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Abstract. In this paper a speaker adaptation methodology is proposed,which first
automatically determines a number of speaker clusters in the training material, then
estimates the parameters of the corresponding models, and finally applies a fast match
strategy – based on the so calledhistogram models – to choose the optimal cluster for
each test utterance. The fast match strategy is critical to make this methodology useful
in real applications, since carrying out several recognition passes – one for each cluster
of speakers – , and then selecting the decoded string with thehighest likelihood, would
be too costly. Preliminary experimentation over two speechdatabases in Spanish
reveal that both the clustering algorithm and the fast matchstrategy are consistent and
reliable. The histogram models, though being suboptimal – they succeeded in guessing
the right cluster for unseen test speakers in 85% of the caseswith read speech, and in
63% of the cases with spontaneous speech – , yielded around a 6% decrease in error
rate in phonetic recognition experiments.

1 Introduction

One of the most challenging issues posed by current applications of continuous speech
recognition is the speaker variability. The availability of large databases with hundreds
or even thousands of speakers allows to train very robust speaker-independent acoustic
models. These generic models behave quite well with most speakers – those falling in
the averageway of speaking – , but may show a significant decrease in performance
with some specially difficult speakers. Clearly, improved performance may result from
adapting speaker-independent models to each particular speaker. Various strategies have been
proposed in the literature, remarkablyspeaker normalization [1], speaker adaptation [2,3],
andspeaker clustering [4,5].

In some applications, like automatic dictation, only one speaker uses the system, so it
seems reasonable to incrementally adapt the models to that speaker. In other applications,
like information kiosks or automated ticket machines with spoken dialogue interfaces, many
speakers, very different to each other, successively access the system and use it during just
a short time. In these conditions it would be useless to adaptthe models in an incremental
way – or based on a few utterances – , because the users change very frequently. Instead,
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the adaptation should be done on a utterance-by-utterance basis, and should be done fastly.
Performing speaker clustering and training specific modelsfor the resulting clusters allows
instantaneous adaptation by selecting the most suitable set of models [6,7]. The key issue is to
find a fast and reliable way of selecting the most suitable setof models for any given speech
utterance, since carrying out several recognition passes –one for each cluster of speakers – ,
and then selecting the decoded string with the highest likelihood, would be too costly.

This work aims to automatically find a set of speaker clustersand train specific HMMs
which may be either selected or combined during recognition; also, it looks for a fast and
reliable way of selecting the most suitable cluster during recognition, which usually relies on
smartly reducing the dimensionality of the feature space. We apply Vector Quantization (VQ)
to the acoustic features and define each cluster model as a discrete probability distribution –
that we callHistogram Model – , which is applied to the input utterances in a straightforward
manner, without recognizing them.

The rest of the paper is organized as follows: section 2 describes the histogram
models used to represent the speaker clusters; section 3 addresses the speaker clustering
algorithm; section 4 considers different ways of selecting/composing the speaker-adapted
model during recognition, along with related computational issues; experimental evaluation
of the clustering algorithm and phonetic recognition results using both the histogram models
and the acoustic likelihoods after recognition are presented in section 5; finally, section 6
briefly reviews the presented work.

2 The Histogram Model

Let M be the number of acoustic vectors used to represent the speech signal at each timet .
Then each sampleX (t) consists ofM vectors, X j (t) with j = 1, . . . , M . First, for
each acoustic representation a VQ codebook is built, using the standard LBG algorithm to
minimize the average distortion in quantifying the acoustic vectors of a training corpus. Let
N be the size of these codebooks. Then each vectorX j (t) can be replaced by a single symbol
Yj (t) ∈ {1, . . . , N}, corresponding to the index of the nearest centroid.

Now, assuming that the training corpus is partitioned intoS speaker clusters, consider
the clusteri , for which c(i) samples are available. We store inc(k, j, i) the number of
timesYj (t) = k in the set of samples corresponding to the clusteri , and define the discrete
distributionPj (k|i) as:

Pj (k|i) =
c(k, j, i)

c(i)
. (1)

This is an empirical distribution based on the histograms ofthe symbols at each acoustic
stream. Note that for anyj

∑N
k=1 c(k, j, i) = c(i), so that

∑N
k=1 Pj (k|i) = 1. The

probability of a quantified speech sampleY (t) being generated by a speaker in clusteri
is defined as the joint discrete distribution:

P(Y (t)|i) =
M
∏

j=1

Pj (Yj (t)|i) . (2)
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Finally, the probability of a speech utteranceY = {Y (t)|t = 1, . . . , T } being generated by
a speaker in clusteri is given by:

P(Y |i) =
T

∏

t=1

P(Y (t)|i) . (3)

3 The Clustering Algorithm

A top-down clustering scheme was applied – a variation on LBG[8] – , starting from a single
cluster, iteratively splitting one of the clusters and readjusting the allocation of speakers,
until not enough samples/speakers were available, or the average distortion decreased below
a certain threshold.

