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Abstract. In this paper a speaker adaptation methodology is propaseith first
automatically determines a number of speaker clusterserirttining material, then
estimates the parameters of the corresponding models,raily fipplies a fast match
strategy — based on the so callégtogram models — to choose the optimal cluster for
each test utterance. The fast match strategy is criticabtkerthis methodology useful
in real applications, since carrying out several recognifiasses — one for each cluster
of speakers —, and then selecting the decoded string withighest likelihood, would
be too costly. Preliminary experimentation over two spedatabases in Spanish
reveal that both the clustering algorithm and the fast msticitegy are consistent and
reliable. The histogram models, though being suboptimiaéy succeeded in guessing
the right cluster for unseen test speakers in 85% of the eeitesead speech, and in
63% of the cases with spontaneous speech —, yielded arouttddeérease in error
rate in phonetic recognition experiments.

1 Introduction

One of the most challenging issues posed by current apiplicabf continuous speech
recognition is the speaker variability. The availabilitf large databases with hundreds
or even thousands of speakers allows to train very robusikspendependent acoustic
models. These generic models behave quite well with mostkepe — those falling in
the averageway of speaking — , but may show a significant decrease in performance
with some specially difficult speakers. Clearly, improveeffprmance may result from
adapting speaker-independent models to each particiakep Various strategies have been
proposed in the literature, remarkatsyeaker normalization [, speaker adaptation [2/3],
andspeaker clustering [4/5].

In some applications, like automatic dictation, only oneaer uses the system, so it
seems reasonable to incrementally adapt the models toghaker. In other applications,
like information kiosks or automated ticket machines witbleen dialogue interfaces, many
speakers, very different to each other, successively adbessystem and use it during just
a short time. In these conditions it would be useless to attt@pimodels in an incremental
way — or based on a few utterances — , because the users chemdeequently. Instead,
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the adaptation should be done on a utterance-by-utterasig land should be done fastly.
Performing speaker clustering and training specific mofteglshe resulting clusters allows

instantaneous adaptation by selecting the most suitabbé sedels|[t[7]. The key issue is to

find a fast and reliable way of selecting the most suitabl@tetodels for any given speech

utterance, since carrying out several recognition passee-for each cluster of speakers —,
and then selecting the decoded string with the highesilliget, would be too costly.

This work aims to automatically find a set of speaker clusaeis train specific HMMs
which may be either selected or combined during recognitidso, it looks for a fast and
reliable way of selecting the most suitable cluster durgmpgnition, which usually relies on
smartly reducing the dimensionality of the feature spaceapply Vector Quantization (VQ)
to the acoustic features and define each cluster model asratediprobability distribution —
that we calHistogram Model —, which is applied to the input utterances in a straightéodv
manner, without recognizing them.

The rest of the paper is organized as follows: secfibn 2 descrthe histogram
models used to represent the speaker clusters; sddtionr8sadd the speaker clustering
algorithm; sectiodl4 considers different ways of seledtinmposing the speaker-adapted
model during recognition, along with related computatlassues; experimental evaluation
of the clustering algorithm and phonetic recognition resusing both the histogram models
and the acoustic likelihoods after recognition are prestim sectiolls; finally, sectidd 6
briefly reviews the presented work.

2 TheHistogram Model

Let M be the number of acoustic vectors used to represent thetspggal at each time
Then each sampl&X(t) consists ofM vectors, X (t) with j = 1,..., M. First, for
each acoustic representation a VQ codebook is built, usiagtandard LBG algorithm to
minimize the average distortion in quantifying the acaustctors of a training corpus. Let
N be the size of these codebooks. Then each vett@r) can be replaced by a single symbol
Yj(t) € {1,..., N}, corresponding to the index of the nearest centroid.

Now, assuming that the training corpus is partitioned iStepeaker clusters, consider
the clusteri, for which c(i) samples are available. We storedtk, j, i) the number of
timesYj (t) = k in the set of samples corresponding to the clustend define the discrete
distribution Pj (k|i) as:

. ck, j,i)

Py (kli) = O 1)

This is an empirical distribution based on the histogramghefsymbols at each acoustic
stream. Note that for any Zszl ck, j,i) = c(), so thatzl'(\':1 P (kli) = 1. The

probability of a quantified speech samp&t) being generated by a speaker in cluster

is defined as the joint discrete distribution:

M
PYDI) =[P v®li) 2)

j=1
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Finally, the probability of a speech utteranée= {Y (t)|t = 1, ..., T} being generated by
a speaker in clusteris given by:

.
P(Yli) =[Pl - (3)

t=1

3 TheClustering Algorithm

A top-down clustering scheme was applied — a variation on [#|G , starting from a single
cluster, iteratively splitting one of the clusters and jjaating the allocation of speakers,
until not enough samples/speakers were available, or tge distortion decreased below
a certain threshold.

