
The Albayzin 2012 Language Recognition
Evaluation Plan (Albayzin 2012 LRE)

Luis Javier Rodríguez-Fuentes1, Niko Brümmer2, Mikel Penagarikano1,
Amparo Varona1, Mireia Diez1, and Germán Bordel1

1 GTTS, University of the Basque Country UPV/EHU, Spain
2 AGNITIO Research, South Africa

luisjavier.rodriguez@ehu.es

Abstract The Albayzin 2012 Language Recognition Evaluation (Albayzin 2012
LRE) is supported by the Spanish Thematic Network on Speech Technology
(RTTH)3 and organized by the Software Technologies Working Group (GTTS)4

of the University of the Basque Country, with the key collaboration of Niko
Brümmer, from Agnitio Research, South Africa, for defining the evaluation cri-
terion and coding the script used to measure system performance. The evaluation
workshop will be part of IberSpeech 2012, to be held in Madrid, Spain from 21
to 23 November 20125.

Keywords: Language Recognition, Albayzin Evaluations, Iberspeech 2012

1 Introduction

As in previous Albayzin LRE editions, the goal of this evaluation is to promote the
exchange of ideas, to foster creativity and to encourage collaboration among research
groups worldwide working on language recognition technology. To this end, we pro-
pose a language recognition evaluation similar to those carried out in 2008 and 2010,
but under more difficult conditions. This time the application domain moves from TV
Broadcast speech to any kind of speech found in the Internet, and no training data will
be available for some of the target languages (aiming to reflect a common situation for
low-resource languages).

The change in the application domain pursues two objectives: first, the task should
reflect a practical application (in this case, indexing of multimedia content in the Inter-
net); and second, the task should be challenging enough for state-of-the-art systems to
yield a relatively poor performance. Results attained in the Albayzin 2010 LRE showed
that a possible key to define such a challenging task may be acoustic variability (chan-
nel, noise, music, overlapping speakers, etc.), which is inherent to some media (such as
the videos posted by people in the Internet) [1].
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Audio signals for development and evaluation will be extracted from YouTube
videos, which will be heterogeneous regarding duration, number of speakers, ambi-
ent noise/music, channel conditions, etc. Besides speech, signals may contain music,
noise and any kind of non-human sounds. In any case, each signal will contain a min-
imum amount of speech. As for previous evaluations, each signal will contain speech
in a single language, except for signals corresponding to Out-Of-Set (OOS) languages,
which might contain speech in two or more languages, provided that none of them are
target languages.

Overall, the Albayzin 2012 LRE introduces some interesting novelties with regard
to previous editions (see [2,3] for reference) and NIST Language Recognition Evalu-
ations6. The task can be still described as spoken language recognition, but the type of
signals used for development and test, the number and identity of target languages and
the evaluation criterion are significantly different. In the following sections, all these
issues are addressed in detail.

2 The language recognition task

The language recognition task is defined as follows: given a segment of speech and a set
of n languages of interest (target languages), produce a likelihood score for each target
language plus an additional score for the Out-Of-Set (OOS) language class, based on
an automated analysis of the data contained in the segment. Although hard language
classification decisions are not required, the likelihood scores are required to be well-
calibrated so that they could be used to make Bayes decisions. In closed-set language
recognition tests, the last score will not be used to compute performance.

System performance will be evaluated with a calibration-sensitive, multi-class
cross-entropy criterion, as explained in Section 4 and Appendix A.

3 Test conditions

3.1 Closed-set vs Open-set

Depending on the set of languages that are allowed to appear in the audio signal, two
types of recognition tests are defined:

– In closed-set recognition, only target languages are expected to appear in the audio
signal. In this case, system performance is computed on the subset of test segments
containing speech in one of the target languages.

– In open-set recognition, the audio signal may contain any language, either a target
language or OOS languages. In this case, system performance is computed on the
whole set of test segments, including those containing OOS languages.

This way, systems could be designed specifically or optimized for closed-set or
open-set recognition, and research groups could submit separate results for each condi-
tion. As we explain in Section 5, whereas the training set will not provide data for OOS
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languages, both the development and evaluation sets will include segments in OOS lan-
guages (with different distributions). The set of OOS languages will not be disclosed to
participants.

3.2 Plenty of Training vs Empty Training

Two different conditions are defined depending on the availability of training materials
for target languages. This way, we aim to check to what extent the availability of training
materials (and thus specific models) for target languages affects system performance.
In fact, two separate tasks are defined depending on this condition, since they involve
disjoint sets of target languages:

– The first condition, called Plenty of Training, involves 6 target languages (those
used for the Albayzin 2010 LRE): Castilian Spanish, Catalan, Basque, Galician,
Portuguese and English. For all of them, a large amount of training data (around 18
hours of speech per language) will be supplied, specifically speech signals recorded
from TV broadcasts used to build the Kalaka-2 database [4]. Development signals
(YouTube audio) will be also supplied, both for target languages (between 100 and
200 signals per language) and for Out-Of-Set languages (around 500 signals), to
allow tuning systems for open-set tests.

