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Abstract

Most common approaches to phonotactic language recognition
deal with several independent phone decoders. Decodings are
processed and scored in a fully uncoupled way, their time align-
ment (and the information that may be extracted from it) being
completely lost. Recently, we have presented a new approach
to phonotactic language recognition which takes into account
time alignment information, by considering cross-decoder co-
occurrences of phones or phonen-grams at the frame level. Ex-
periments on the NIST LRE2007 database demonstrated that
using co-occurrence statistics could improve the performance
of baseline phonotactic recognizers. In this work, the approach
based on cross-decoder co-occurrences of phonen-grams is fur-
ther developed and evaluated. Systems were built by means
of open software (Brno University of Technology phone de-
coders, LIBLINEAR andFoCal) and experiments were carried
out on the NIST LRE2007 database. A system based on co-
occurrences of phonen-grams (up to 4-grams) outperformed
the baseline phonotactic system, yielding around 8% relative
improvement in terms of EER. The best fused system attained
1,90% EER (a 16% improvement with regard to the baseline
system), which supports the use of cross-decoder dependencies
for improved language modeling.

Index Terms: Phonotactic Language Recognition, Support
Vector Machines, Cross-Decoder Co-occurrences

1. Introduction
Phonotactic language recognizers exploit the ability of phone
decoders to convert a speech utterance into a sequence of sym-
bols containing acoustic, phonetic and phonological informa-
tion. Models for target languages are built by decoding hun-
dreds or even thousands of training utterances and using the
phone-sequence (or phone-lattice) statistics (typically, counts
of n-grams) in different ways. Since training data include a
wide range of speakers and diverse linguistic contents, being
language the common factor, it is expected that phone statistics
reflect language-specific characteristics.

Nowadays, the most common phonotactic approach uses
counts of phonen-grams to build a feature vector which feeds
a classifier based on Support Vector Machines (SVM) [1]. Typ-
ically, N phone decoders are applied in parallel to the input
utterance, yieldingN phone decodings (or lattices). The output
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of the phone decoderi (i ∈ [1, N ]) is scored for each target
languagej (j ∈ [1, L]), by applying the modelλ(i, j) (esti-
mated using the outputs of the phone decoderi for the training
database, takingj as the target language). Scores for the subsys-
temi are calibrated, typically by means of a Gaussian backend.
Sometimes, a t-norm [2] is applied before calibration. Finally,
N×L calibrated scores are fused applying discriminative linear
logistic regression, to getL final scores for which a minimum
expected cost Bayes decision is taken, according to application-
dependent language priors and costs (see [3, 4] for details).

However, the above described structure definesN indepen-
dent data processing channels, and no cross-decoder dependen-
cies are exploited for language modeling, information being
fused only at the score level. The idea of using phonetic in-
formation in the cross-stream (cross-decoder) dimension was
first applied for speaker recognition in the Johns Hopkins Uni-
versity (JHU) 2002 Workshop [5], where two decoupled time
and cross-stream dimensions were modelled separately and in-
tegrated at the score level. Some years later, cross-stream de-
pendencies were also used via multi-string alignments in a lan-
guage recognition application [6].

In a recent work, we have presented a simple approach to
phonotactic language recognition which uses statistics of cross-
decoder phone co-occurrences at the frame level [7]. Time
stamps are extracted as side information from the 1-best phone
decoding, so that each frame can be assignedk phone labels,
for a combination ofk ≤ N decoders (N : number of de-
coders). Finally, sequences ofk-phone co-occurrences are used
for modeling purposes. As forn-grams, the number of possi-
ble k-phone co-occurrences increases exponentially withk, so
in practice only 2-phone and 3-phone co-occurrences are con-
sidered. In experiments on the NIST LRE2007 database, fus-
ing baseline phonotactic systems with systems based on cross-
decoder phone co-occurrences led to improved performance in
all the cases (see [7] for details).

