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Abstract. In practical speech recognition applications, chan-
nel/environment conditions may not match those of the corpus
used to estimate the acoustic models. A straightforward methodology
is proposed in this paper by which the speech recognizer can match
the acoustic conditions of input utterances, thus allowing instantaneous
adaptation schemes. First a number of clusters is determined in the
training material in a fully unsupervised way, using a dissimilarity mea-
sure based on shallow acoustic models. Then accurate acoustic models
are estimated for each cluster, and finally a fast match strategy, based on
the shallow models, is used to choose the most likely acoustic condition
for each input utterance. The performance of the clustering algorithm
was tested on two speech databases in Spanish: SENGLAR (read
speech) and CORLEC-EHU-1 (spontaneous human-human dialogues).
In both cases, speech utterances were consistently grouped by gender, by
recording conditions or by background/channel noise. Furthermore, the
fast match methodology led to noticeable improvements in preliminary
phonetic recognition experiments, at 20-50% of the computational cost
of the ML match.

1 Introduction

One of the most challenging issues posed by current applications of continu-
ous speech recognition is the increased acoustic variability due to spontaneous
speech, speaker features, channel or environmental conditions, etc. Many adap-
tation techniques have been proposed to increase the robustness of speech rec-
ognizers to speaker features and mismatched environment conditions [1]. One
of them consists of organizing the training material into clusters of acoustically
similar utterances, then training specific acoustic models for them, and finally
matching the acoustic conditions (i.e. the most suitable cluster) for each input
utterance.
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The training material may be clustered in a supervised way by using a priori

knowledge about speaker identities or environmental conditions of utterances [2].
But in practical applications such knowledge might be unreliable or unavailable.
In this framework, an unsupervised clustering algorithm is needed to automat-
ically determine an optimal partition in the set of utterances, as some authors
have proposed [3–5].

In a previous study, we developed a clustering algorithm to find an optimal
partition of speakers in the training material. Then we trained speaker-class
models and during recognition the most suitable speaker classes for each input
utterance were selected or combined in a fast and straightforward manner, using
shallow acoustic models [6]. In that study, all the samples from any given speaker
had to be moved to the same speaker-class. Here we apply the same methodology
but in a fully unsupervised way: information about speaker identity is left out
and each utterance is moved independently.

Assuming a non homogeneous set of speech utterances in the training cor-
pus, we propose an unsupervised clustering algorithm which automatically finds
an optimal partition in that set, using a dissimilarity measure based on shallow
acoustic models. Once the optimal partition is defined, hidden Markov models
(HMM) are estimated for each cluster. During recognition, the shallow models
are applied to the input utterances in a straightforward manner, without recog-
nizing them, to choose the most suitable clusters. The corresponding HMMs are
then applied to get a number of decodings for each input utterance, and finally
the most likely string is hypothesized. The number of decodings actually done
depends on the sharpness of the decision, i.e. on the number of cluster candi-
dates. In the best case, a single decoding would be carried out for each input
utterance. Assuming that each cluster represents specific acoustic conditions (a
pool of gender, channel and environment), this procedure can be viewed as a
fast match of acoustic conditions. The fast match strategy is critical to mak-
ing cluster models useful in actual applications, since the Maximum Likelihood

(ML) match —i.e. carrying out all the decodings, one for each cluster, and then
selecting the decoded string with the highest likelihood— would be too costly.

The rest of the paper is organized as follows: Section 2 describes the histogram
models used to represent the clusters; Section 3 briefly outlines the clustering
algorithm; Section 4 describes the fast match approach followed in this study;
Section 5 presents experimental evaluation of the clustering algorithm on two
speech databases in Spanish, and phonetic recognition results which provide ev-
idence of the usefulness of the fast match strategy; finally, Section 6 summarizes
the main contributions of the study.

2 The Shallow Acoustic Model

Let M be the number of acoustic vectors used to represent the speech signal
at each time t. Then each sample X(t) consists of M vectors, Xj(t) with j =
1, . . . , M . First, Vector Quantization (VQ) is applied to build a codebook of N
centroids for each acoustic representation. These codebooks minimize the average
distortion in quantifying the acoustic vectors of the training corpus. Once the



VQ codebooks are defined, each vector Xj(t) can be replaced by a single symbol
Yj(t) ∈ {1, . . . , N}, corresponding to the index of the nearest centroid.