– The second condition, called Empty Training, involves 4 target languages: French,
German, Greek and Italian, for which no training materials will be supplied. Only
development signals (YouTube audio) will be supplied, both for target languages
(between 100 and 200 signals per language) and for Out-Of-Set languages. Under
this condition, the training and development data supplied for target languages in
the Plenty of Training condition can be also used. Note also that the set of develop-
ment signals provided for OOS languages is shared by both conditions.

In both cases, participants are only allowed to use the data provided for this evalu-
ation. Thus, participants cannot benefit from other databases available to them nor will
they have to invest time in collecting data. Systems will be built strictly from the data
provided, which should be seen as a common starting condition, necessary for the com-
parison of systems to depend only on the applied technologies. The only exception to
this rule and for the sole purpose of preventing some approaches to be penalised, is that
auxiliary subsystems trained on external data (e.g. phonetic decoders) are allowed.

3.3 Primary vs contrastive systems

Unlike previous editions of the Albayzin LRE, neither the duration nor the acoustic
conditions (presence of background noise or music, etc.) of test segments will be taken
into account to define different evaluation tracks. There will be just 4 tracks, combining
the two tasks described in Section 3.2 and the two recognition modalities described in
Section 3.1:

– Plenty of Training (6 target languages), Closed-Set Recognition (briefly, PC)
– Plenty of Training (6 target languages), Open-Set Recognition (briefly, PO)



– Empty Training (4 target languages), Closed-Set Recognition (briefly, EC)
– Empty Training (4 target languages), Open-Set Recognition (briefly, EO)

The first track (PC) is mandatory, which means that participants must submit at least
one complete set of recognition results for that condition. Note that a complete set of
results in the PC track comprises the 6 scores yielded by the system plus a fake score
for OOS languages (just to fit the file format, as specified in Section 6.1) for each one
of the test segments. The PO, EC and EO tracks are optional.

Participants can submit multiple sets of recognition results (each corresponding to a
different system) for each track, but they are required to specify one of them as primary
system, the remaining being contrastive systems. To determine the ranking in each track
(in terms of the primary evaluation measure, as defined in Section 4), only primary
systems will be taken into account, though all the submitted systems will be evaluated
and presented in tables and graphs.

4 Evaluation of system performance

For the Albayzin 2012 Language Recognition Evaluation, we follow the example of the
upcoming 2012 NIST Speaker Recognition Evaluation7, and we change the submission
format to a probabilistic form. In the previous Albayzin LREs (as well as in all previous
NIST LREs and SREs), participants had to submit the outputs of their systems in the
form of hard decisions. This year, the format will be soft, probabilistic decisions in the
form of calibrated language log-likelihoods.

The new submission format will be accompanied by a new primary evaluation cri-
terion, called multiclass cross-entropy. This criterion simultaneously evaluates discrim-
ination and calibration, so that highly discriminative systems, with well-calibrated out-
puts, will perform well. The primary criterion will be accompanied by a secondary cri-
terion, where the evaluator optimally re-calibrates submissions. The secondary criterion
can be used for comparison of the discrimination, when calibration is not of immediate
interest and also to analyze the quality of calibration. This evaluation recipe was first
published in [5].

4.1 Evaluation task and submission format

As noted above, in this LRE there will be two separate tasks involving either n = 6,
or n = 4 target languages. Given n target languages, we define m = n + 1 language
classes, denoted Li, for i = 1, 2, . . . ,m, where the first n classes are the n target
languages, while Lm is the class of all OOS languages.

The evaluation data will consist of some large number, T , of audio segments, de-
noted s1, s2, . . . , sT . Participants must assume that every segment contains either one
of the target languages or an OOS language, as defined above. If this assumption turns
out after the fact to be untrue for some segments, for example where segments con-
tain no speech, then such segments will be removed when tallying the final evaluation
criteria.

7 See the SRE’12 Evaluation Plan at http://www.nist.gov/itl/iad/mig/upload/NIST_SRE12_
evalplan-v11-r0.pdf.
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The task is to recognize the language class to which each segment, st, belongs. But
we do not require hard language classifications. Instead, we require for every st, m
language log-likelihoods of the form:

`it = kt + logP (st|Li), i = 1, 2, . . . ,m (1)

We require the log-likelihoods to be finite: −∞ < `it <∞. Here kt is an arbitrary real
constant that may depend on the segment, st, but not on the class, Li. We use natural
logarithms throughout.

In summary, when T speech segments are given, the submission will be a m-by-T
matrix of language class log-likelihoods. Each column of this matrix is a log-likelihood-
vector, `t = (`1t, `2t, . . . , `mt), which represents the soft, probabilistic classification
given by the system under evaluation, for segment st.

4.1.1 Open-set vs Closed-set For simplicity, we specify only the above m-class sub-
mission format. For the open-set condition, the whole m-by-T matrix will be used
for evaluation. For the closed-set condition, the matrix will be edited: all the columns
where the audio segment does not contain one of the n target languages will be disreg-
arded, and the bottom row with the likelihoods corresponding to the Lm class (OOS
languages) will be also disregarded.

