can associate a probability with any
string of words in the vocabulary. The smoothed automaton is also a deterministic automaton
but now its size i$QK | x ||, which is prohibitive. The compact representation presented in
Sections reduces the size of the structure fro@X| x |2 to |QK| x (|Zq| + 1) ¥q € QK.
However, the automaton is now non-deterministic. Transitions to back-off states are not la-
belled by any word of the vocabulary and act as null-transitions. Thus, each string of words
accepted by the automaton labels several paths from the initial state to a final state. The string
Q =ladelavida Q € ¥* andQ2 € Ls-Tss, is now recognized by the smoothed automaton
of Figure6 through several sequences of state transitions. The probability associated with the
string of wordsQ2 = la de la vidashould be calculated considering the probabilities associ-
ated with all the paths leaving the initial state ($), reaching a final state and being labelled
by this sequence of words, including null-transitioRs,(1974). Thus, the non-deterministic
automaton is not equivalent to the deterministic ddergns 2000 since the probabilities
assigned to the same sequence of words are not the same. As an example7 Blywes
a part of the model in Figuré. Suppose the state labelled fgdela) has been reached. If
vida is the next word in the sequence then the state labell¢ttatavida)] can be reached
by two paths: (a) the direct arc labelled Wiga or (b) the backoff transition to state labelled
as(dela) followed by the outgoing transition labelled bida. Two more valid paths can be
found to reach the state labelled [@&vida)] and two more reaching the state labelled as
[(vida)] (see Fig.7).
Another point to be addressed is that the recursive mechanism required by the back-off
smoothing technigue [see Equatid®)](is not well integrated in the compact representation.
In the example of Figur&, the path that gives the probability corresponding to the smooth-

ing technique [Equation9]] is [(ladela)] ﬂ‘? [(delavida)] sincevida is a seenevent at
state labelled byladela). However, all possible paths are considered to associate a proba-
bility with a word sequence through a non-deterministic automaton1974. Thus, theif
...then ... elsestructure required by any smoothing technique cannot be implemented in a
non-deterministic backgroundlprens 2000 due to the multiple path choice for the same
string of words.
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__initial

N — transitions from level k-1 to level k with k=2 .. K
internal nodes

—_— transitions between nodes of level K

nodes with transitions to the final state labelled as S N
) back off transitions

O
O

Figure 6. The finite network representing the structure of the smoothed and
integrated automatofK = 4) obtained from the training s&* of Figure3.

Figure 7. Part of the model in Figur6. Several paths represent the string of words
Q =ladelavida

The Viterbi decoding algorithm finds the most likely path through a trellis. Thus, only the
best sequence of states is considered when obtaf2itigough Equation3). If the LM is
represented by a non-deterministic SFSA, then the decoding algorithm is taking the final de-
cision about valid or non valid sequences of states, and consequently sequences of words, by
considering only the most likely state sequences. This procedure does not guarantee the same
probability distribution as the deterministic modRi¢cardiet al., 1996 Llorens 2000. The
path leading to the correct application of the smoothing technique is not guaranteed to be
chosen in this caseR{ccardiet al, 1996 Llorens 2000. Some proposals to address this
problem chose compact representations, i.e. non-deterministic automata, due to the major
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Function é(qg € QFw e X):(d € QF; P € [0...1]);
var q.aux € QX;P_aux € ]0...1];
begin
if w €Yy then dp < array_prob[q, w]; (*seen events*)
dq + array-dest[q, w)
else P_auz + array_prob[q,U]; (*funseen events™®)
g-auzx 4 array-dest[q, U]
while w & Xy quz do
P_aux < P_auz X array-problq-auz,U];
q-auz + array-destlq-auz,U];
end_while
dp < P_auz x array_problg-auz,w];
04 < array_destlg-auz,w];
end_if
end_§.

Figure 8. A simple search function to compute Equatids)(

savings in memory. But they also use the non-deterministic network at decoding time. In
such cases, only approximategram probability distributions are managé&tgcewayet al.,
1993 Riccardiet al,, 1996 Bonafonte & Marfio, 1998 Suzuki & Asq 1999 Llorens 2000.

One way to deal with these problems is to develop a specific parsing method which imple-
ments the smoothing technique in an exact way while keeping the compact representation of
the automaton. This procedure should guarantee that the probability to be assigned to a given
k-gram is the same as the probability assigned by the full deterministic automaton. This goal
is achieved by a simple search function through the array representing the non-deterministic
and smoothed SFSA in Figubg(Torres & Varona200Q Varong 2000.