Now, assuming that the training corpus is partitioned into S clusters, consider
the cluster i, for which c(i) samples are available. We store in c(k, j, i) the number
of times Yj(t) = k in the set of samples corresponding to the cluster i, and define
the discrete distribution Pj(k|i) as:

Pj(k|i) =
c(k, j, i)

c(i)
. (1)

This is an empirical distribution based on the histograms of the symbols at each
acoustic stream. Hereafter, we will refer to it as histogram model. Note that for
any j

∑N
k=1 c(k, j, i) = c(i), so that

∑N
k=1 Pj(k|i) = 1. The probability that a

quantified speech sample Y (t) is produced in the acoustic conditions represented
by cluster i is defined as the joint discrete distribution:

P (Y (t)|i) =
M
∏

j=1

Pj(Yj(t)|i) . (2)

Finally, the probability that a speech utterance Y = {Y (t)|t = 1, . . . , T} is
produced in the acoustic conditions represented by cluster i is computed as
follows:

P (Y |i) =
T

∏

t=1

P (Y (t)|i) . (3)

3 The Clustering Algorithm

A top-down clustering scheme was applied starting from a single cluster, itera-
tively splitting one of the clusters and readjusting the allocation of utterances
until not enough speech frames were available or the average distortion decreased
below a certain threshold.

Before writing the algorithm, we must give some definitions. First, a his-
togram model is constructed for each speech utterance l, based on the set of
quantified samples corresponding to that utterance, with Υ (l) = {Y (t)|t =
1, . . . , s(l)}, s(l) being the length of the utterance. Then the dissimilarity of
l with regard to a given cluster i, d(l; i), is defined as follows:

d(l; i) = − log

{

P (Υ (l)|i)

P (Υ (l)|l)

}

, (4)

where P (Υ (l)| ·) is computed as the joint probability of all the quantified speech
samples corresponding to the utterance l, given a histogram model (equation 3).

At any iteration n of the clustering algorithm, each utterance l is assigned to

the closest cluster i
(l)
n in the partition Π(n): i

(l)
n = argming∈Π(n) d(l; g). Taking

this into account, the distortion of Π(n) is defined as:

R(n) =
1

L

L
∑

l=1

d(l; i(l)n ) = −log

[

L
∏

l=1

P (Υ (l)|i
(l)
n )

P (Υ (l)|l)

]1/L

(5)

where L is the number of speech utterances in the training corpus.



Finally, for each cluster i, the first and second centroid utterances, γ
(i)
1 and

γ
(i)
2 , are defined as those yielding the two smallest values of the dissimilarity

with regard to that cluster:

γ
(i)
1 = arg min

l∈i
d(l; i) ; γ

(i)
2 = arg min

l∈i,l6=γ
(i)
1

d(l; i) (6)

The clustering algorithm is described in detail in the following paragraphs:

1. For each utterance l ∈ {1, . . . , L} and for each acoustic stream j ∈
{1, . . . , M}, the utterance histograms s(k, j, l) are counted, and the normal-

izing factor s(l) =
∑N

k=1 s(k, 1, l) computed.
2. Initially (n = 0), a single cluster is defined (S = 1) including all the ut-

terances: ∀l, i
(l)
0 = 1. The clustering distortion R(0) is computed. Also,

for each acoustic representation j ∈ {1, . . . , M} the histogram model of

the initial cluster is computed as follows: c(k, j, 1) =
∑L

l=1 s(k, j, l) and

c(1) =
∑L

l=1 s(l).
3. repeat

3.1 n← n + 1
3.2 For each cluster g ∈ Π(n), obtain the first and second centroid utter-

ances, γ
(g)
1 and γ

(g)
2 , and the average cluster distortion, computed as

D(g) = 1
L(g)

∑

l∈g d(l; g), where L(g) is the number of speech utterances

in g. Add this information to a list of cluster split candidates, ccand, in
descending order of D(g).

3.3 while ccand 6= ∅ do

3.3.1 Extract the first item of the list: (g, γ
(g)
1 , γ

(g)
2 ), and split cluster g in

two, taking as seed models of the new clusters those of γ
(g)
1 and γ

(g)
2 ,

respectively.
3.3.2 repeat

- For each utterance l, assign it to the nearest cluster
- For each cluster i, recompute the histogram model using the

counts s(k, j, l) and s(l) of the utterances assigned to it.

until maximum number of iterations or clusters unchanged
3.3.3 if the new partition is valid then

{ S ← S + 1; Compute R(n); Empty ccand; }
else

{ Recover the partition at n− 1; R(n)← R(n− 1); }

until (R(n− 1)−R(n))/R(n) < τ
4. Store the partition information and the corresponding histogram models.