Before writing the algorithm, we must give some definitiohssuming that a histogram
model has been constructed for each spebkerbased on the set of quantified samples
corresponding to that speakéf(l) = {Y(®)|t = 1,...,s()}, s(I) being the number of
samples —, the distance frdnto a given clustet, d(l; i), is defined as follows:

P(Ydli) }

4
PrdIh @

dd;i)= —Iog{
whereP(Y' ()] ) is computed as the joint probability of all the quantified exgie samples
corresponding to the spealemiven a histogram model (equatibh 3). Note ttédt m) #
d(m; ). So, to verify the conmutative property, the distance betwany pair of speakets
andm is given by the following expression:

D, m) =dd; m)+d(m;I)

— o { Pr®imPrmlh) }
= O PromParmm |

©)

Given a cluster, the speaker centrold’ is defined as that for which the average distance to
other speakers in that cluster is minimum:

””=amwﬂDMU} (6)
D) = ! Dd, m 7
(')_EET?E%; a,m (7)

whereL (i) is the number of speakers in the clusteFinally, to stop the splitting process,
a criterion based on the decrease of the clustering digtontiust be defined. Assuming that

each speakédrwas assigned to a clusﬁép at the iteratiom of the clustering algorithm, then
theaverage distortion is defined as:

L

P’
= —tog| [] 5ot
R = IogL:l P(T(I)II)] ’ ®

whereC = Z|L=1 s(l) is the number of samples in the training corpus. The clusgeri
algorithm is described in detail in the following paragraph
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1. For each speakdr € {1,...,L} and for each acoustic streain € {1,..., M},
the speaker histograms s(k, j,|) are counted, and the normalizing factefl) =
N, s(k, 1,1) computed.

2. Compute and store the distance between any pair of spdaketm, D(l, m). Note that
only L(L —1)/2 values must be computed, sindgl, ) = 0 andD(l, m) = D(m, ).

3. Initially (n = 0), a single cluster is defined5(= 1) including all the speakers:
v, ig) = 1. The clustering distortiorR(0) is computed. Also, for each acoustic
representation € {1, ..., M} the histogram model of the initial cluster is computed as
follows: c(k, j, 1) = Y\, sk, j, 1) ande(1) = 3|, s().

4. repeat
41n<n+1

4.2 For each clusteg € {1,..., S}, obtain the centroid speakéf?, the average
distance from any speaker in the cluster to the centiid(9|g), and the nearest
speaker to the centroidn®. Add this information to a list ofcluster split
candidates, Ccang, in descending order df)(g).

4.3 while Ccang # ¥ do

4.3.1 Extract the first item of the listg, 19, m@), and split in two the cluster
g, taking as histogram models of the new clusters thos&®fand m(@,
respectively.

4.3.2 repeat

- For each speakéyassign it to the nearest cluster, i.e. that for whdch i)
iS minimum.
- For each clustei, recompute the histogram model using the counts
s(k, j, ) ands(l) of the speakers assigned to it.
until maximum number of iteratior speaker clusters unchanged

4.3.3 if partition is validthen
{ S <« S+ 1; ComputeR(n); EmptyCcand; }
else
{ Recover the cluster partition &t — 1; R(n) < R(n — 1);}

until (R(n — 1) — R(n))/R(n) < 1

5. Store the speaker cluster partition and the correspgridstogram models.

In the above algorithnt > 0 is an empirical threshold for the relative decrease in the
average distortion. Also, each time a candidate partittogenerated, all the clusters must
contain a minimum number of speakers and samples to guaréimtetrainability of the
acoustic models. As noted in step 4.3.3, when not enougtkspear samples are available
for any of the clusters, the previous patrtition is recovened another splitting explored. The
candidate splittings are explored in descending ordeD ), so that the cluster with the
highest distortion is split in first place.

