KALAKA-3: a database for the recognition of spoken European languages on YouTube audios

Luis Javier Rodríguez-Fuentes, Mikel Penagarikano, Amparo Varona, Mireia Diez, Germán Bordel

University of the Basque Country UPV/EHU, Spain
e-mail: luisjavier.rodriguez@ehu.es

LREC 2014
Reykjavik (Iceland)
May 28-30 2014
Outline

• Spoken language recognition
• Albayzin LRE 2012
• KALAKA-3: main features
• KALAKA-3: design and collection procedure
• KALAKA-3: evaluation
• Conclusions and future work
Spoken Language Recognition

• Is utterance X spoken in French?

• Give me a score (the higher the score, the higher the likelihood that X is spoken in French)

• To make a decision, apply a threshold to the given score
SLR Evaluation

• **Performance**: decisions compared to ground-truth for a set of speech files and target languages

• **Types of tests**:
 - closed-set (known set of target languages)
 - open-set (any language could be spoken)

• **Difficulty**:
 - background and/or channel conditions
 - dialect variability
 - short utterances
International SLR Benchmarks

 - Focused on telephone speech for large-scale filtering in security applications, dealing with certain languages of interest (for strategic reasons)

• **Albayzin LRE**: 2008, 2010 and 2012
 - Initially dealing only with languages spoken in Spain, then extended to other European languages
 - 2008 LRE run on clean Broadcast News (BN) speech
 - 2010 LRE run on BN speech with noisy segments
 - 2012 LRE run on unrestricted speech found in Internet (YouTube audios)
Albayzin 2012 LRE

- Designed to address the conditions producing **variability or difficulty** in previous evaluations
 - Unconstrained speech (background, channel, dialect, amount of speech available, etc.)
 - Low-resource scenario (few data available)
- **Target application**: indexing the spoken language in multimedia contents
- Task defined this way was of practical interest and challenging enough to foster research
KALAKA-3: main features

- Created to support the Albayzin 2012 LRE
- Recycles **BN speech** from previous evaluations (for training: 6 target languages)
- Includes **unconstrained speech** signals from YouTube videos (for tuning and testing)

- **Tasks:**
 - **Plenty-of-Training**: 6 target languages
 - **Empty-Training**: 4 target languages

- Open-set tests: 11 Out-Of-Set (OOS) languages
KALAKA-3: main features

- Three datasets: Train, Dev and Eval
- **Train**: 108 hours, 18 hours per target language (80% clean, 20% noisy)
- **Dev/Eval**: same size (+2000 YouTube audios), target languages balanced, different distribution of OOS languages
- **KALAKA-3**: ~200 hours, currently distributed as a set of tarballs (for downloading), after direct request to authors
KALAKA-3: design

• **Goal:**
 - 300 YouTube videos per target language (150 Dev + 150 Eval)
 - 100 YouTube videos per OOS language

• **Dev/Eval** datasets as *independent* as possible, to avoid a biased benchmark

• **Duration:** *30-120 seconds*, including *at least 5 seconds of speech*

• Audios with *telephone speech discarded*
KALAKA-3: collecting data

- (1) Lists (spreadsheets) of candidate YouTube videos automatically created for each language
 - list of language-specific keywords:
 ✓ 2000 words (canonical forms) with 6 or more characters randomly chosen from the aspell dictionary
 ✓ words in the aspell dictionary of other language excluded
 ✓ only 1000 keywords retained per language
 - 6 YouTube categories most likely to contain speech: Education, News, Entertainment, Howto, Nonprofit, Technology
 - For each (language, category), list of videos built by filtering per category and duration and searching for keywords in metadata, using YouTube API v2.0
KALAKA-3: collecting data

• (2) Videos ranked in spreadsheets according to:
 • Creative Commons (CC) license (not many)
 • Geographical location (geographical metadata not always available):
 • priority given to videos located within a certain distance from a major city speaking the language of interest
 • a small list of major cities defined for each language
 • distance depending on the size of the country (typically, \(R = 200 \text{ km} \))
KALAKA-3: collecting data

• (3) Validation
 - Each (language, category) spreadsheet scrolled through and annotated with validation marks
 - Videos listened to and subjectively judged by 5 human auditors (2 months)
 - Videos validated in order, until the desired amount (55 for target languages, 17 for OOS languages) is attained
 - A video is validated if and only if:
 ✓ contains +5 seconds of speech
 ✓ contains speech in a single language (for OOS languages, several languages may appear, but not target languages)
 ✓ background/channel conditions are admissible
KALAKA-3: collecting data

(4) Fetching and converting YouTube audios

- Videos fetched using youtube-dl
- Audio layer extracted using ffmpeg
- Audio converted to single-channel 16-kHz 16-bit PCM encoded WAV files using SoX
- Filenames anonymized
- The database provides no information about the original videos (only the spoken language is given in the ground-truth files)
KALAKA-3: YouTube video collection

- 4168 audios validated out of 21860 audited
- **Dev**: 2059 (News, Education, Howto)
- **Eval**: 2019 (Entertainment, Nonprofit, Technology)
- At least 150 videos per target language
- Different OOS distribution