In the above algorithm τ > 0 is an empirical threshold for the relative decrease in
average distortion. Also, each time a new partition is generated, all the clusters
must contain a minimum number of speech frames to guarantee the trainability
of the acoustic models. When not enough frames are available for any of the
clusters, the previous partition is recovered and another splitting explored (step
3.3.3). Note also that the candidate splittings are explored in descending order
of D(g), so that the cluster with the highest distortion is split first.



4 The Fast Match Strategy

During recognition, the most suitable acoustic model(s) must be se-
lected/combined for each input utterance. Various alternatives were explored
in a previous study, where each cluster represented a speaker class [6]. The Max-

imum likelihood (ML) match approach, consisting of carrying out S decodings,
one for each HMM set, and selecting the one that yielded the highest likelihood,
was found to be the optimal but also the most expensive alternative. On the
other hand, if the histogram models were used to pre-select a beam of candidates

—thus drastically reducing the number of decodings—, the same performance
was obtained at a much lower cost. In practice, the average number of decodings
was reduced to around two or three.

Taking these results into account, for each input utterance we have considered
only those clusters whose histogram probabilities are higher than a heuristically
fixed threshold (70% of the maximum value). Decodings are obtained only for
them, and finally the decoded string that yields the highest likelihood is hypoth-
esized. This is a kind of beam selection, motivated by the fact that sometimes
the most suitable cluster —in terms of acoustic likelihood— yields histogram
probabilities near but below the maximum.

5 Experimental Results

5.1 Databases

A phonetically and gender-balanced read speech database in Spanish, called
SENGLAR, acquired at 16 kHz in laboratory conditions, was considered in the
first place to tune the clustering algorithm. The training corpus consisted of
1529 utterances, pronounced by 57 (29 male, 28 female) speakers, and included
60399 phone samples with a total duration of around 80 minutes. The test corpus
consisted of 700 utterances, pronounced by 33 (18 male, 15 female) speakers, and
included 32034 phones with a total duration of around 40 minutes.

A spontaneous speech database in Spanish called CORLEC-EHU-1 [7], com-
posed of 42 human-human dialogues taken from radio and TV broadcasts using
an analog tape recorder, was considered in the second place to test the pro-
posed methodology in more difficult conditions: variable and noticeable back-
ground/channel noise, presence of spontaneous speech events, pronunciation
variability, etc. The training corpus consisted of 1421 utterances, pronounced
by 67 (49 male, 18 female) speakers, and included 187675 phone samples with
a total duration of around 225 minutes. The test corpus consisted of 704 ut-
terances, pronounced by 35 (21 male, 14 female) speakers, and included 93415
phones with a total duration of around 114 minutes.

5.2 Results of Clustering

The mel-scale cepstral coefficients (MFCC) and energy (E) —computed in frames
of 25 milliseconds, taken each 10 milliseconds— were used as acoustic features.
The first and second derivatives of the MFCCs and the first derivatives of E were
also computed. Four acoustic streams were defined: MFCC, ∆MFCC, ∆2MFCC



and (E,∆E). Finally, the LBG vector quantization algorithm [8] was applied to
get four codebooks, each one consisting of 256 centroids.

The clustering algorithm was run using the training corpora of the two
databases described above. At least 30000 speech frames (5 minutes) were re-
quired for each cluster to be valid. The maximum number of convergence iter-
ations (step 3.3.2) was set at 20, and the threshold for the relative decrease in
average distortion was set at τ = 0.01. This resulted in 8 clusters for SENGLAR
and 17 clusters for CORLEC-EHU-1.

SENGLAR was built by integrating three sub-corpora, called FRASES,
EUROM1 and PROBA, recorded in different places with slightly different hard-
ware, so that not only speaker characteristics but also channel features may
differ from one utterance to other. As shown in Table 1, all the clusters except
for #3 and #4 consisted of utterances from one single sub-corpus. Additionally,
clusters were formed almost exclusively either by male or by female speakers.
This means that channel and speaker characteristics were effectively working to
separate clusters from one another.

With regard to CORLEC-EHU-1, besides gender, two channel/environment
conditions were clearly separated by the clustering algorithm: radio and TV
interviews. In fact, 13 of the 17 clusters were pure in terms of gender and chan-
nel/environment, which represents 51.76% of the training frames. The remaining
4 clusters consisted of a pool of male/female, radio/TV utterances.

Table 1. Distribution of speech utterances after clustering in SENGLAR.