4.1.2 Discussion It may seem surprising to some that we do not ask for language
posteriors of the form P (Li|st) to be submitted instead. However, such posteriors must
depend implicitly on some prior distribution over language classes. By definition, this
prior cannot be extracted from the speech. In some areas of machine learning, for ex-
ample in a phone recognizer, it would make sense for the recognizer to effectively learn
this prior from development data. But in the context of language recognition, the pro-
portions of languages in the development data could be very different from the priors
that one would want to use in applications. The prior will also vary between applica-
tions. For this reason, we prefer the above-defined, prior-independent likelihood format
for submission.

It must further be mentioned that the m-component log-likelihood vector, `t,
is a redundant representation. To see this, choose without loss of generality, kt =
− logP (st|Lm), which would zero the last component, leaving only m − 1 compon-
ents. We could do the same with any of the other components. But any such (m − 1)-
component representation must be asymmetrical and is therefore less intuitive and more
difficult to work with in practice.

Finally, we choose to use a logarithmic format, because experience has shown that
scores from typical classifiers behave like (shifted and scaled) log-likelihoods. The log-
arithmic format therefore preserves the look and feel of typical scores.

4.2 Primary evaluation criterion

The primary evaluation criterion to be defined below can be interpreted as a form of
empirical, multiclass cross-entropy. To compute it, the evaluator specifies a prior dis-
tribution over language classes, so that Bayes’ rule can be used to map the submitted



log-likelihoods to language class posteriors. The goodness of these posteriors is then
evaluated via the logarithmic cost function. A weighted average of the logarithmic cost
over all audio segments forms the cross-entropy criterion.

In order to facilitate comparison of the cross-entropies across different tasks, which
have different perplexities, we show how to present cross-entropy in the form of relative
confusion, a measure closely related to perplexity . The following subsections give more
detail.

4.2.1 Prior Let π = (π1, π2, . . . , πm) represent a prior distribution over the m =
n+ 1 language classes, so that πi = P (Li|π). We specify:

π =

(
1− πm
n

, . . . ,
1− πm
n

, πm

)
(2)

For the closed-set condition, we specify πm = 0. For the open-set condition, we specify
πm = 1

m .

4.2.2 Posterior Given a log-likelihood-vector, `t = (`1t, `2t, . . . , `mt), submitted by
a system under evaluation, the evaluator calculates the posterior distribution:

P (Li|`t,π) =
πi exp(`it)∑m
j=1 πj exp(`jt)

(3)

Note that the arbitrary constant kt, as defined in (1), cancels. Also note that when πm =
0, then the corresponding likelihood, `mt, is effectively disregarded.

The mapping (3) is the familiar softmax function. We say that `i favours class i,
when `it + log πi � `jt + log πj , for all j 6= i, in which case P (Li|`t,π) ≈ 1 and
P (Lj |`t,π) ≈ 0.

In what follows, we shall refer to the whole posterior distribution as:

Πt =
(
P (L1|`t,π), . . . , P (Lm|`t,π)

)
(4)

4.2.3 Logarithmic cost function For every audio segment, st, the system under eval-
uation submits the log-likelihood-vector, `t. The evaluator has access to the true class
label for segment st, which we denote Ltrue(t) ∈ {L1, . . . , Lm}. This allows the eval-
uator to compute a measure of goodness for `t, in the form of the logarithmic cost
function:

Clog(Πt|Ltrue(t)) = − logP (Ltrue(t)|`t,π) (5)

To get a feeling for this cost function, note that when `t favours the correct language
class, then P (Ltrue(t)|`t,π) ≈ 1, so that Clog(Πt|Ltrue(t)) ≈ 0. But if `t favours an
incorrect class, then P (Ltrue(t)|`t,π) ≈ 0 and so Clog(Πt|Ltrue(t))� 0.

For the interested reader, appendix A gives further analysis and motivation of the
logarithmic cost function.



4.2.4 Multiclass cross-entropy We form our primary evaluation criterion, known as
multiclass cross-entropy, by a weighted average of the logarithmic cost:

Cmce =

m∑
i=1

πi
‖Ti‖

∑
t∈Ti

− logP (Li|`t,π) (6)

where Ti is the subset of indices for segments of class i. By ‖Ti‖ we mean the number
of segments of language class i. Note that for the closed-set case, when πm = 0, all
segments of class Lm are effectively ignored8.

The default system. We already know that the logarithmic cost function is small for a
good `t and large for a bad `t. Let us now examine a convenient reference value to help
to further understand how cross-entropy behaves.

We define the default system as the one that cannot make up its mind about the
language class and outputs `it = kt for every t. This gives P (Li|`t,π) = πi for every
i, t. In other words, the default system effectively ignores all information in the audio
signal, so that the posterior and prior are the same. The cross-entropy for the default
system gives the reference value9:

Cdef =

m∑
i=1

−πi log πi (7)

which is just the prior entropy10.
If a submitted system has Cmce ≥ Cdef, then it does not improve upon the default

system. We would expect good systems to have Cmce < Cdef.

