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Abstract
This paper describes the most relevant features of a collabora-
tive multi-site submission to the NIST 2011 Language Recog-
nition Evaluation (LRE), consisting of one primary and three
contrastive systems, each fusing different combinations of 13
state-of-the-art (acoustic and phonotactic) language recognition
subsystems. The collaboration focused on collecting and shar-
ing training data for those target languages for which few de-
velopment data were provided by NIST, and on defining a com-
mon development dataset to train backend and fusion param-
eters and select the best fusions. Official and post-key results
are presented and compared, revealing that the greedy approach
applied to select the best fusions provided suboptimal but very
competitive performance. Several factors contributed to the
high performance attained by BLZ systems, including the avail-
ability of training data for low resource target languages, the
reliability of the development dataset (consisting only of data
audited by NIST), the diversity of modeling approaches, fea-
tures and datasets in the systems considered for fusion, and the
effectiveness of the search for optimal fusions.
Index Terms: Spoken Language Recognition, NIST 2011 LRE,
Multiclass Discriminative Fusion, Greedy Search

1. Introduction
BLZ (Bilbao-Lisboa-Zaragoza) was a three-site team that made
a joint submission to the NIST 2011 Language Recognition
Evaluation (LRE) [1]. The three research groups are GTTS
from the University of the Basque Country (EHU), the Spoken
Language Systems Laboratory (L2F ) from INESC-ID Lisboa
and the Aragon Institute for Engineering Research (I3A) from
the University of Zaragoza.

The NIST 2011 LRE featured 24 target languages. Nine of
them had not been used as target languages in previous evalu-
ations. The main novelty of the NIST 2011 LRE was the fo-
cus on the discrimination between pairs of languages. A new
performance metric was defined taking into account only the
24 language pairs for which system performance (assuming a
perfect calibration) was worst. Thus, all the target languages
should be suitably modeled and the availability of training and
development data for all of them was one of the keys to obtain
good results under the new metric.

The collaboration for a joint submission was motivated by
a previous work [2], which successfully exploited the comple-
mentarity of systems based on different approaches or features,
or trained on different datasets. This time the efforts focused on
collecting and sharing data for the newly added target languages
(for which few development data were delivered by NIST), and
on defining a common development set to allow the estimation

of backend and fusion parameters on independent data (i.e. not
used to train models) and the selection of the best fusions. The
FoCal1 and Bosaris2 toolkits were used to estimate and apply
backend and fusion models, and to evaluate language recogni-
tion performance, respectively.

The BLZ submission to the NIST 2011 LRE consisted of
one primary and three contrastive systems, built upon 13 sub-
systems, some of them implementing cutting edge approaches.
A greedy search for the best overall fusion of subsystems was
applied to define the primary system. Contrastive systems were
developed to explore variants to the selection algorithm and to
the standard backend configuration.

The paper is organized as follows. Section 2 describes the
datasets used for system development. The main features of
the subsystems developed at each site, along with the backend
and fusion approaches on which the submission relies and the
search procedure defined to find optimal fusions are described
in Section 3. Finally, official and post-key results are presented
and briefly discussed in Section 4.

2. Training and development data
2.1. Data collection for the newly added target languages

NIST provided a development dataset specifically collected for
the 2011 LRE, including 100 30-second segments for each one
of the nine newly added target languages (except for Lao, for
which only 93 segments were provided), containing either con-
versational telephone speech (CTS) or narrow-band broadcast
news speech (NB-BN). The dataset was augmented with 10-
and 3-second segments, automatically extracted from the origi-
nal 30-second segments. The resulting dataset, hereafter called
lre11, was randomly split into two disjoint subsets, each having
approximately half the segments for each language: (1) lre11-
train, used to train specific models for the newly added lan-
guages; and (2) lre11-dev, used to estimate backend and fusion
parameters for the joint submission, and to evaluate the per-
formance of single subsystems and fusions during development
(see Section 3 for details).