FRASES EUROM1 PROBA

male female male female male female

Cluster #1 0 0 120 8 0 0

Cluster #2 119 0 0 0 0 0

Cluster #3 0 0 302 2 60 0

Cluster #4 0 0 1 6 14 100

Cluster #5 0 0 24 236 0 0

Cluster #6 0 262 0 0 0 0

Cluster #7 0 0 0 143 0 0

Cluster #8 132 0 0 0 0 0

5.3 Phonetic Recognition Results

Phonetic recognition experiments were carried out using the HMMs obtained
through the unsupervised clustering methodology described above. MAP esti-
mates were applied to get more robust models (only the Gaussian means and
weights were re-estimated) [9]. During recognition, the fast match strategy de-
scribed in Section 4 was applied. In the case of SENGLAR, the set of context-
independent sublexical units consisted of 23 phone-like units (PLUs) plus one
extra unit for silences. In the case of CORLEC-EHU-1, besides the 23 PLUs
14 extra units were defined to model spontaneous speech events such as noises,
lengthenings, filled pauses, silent pauses, etc. A set of left-side biphones was also
defined in both cases, taking into account only the trainability of the correspond-
ing models (at least 300 training samples were required). Left-side biphones were



applied jointly with context-independent units to guarantee acoustic coverage.
Each sublexical unit was represented with a left-right Continuous-Density HMM
consisting of three states with self-loops but no skips. Phonological restrictions
were applied only when dealing with left-side biphones. Finally, the extra units
representing spontaneous speech events were either filtered or mapped into PLUs
before the recognized and the correct strings were aligned. Phonetic recognition
rates obtained using HMMs adapted through unsupervised clustering are shown
in Table 2. To allow suitable comparisons, results using non-adapted HMMs (es-
timated using the whole training corpus) and HMMs adapted through speaker
clustering [6] are also shown.

Table 2. Phonetic recognition rates obtained using non-adapted HMMs and HMMs
adapted through speaker clustering and unsupervised clustering of utterances, for
SENGLAR and CORLEC-EHU-1. Experiments were carried out using context-
independent (CI) and context-dependent (CD) sublexical units.

SENGLAR CORLEC-EHU-1

CI CD CI CD

Non-adapted HMMs 72.38 75.38 52.42 57.09

Adapted HMMs: Speaker Clustering 74.41 75.79 53.89 58.05

Adapted HMMs: Unsupervised Clustering 74.33 75.78 53.53 57.58

The HMMs adapted through unsupervised clustering outperformed the non-
adapted HMMs in all cases. In the case of SENGLAR, improvements were quite
noticeable when using context-independent models (7.06% relative error reduc-
tion), whereas only slight imoprovements were achieved with context-dependent
models (1.62% relative error reduction). This is probably due to a lack of sam-
ples for the context-dependent models. In the case of CORLEC-EHU-1 more
training samples were available, but the higher acoustic variability of sponta-
neous speech and especially the adverse channel/environment conditions made
the improvements smaller in both cases (2.33% and 1.17% relative error reduc-
tion, respectively). In fact, phonetic recognition rates for CORLEC-EHU-1 are
around 20 absolute points lower than those obtained for SENGLAR. So, though
the usupervised clustering of utterances helps in modeling channel/environment
variabilities, more specific strategies (noise compensation techniques, noise ro-
bust features, etc.) seem to be needed. On the other hand, the performance
attained through unsupervised clustering is almost the same as that obtained
through speaker clustering, with no information about either speaker identities
or channel/environment conditions. Finally, the average number of decodings
in the fast match was 4.09 in the case of SENGLAR and 3.64 in the case of
CORLEC-EHU-1, which works out at 51.13% and 21.41% of the computational
cost of the ML match, respectively.

6 Concluding remarks

A new clustering algorithm is presented in this paper which automatically deter-
mines an optimal partition in the training corpus of a speech database using a



dissimilarity measure based on shallow acoustic models. Then accurate acoustic
models are estimated for each cluster, which represent specific (but unknown)
speaker/environment conditions. During recognition, the most suitable clusters
are selected using a fast match strategy, combining acoustic probabilities com-
puted with the shallow models and full decodings obtained with HMMs. Pre-
liminary results are presented for two databases of read and spontaneous speech
in Spanish, revealing that speaker and channel/environment characteristics are
implicitly taken into account by the clustering algorithm. A 7% decrease in error
rate was attained in phonetic recognition experiments over read speech, at half
the computational cost of the ML match. For spontaneous speech, the relative
error decrease was slightly higher than 2%, at 20% of the cost of the ML match.
Our current work involves applying this methodology to larger corpora of non
homogeneous speech, such as those recorded in human-machine dialogue tasks.
Note that unsupervised adaptation to speaker and environment conditions is
crucial to increasing the robustness of spoken dialogue systems.
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