To complete the model representation the transition fun&iohthe smoothed and inte-
gratedK -TSS automaton (see the Appendix) should then be established and represented for
each state] € QK and for eachn € ¥'. This transition function defines a destination state
da and a probabilityP (w/q) associated with each pdiy, ) ¥q € QX andvw € X

8(0,®) = (dd, P(@/®)) Ve QXAVoeXT  qqe QK. (15)

When seen events appear the destination gtaterresponds to a state in the saka€SS
submodel (see Figh). Thus, it can be directly found as the destination index of the array
position (w, ) (Torres & Varona2000. In the same way the value &f(w/q), computed
according to Equation9j for o € Xq, can be directly found as the probability value at
the array positionw, q) (Torres & Varona 2000. However, when unseen events appear
gg should be found in thek — 1)-TSS submodel and thus neithgy nor P(w/q) values
are directly found in the array. A simple search function through the array is then required.
This function, represented in FiguBs searches backwards across the back-off states, i.e.
transitions through th&) symbol, until the wordv is found as a seen event for a stgte
alower level k < K), i.e.w € Xq (see Fig5). Stateq will be then the destination statg
searched for. Th€ (w/q) value should be computed according to Equatit®) (n this case.
Thus, Equation2) is recursively calculated whilgy is found by the search function. This
procedure, represented by Equati@B)(is described by functiofin Figure8: 4 stands for
the destination statgy andsp for the probabilityP (w/q).

When the next word to be processed is known, as in text processing, the function repre-
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sented in Figure is the best way to compute the smoothed probability while keeping the
compact representation. In speech recognition applications the word to be processed is un-
known and as a consequence the structure needs to be dynamically expanded at decoding
time (Varona 2000. The search function provides in this case an array representing differ-
ent sequences of decoded words obtained by EquatiB)nHowever, this search function is
needed for active paths only when a simple beam search strétegyl©92 Steinbiss, Tran

& Ney, 1999 is used to reduce the computational cost. As a consequence, the size of the
real search space does not increase, even when high valearefused. The experimental
evaluation carried out (see Sectignshows this behaviour.

7. Experimental evaluation

An experimental evaluation df-TSS languages models was carried out on two Spanish
databases. The first one was first presented in Endfisldinan, Lakoff, Stolcke & Weber
1990 and consists of a set of simple Spanish sentences describing visual scenes (minia-
ture language acquisition task—MLA). The training set consisted of 9150 sentences that
were randomly generated by using a context-free model of the language. It includes 147 002
words and a very limited vocabulary size (29 words). The second corpus (BDGEO) is a task-
oriented Spanish speech corpi¥dzet al,, 1993 with a medium size vocabulary of 1212
words. This corpus represents a set of queries to a Spanish geography database. This is a
specific task designed to test integrated systems (acoustic, syntactic and semantic modelling)
in automatic speech understanding. The training corpora also consisted of 9150 sentences
including 82 000 words in this case.

Tables! and Il show the number of stategQX |, for severalK -TSS integrated models,
with K = 1...6 for MLA and BDGEO tasks respectively. The increasg @f | with K
depends on the corpus size and corpus structure. However, the rate between the number of
seen events and the number of possible events decreases withny case. Consequently,
the increase ofQX | with K remains quite limited. The smooth& TSS SFSA formulation
presented in Sectidhalong with the proposed representation (see¥jigeduces the number
of parameters to be handled frd®X | x |=| to |QK| x (IZq| + 1). Tablesl andll show
that this reduction leads to memory requirements that can be easily managed even when high
values ofK are considered. These tables also show the test set perplexity when Eqg8@jation (
was used to estimate the probability distributions for sevkrdlSS models. A set of 500
new sentences including 8397 words was used to evaluate the test set perplexity of the MLA
corpus and a set of 1193 new sentences and 13687 words was used to evaluate the test set
perplexity of the BDGEO corpus. Perplexity values decreadé awreases, even for high
values ofK, for MLA corpus (see Tablé). This behaviour is due to the simplicity of the
syntactic structure of these sentences, especially for high valu€sTie perplexity values
are stable foK > 3 for BDGEO corpus (see Tablb.

