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1. Introduction

This paper briefly describes the language recognition sys-
tem developed by the Sofware Technology Working Group
(http://gtts.ehu.es) at the University of the Basque Coun-
try in collaboration with IKERLAN Technological Re-
search Center, and submitted to the NIST 2009 Lan-
guage Recognition Evaluation. The system consists of a
hierarchical fusion of individual subsystems: two acous-
tic GLDS-SVM systems using 19 MFCC and 7-2-3-7
SDC-MFCC, two acoustic GMM-SVM systems using 19
MFCC and 7-2-3-7 SDC-MFCC, and eleven Phone-SVM
systems based in 10 phonetic decoders plus a decoder-
pairs phoneme co-occurrence system. Application indepen-
dent well-calibrated log-likelihood-ratio scores and Bayes
thresholds are used for decision making.'

2. Database setup
2.1. Language definition

Based on previous LRE2007 and newer VOA training data,
a set of 64 languages/dialects is defined (see Table 1). Each
of them is mapped either to a target LRE2009 language or
to Out Of Set (OOS). For example, Mainland and Taiwan
from LRE2007 and mand from VOA are mapped to Man-
darin, whereas Arabic is mapped to OOS. For any input ut-
terance, each trained language model generates a log likeli-
hood (resulting 64 log likelihoods), which are mapped to 24
log likelihoods (corresponding to 23 target languages plus
00S). When discriminative models are trained (SVMs in
the case of the submitted systems), only signals from lan-
guages that map to a different target language are used as
negative observations. Thus, Mainland and mand signals
are not used as negative samples when Taiwan is trained,
and none of the OOS signals are used as negative samples
when Arabic is trained.
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Source Languages

Arabic Bengali Cantonese English-American

English-Indian Farsi French German Hindi
LRE Japanese Korean Mainland Min Russian
2007 Spanish-Caribbean Spanish-Mexican
Spanish-NonCaribbean Taiwan Tamil Thai
Urdu Vietnamese Wu

alba amha azer bang bosn burm cant creo croa
dari fren geor gree haus hind indo khme knkr
VOA kore kurd mace mand ndeb orom pash pers
port russ serb shon soma span swabh tibe tigr

ttam turk ukra urdu uzbe viet

Table 1: Case sensitive names of trained languages. A set of
64 languages/dialects is trained, and each of them is mapped
either to a target LRE2009 language or to Out Of Set (OOS).

2.2. Database sets

For each of the 64 languages, train, development and test
sets are created. Development and test utterances are 30
seconds long, whereas train utterances are typically longer.
Utterances from LRE2007-eval are included in the test set.

2.3. VOA data extraction

Only those languages containing enough training data are
considered for development. The only exception is engl
(English for Africa), which is discarded due to its ambi-
guous mapping (EnglishAmerican vs. OOS). Available data
sources and extraction criteria are summarized in Table 2.

Development and test sets are populated with randomly
extracted 30 second segments, using no more than 2 seg-
ments per file, and a minimum of 150 devellopment seg-
ments and 75 test segments per language. For training, the
longest segment out of each file is used, with a minimum of
225 segments per language. The number of extracted seg-
ments per file is relaxed (augmented) for those languages
with few utterances per set.



Source Description \ Use \

Used whenever it is

Supervised language possible for

Annota-| labels, but few

tions | segments (150-200) deve;lop rpent .
(calibration), instead
and languages (13). .
of training.

Lots of files,

probably containing Only the central

VOA2 | more than one thlrd part of the
labels | program (so signal and the most
probably more than probable language
4 label are used.
one language).
VOA3 Lot.s of files with .
labels assigned broadcast Use full signals.

language.

Table 2: VOA2/VOA3 data extraction criteria. Supervised
annotations are reserved for calibration, and only the central
third of VOAZ2 files is used.

3. Primary System

The primary system consists of a hierarchical fusion of 15
individual subsystems: two acoustic GLDS-SVM systems
using 19 MFCC and 7-2-3-7 SDC-MFCC, two acoustic
GMM-SVM systems using 19 MFCC and 7-2-3-7 SDC-
MFCC, and eleven Phone-SVM systems based on 10 recog-
nizers plus a decoder-pairs phoneme co-occurrence system.
All the subsystems are based on Support Vector Machines
(SVM) [1], and have been developed using SVMTorch [2]
and 1ibSVM [3], the first one for dense vectors and the se-
cond one for sparse vectors.