Confusion. To facilitate interpretation of cross-entropy, we define the confusion of the
system under evaluation as:

Fmce = exp(Cmce)− 1 (8)

similarly, the prior confusion (confusion of the default system) is:

Fdef = exp(Cdef)− 1 (9)

Since cross-entropy is non-negative, so is confusion—a perfect system would have zero
confusion. To get an intuitive feeling for confusion, consider the prior confusion for
the closed-set case where have a flat prior over n classes, so that Cdef = log n and
Fdef = n − 1. This can be interpreted as the number of wrong alternatives. Notice that
confusion is closely related to perplexity (the total number of alternatives).11 Here we
choose to use confusion, rather than perplexity, in order to facilitate comparison across

8 When πm = 0, P (Lm|st,π) = 0 and − logP (Lm|st,π) = ∞, but we can use the limit:
limπm→0 πm logP (Lm|st,π) = 0.

9 Again, for the case πm = 0, we use limπ→0 π log π = 0.
10 Shannon’s entropy.
11 perplexity = confusion + 1



different tasks with different prior perplexities. We do this by defining actual relative
confusion:12

Fact =
Fmce

Fdef
(10)

(We call this criterion ‘actual’, to contrast with an auxiliary relative confusion criterion,
Fdis, to be defined below.) The relative confusion is the factor by which the system has
changed (hopefully reduced) the prior confusion. The reference value for relative con-
fusion is 1. Badly calibrated systems that have relative confusion greater than one are
doing worse than the default system. We expect good systems to have relative confusion
below 1. A perfect system would have relative confusion of zero.

4.3 Auxiliary evaluation criterion

The evaluator can recalibrate the log-likelihoods, `it, submitted by a system as:

`′it = α`it + βi (11)

where α and β = (β1, β2, . . . , βm) are calibration constants. In vector notation, (11)
becomes: `′t = α`t + β.

Let C′mce denote the cross-entropy obtained by applying (6) to `′it. The auxiliary
evaluation criterion is defined as:

Cmin = min
α,β
C′mce (12)

This minimization is just a form of multiclass logistic regression. This is an uncon-
strained, convex minimization problem and can be performed using standard numerical
optimization algorithms. Note that if we choose α = βi = 0, the default system results,
so that if the calibration parameters are freely optimized, we must have Cmin ≤ Cdef.

Below, we use the auxiliary criterion, Cmin, for two purposes: comparison of dis-
crimination and analysis of calibration.

4.3.1 Comparison of discrimination between systems Let us assume for argu-
ment’s sake that the evaluee used a restricted affine transformation of the same form
as (11) in order to transform raw uncalibrated scores to calibrated log-likelihoods13. If
the evaluator now recalibrates, the composition of those two transforms is still of the
same form. By applying (11), the evaluator therefore effectively removes the calibra-
tion done by the evaluee, recovering the raw scores, to which a new, optimal calibration
transform is then applied. This gives the interpretation that Cmin is the best performance
that the evaluee could have obtained with an optimal calibration of this form. We can

12 If we had used relative perplexity, the perfect system would have had relative perplexity of 1
n

,
for n alternatives, which does not facilitate comparison across tasks having a different number
of alternatives.

13 Practical experience has shown that this is indeed a good strategy.



therefore use this criterion to compare the discrimination potential of systems, regard-
less of problems that may have been introduced by bad calibration. Again, we find it
convenient to do so via relative confusion. Let us define the minimized confusion as
Fmin = exp(Cmin)− 1 and the relative version as:

Fdis =
Fmin

Fdef
(13)

where ‘dis’ is mnemonic for discrimination. As pointed out above, we must have Fdis ≤
1.

4.3.2 Analysis of calibration For one system at a time, we can also compare Fact to
Fdis to judge how good the calibration of that system was. We define the calibration
loss as the additional relative confusion introduced by suboptimal calibration:

Fcal =
Fact − Fdis

Fdis
(14)

The optimization guarantees that Fcal ≥ 0, with perfect calibration at zero.

4.3.3 Factorization The above definitions provide the following factorization of the
primary criterion, Fact:

Fact = (1 + Fcal)Fdis (15)

where Fcal ≥ 0 and 0 ≤ Fdis ≤ 1. This emphasizes the sensitivity of the primary
criterion to both discrimination and calibration. To get a small value for Fact, a system
needs to minimize both factors.

4.4 Language pairs

The log-likelihood submission format makes it possible to apply a variety of different
evaluation criteria to the same submission. We can use this opportunity to focus, for
example, on pairs of languages. To do this, we choose some 1 ≤ i < j ≤ n and
set πi = πj = 1

2 and the rest of the prior components to 0. Then we can proceed as
before, calculating cross-entropy for each of the

(
n
2

)
language pairs. Some language

pair performance analysis of this kind may be done by the evaluator, but the focus of
this evaluation is on the full multiclass recognition problem, rather than on pairs.

4.5 Summary of evaluation criteria

The primary evaluation criterion for comparison between systems is Fact, which is sens-
itive to both calibration and discrimination. It is calculated by applying equations (3),
(6), (7) , and (10), with the prior π specified in section 4.2.1.