These experiments were also carried out using standard baclgodin models along with
the Witten—Bell discounting. Tablésandll show the test set perplexity obtained through the
CMU toolkit (Clarkson & Rosenfeldl997) for severah-gram models, witm =1, ..., 6 for
MLA and BDGEO tasksK-TSS andn-gram models achieved similar results, as expected.
Tablesl andll also show that the smoothed and integratedSS model needs only a lit-
tle more memory than a conventional back+offjram using the CMU toolkitGlarkson &
Rosenfeld 1997). In fact, conventional back-offi-grams do not include any structural pa-
rameters. Only a probability value and a back-off weight is associated withregdm in
the CMU toolkit. However, the structure ¢§-TSS SFSA defined in the Appendix is fully
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TABLE |. Perplexity evaluation and sizes of sevelalTSS, withK = 1...6 (see Figh) and CMU
n-grams modelslarkson & Rosenfeldl 997 for MLA task. For comparison purposes, the size of a
theoretic and deterministic full network is also provided

K |1QK| Full network K-TSS n-grams (CMU)
1QKIx|Z|  1QK|x (IZql+1) Memory (Kb) PP Memory (Kb) PP
2 31 899 214 D 325 204 403
3 173 8590 850 19 3.08 833 312
4 643 18647 2542 36 276 255 290
5 1808 52432 6642 9q 2.62 6975 277
6 4518 131022 15614 218 2.56 17668 261

TABLE Il. Perplexity evaluation and sizes of sevekaTSS, withK = 1...6 (see Fig5) and CMU
n-grams modelsGlarkson & Rosenfeld1997 for BDGEO task. For comparison purposes, the size of a
theoretic and deterministic full network is also provided

K QK| Full network K-TSS n-grams (CMU)
1QKIx =] 1QX| x (IZql +1) Memory (Mb) PP Memory (Mb) PP
2 1213 146010 9285 013 1310 009 1303
3 7479 903410 30714 043 753 032 754
4 21551 2603 1¢F 67857 095 695 080 717
5 42849 5176 1 120714 169 690 152 722
6 69616 8009 1 182142 255 690 261 737

represented and stored. A destination stigtend the value oP(w/q) [see 0) and (L1)] are
stored for eacl € Xq U {U} (Torres & Varona2000. This leads to a more effective net-
work search at decoding time. It also allows a straightforward integration of other knowledge
sources.

In a second series of experiments, tRerSS SFSA were integrated into a CSR system.
Each transition of the automaton was replaced by a chain of hidden Markov models repre-
senting the acoustic model of each phonetic unit of the word. Then the decoding scheme rep-
resented in Equatior2] was approximated by using the time-synchronous Viterbi algorithm.

In such a scheme, the transition through each word of the vocabulary should be evaluated
each time the system considers an LM state trans#tigriw). Thus, the search function pre-
sented in Figuré was used to obtain for statpthe following stateqy and the associated
probability P(w/q) for all the words in the vocabulary.

Two new test sets were used in this case: the first consisted of 1600 sentences from
the MLA task, uttered by 16 speakers, and the second of 600 sentences from the BDGEO
task, uttered by 12 speakers. In both cases the acoustic models were previously trained over
1529 sentences, phonetically balanced and uttered by 47 different speakers, involving around
60000 phones.

A Silicon Graphics O2 machine with an R10000 processor was used in these experiments.
In order to reduce the computational cost a beam-search algorithm was applied with three
different widths: a narrow beam factdsf of 0.6, an intermediate of 0.5 and a wide one of
0.4. The beam-search algorithm eliminates the less probable paths of the trellis. The word
error rate (WER) obtained when sevekalTSS languages were integrated into the described
CSR system is shown in Tablkk (MLA task) and TabldV (BDGEO task). These tables also
show the average time required to decode a frame (in mseconds) and the average number of
active nodes in the lattice, including acoustic and language model states.

Tableslll andIV show that the use of the proposed smoothed SFSA representation pro-
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TABLE Ill. Experimental results when sever#l-TSS models were integrated into a CSR system:
MLA task
K Average number of Average time per WER
active nodes frame (msec)
bf =06 bf =05 bf =04 bf=0.6 bf =05 bf =04 bf =0.6 bf =05 bf =0.4

2 21 39 64 1 3 4 B3 501 460
3 26 47 80 2 3 5 A8 483 436
4 28 50 87 2 4 6 a7 433 362
5 29 52 92 2 4 7 g6 364 326
6 30 54 98 3 5 7 B2 351 268

TABLE |V. Experimental results when severl-TSS models were integrated into a CSR system:

BDGEO task
K Average number of Average time per WER
active nodes frame (msec)

bf =06 bf =05 bf =04 bf=0.6 bf =05 bf =04 bf =0.6 bf =05 bf =0.4

2 114 21821 52628 66 118 2054 251 1595 1429
3 90 17901 46766 60 109 1751 255 1085 945
4 89 17799 46960 62 112 1671 263 1012 858
5 90 18057 47833 65 116 1673 270 1025 872
6 91 18232 49050 68 120 1651 271 1066 907

vides additional time reductions since the search function through the array8)sgonly
needed for active paths. Thus, smoothed SS models with high values ¢ need more
memory (see Tablesandll) but they can be easily integrated into a CSR system with no
significant increase in the decoding time, since the average number of active nodes does not
increase a$QX | does. This is a very important result since it demonstrates that a compact
representation of the non-deterministic model (see Bjigan be dynamically expanded at
decoding time at a feasible computational cost. The use of the function in FBgalmng
with a simple beam-search algorithm results in a relatively constant size of the search space
whereas the performance of the system increaseskwith this way, the Viterbi decoding
algorithm can be used to decode a compact and non-deterministic SFSA which obtains the
same probability distributions as the deterministic SFSA. Moreover, the probability assigned
by the smoothing technique is guaranteed to be considered at each step of the LM decoding
procedure.

These experiments also show that both the system performance and the average number
of active nodes increase witk for the MLA task (Tablelll). The lowest word error rates
were achieved foK = 6. However, the system performance behaviour is not the same for
the BDGEO task. In this case, both the WER and the average number of active node values
decreased ds increased up to a certain valuekd{see TabldV); subsequently, both values
remain practically constant. The lowest word error rates were achievé&d fo# in this task.

8. Concluding remarks

The aim of a CSR system is to find the best interpretation of the input speech data in terms of
knowledge sources such as language model, pronunciation lexicon and inventory of subword
units. This objective is represented by the well-known Bayes’ formula, which represents an
integrated model involving global decisions that explicitly take account of the constraints
given by the knowledge sources. It is well known that a straightforward way of dealing with
such an integration is to use SFSA. On the other hand, language constraints are better mod-
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elled under a syntactic approach. The aim of this work is to show the ability of stochastic reg-
ular grammars to generate accurate LMs which can be well integrated into this scheme. For
this purpose, a syntactic version of the well-knawgram modelsk-TSS language models,

has been used. The complete definition &fBSS SFSA is provided in the paper. A syntac-

tic back-off smoothing technique has been applied to the SFSA, modifying the probability
distribution to consider unseen events. Finally, a self-contained smoothed model integrating
K k-TSS automata, whede = 1, ..., K, has been also defined. This formulation leads to

a very compact representation of the model parameters learned at training time: probability
distribution and model structure.

Another difficulty arising in representing a language model through a stochastic finite state
network is that the recursive schema usually involved in the smoothing procedure must be
adopted in the finite state formalism to achieve an efficient implementation of the backing-
off mechanism. The dynamic expansion of the structure at decoding time allows the Viterbi
algorithm to correctly manage tlife. .then . . elseschema of the back-off procedure. Thus, a
one-step decoding algorithm can be used to decode a compact and non-deterministic SFSA,
obtaining the same probability distributions as the deterministic one.

An experimental evaluation of the proposed formulation has been carried out on two Span-
ish corpora. These experiments show that the dynamic expansion of the structure at decoding
time do not lead to an increase in the size of the search space. The number of active nodes in
the lattice did not increase &9K| did, whereas the system performance increasedkyithe
system performance shown in the paper with high valudsisfconsistent enough for good
system behaviour with large vocabulary tasks to be expected, even though experiments of this
kind may also be required. In fact, from a computational point of view, increasing the value
of k could be considered as equivalent to increasing the size of the vocabulary of the task.

This work shows that regular grammars can generate accurate language dies;,
that can be efficiently represented and managed in real speech recognition systems, even for
high values ofk, leading to very good system performances. Thus, efficient integration of
LM generated by more powerful regular grammars can be attempted in the same way. Future
works also include straightforward integration of other knowledge sources.