The approach described above was extended in [8], by con-
sidering counts of up to 3-grams (instead of just unigrams) of
2-phone and 3-phone co-occurrences in a SVM classifier. Ad-
ditionally, a second approach was also introduced in [8], which
did not considern-grams of phone co-occurrences, but co-
occurrences of phonen-grams (up to 3-grams). In this paper,
we present the latest developments attained under this second
approach, which uses statistics of co-occurrences of phonen-
grams (up to 4-grams) in a SVM-based phonotactic language
recognizer. Systems have been developed by means of open
software (BUT phone decoders, LIBLINEAR andFoCal) and
evaluation has been carried out on a relevant database (NIST
LRE2007).



The rest of the paper is organized as follows. Section 2
presents the main features of the baseline phonotactic language
recognition system used in this work. Section 3 describes the
approach based on cross-decoder co-occurrences of phonen-
grams. The experimental setup is briefly described in Section
4. Results obtained in language recognition experiments on the
NIST LRE2007 database (pooled for all the target languages)
are presented in Section 5. Finally, conclusions and future work
are outlined in Section 6.

2. Baseline SVM-based Phonotactic
Language Recognizer

As in [8], in this work a SVM-based phonotactic language rec-
ognizer is used as baseline system, and the NIST LRE2007
database is used for development and evaluation. Systems
have been built by means of open software. In particular, the
TRAPS/NN phone decoders for Czech (CZ), Hungarian (HU)
and Russian (RU) developed by the Brno University of Tech-
nology (BUT) [9] are the core elements of all the systems in
this work. Each BUT decoder takes a speech signal as input,
runs an acoustic front-end, applies a set of acoustic models and
gives the 1-best phone decoding as output. Non phonetic units
(int, pau andspk) are mapped to silence (sil), so that output di-
mensions for BUT decoders are 43 (CZ), 59 (HU) and 49 (RU),
respectively. Before phone tokenization, an energy-based voice
activity detector is applied to split and remove non-speech seg-
ments from the signals. Regarding channel compensation, noise
reduction, etc. all the systems presented in this paper rely on the
acoustic front-end embedded in BUT decoders.

In the baseline system, phone sequences are modelled by
means of SVM. SVM vectors consist of counts of phonen-
grams (up to trigrams), weighted as proposed in [10]. A Cram-
mer and Singer solver for multiclass SVMs with linear kernels
has been applied, by means of LIBLINEAR [11] (adding some
lines of code to retrieve regression values). Final scores are
computed by fusing the scores of three calibrated SVM-based
phonotactic sub-systems, for Czech, Hungarian and Russian de-
coders. TheFoCal toolkit is used for calibration and fusion
[3, 4].

3. Co-occurrences of phone n-grams
The approach presented in this paper is based on computing
and using statistics of cross-decoder co-occurrences of phone
n-grams. For any given decoder, up ton n-grams can overlap
at each framet, which means that up tonk phonen-grams can
co-occur at the same frame for a choice ofk decoders. So,
a procedure must be designed for distributing co-occurrence
counts at frame level. This procedure will allow us to circum-
vect the issue of lack of synchronization among decoders at
phone borders. In this work, we consider only cross-decoder
co-occurrences ofn-grams with the samen. Though possible,
mixed co-occurrences (unigrams with bigrams, bigrams with
trigrams, etc.) are not considered.

Let consider an input sequence of feature vectorsX =
(X1, . . . , XT ) and a choice ofk decodersπ = (d1, . . . , dk).
Let Γ(d)

n (t) be the set ofn-grams overlapping at framet in de-
codingd. Let w(d)

n (t, i) be one of suchn-grams andf (d)
n (t, i)

the number of frames it spans, withi ∈ [1, |Γ
(d)
n (t)|]. Note

that |Γ(d)
n (t)| = n for all t except for a number of frames at

the borders ofX, where1 ≤ |Γ
(d)
n (t)| < n. Let cπn(t, ν) =

(wd1
n (t, i1), . . . , w

dk
n (t, ik)) be a co-occurrence ofk phonen-

grams, for a choice ofn-gramsν = (i1, . . . , ik), with 1 ≤ ij ≤

|Γ
(dj)
n (t)|, for j ∈ [1, k].