<table>
<thead>
<tr>
<th>Target languages (Plenty-of-Training)</th>
<th>Devel</th>
<th>Eval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basque</td>
<td>154</td>
<td>150</td>
</tr>
<tr>
<td>Catalan</td>
<td>149</td>
<td>158</td>
</tr>
<tr>
<td>English</td>
<td>150</td>
<td>156</td>
</tr>
<tr>
<td>Galician</td>
<td>151</td>
<td>160</td>
</tr>
<tr>
<td>Portuguese</td>
<td>160</td>
<td>163</td>
</tr>
<tr>
<td>Spanish</td>
<td>153</td>
<td>154</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Target languages (Empty-Training)</th>
<th>Devel</th>
<th>Eval</th>
</tr>
</thead>
<tbody>
<tr>
<td>French</td>
<td>150</td>
<td>155</td>
</tr>
<tr>
<td>German</td>
<td>146</td>
<td>151</td>
</tr>
<tr>
<td>Greek</td>
<td>155</td>
<td>165</td>
</tr>
<tr>
<td>Italian</td>
<td>158</td>
<td>160</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OOS languages</th>
<th>Devel</th>
<th>Eval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulgarian</td>
<td>0</td>
<td>98</td>
</tr>
<tr>
<td>Croatian</td>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td>Czech</td>
<td>102</td>
<td>0</td>
</tr>
<tr>
<td>Finnish</td>
<td>0</td>
<td>89</td>
</tr>
<tr>
<td>Hungarian</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>Polish</td>
<td>102</td>
<td>0</td>
</tr>
<tr>
<td>Romanian</td>
<td>98</td>
<td>0</td>
</tr>
<tr>
<td>Russian</td>
<td>45</td>
<td>54</td>
</tr>
<tr>
<td>Serbian</td>
<td>0</td>
<td>91</td>
</tr>
<tr>
<td>Slovak</td>
<td>0</td>
<td>102</td>
</tr>
<tr>
<td>Ukrainian</td>
<td>45</td>
<td>52</td>
</tr>
</tbody>
</table>
KALAKA-3: evaluation

- **New metric**: F_{act} (actual relative confusion), ranging between 0 (perfect system) and 1 (non-informative system).

- **Task reformulated**: given an audio X and N target languages, systems must provide $N+1$ scores (for target and OOS languages).

- **PO performance** only slightly worse than **PC**: low confusion between target and OOS languages (*design flaw*).

- **EC/EO performance** much worse than **PC/PO** (late systems 1 and 6 used dev data for training): **lack of training data is a challenging condition!!!**

Albayzin 2012 LRE: Summary of results

<table>
<thead>
<tr>
<th>Systems</th>
<th>PC</th>
<th>PO</th>
<th>EC</th>
<th>EO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.071</td>
<td>0.085</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>0.078</td>
<td>0.120</td>
<td>0.498</td>
<td>0.516</td>
</tr>
<tr>
<td>3</td>
<td>0.113</td>
<td>0.114</td>
<td>0.711</td>
<td>0.796</td>
</tr>
<tr>
<td>4</td>
<td>0.121</td>
<td>0.160</td>
<td>0.626</td>
<td>0.676</td>
</tr>
<tr>
<td>5</td>
<td>0.122</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td>0.141</td>
<td>0.184</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>7 (late)</td>
<td>0.407</td>
<td>0.216</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>1 (late)</td>
<td>–</td>
<td>–</td>
<td>0.216</td>
<td>–</td>
</tr>
<tr>
<td>6 (late)</td>
<td>–</td>
<td>–</td>
<td>0.310</td>
<td>0.372</td>
</tr>
</tbody>
</table>
KALAKA-3: evaluation

- **Acoustic SLR systems** with competitive performance on other tasks (NIST LRE): MFCC/SDC-iVector and PLLR-iVector

- **Basic Voice Activity Detection (VAD)** based on PLLRs (could be failing due to background music or conversations)

- **1/2 development data used for training** in the EC/EO tracks (note that dev data were not intended for training)

- Performance comparatively good in EC/EO, but not in PC/PO (VAD errors, lack of phonotactic systems)

Results for two acoustic SLR systems and the fusion of them

<table>
<thead>
<tr>
<th>Systems</th>
<th>PC</th>
<th>PO</th>
<th>EC</th>
<th>EO</th>
</tr>
</thead>
<tbody>
<tr>
<td>iVector-MFCC</td>
<td>0.139</td>
<td>0.254</td>
<td>0.238</td>
<td>0.342</td>
</tr>
<tr>
<td>iVector-PLL</td>
<td>0.191</td>
<td>0.294</td>
<td>0.217</td>
<td>0.341</td>
</tr>
<tr>
<td>Fusion</td>
<td>0.098</td>
<td>0.128</td>
<td>0.131</td>
<td>0.221</td>
</tr>
</tbody>
</table>
Conclusions and future work

- KALAKA-3 provides challenging tasks for the development of SLR technology
- As far as we know, this is the first SLR benchmark dealing with unconstrained speech found in Internet (YouTube audios)
- Already used by several research groups
- We plan to license the Dev and Eval datasets through LDC