The authors would like to thanks Dr F. Casacuberta and Dr E. Vidal for their comments and suggestions
during the composition of this paper. They would also like to thank the reviewers and the editor for
their suggestions on improving the quality of the paper. This work has been partially supported by the
Spanish CICYT under grant TIC98-0423-C06-03.
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Appendix: The smoothed and integrated model

A smoothedK -TSS SFSA is a self-contained model that integrtds TSS automata, where
k = 1,...,K in a unique automaton. It is defined by a five-tup®’, QK qo, q¢, 8¥)
where:

e X =X U({$} beingX = {wj}, ] = 1,...,|%], is the vocabulary, that is the set of
words appearing in the training corpus. Null symbol $ has been included in the training
corpus to isolate each sentence from its neighbors. This symbol can be considered as
the first and last word of each sentence.

e QX is the state set of the automaton. Each state represents a string of words
Wi —kWi —(k=1) - - -» wi—1, K=1,..., K — 1, with a maximum length oK — 1, where
i stands for a generic index in any striag. . . wj ... appearing in the training corpus.
Such a state is labelled a$:& States representing the initial strings of training sen-

tences are labelled aso?.z& wherek = 1, ..., K — 2 to guarantee a maximum length
of K — 1. A special state labelled agepresents a void string of words.

e The automaton has a unique initial and final stpte= q¢ € QX, which is labelled as
$. This allows us consecutively to parse sets of sentences, while discarding contextual
information between them. The initial state is different from the state labelled as
because the probabilit (wj /1) is the estimated probabilitl (w; ), whereasP (w; /$)
is the probability associated withy when it is the initial word in a sentence. The only
exception is the 1-TSS model with a unique statevhich is the initial and final state.

e 5K is the transition function® : QK x (X' U{U}) — QK x [0...1].5%(q, wi) =
(a4, P(wi/q)) defines a destination statg € QX and a probabilityP (wj /q) €
[0...1] to be assigned to each elemegt wi) € QX x (X U {$U}). Each transi-
tion represents k-gram,k = 1, ..., K; itis labelled by its last word; and connects
two states labelled with up ti§ — 1 words. Several kinds of transition can be found in
the model:
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(a) Transitions from the special state labelledaswvhich represents a void string
of words, to the|X| states labelled by each word of the vocabulagy € X,

j = 1,...,|Z]|. The probability associated with each transition represents the
frequency of the corresponding word in the training corpus:
8K (1, 0)) = (@), P(wj/3) = (@], P(@))) i=1....1Z (16)

(b) Transitions from the initial state labelled as $ that correspond to the set of words
appearing in initial position of a sentence:

35 (8, @) = i, P(@i/9). 17)
(c) Transitions that correspond to strings of words shorter thaconnecting states
associated with string lengths upko— 2:
8%} @) = (0]_y, Plei/o]Zp))  k=1,...,K=2
8K S0l f w) = ($0)_,, P(wi/$0l D) k=1,...,K-3.

(18)

These transitions come from the — 1 automata corresponding keTSS models
with k < K.

(d) Regular transitions that correspond to strings of words of legtbonnecting
states associated with string lengths equa{ te 1:

SK(wii:(lK—l)’ wi) = (w;—(_K—l)—t-l’ P(wi /w:—__(lK—l))) (19)
8K BfZ(k _g) @) = (S0} _z). P(@i/30] [ _)-
(e) Transitions to the final statgs (= qp) labelled by $:
K@ h9 =@, PG/l b))  k=1..,K-1
K e im1 i1 (20)
8 (Bw; . ® =, P($/$0, ) k=1,...,K-2.

(f) Transitions to the back-off state: under the syntactic back-off smoothing proce-
dure (see Sectiod), the probabilityP(wj/q) to be associated with a transition
§K(q, wi) is estimated according to Equatiof).(Each state of the automaton
q € QK, except the state labelled by should add a new transition to its back-off
statebg:

5@, U) = (bg, P(bg/a)) (1)
whereU represents any unseen event associated withgtatéch is labelled by
awordwj in (X" — Xq). The back-off statéy associated with each stajean be
found in the(k — 1)-TSS model. Thus, for states associated with string lengths up
toK —2:

qu;:&iquw::bl k=1,...,K-2
q=%0 = bg=% ., k=1....K-3 (22)
and for ordinary states associated with string lengths equal+ol:
a= wt(lK—l) = by = w::(lK—1)+1
q= $‘“;:(1K—2) = by = $‘”::(l|<—2)+1- (23)

Finally, the back-off state associated with the initial, and final, state labelled as $
is the special state labelled &sThis state has no associated back-off state since it
represents the void string.
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