The lre11-train subset contained around 25 minutes of
speech per target language, which did not allow to train ro-
bust models. So, additional training data were collected for the
newly added languages. Voice-Of-America (VOA) data pro-
vided for the 2009 NIST LRE were explored in first place, start-
ing from the labels provided by NIST. Music and fragments
in English were automatically detected and filtered out, re-
taining only telephone-channel speech fragments. Around two
hours of Lao were extracted this way. Databases distributed

1FoCal toolkit: http://sites.google.com/site/nikobrummer/focal
2Bosaris toolkit: http://sites.google.com/site/bosaristoolkit



by the LDC were explored in second place. Some of them
contained conversational telephone speech (LDC2006S45 for
Arabic Iraqi and LDC2006S29 for Arabic Levantine), whereas
others contained broadcast news with fragments of telephone
speech (LDC2000S89 and LDC2009S02 for Czech). In both
cases, segments containing telephone speech were extracted
with no further processing.

The remaining materials were extracted from wideband
broadcast news recordings, dowsampled to 8 kHz and applied
the Filtering and Noise Adding Tool3 (FANT) to get a fre-
quency characteristic as defined by ITU for telephone equip-
ment. The COST-278 Broadcast News database [3] was used to
get speech segments for Czech and Slovak. Arabic MSA was
extracted from Al Jazeera broadcasts included in the Kalaka-
2 database created for the Albayzin 2010 LRE [4]. Finally,
new broadcasts were captured from video archives in TV web-
sites to get speech segments in Arabic Maghrebi (Arrabia
TV, http://www.arrabia.ma) and Polish (Telewizja Polska, TVP
INFO, http://tvp.info). TV broadcasts were fully audited, so
that only those segments that were subjectively judged as con-
taining clean speech were selected for training. We were not
able to collect by any means additional training materials for
Punjabi. Hereafter, the dataset collected for the newly added
target languages will be called BLZ-train.

2.2. Training data

Besides the shared datasets, BLZ partners were free to use
any other data for building their systems (an interesting way
to get complementary systems for fusion), with a single con-
straint: not using development data for training. In all cases,
training data comprised CTS from previous LRE and other
sources (e.g. Switchboard), narrowband speech segments ex-
tracted from VOA broadcasts provided by NIST for the 2009
LRE, the lre11-train and the BLZ-train datasets. Each train-
ing subset featured a different language/dialect (including tar-
get and non-target languages) and/or source. Each site applied
different criteria and filtering options, such as to keep the size
of the datasets as small as possible, to limit the amount of data
from repeated speakers, etc. Finally, EHU, L2F and I3A de-
fined 66, 43 and 61 training subsets, respectively (see [5] for
details).

2.3. Development data

To make the process of tuning systems as robust and reliable as
possible, development data comprised only segments audited by
NIST. To cover all the target languages, the evaluation sets of
the NIST 2007 and 2009 LREs (using only the segments cor-
responding to NIST 2011 LRE target languages), together with
the lre11-dev subset, as defined in Section 2.1, were used. Three
development subsets were defined: dev30, dev10 and dev03,
corresponding to nominal durations of 30, 10 and 3 seconds,
containing 8539, 8343 and 8290 segments, respectively. Target
languages showed large differences in the number of segments
among each other. In particular, the newly added target lan-
guages were the less populated, with around 50 segments each,
and thereby, they were the most likely to suffer from overtrain-
ing and/or robustness issues.