In this approach, each decoderdj ∈ π makes its own contri-
bution to the count of a given co-occurrence of phonen-grams
at a given frame. The key concepts are: (1) each phonen-gram
is counted once for each decoder, so its count is distributed
among all the frames it spans; and (2) the contribution corre-
sponding to a given phonen-gram at a given frame for a given
decoder is distributed among all the combinations of phonen-
grams at that frame for the remaining decoders. Taking into
account these principles, we get the following expression:

count(cπn(t, ν), dj) =
1

f
(dj)
n (t, ij) ·

k
∏

l=1

l 6=j

|Γ
(dl)
n (t)|

(1)

The count forcπn(t, ν) is computed as the average contribu-
tion over all the decoders:

count(cπn(t, ν)) =
1

k

k
∑

j=1

count(cπn(t, ν), dj) (2)

Finally, the count corresponding to a given co-occurrence of
phonen-gramsbπn = (v

(d1)
n , . . . , v

(dk)
n ) is computed by adding

the counts for all the frames in the sequence where it appears:

count(bπn) =

T
∑

t=1

∑

∀ν

δ(bπn, c
π
n(t, ν)) · count(c

π
n(t, ν)) (3)

In practice, counts are computed in two passes. The first
pass computes and stores|Γ(d)

n (t)| andf (d)
n (t, i) for each de-

coderd and each framet. Starting from the previously stored
values, the second pass accumulates the counts of phonen-
grams on a frame-by-frame basis, applying equation 2 for each
combinationν of phonen-grams appearing at framet.

In this work, we consider cross-decoder co-occurrences of
unigrams, bigrams, 3-grams and 4-grams. An example fork =
2 decoders (π = (1, 2)) including up to bigrams, is shown in
Figure 1. Let consider the shaded frame (t = 15) in Figure 1.
The sets ofn-grams appearing at that frame are:

Γ
(1)
1 (15) = {c} Γ

(1)
2 (15) = {ac, cb}

Γ
(2)
1 (15) = {y} Γ

(2)
2 (15) = {xy, yz}

and the number of frames they span:

f
(1)
1 (15, 1) = 8 f

(1)
2 (15, 1) = 17

f
(2)
1 (15, 1) = 13 f

(1)
2 (15, 2) = 15

f
(2)
2 (15, 1) = 19

f
(2)
2 (15, 2) = 18

Starting from these values and according to equation 2, the
counts of co-occurrences of phonen-grams are computed as



Figure 1: Co-occurrences of phonen-grams (2-decoder configuration, up to bigrams): (1) eachn-gram is counted once for each
decoder, so its count is distributed among all the frames it spans; (2) thecontribution corresponding to a givenn-gram at a given frame
for a given decoder is distributed among all the combinations ofn-grams appearing at that frame for the remaining decoders; and (3)
the count corresponding to a givenn-gram at a given frame is computed as the average contribution over alldecoders.

follows:
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For estimating the SVMs corresponding to target lan-
guages, counts computed this way are accumulated for a train-
ing database, SVM vectors being built with theM highest
counts (M = 200000 in this work). Note that counts of co-
occurrences of unigrams, bigrams, 3-grams and 4-grams are
put together in a single representation, which includes infor-
mation from both time (phonen-grams) and cross-stream (co-
occurrence) dimensions.

For scoring purposes, given an input sampleX, we first ob-
tain 1-best decodings and segmentations, then count phonen-
gram co-occurrences and use them to build anM -dimensional
vector. Finally, this vector is scored with regard to SVMs. Note
that, since a sparse representation is used, co-occurrences not
appearing among those with theM highest counts in the train-
ing database are not used for scoring.

4. Experimental Setup
4.1. Training, development and test corpora

Training and development data were limited to those distributed
by NIST to all LRE2007 participants: (1) the Call-Friend Cor-
pus; (2) the OHSU Corpus provided by NIST for LRE05; and
(3) the development corpus provided by NIST for LRE07. For
development purposes, 10 conversations per language were ran-
domly selected, the remaining conversations being used for
training. Each development conversation was further split in
segments containing 30 seconds of speech. Evaluation was car-
ried out on the LRE07 evaluation corpus, specifically on the
30-second, closed-set condition (primary evaluation task for the
LRE07).