4 Speaker Adaptation Alternatives

Once the training material is grouped into, s&yspeaker clusters, acoustic models must
be trained for each cluster. We accomplished this by apgltfre well known MAP re-
estimation procedur&][2], starting from speaker indepetha@dels and heuristically tuning



A Speaker Clustering Algorithm for Fast Speaker Adaptation 437

the adaptation learning rate. As usual when dealing withti@oaus-Density HMMs, only
the Gaussian means and weights were re-estimated. Dudngnition we considered four
possible ways of selecting/composing the HMM set for an ipierance:

Maximum likelihood. The most expensive approach — which we consider here as a
reference — consists of carrying ot recognition passes, one for each HMM set, and
selecting that yielding the highest likelihood. This mpiiés by S the computational cost
of the baseline speaker-independent approach.

Maximum histogram probability. A second approach consists of applying the his-
togram models to the input utterance and selecting theetltisat yields the highest proba-
bility. Then a single recognition pass is run using the HMMc®responding to the selected
cluster.

Beam of histogram probabilities. The third approach is a variation on the previous one.
It consists of selecting not only that cluster yielding thghest histogram probability, but
also those whose histogram probabilities are higher thay, 8% the maximum value,
then carry out recognition passes for them and select thedéecstring that yields the
highest likelihood. This is a sort of beam selection, ma&daby the fact that sometimes
thetrue cluster yields histogram probabilities near but below treximum. This approach
will require more than one recognition pass on average -€&fyi between 2 and 3 —, but
the recognition performance might reach that oftihue likelihoods.

Weighted combination of HMMs. The fourth approach consists of composing the
speaker-dependent HMM as a linear combination of the aludkdMs, as other authors
have previously donéJ4,5]. For a given speech utteraficine weight of each clusteris
computed in a straightforward way, based on the histogranigtilities, as follows:

_P(YI)
Yo P(YIg)

As in the speaker-independent case, a single recognitismipaun in this approach, b&
times more parameters will be used in the computation of bseiwation probabilities. So
computational costs will be close to those of the approaskdan likelihoods.

9)

wj

5 Experimental Results

5.1 Databases

A read speech database in Spanish, called SENGLAR - phaltg@nd gender-balanced,
acquired at 16 kHz in laboratory conditions — , was used i fiilice to tune the clustering
algorithm. The training corpus consisted of 1529 utteranpenounced by 57 speakers and
including 60399 phone samples, with a total duration of ado80 minutes. The test corpus
consisted of 700 utterances, pronounced by 33 speakeri@nded 32034 phones, with a
total duration of around 40 minutes.

A spontaneous speech task-specific database in Spanisghl lFOTREN — composed
of human-computer spoken dialogues, acquired at 8 kHz sidedephone lines in office
environment — was used in second place, to test the propos#iibdology in a real-life
application. The training corpus consisted of 1349 utteganpronounced by 63 speakers
and including 62729 phone samples, with a total durationrofiad 117 minutes. The test
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corpus consisted of 308 utterances, pronounced by 12 sigeakel included 13683 phones,
with a total duration of around 30 minutes.

5.2 Conditions

The mel-scale cepstral coefficients (MFCC) and energy (Epmputed in frames of 25
milliseconds, taken each 10 milliseconds — were used assticdeatures. The first and
second derivatives of the MFCCs and the first derivatives ofdfe also computed. Four
acoustic streams were defined: MFGEMFCC, A2MFCC and (EAE). Vector quantization
(LBG, [8]) was applied to get four codebooks, each one ctingi®f 256 centroids.

In the case of SENGLAR the set of sublexical units consist@Baontext-independent
phones (CIP) plus one extra unit failences. In the case of INFOTREN, besides the
23 CIP, 14 extra units were defined to model spontaneous lspeents like noises,
lengthenings, filled pauses, silent pauses, etc. Eachxécdleinit was represented with a
left-right Continuous-Density HMM consisting of three tetm with self-loops but no skips.
No phonological restrictions were applied. After recoigmit the extra units were either
filtered or mapped into the 23 CIP set, for both the recogn@atithe correct strings, and
finally the phonetic recognition rate was computed.