Before writing the algorithm, we must give some definitions.Assuming that a histogram
model has been constructed for each speakerl – based on the set of quantified samples
corresponding to that speaker,ϒ(l) = {Y (t)|t = 1, . . . , s(l)}, s(l) being the number of
samples – , the distance froml to a given clusteri , d(l; i), is defined as follows:

d(l; i) = − log

{

P(ϒ(l)|i)

P(ϒ(l)|l)

}

, (4)

whereP(ϒ(l)| ·) is computed as the joint probability of all the quantified speech samples
corresponding to the speakerl, given a histogram model (equation 3). Note thatd(l;m) 6=

d(m; l). So, to verify the conmutative property, the distance between any pair of speakersl
andm is given by the following expression:

D(l, m) = d(l;m)+ d(m; l)

= − log

{

P(ϒ(l)|m)P(ϒ(m)|l)

P(ϒ(l)|l)P(ϒ(m)|m)

}

. (5)

Given a clusteri , the speaker centroidl(i) is defined as that for which the average distance to
other speakers in that cluster is minimum:

l(i) = arg min
l
{D̄(l|i)} (6)

D̄(l|i) =
1

L(i)− 1

∑

m∈i

D(l, m) , (7)

whereL(i) is the number of speakers in the clusteri . Finally, to stop the splitting process,
a criterion based on the decrease of the clustering distortion must be defined. Assuming that

each speakerl was assigned to a clusteri (l)
n at the iterationn of the clustering algorithm, then

theaverage distortion is defined as:

R(n) = − log

[

L
∏

l=1

P(ϒ(l)|i (l)
n )

P(ϒ(l)|l)

]1/C

, (8)

whereC =
∑L

l=1 s(l) is the number of samples in the training corpus. The clustering
algorithm is described in detail in the following paragraphs:
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1. For each speakerl ∈ {1, . . . , L} and for each acoustic streamj ∈ {1, . . . , M},
the speaker histograms s(k, j, l) are counted, and the normalizing factors(l) =
∑N

k=1 s(k, 1, l) computed.
2. Compute and store the distance between any pair of speakersl andm, D(l, m). Note that

only L(L−1)/2 values must be computed, sinceD(l, l) = 0 andD(l, m) = D(m, l).
3. Initially (n = 0), a single cluster is defined (S = 1) including all the speakers:

∀l, i (l)
0 = 1. The clustering distortionR(0) is computed. Also, for each acoustic

representationj ∈ {1, . . . , M} the histogram model of the initial cluster is computed as
follows: c(k, j, 1) =

∑L
l=1 s(k, j, l) andc(1) =

∑L
l=1 s(l).

4. repeat

4.1 n ← n + 1
4.2 For each clusterg ∈ {1, . . . , S}, obtain the centroid speakerl(g), the average

distance from any speaker in the cluster to the centroid,D̄(l(g)|g), and the nearest
speaker to the centroid,m(g). Add this information to a list ofcluster split
candidates, ccand , in descending order of̄D(g).

4.3 while ccand 6= ∅ do
4.3.1 Extract the first item of the list:(g, l(g), m(g)), and split in two the cluster

g, taking as histogram models of the new clusters those ofl(g) and m(g),
respectively.

4.3.2 repeat
- For each speakerl, assign it to the nearest cluster, i.e. that for whichd(l; i)

is minimum.
- For each clusteri , recompute the histogram model using the counts

s(k, j, l) ands(l) of the speakers assigned to it.
until maximum number of iterationsor speaker clusters unchanged

4.3.3 if partition is validthen
{ S ← S + 1; ComputeR(n); Emptyccand ; }
else
{ Recover the cluster partition atn − 1; R(n)← R(n − 1); }

until (R(n − 1)− R(n))/R(n) < τ

5. Store the speaker cluster partition and the corresponding histogram models.

In the above algorithmτ > 0 is an empirical threshold for the relative decrease in the
average distortion. Also, each time a candidate partition is generated, all the clusters must
contain a minimum number of speakers and samples to guarantee the trainability of the
acoustic models. As noted in step 4.3.3, when not enough speakers or samples are available
for any of the clusters, the previous partition is recoveredand another splitting explored. The
candidate splittings are explored in descending order ofD̄(g), so that the cluster with the
highest distortion is split in first place.