4.2. Evaluation measures

Most authors compare the performance of language recogni-
tion systems either globally (but not numerically) by means of
Detection Error Tradeoff (DET) plots, or numerically (but not
globally, and not at the optimal operation point) by means of
Equal Error Rates (EER). In this work, systems will be also
compared in terms of the so calledCLLR [12], which is used
as an alternative performance measure in NIST evaluations. We
internally considerCLLR as the most relevant performance in-
dicator, for two reasons: (1)CLLR allows us to evaluate system
performance globally by means of a single numerical value,
which is somehow related to the area below the DET curve,
provided that scores can be interpreted as log-likelihood ratios;
and (2)CLLR does not depend on application costs; instead,
it depends on the calibration of scores, an important feature of
detection systems.

5. Results
Table 1 shows EER andCLLR performance in language recog-
nition experiments on the LRE2007 database applying the base-
line phonotactic system and a system using statistics of 2-
decoder co-occurrences of phonen-grams (up to 4-grams). For
the sake of completeness, the performance of subsystems (1-
decoder configurations for the baseline system and 2-decoder
configurations for the proposed approach) and partial fusions
is also shown in Table 1, rows corresponding to final (fused)
systems being shown in boldface.

The system using statistics of 2-decoder co-occurrences of
phonen-grams yielded 2,08% EER (64 misses and 831 false
alarms) andCLLR = 0,3083, which means improvements of
around 8% and 12%, respectively, with regard to the baseline
system, which yielded 2,26% EER (69 misses and 903 false
alarms) andCLLR = 0,3496.

Regarding subsystems, note that 2-decoder co-occurrence
subsystems performed consistently better than 1-decoder base-
line subsystems, the co-occurrence subsystem HU-RU yielding
best results. On the other hand, fusing two 1-decoder subsys-
tems yielded better results than the corresponding 2-decoder co-
occurrence subsystems, but the fusion of the latter performed
better than the fusion of the former. Finally, as shown in Figure
2, the fusion of the baseline system and the system using co-
occurrences of phonen-grams attained 1,90% EER (58 misses



and 759 false alarms), which means around 16% EER improve-
ment and reveals that co-occurrence subsystems provide infor-
mation that is not present in the baseline system.

Table 1: Performance (EER andCLLR) of: (1) the baseline
phonotactic system; (2) a system using statistics of 2-decoder
co-occurrences of phonen-grams (up to 4-grams); and the fu-
sion of (1) and (2).

EER CLLR

CZ 5,13% 0,7289
HU 4,67% 0,6560
RU 4,64% 0,6939

Baseline Fusion (CZ,HU) 3,06% 0,4298
Fusion (CZ,RU) 3,13% 0,4830
Fusion (HU,RU) 2,69% 0,3891
(1) Fusion (all) 2,26% 0,3496
CZ-HU 3,06% 0,4363
CZ-RU 3,62% 0,5380
HU-RU 2,92% 0,4355

2-decoder
co-occurrences of
phonen-grams

(2) Fusion (all) 2,08% 0,3083
(1) + (2) Fusion 1,90% 0,2943
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Figure 2: Pooled DET curves for: (1) the baseline phono-
tactic system; (2) a system using statistics of 2-decoder co-
occurrences of phonen-grams (up to 4-grams); and the fusion
of (1) and (2).

6. Conclusions

In this paper, latest developments under an approach using
cross-decoder co-occurrences of phonen-grams in SVM-based
phonotactic language recognition have been presented and eval-
uated. The proposed approach relies on the assumption that
cross-decoder co-occurrence information is somehow specific
to each target language. The approach does not involve signifi-
cant additional computation with regard to a baseline phonotac-
tic system. It represents just a means to extract more informa-
tion from existing decodings.

A system using statistics of 2-decoder co-occurrences of
phone ofn-grams (up to 4-grams) outperformed the baseline
system in language recognition experiments on the LRE2007

database. Fusing the baseline system and the system using co-
occurrences of phonen-grams led to best performance: 1,90%
EER andCLLR = 0,2943 (around 16% relative improvement in
both cases).

We are currently working on various co-occurrence selec-
tion schemes, with the aim to reduce the size of SVM vec-
tors while keeping or even improving performance. Future
work will focus on increasing the robustness of phonotactic ap-
proaches that integrate time and cross-stream dependencies.
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