The secondary criterion for comparison between systems is Fdis, which is sensitive
only to discrimination, because calibration is redone by the evaluator. It is calculated by
applying equations (11), (12) and (13).



For a given system, the calibration loss is Fcal =
Fact−Fdis
Fdis

.
All of Fdis, Fact and Fcal can be expressed conveniently as percentages. The first is

bounded by 100%, but the others can be arbitrarily large for badly calibrated systems.
A MATLAB toolkit will be made available for participants to calculate these cri-

teria.

5 Data

5.1 Training data

Training data provided for this evaluation amount to around 108 hours of speech, with
18 hours on average for each one of the 6 target languages considered in the Plenty-of-
Training condition. Speech files have been extracted from the materials used to produce
KALAKA-2 (the database created for the Albayzin 2010 LRE) [3]. All of them are con-
tinuous excerpts (of different durations) from multi-speaker TV broadcast recordings,
featuring various speech modalities and diverse environment conditions.

Broadcasts were recorded through a home connection to cable TV, by means of a
Roland Edirol R-09 ultra-light digital audio recorder14, and stored in CD quality (16
bits/sample, 44.1 kHz, stereo) audio files. Recordings were done at different times:
April-September 2008 (Basque, Catalan, Galician, Spanish, English and Portuguese);
October-November 2008 (English), April-May 2010 (English and Portuguese) and
August-September 2010 (Basque, Catalan, Galician and Spanish). Audio signals were
downsampled to 16 kHz, left and right channels being averaged into one single chan-
nel, and finally stored in WAV files (PCM, 16 kHz, single channel, 16 bits/sample), by
means of SoX15.

The training dataset consists of two disjoint subsets, including clean speech (around
86 hours) and noisy speech (around 22 hours), respectively. Clean-speech segments
are high SNR speech signals, maybe with short fragments of noisy and/or overlapped
speech. Noisy-speech segments include noisy and/or overlapped speech, maybe with
short fragments of clean speech. Different and variable types of noise may appear:
street, music, cocktail party, laughs, clapping, etc. However, telephone-channel speech
has not been included in any case. Most speech overlaps appeared in hot spots of in-
formal debates in late night shows, magazines, etc. which, on the other hand, featured
clean-channel and quiet-background (studio) conditions. In all cases, each segment con-
tains speech in a single language.

5.2 Development and evaluation data

The development and evaluation datasets will be similar in size and structure. Each one
will consist of between 100 and 200 audio segments per target language, plus addi-
tional segments in OOS languages (needed to tune and evaluate systems in the open-set
condition), amounting to around 2000 segments. Audio segments have been extracted
from YouTube videos, and then audited and labelled by human experts. Each segment

14
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15
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is between 30 and 120 seconds long and is guaranteed to include above a minimum
amount of speech (from one or more speakers) either in one of the target languages or
in one or more OOS languages. Note that some segments may feature quite challenging
background and/or channel conditions. Speech segments will be given random names,
so that language labels are kept undisclosed.

6 Information for participants

All the registered participants will be given access to a web page and permission to
download the training and development data, along with a keyfile and a scoring script
(needed to evaluate system performance during the development phase). Registration
involves the commitment to use data exclusively for research purposes, distribution
being allowed only with explicit permission. After the evaluation, the registered parti-
cipants are allowed to use the data to develop or evaluate their own systems, provided
that they acknowledge that use by means of a suitable reference:

KALAKA-3. Speech database created for the Albayzin 2012 Language Re-
cognition Evaluation. Produced by the Software Technologies Working Group
(GTTS), University of the Basque Country UPV/EHU, Spain.

After receiving training and development data, participants will have more than two
months for system development. The evaluation dataset will be also released via web.
There will be three weeks to process evaluation data and send back recognition results
(see Section 6.4 for details). The keyfile will be released two weeks after the deadline
for submitting recognition results.

The ranking of primary systems in all conditions will be determined by taking into
account the primary evaluation criterion, Fact, as defined in Section 4. As noted above,
all the participants must submit recognition results for a primary system in the Plenty-
of-Training Closed-set (PC) condition, which is mandatory.

6.1 Data organization

6.1.1 Training data The training dataset will consist of two elements:

– data - a directory containing speech segments (WAV files) for the 6 target languages
defined for the Plenty-of-Training condition. Data are organized into 6 folders (one
per target language), each one with two sub-folders, containing clean and noisy
speech, respectively.

– doc - a directory containing documentation: the evaluation plan, authoring inform-
ation, the conditions for using the database, etc.

6.1.2 Development and evaluation data The development and evaluation datasets
will both consist of four elements:

– seg.ndx - a text file containing the list of segments to be used in all the tests.



– data - a directory containing audio segments (WAV files), their names being random
alphanumeric strings followed by the .wav extension.

– scoring - a directory containing the script that must be used to measure system
performance, along with a readme file to help using it and the keyfile16.

– doc - a directory containing documentation: the evaluation plan, authoring inform-
ation, the conditions for using the database, etc.