4 Speaker Adaptation Alternatives

Once the training material is grouped into, say,S speaker clusters, acoustic models must
be trained for each cluster. We accomplished this by applying the well known MAP re-
estimation procedure [2], starting from speaker independent models and heuristically tuning
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the adaptation learning rate. As usual when dealing with Continuous-Density HMMs, only
the Gaussian means and weights were re-estimated. During recognition we considered four
possible ways of selecting/composing the HMM set for an input utterance:

Maximum likelihood. The most expensive approach – which we consider here as a
reference – consists of carrying outS recognition passes, one for each HMM set, and
selecting that yielding the highest likelihood. This multiplies by S the computational cost
of the baseline speaker-independent approach.

Maximum histogram probability. A second approach consists of applying the his-
togram models to the input utterance and selecting the cluster that yields the highest proba-
bility. Then a single recognition pass is run using the HMM set corresponding to the selected
cluster.

Beam of histogram probabilities. The third approach is a variation on the previous one.
It consists of selecting not only that cluster yielding the highest histogram probability, but
also those whose histogram probabilities are higher than, say, 70% the maximum value,
then carry out recognition passes for them and select the decoded string that yields the
highest likelihood. This is a sort of beam selection, motivated by the fact that sometimes
the true cluster yields histogram probabilities near but below the maximum. This approach
will require more than one recognition pass on average – typically between 2 and 3 – , but
the recognition performance might reach that of thetrue likelihoods.

Weighted combination of HMMs. The fourth approach consists of composing the
speaker-dependent HMM as a linear combination of the cluster HMMs, as other authors
have previously done [4,5]. For a given speech utteranceY , the weight of each clusteri is
computed in a straightforward way, based on the histogram probabilities, as follows:

wi =
P(Y |i)

∑S
g=1 P(Y |g)

. (9)

As in the speaker-independent case, a single recognition pass is run in this approach, butS
times more parameters will be used in the computation of the observation probabilities. So
computational costs will be close to those of the approach based on likelihoods.

5 Experimental Results

5.1 Databases

A read speech database in Spanish, called SENGLAR – phonetically and gender-balanced,
acquired at 16 kHz in laboratory conditions – , was used in first place to tune the clustering
algorithm. The training corpus consisted of 1529 utterances, pronounced by 57 speakers and
including 60399 phone samples, with a total duration of around 80 minutes. The test corpus
consisted of 700 utterances, pronounced by 33 speakers, andincluded 32034 phones, with a
total duration of around 40 minutes.

A spontaneous speech task-specific database in Spanish, called INFOTREN – composed
of human-computer spoken dialogues, acquired at 8 kHz across telephone lines in office
environment – was used in second place, to test the proposed methodology in a real-life
application. The training corpus consisted of 1349 utterances, pronounced by 63 speakers
and including 62729 phone samples, with a total duration of around 117 minutes. The test
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corpus consisted of 308 utterances, pronounced by 12 speakers, and included 13683 phones,
with a total duration of around 30 minutes.

5.2 Conditions

The mel-scale cepstral coefficients (MFCC) and energy (E) – computed in frames of 25
milliseconds, taken each 10 milliseconds – were used as acoustic features. The first and
second derivatives of the MFCCs and the first derivatives of Ewere also computed. Four
acoustic streams were defined: MFCC,1MFCC,12MFCC and (E,1E). Vector quantization
(LBG, [8]) was applied to get four codebooks, each one consisting of 256 centroids.

In the case of SENGLAR the set of sublexical units consisted of 23 context-independent
phones (CIP) plus one extra unit forsilences. In the case of INFOTREN, besides the
23 CIP, 14 extra units were defined to model spontaneous speech events like noises,
lengthenings, filled pauses, silent pauses, etc. Each sublexical unit was represented with a
left-right Continuous-Density HMM consisting of three states with self-loops but no skips.
No phonological restrictions were applied. After recognition, the extra units were either
filtered or mapped into the 23 CIP set, for both the recognizedand the correct strings, and
finally the phonetic recognition rate was computed.