3. Systems
3.1. EHU subsystems

The EHU team developed two acoustic and three phonotac-
tic language recognition subsystems. The two acoustic sub-

3http://dnt.kr.hs-niederrhein.de/download.html

systems used a 56-dimensional feature vector, consisting of
7 static MFCC and 49 Shifted Delta Cepstrum (SDC) coeffi-
cients, under a 7-2-3-7 configuration. A gender independent
1024-mixture GMM was estimated on the training dataset and
used as Universal Background Model (UBM). For each input
utterance, UBM-MAP adaptation was applied and the zero-
order and centered and normalized first-order Baum-Welch
statistics were computed. The first acoustic subsystem ap-
plied the Linearized Eigenchannel GMM (LE-GMM) approach,
also known as Dot-Scoring [6], including channel compensation
[7]. The second acoustic subsystem applied the total variabil-
ity iVector approach, as described in [8], but starting from the
channel-compensated sufficient statistics computed for the Dot-
Scoring subsystem. The EHU phonotactic subsystems followed
a phone-lattice-SVM approach, using the TRAPs/NN phone de-
coders developed by the Brno University of Technology (BUT)
for Czech (CZ), Hungarian (HU) and Russian (RU) [9]. Phone
lattices were used to compute expected counts of phone n-
grams, up to trigrams. Counts were stacked in a single vector
and an L2-regularized L1-loss Support Vector Machine (SVM)
classifier was estimated and applied, by means of LIBLINEAR
[10].

3.2. L2F subsystems

L2F developed two acoustic and four phonotactic language
recognition subsystems. One of the acoustic subsystems fol-
lowed the GSV approach [11], using PLP-RASTA and SDC
features, under a 7-1-3-7 configuration. A 1024-mixture GMM-
UBM was trained on approximately 150 randomly selected
speech segments per training subset. SVM language models
were trained on MAP-adapted GMM supervectors by means of
LIBLINEAR [10], using a linear kernel based on the Kullback-
Leibler (KL) divergence. An iVector subsystem was also de-
veloped, following the approach described in [8], using the
same PLP-RASTA SDC features and the same 1024-mixture
GMM-UBM developed for the GSV subsystem. The total
variability matrix was estimated on zero and first-order suf-
ficient statistics computed on the training dataset, according
to [12], the dimension of the total variability subspace being
400. Four phone-lattice-SVM phonotactic subsystems were de-
veloped, using L2F phone decoders for European Portuguese
(PT), Brazilian Portuguese (BR), European Spanish (ES) and
American English (EN), based on the hybrid ASR system AU-
DIMUS [13]. Reduced vectors including only the counts of the
10000 most frequent n-grams (up to trigrams) were used. For
each target language and each phone decoder, an L2-regularized
SVM classifier was trained on the corresponding set of training
vectors, by means of LIBLINEAR [10].

3.3. I3A subsystems

The I3A team developed two acoustic subsystems. The first
one followed the implementation of the iVector approach de-
scribed in [8]. Acoustic vectors included 7 static MFCC and
49 SDC coefficients computed under a 7-1-3-7 configuration.
Vocal Tract Length Normalization and Cepstral Mean and Vari-
ance Normalization were applied in MFCC computation. A
2048-mixture GMM-UBM was used. Both the GMM-UBM
and the total variability matrix were trained on the whole train-
ing dataset. The distributions of iVectors for individual lan-
guages were modeled by Gaussian distributions with a single
within-class full covariance matrix shared by all the languages.
Only target languages were modeled in this step, using (when
possible) 500 speech segments per language. The second I3A
subsystem followed the Joint Factor Analysis (JFA) approach



described in [14], using the same 56-dimensional acoustic fea-
tures and the same 2048-mixture GMM-UBM developed for the
iVector subsystem. Two factors were defined, one for the lan-
guage and one for the channel. Thus, a channel compensated
model for each language was obtained. The whole training
dataset was used to estimate model parameters. Finally, each
utterance was scored via linear scoring, as proposed in [15].

3.4. The BLZ submission

The BLZ submission is summarized in Table 1. Backend and
fusion parameters were estimated and applied separately for
each nominal duration, under two different configurations: (1)
Gaussian backend, training datasets: dev10 + dev30 for 10- and
30-second segments, dev03 + dev10 + dev30 for 3-second seg-
ments; and (2) zt-norm + Gaussian backend, training datasets:
dev30 for 30-second segments, dev10 for 10-second segments
and dev03 for 3-second segments. The second configuration
was only applied to the third contrastive system, because it
yielded a slight improvement on the development set.