6.1.3 System output format Recognition results for any given condition must be sent
in a text file with a line per test segment, each line consisting of n+ 4 blank-separated
fields, where n is the number of target languages, which depends on the task (n = 6
for Plenty-of-Training and n = 4 for Empty-Training). These fields are defined for this
evaluation as follows:

1. A code indicating the task for which the system is designed: Plenty or Empty.

2. A code indicating whether the system is designed to deal just with target languages
(Closed) or also with OOS languages (Open).

3. The name of the audio segment (without the .wav extension).

4. A sequence of m = n+ 1 blank-separated scores: one per target language plus the
score of OOS languages, in the following order:

– Plenty-of-Training: Basque, Catalan, English, Galician, Portuguese, Spanish,
OOS.

– Empty-Training: French, German, Greek, Italian, OOS.

An example of how the system output should look like is shown in Figure 1. In
the example, each line contains the likelihood scores corresponding to the 6 target lan-
guages handled in the Plenty-of-Training condition, followed by the likelihood score
corresponding to OOS languages. Since the system operates in closed-set mode, it does
not really compute any likelihood score for OOS languages; instead, it provides a fixed
value (0.0000) just to fit the file format specification.

Plenty Closed xxyyffaa -0.5678 -0.0034 0.6723 1.4332 -7.0032 5.0065 0.0000
Plenty Closed gghhjjbb 0.3421 -0.9734 -1.5671 -3.0087 -9.3215 -3.7666 0.0000
Plenty Closed ppllkkaa -1.7608 0.4559 -0.3946 -0.0004 2.1444 -0.0342 0.0000
Plenty Closed qqttzzii 0.1799 -5.5911 -0.0795 0.1005 0.1871 -6.998 0.0000

Figure 1. An example file containing the recognition results of an hypothetical system in
the Plenty-of-Training Closed-set (PC) condition, for a test set consisting of 4 audio files:
xxyyffaa.wav, gghhjjbb.wav, ppllkkaa.wav and qqttzzii.wav.

16 Obviously, the keyfile for the evaluation dataset will be released later.



6.2 Submissions

6.2.1 Submission procedure Recognition results in the format described above,
along with a file describing the system or systems, will be sent as attached files by
e-mail to the following address:

luisjavier.rodriguez@ehu.es

Filenames will be built according to the following pattern:

<GroupID>_<ConditionID>_<SystemID>.out

where GroupID is the name or acronym of the research group, ConditionID is one
of the values PC, PO, EC or EO, and SystemID is a code identifying the system as
primary (pri) or contrastive (con1, con2, etc.). For instance, if the research group GTTS
sends recognition results for two systems, one primary and one contrastive, in the PC
condition, their filenames would be named as follows:

GTTS_PC_pri.out
GTTS_PC_con1.out

6.2.2 System description Research groups must provide a PDF file with the descrip-
tion of each submitted system. If multiple systems are submitted for a particular test
condition, the description must explicitly designate one of them as the primary system,
the remaining being contrastive systems. The system description should give the readers
a good sense of what the system is about, keeping in mind the following guidelines:

– Write for your audience. Remember that the reader is not you but other system
developers who may not be familiar with your technique/algorithm. Clearly explain
your method so they can understand what you did.

– A superficial description would leave other system developers clueless of what you
did. Be as complete as possible, but not to the extent of including pseudo-code.
Include all the relevant information, in such a way that other groups can build the
system on their own.

– Include references to techniques, algorithms, subsystems, etc. used by your systems
but not described in detail in the document.

– Avoid jargon and abbreviation without any prior context.

To keep formal homogeneity, it is mandatory to edit system descriptions by means
of the IberSpeech 2012 paper submission templates (either WORD or LaTeX), available
at the following site: http://iberspeech2012.ii.uam.es/. The system description should,
at least, include the following sections:

1. Introduction
2. System A (name of the submitted system)

(a) System description
Clearly describe the methods and algorithms used in system A.



(b) Train and development data
Describe all the data and/or systems directly or indirectly used in developing
system A, including the source, acquisition conditions, size, publishing year
and any other pertinent information.

(c) Processing speed
Compute the speed of language recognition, in terms of the Real-Time factor
(×RT), defined as the total amount of CPU time required to do the processing
divided by the total amount of processed audio. Include the specs for the CPU
and the memory used. Note that the CPU time required to perform language
recognition includes acoustic modeling, decision processing and I/O and is
measured in terms of elapsed time on a single CPU, start to finish. Systems that
are not completely pipelined are not penalized, however, and time intervening
between separate processes need not be included in tallying elapsed time.

3. System B (name of another submitted system)
This section is similar to section 2 but for another system. If system B is a contrast-
ive system, note the differences from the primary system. A new section should be
added for each submitted system.