5.3 Results of Speaker Clustering

The clustering algorithm was run using the training corporaof the two databases described
above. At least 2 speakers and 30000 speech frames (5 minutes) were required for each cluster
to be valid. The maximum number of convergence iterations (step 4.3.2) was set to 20, and
the threshold for the relative decrease in the average distortion was fixed toτ = 0.01. This
resulted in 5 speaker clusters for SENGLAR and 8 speaker clusters for INFOTREN. Most
clusters were gender-specific, i.e. formed almost exclusively either by male or by female
speakers, which means that speaker characteristics were effectively working to separate
clusters each other.

On the other hand, Continuous-Density HMMs were trained foreach cluster, and the
training corpus recognized with them. It was found that the HMM set corresponding to the
right cluster yielded the best likelihood in 99.6% of the cases forSENGLAR, and in 94.4%
of the cases for INFOTREN. Using the histogram models to select the most suitable set of
HMMs – instead of thetrue likelihoods – , theright models were selected in 94.5% of the
cases for SENGLAR, and in 75.3% of the cases for INFOTREN. This fall in performance
for INFOTREN may be explained by the intrinsic lack of acoustic information due to a
lower sampling rate (8 kHz) and to the background/channel noise, which increases acoustic
variability. However, the clustering algorithm still produced very consistent speaker groups.

Finally, when dealing with speech data from unseen speakers, as those included in the
test corpora, though the decisions about the best cluster were not homogeneous, histogram
probabilities led to the same decision than thetrue likelihoods in 84.7% of the cases for
SENGLAR, and in 63.0% of the cases for INFOTREN. Since test speakers did not participate
in the clustering process, they were not clearly classified in one of the clusters. More often
two or three clusters appeared as candidates.
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5.4 Phonetic Recognition Results

Phonetic recognition experiments were carried out, using MAP-adjusted Continuous-Density
HMMs and applying the adaptation alternatives described inSection 4. Recognition rates, as
well as the average number of recognition passes and the CPU time – relative to the speaker-
independent case – are shown in Table 1.

Table 1. Phonetic recognition rates using speaker-independent andspeaker-adapted
CDHMMs for the speech databases SENGLAR and INFOTREN. The average number of
recognition passes (#REC) and the CPU time relative to the speaker-independent case are
shown too.

%PhREC (#REC,CPU)
SENGLAR INFOTREN

Speaker-independent 72.72 (1,1.00) 61.34 (1,1.00)

Max-likelihood 74.41 (5,5.00) 63.61 (8,8.00)
Max-hprob 73.04 (1,0.92) 63.13 (1,1.01)

Beam-hprob (70%) 74.41 (2.08,2.16) 63.60 (3.37,3.33)
Weighted-hprob 73.68 (1,4.90) 62.14 (1,7.63)

All the speaker adaptation alternatives based on the clustering algorithm proposed in this
paper outperformed the baseline speaker-independent approach. The adaptation approach
based on thetrue likelihoods yielded around a 6% decrease in phonetic error rate, but
CPU times were multiplied by 5 and 8 for SENGLAR and INFOTREN,respectively. The
approach based on the histogram probabilities slightly improved the performance in the
case of SENGLAR, but showed a much better behaviour in the case of INFOTREN, with a
4.6% decrease in error rate. Note again that this approach did not increase the computational
costs. The approach which selected a beam of clusters – thosewhose histogram probabilities
were higher than 70% the maximum – was a good compromise between performance and
computational cost, since it yielded the same performance than likelihoods with only two o
three recognition passes on average. Finally, the approachbased on a weighted combination
of the cluster HMMs did not improve the performance of the beam approach, and needed
almost as much CPU time as the apprroach based on likelihoods.

6 Conclusion

This paper presents a new speaker clustering algorithm, which uses a discrete distribution
of VQ labels in various acoustic streams as speaker/clustermodel – the so called histogram
model. Also, various speaker adaptation schemes are described based on Continuous-Density
HHMs and histogram models, specifically obtained for a set ofspeaker clusters. Results
of clustering are presented for two speech databases in Spanish with around 60 training
speakers. Phonetic recognition results reveal that a 6% decrease in error rate can be attained
at the expense of two or three times the computational cost ofthe speaker-independent
baseline approach. More remarkable improvements should beexpected when applying this
methodology to a larger database, with hundreds or even thousands of speakers.
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