
UNIVERSITY OF THE BASQUE COUNTRY (GTTS@EHU) SYSTEM
FOR THE NIST 2017 LANGUAGE RECOGNITION EVALUATION

Mikel Penagarikano, Amparo Varona, Luis J. Rodríguez-Fuentes, Germán Bordel

GTTS Group (http://gtts.ehu.es), Department of Electricity and Electronics
University of the Basque Country UPV/EHU, 48940, Leioa, Spain

e-mail: mikel.penagarikano@ehu.eus

1. INTRODUCTION

This paper briefly describes the language recognition sys-
tems developed by the Software Technology Working Group
(http://gtts.ehu.es) of the University of the Basque Country
(EHU) for the NIST 2017 Language Recognition Evaluation.
The submitted system uses the the Brno University of Tech-
nology (BUT) 80 dimension bottleneck features [1] trained
on FisherEnglish (2423 triphones) and follows the Total Vari-
ability Factor Analysis (i-Vector) approach [2]. The i-Vector
extractor (1024 Gaussians and 400 dimensional i-Vector) is
based on the Sidekit Toolkit [3] and it is followed by a Gaus-
sian Linear Classifier and a Discriminative Gaussian Back-
end. Linear logistic regression calibration is applied to the
final scores using the FoCal Toolkit [4].

2. DATASETS

The meta-information of the audio files was not used to create
the datasets. That is, each dataset contains audio files with dif-
ferent lengths, formats and sources. The data was partitioned
as follows::

• Train (16201 files): All available data from
LDC2017E22 (2017 NIST LRE Training Data). This
Dataset was randomly reduced to create another
dataset:

– TrainBalanced (4566 files): Random subset of
files summing around 8000 seconds of voiced fea-
ture vectors per target language.

• Dev (3659 files): All available data from LDC2017E23
(2017 NIST LRE Development Data). The
audio files lre17_ytgfvwpa.flac and
lre17_gpupyoiu.flac where excluded as
repeated and empty/unvoiced, respectively . This
dataset was randomly split into two new datasets:

– Dev1 (1829 files): First half.

– Dev2 (1830 files): Second half.

The Fisher English dataset was also used indirectly, since
the BUT bottleneck extractor software was trained on it.

3. SYSTEM ARCHITECTURE

3.1. Feature extraction

Audio files where first converted to 8KHz linear
PCM and then bottleneck feature vectors where ex-
tracted using the BUT bottleneck extractor software
[1]. The used pre-trained NN was the so called
FisherEnglish_FBANK_HL500_SBN80_triphones2423,
a NN trained on Fisher English with 2423 senones as targets.
For speech activity detection, the bottleneck extractor’s
internal energy based VAD was used.

3.2. I-vector Extraction

The Sidekit Toolkit [3] was used to create an ivector extrac-
tor. A gender independent 1024-mixture diagonal UBM was
estimated by Maximum Likelihood, using the TrainBalanced
dataset. The total variability matrix of rank 400 was estimated
by 10 iterations of EM-MD on the same dataset.

3.3. Classifier

A simple generative multi-class Gaussian classifier was used
to model the target languages. The distribution of language
ivectors was modeled by a multivariate normal distribution
N (µl,Σ) for each target language l ∈ L, where the full
covariance matrix Σ was shared across all target languages.
Maximum Likelihood estimates of the language dependent
means µl and the covariance matrix Σ were computed on the
Train dataset. For each target language l, the scores of an
i-vector x are given by:

score(x, l) = log(N(x;µl,Σ)) (1)



Table 1. EHU fixed-primary system performance, on the
NIST LRE 2017 dev set.

unequalized results

Metric Pt = 0.1 Pt = 0.5 Overall

minC 0.4210 0.1708 0.2959

actC 0.4182 0.1790 0.2986

EER — — 8.577

equalized results

Metric Pt = 0.1 Pt = 0.5 Overall

minC 0.5017 0.2011 0.3514

actC 0.5055 0.2091 0.3573

EER — — 10.394

3.4. Backend

A discriminative Gaussian pre-calibration/backend was ap-
plied to the scores. The means and the common covariance
matrix where initialized with their ML estimates and then fur-
ther re-estimated in order to maximize the Maximum Mutual
Information (MMI) criterion.

During the development phase, the Dev1 dataset was used
to train the backend (Dev2 was used for validation), whereas
for the final submission, the backend was trained on the full
Dev dataset.

3.5. Calibration

Linear logistic regression calibration/fusion parameters were
estimated on the development dataset (Dev1 during the devel-
opment phase and Dev for the submission) using the FoCal
Toolkit [4].

4. SYSTEM PERFORMANCE

The EHU submission consisted on a single primary system
for the core fixed condition. The performance of this system
on the NIST LRE 2017 dev set, using the scoring software
provided by NIST is shown in Table 1.

5. PROCESSING SPEED AND MEMORY USAGE

The processing speed and memory usage was measured on
a dual Xeon E5-2630v3 2.40 GHz processor, with 224 GB of
RAM. Table 1 shows the processing speed and memory usage
by the EHU fixed-primary system to process 1, 10 and 100
trials of 30s of speech. Comparing the speed and memory
usage of 1, 10 and 100 trials is allows to detect which are

Table 2. Single threaded CPU execution time (in seconds)
and amount of memory used (in Megabytes) to process 1, 10
and 100 trials of 30s of speech by each processing stage of
the EHU fixed-primary system.

1xTrial 10xTrials 100xTrials

sec MB sec MB sec MB

audio2bn 29 116 242 157 2420 222

bn2stat 12 146 71 203 646 410

stat2ivect 22 1111 169 1116 1449 1173

ivect2score 4 228 4 229 5 248

the initialization requirements (i.e. the amount of time and
memory required prior to process the trial). Four processing
stages are reported:

• audio2bn - Bottleneck features extraction from audio
file, including audio format/rate conversion and energy
based VAD estimation.

• bn2stat - UBM based first and second order statistics
estimation.

• stat2ivect - iVector estimation.

• ivect2score - Estimation of scores.

Note that for some stages the processing time of 1, 10 or
even or 100 trials is similar, while for other stages the memory
footprint does not depend on the number of trials.
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