Table 1: BLZ primary and contrastive systems: configuration
(see details in the paper) and fused subsystems.

Subsystems
System Config EHU L2F I3A

Phone-CZ Phone-PT iVector
Pri (1) Phone-HU Phone-BR JFA

Phone-RU
DotScoring
Phone-CZ Phone-PT iVector
Phone-HU Phone-BR JFA

Con1 (1) Phone-RU Phone-EN
DotScoring Phone-ES

iVector GSV
iVector

Con2 (1) Phone-RU Phone-ES JFA
Phone-CZ Phone-PT iVector

Con3 (2) Phone-HU Phone-BR JFA
Phone-RU
DotScoring

The EHU, L2F and I3A subsystems produced 66, 43 and
24 scores, respectively (one score per trained model). These
scores were taken as input by the backend, which output 24
log-likelihoods, one per target language. A Gaussian backend
(preceded by a zt-norm for the third contrastive system) was ap-
plied in all cases. Finally, the resulting N × 24 log-likelihood
values (N : number of subsystems) were fused to get 24 cal-
ibrated scores for which a minimum expected cost Bayes de-
cision was made, according to application-dependent language
priors and costs. Calibration/fusion models were estimated by
applying linear logistic regression under a multiclass paradigm
[16], by means of the FoCal toolkit.

3.5. Selection of subsystems
To select the best combinations of subsystems, the development
set was split in two halves, the first one being used to estimate
backend and fusion parameters and the second to generate a set
of trials, on which the performance measure, as defined in the
Evaluation Plan, was computed, using the Bosaris toolkit. In
fact, to have a more robust measure of system performance, 10
random partitions (always the same) were defined and the aver-
age performance was computed on them. This strategy pursued
(via random subset selection) the same goal than a 2-fold cross-
validation strategy, but providing a better balance between the

�����
����
�����
����
�����
����
�����
����
�����
����

	 � � � � � � 
 � 	� 		 	� 	�

��
��

��������	�	�
���
��
�
��


����������	
���
������
�������

Figure 1: Actual and minimum average cost (2011 LRE defini-
tion) on the development set (30-second segments) for the opti-
mal fusions of k subsystems according to a greedy algorithm.

size of the evaluation subset (large enough for the results to be
reliable) and the number of partitions considered in the average
(for statistical significance).

Decisions were made based on system performance for the
subset of 30-second segments, applying a Gaussian backend
and discriminative multiclass fusion. An exhaustive search to
find the best combination of k subsystems out of 13 becomes
unfeasible because of the huge computational cost it involves
for values of k greater than 4. Thus, a faster greedy strategy was
applied: the best combination of k subsystems was determined
by extending the best combination of k − 1 subsystems with
each one of the available subsystems, and the combination that
yielded the best performance was selected. Though this should
generally lead to suboptimal solutions, we found that the best
greedy k-combinations for k = 1, 2, 3 and 4 matched the op-
timal ones (those previously found with an exhaustive search).
The actual and minimum average cost (Cavg) for the optimal
combinations under the greedy approach are graphically shown
in Figure 1. For the primary system, the best overall combina-
tion was selected according to the evolution of the actual cost.
The combination involving eight subsystems was chosen be-
cause the actual cost, which had monotonically decreased to
that point, began to increase for combinations of higher order.
The first contrastive system fused all the subsystems, aiming to
check whether it outperformed the selection approach described
above; the second consisted of the best fusion of 3 subsystems
containing one subsystem per site, as a kind of minimal (compu-
tationally less expensive) approach; finally, the third contrastive
system fused the same set of subsystems selected for the pri-
mary system, but under a different backend configuration.