4. References
List of papers relevant to the techniques, algorithms, data, etc. used by the submit-
ted systems.

6.3 Summary of rules

We summarize here the basic rules and restrictions that must be observed by all parti-
cipants:

– Interested groups must register for the evaluation before July 16th 2012, by con-
tacting the organizing team at:

luisjavier.rodriguez@ehu.es

with copy to the Chairs of the Albayzin 2012 Evaluations:

javier.gonzalez@uam.es
javier.tejedor@uam.es

and providing the following information:

• Group name
• Group ID
• Institution
• Contact person
• Email address
• Postal address

– Starting from June 20th 2012, and once registration data are validated, the training
and development datasets will be released via web (only to registered participants).
A wiki will be activated, featuring public and restricted pages, aiming to improve
communication and collaboration between the organizing team and research groups
participating in the evaluation.



– Registered groups commit themselves to use the provided data only for research
purposes, distribution being allowed only with explicit permission of the Albayzin
2012 LRE organizing team. Registered participants are allowed to use the data to
develop or evaluate their own systems, provided that they acknowledge that use by
means of the following reference:

KALAKA-3. Speech database created for the
Albayzin 2012 Language Recognition Evaluation.
Produced by the Software Technologies Working
Group (GTTS), University of the Basque Country
UPV/EHU, Spain.

– The evaluation dataset is planned to be released by September 3rd 2012. Recog-
nition results along with system descriptions must be submitted to the organizing
team by the established deadline: September 24th 2012, 24:00 GMT+1, according
to the data format and submission procedure specified in Sections 6.1 and 6.2.

– For each test segment, the information available to the system is limited to that
specified in Section 2. In particular:

• Each test segment must be processed on an independent way, that is, without
any information about other segments.

• Listening to the evaluation data or any other human interaction with the data is
not allowed before all test results have been submitted.

– Recognition results (according to the format specified in Section 6.1.3) must in-
clude all the test segments, for whatever test condition.

– Participants may submit results for different (contrastive) systems. However, for
each test condition for which results are submitted, there must be one (and only
one) primary system.

– Each submission must include a group identifier, a test condition identifier (PC, PO,
EC or EO) and a file of recognition results for each system.

– Research groups must provide a description of the submitted systems, according
to the guidelines given in Section 6.2. For the sake of formal homogeneity, it is
mandatory to edit system descriptions by means of the IberSpeech 2012 paper
submission templates available at http://iberspeech2012.ii.uam.es/.

– Each participating site is required to send one or more representatives to the Evalu-
ation Workshop, to be held in Madrid (Spain) as part of IberSpeech 2012 (Novem-
ber 21-23, 2012). Representatives will be expected to give a presentation of their
systems and to participate in discussions on the current state of the technology and
future plans. The workshop will be open to participants in the Albayzin 2012 LRE
and to researchers registered to IberSpeech 2012.

– This plan might be modified due to new restrictions or unplanned needs, to detected
errors or inaccuracies. Updated versions of this plan, if any, will be announced
through the IberSpeech 2012 website and e-mailed to the registered participants.



6.4 Schedule

– May 18, 2012
• The evaluation plan is released through the website of IberSpeech 2012.
• Registration for Albayzin 2012 LRE opens.

– June 20, 2012.
• The training and development datasets are released via web.
• A wiki is activated to improve communication and collaboration between the

registered participants and the organizing team.
– July 16, 2012.
• Registration for Albayzin 2012 LRE closes.

– September 3, 2012.
• The evaluation dataset is released via web.
• System submission (via e-mail) opens.

– September 24, 2012 (24:00, GMT+1).
• Deadline for submitting system results.
• Deadline for submitting system descriptions.

– October 15, 2012.
• Preliminary results in all conditions and the keyfile for the evaluation dataset

are released to participants through the wiki.
– November 21-23, 2012.
• IberSpeech 2012, Madrid, Spain.
• Albayzin 2012 LRE Workshop: presentation of systems and discussion of

results.
• Plenary session: summary of results.



Appendices
A Motivation and analysis of the logarithmic cost function

Here we provide further motivating analysis of the logarithmic cost function, which
forms the basis of all our evaluation criteria. In particular, we show that:

– The logarithmic cost is a proper scoring rule, and as such belongs to a family of cost
functions which are well suited towards evaluating the goodness of probabilistic
inferences.

– The logarithmic cost has an interpretation in terms of an expected value of the more
traditional misclassification cost.

This appendix is based on Niko Brümmer’s Ph.D. Thesis [6], in which the interested
reader may find further explanations, motivations, derivations and references.

A.1 Logarithmic cost as proper scoring rule

A proper scoring rule is a special cost function that measures the goodness of probab-
ility distributions relative to a truth reference. The function maps the distribution and
truth reference to a real-valued cost, where smaller costs indicate ‘better’ distributions.
The defining property of a proper scoring rule is that its expected value is minimized
when the distribution being scored is the same as the distribution w.r.t. which the ex-
pectation is taken. Proper scoring rules encourage honesty (calibration) and diligence
(discrimination) in the person (or machine) whose goodness is being judged by such
rules. We demonstrate these properties for the logarithmic cost function.