5.3 Resultsof Speaker Clustering

The clustering algorithm was run using the training corpafrthe two databases described
above. At least 2 speakers and 30000 speech frames (5 n)imatesrequired for each cluster
to be valid. The maximum number of convergence iteratiotep(4.3.2) was set to 20, and
the threshold for the relative decrease in the averagerti@iavas fixed tor = 0.01. This
resulted in 5 speaker clusters for SENGLAR and 8 speaketeckifor INFOTREN. Most
clusters were gender-specific, i.e. formed almost exalsigither by male or by female
speakers, which means that speaker characteristics wiertivafly working to separate
clusters each other.

On the other hand, Continuous-Density HMMs were trainedefach cluster, and the
training corpus recognized with them. It was found that théNHset corresponding to the
right cluster yielded the best likelihood in 99.6% of the casesSIBNGLAR, and in 94.4%
of the cases for INFOTREN. Using the histogram models tocséfe most suitable set of
HMMs — instead of thdrue likelihoods — , theright models were selected in 94.5% of the
cases for SENGLAR, and in 75.3% of the cases for INFOTRENSs Tdi in performance
for INFOTREN may be explained by the intrinsic lack of acéusnhformation due to a
lower sampling rate (8 kHz) and to the background/channisenavhich increases acoustic
variability. However, the clustering algorithm still preckd very consistent speaker groups.

Finally, when dealing with speech data from unseen speaéiserthose included in the
test corpora, though the decisions about the best cluster ma& homogeneous, histogram
probabilities led to the same decision than thee likelihoods in 84.7% of the cases for
SENGLAR, and in 63.0% of the cases for INFOTREN. Since tesakers did not participate
in the clustering process, they were not clearly classifiedrie of the clusters. More often
two or three clusters appeared as candidates.
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5.4 Phonetic Recognition Results

Phonetic recognition experiments were carried out, usiddPhdjusted Continuous-Density
HMMs and applying the adaptation alternatives describegkictio#. Recognition rates, as
well as the average number of recognition passes and the iBfeU-trelative to the speaker-
independent case — are shown in Tdble 1.

Table 1. Phonetic recognition rates using speaker-independent spahker-adapted
CDHMMs for the speech databases SENGLAR and INFOTREN. Tleeage number of
recognition passes (#REC) and the CPU time relative to tealsp-independent case are
shown too.

% PhREC (#REC,CPU)
SENGLAR INFOTREN
| Speaker-independent | 72.72(1,1.00) [ 61.34(1,1.00)
M ax-likelihood 74.41(5,5.00) | 63.61 (8,8.00)
Max-hprob 73.04(1,0.92) | 63.13(1,1.01)
Beam-hprob (70%) | 74.41(2.08,2.16) | 63.60 (3.37,3.33)
Weighted-hprob 73.68 (1,4.90) | 62.14 (1,7.63)

All the speaker adaptation alternatives based on the cingtalgorithm proposed in this
paper outperformed the baseline speaker-independenbvagprThe adaptation approach
based on therue likelihoods yielded around a 6% decrease in phonetic e, rout
CPU times were multiplied by 5 and 8 for SENGLAR and INFOTRE®Epectively. The
approach based on the histogram probabilities slightlyrawgd the performance in the
case of SENGLAR, but showed a much better behaviour in the dBBNFOTREN, with a
4.6% decrease in error rate. Note again that this approdamadiincrease the computational
costs. The approach which selected a beam of clusters —hume histogram probabilities
were higher than 70% the maximum — was a good compromise batperformance and
computational cost, since it yielded the same performamae likelihoods with only two o
three recognition passes on average. Finally, the appiu@sdd on a weighted combination
of the cluster HMMs did not improve the performance of therbegproach, and needed
almost as much CPU time as the apprroach based on likelihoods

6 Conclusion

This paper presents a new speaker clustering algorithnghases a discrete distribution
of VQ labels in various acoustic streams as speaker/closbelel — the so called histogram
model. Also, various speaker adaptation schemes are deddrased on Continuous-Density
HHMs and histogram models, specifically obtained for a sesp#faker clusters. Results
of clustering are presented for two speech databases inisBpaith around 60 training
speakers. Phonetic recognition results reveal that a 6%edee in error rate can be attained
at the expense of two or three times the computational coshefspeaker-independent
baseline approach. More remarkable improvements shou&kpected when applying this
methodology to a larger database, with hundreds or everséimuis of speakers.
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