4. Results
The official results obtained by BLZ systems in all the evalua-
tion tracks, in terms of the traditional Cavg and the new Cavg

defined for the NIST 2011 LRE, are shown in Table 2. Note
that both measures are highly correlated, suggesting that sys-
tems performing best for the 24 most confusable language pairs
are also the best for all the language pairs. It seems that the
new measure used in the NIST 2011 LRE does not provide ad-
ditional information to that provided by the traditional pooled
measure. Instead, it introduces some uncertainty when compar-
ing systems, since the set of 24 pairs yielding the worst min-
Cavg is generally different for each one. Note also that the av-
erage cost attained on the development set (see Figure 1) was
remarkably lower than that found on the evaluation set. A mis-
match between the development and evaluation datasets, that
could be critical for some languages with few or less reliable



data, may explain this result and may also explain the poor cali-
bration achieved by most systems and the success of the zt-norm
in the 30-second track (BLZ Contrastive System 3).

Table 2: Official NIST 2011 LRE results for the BLZ systems.

All pairs 24 worst pairs
30s min-Cavg act-Cavg min-Cavg act-Cavg

Pri 0.0081 0.0156 0.0573 0.0884
Con1 0.0079 0.0159 0.0568 0.0919
Con2 0.0099 0.0165 0.0658 0.0914
Con3 0.0071 0.0139 0.0509 0.0764
10s min-Cavg act-Cavg min-Cavg act-Cavg

Pri 0.0259 0.0346 0.1103 0.1343
Con1 0.0243 0.0328 0.1089 0.1310
Con2 0.0346 0.0423 0.1371 0.1543
Con3 0.0262 0.0347 0.1133 0.1322

3s min-Cavg act-Cavg min-Cavg act-Cavg

Pri 0.0982 0.1185 0.2382 0.2709
Con1 0.0909 0.1073 0.2250 0.2511
Con2 0.1116 0.1207 0.2521 0.2638
Con3 0.1128 0.1426 0.2705 0.3160

It must be noted that BLZ systems attained very compet-
itive performance in the 30-second track, for which the selec-
tion of subsystems was optimized. In fact, BLZ systems were
among the best systems submitted to the NIST 2011 LRE. Be-
sides using cutting edge approaches in some of the fused sub-
systems, high performance can be partly explained by the effort
devoted to collecting and designing suitable datasets for training
and development, partly by the use of diverse heterogenous sub-
systems for fusion and partly by the effectiveness of the greedy
algorithm applied to select the best combination of subsystems
for fusion. Regarding this, note that the subset of subsystems
found optimal on the development set (BLZ primary) outper-
formed the fusion of all the subsystems (BLZ contrastive 1)
in the 30-second track. The surprisingly high performance at-
tained by the BLZ third contrastive system tell us just about the
importance of a smart use of the development data, but it may be
also related to an error in the computation of I3A iVector scores
for 10- and 3-second segments (remind that under configura-
tion (1), the backend and fusion parameters for the 30-second
track were estimated on dev10 + dev30), which also explains
the degraded performance of BLZ systems in those tracks when
compared to other submissions.

Post-key results were obtained by applying the greedy
search for the best fusion on the subset of 30-second segments
of the evaluation dataset, under the backend configuration (1).
The best fusion obtained this way yielded min-Cavg = 0.0576
and act-Cavg = 0.0776 and included just 4 subsystems: EHU-
Phone-CZ, EHU-Phone-RU, EHU-iVector and I3A-JFA. This
is the maximum performance that can be attained with the of-
ficial BLZ scores just by selecting the best possible combina-
tion of subsystems under configuration (1). The best fusion
found on the development set was much more populated (i.e.
more costly) and provided worse performance, which tell us
again about a mismatch between the development and evalu-
ation datasets. Finally, to further explore the potential perfor-
mance attainable with BLZ systems, we ran the greedy search
again using the amended scores of the I3A iVector subsystem
and the backend configuration (2). This approach led to im-
proved performance in the 30-second track: min-Cavg = 0.0522
and act-Cavg = 0.0709, and included 6 subsystems: the same
of the BLZ primary system except for EHU-Dot-Scoring and
L2F -Phone-BR.
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