Proper scoring rules are traditionally defined in terms of scoring the goodness of
probability distributions, whereas in the rest of this document we were interested in
evaluating the goodness of log-likelihood-vectors. However, if the prior is given, as it
is here, then there is in essence a one-to-one mapping between probability distributions
and log-likelihood-vectors. So here we can follow the traditional notation in order to
analyse proper scoring rules in terms of probability distributions.

Let there be m language classes. Given a speech segment, let a language recognizer
(machine or human) calculate to the best of his/her/its ability, a (posterior) probability
distribution over language classes, denoted p = (p1, . . . , pm). Now for this trial, the
recognizer could submit p as calculated, but perhaps there might be a good reason
to instead submit some other distribution q = (q1, . . . , qm). What can we expect if
we calculate p, but submit q to evaluation by logarithmic cost? Since the recognizer
does not know the true language class and its best distribution for the class is p, its
expectation should be based on p. The expected cost when submitting q would then be
the cross-entropy:

m∑
i=1

piClog(q|Li) =
m∑
i=1

−pi log qi

=

m∑
i=1

−pi log pi +
m∑
i=1

pi log
pi
qi

= H(p) + KL(p‖q)

(16)



where H(p) is Shannon entropy and KL(p‖q) is KL-divergence. Since KL-divergence
is non-negative and reaches zero if and only if q = p, the expected value is minimized
uniquely at q = p. To optimize the expected cost, the recognizer should therefore sub-
mit p as calculated and not some other distribution. This is the mechanism by which the
logarithmic cost (and any other proper scoring rule) ensures honesty in the recognizer.

The same decomposition shows that honesty is not enough. Merely calculating some
default p and then submitting it is not a winning strategy. The recognizer (or its de-
signer) must also work diligently to minimize the entropy, H(p), of its output, so that
the posterior uncertainty about the language class is as small as possible.

A.2 Logarithmic cost interpreted as expected misclassification cost

Let us now construct a different proper scoring rule, induced by a more traditional,
application-based cost function. Then we show how this is related to the logarithmic
cost function.

We start by specifying a cost function which penalizes misclassification. For now,
let the recognizer submit a hard decision, say Lj , which is the recognized class. Let the
true class be Li. We define the weighted misclassification cost function as:

Cη(Lj |Li) =
1

m− 1

{
0 if j = i,
1
ηi

if j 6= i.
(17)

which is parameterized by η = (η1, . . . , ηm), a vector of weights that lives in the
interior of the standard simplex, with 0 < ηi < 1 and

∑m
i=1 ηi = 1.

If we choose ηi = 1
m , then Cη is just a scaled version of the familiar zero-one

cost function, which effectively computes the misclassification error-rate when aver-
aged over a supervised evaluation database. In other words, we have generalized zero-
one cost.

Next, we transform Cη into a proper scoring rule. Let the recognizer now submit
a probability distribution, q = (q1, . . . , qm), instead of a hard decision. The evaluator
now evaluates the goodness of q as the cost of the minimum-expected-cost Bayes de-
cision made with q. This proper scoring rule is defined as:

C∗η(q|Li) = Cη(L
∗
q|Li) (18)

where L∗q ∈ {L1, . . . , Lm} is the Bayes decision made with q:

L∗q = argmin
Lj

m∑
i=1

qiCη(Lj |Li) (19)

This is a very natural way to evaluate the goodness of q. The reasoning is that the
recognizer output, q, should be designed so that the user of q can apply it to make
minimum-expected-cost Bayes decisions. The consequence of applying q in this way
when the real class is Li is just C∗η(q|Li).



Moreover, it is easy to show that this construction satisfies the definition of a proper
scoring rule:

m∑
i=1

piC
∗
η(p|Li) ≤

m∑
i=1

piC
∗
η(q|Li) (20)

for any distributions p and q. Note however, that the logarithmic cost function is a
strictly proper scoring rule, whose expectation is minimized uniquely at q = p. In
contrast, C∗η is non-strict and its expectation does not have a unique minimum. For the
honesty-inducing purpose, strictness is to be preferred, but we show how to mend this
problem.

If we persevere with C∗η , we would have to choose some value for η in order to
define a concrete evaluation criterion. But, to better exercise the decision-making ability
of recognizers, we could use instead a combination of many different values. This works
because convex combinations of proper scoring rules are still proper scoring rules and
moreover such combinations can induce strictness. It turns out that a continuous, convex
combination over the whole simplex where η lives, gives a convenient result. That is, we
take the expected value ofC∗η , w.r.t. a uniform distribution over the simplex. Performing
this expected-value integral17, we find the closed-form solution:∫

∆

Γ (m)C∗η(q|Li) dη = − log qi = Clog(q|Li) (21)

where∆ represents the simplex and Γ (m) = 2×3×· · ·× (m−1) is the normalization
constant of the uniform distribution over the simplex. As promised, this combination
has now resulted in an easily computable, strictly proper scoring rule.

In summary, we have constructed here an interpretation of the logarithmic cost func-
tion, which shows that it is closely related to misclassification cost. In particular, this
interpretation shows that if we design recognizers to minimize logarithmic cost, we can
expect those recognizers to also have small misclassification costs.
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