3.1. GLDS-SVM subsystems

Two SVM-based acoustic systems are build using: (1) a
parameterization based on 19MFCC plus first order deltas
and (2) another one composed of 7-2-3-7 SDC based on
MFCCs, both obtained with the Sautrela toolkit [4]. A poly-
nomial expansion of degree three [5] and a Generalized Li-
near Discriminant Sequence kernel [6] are applied.

3.2. GMM-SVM subsystems

GMM-SVM systems use a SVM classifier on the vector
space defined by the GMM parameters. The GMM of a tar-
get language is constructed by MAP adapting the means of
a gender-independent UBM (Universal Background Model)
consisting of 512 mixture components. The adapted mix-
ture components means are stacked to construct the GMM
supervectors. Based on the previously mentioned parame-
terizations (MFCC and SDC), two GMM-SVM subsystems
are implemented. UBM and GMMs are estimated using
Sautrela.

3.3. Phone-SVM subsystems

Audio files are filtered using a Voice Activity Detector
(VAD) to get speech segments. Speech segments are de-
coded using ten open-loop phone decoders for seven lan-
guages:

e Three of the phone decoders (for Spanish, English
and Basque) were trained using clean laboratory-
condition speech originally recorded at 16kHz and
downsampled to 8kHz. The phone decoder for Span-
ish was trained using the Albayzin database [7],
whose training corpus contains about 4,3 hours of
speech. The phone decoder for English was trained
using the Wall Street Journal acoustic database,
whose training corpus amounts to about 20 hours of
speech. The phone decoder for Basque was trained
using about 2,6 hours of speech.

e The remaining seven decoders were trained using
telephone-quality speech. For Spanish, the Dihana
database [8] was used, which contains about 5,1 hours
of speech. For Basque, the training corpus, consis-
ting of read sentences and containing thousands of
speakers, was about 50 hours long. The remaining
five decoders were trained on the CSLU Multilan-
guage Telephone Corpus, using five phonetically la-
beled languages: English (about 13 hours), German
(about 3 hours), Hindi (about 2,7 hours), Japanese
(about 2,5 hours) and Mandarin (about 2,8 hours).
The training process consisted of four steps: (1) the
set of labeled utterances is used to bootstrap phone
models; (2) then, unlabeled utterances are automa-
tically transcribed based on those initial phone mo-
dels; (3) phone models are reestimated based on the
whole database, using both manual and automatically
obtained phonetic labels; and (4) step (3) is repeated
until a maximum number of iterations is reached.

Phone decoders are built using HTK. Acoustic parame-
ters consist of 10 Mel Frequency Cepstral Coefficients
(MFCCs), energy and their first and second derivatives, cal-
culated on 25ms windows, with a window step of 10ms.
Phone models are defined as context-independent, 3-state,
left to right continuous Hidden Markov Models (HMM)
with a mixture of 16 Gaussians per state. Decoders used
in this work involve between 22 and 40 phones.

Each target language is modeled by means of phone
statistics produced by phone decoders. In particular, 1-best
phone sequences are used to estimate 1-grams, 2-grams and
3-grams which are stored in a single vector. An SVM is
estimated for each pair (target language, phone decoder).

The approach described above use phone n-grams to
feed an SVM-based classifier. Phone n-grams are com-
puted independently for each decoder, producing 10 diffe-
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Figure 1: 64 language probabilities are calibrated and
mapped to 24 target language probabilities. Then, a hie-
rarchical fusion is performed.

rent streams of information. This way time-synchronous re-
lations between different phone sequences are not taken into
account. However, phone decoders could be merged and the
statistics feeding the SVM counted in two axes: decoder-
internal and across decoders. This way, decodings would
be merged and then an SVM applied to the resulting lat-
tice. We considered this too complex for a first approach,
so we simply count phone co-occurrences for each pair of
phone decoders on a frame-by-frame basis. Let consider
an input utterance X consisting of T frames, and the opti-
mal decodings produced by decoders A and B: P4 (X) =
{pa(t), t € [1,T]} and P(X) = {pp(t), t € [1,T]},
where p4 (t) and pp(t) are the phones at frame t in the opti-
mal decodings by decoders A and B, respectively. Then the
count ¢(a, b) is computed as follows:

T
c(a,b) = 8(pa(t) = a)d(ps(t) = b)
t=1

These counts are computed for each gair of decoders,
which amounts to C' = Z]D;ll Nj - > 2k—j+1 Nk counts,
where D is the number of decoders and N; the number
of phones in decoder j. In this work, using 10 decoders,
C=44169. These counts are stored in a single vector which
feeds an SVM-based classifier.

3.4. Fusion

Linear logistic regression fusion and calibration is per-
formed using the FoCal Toolkit [9] on the development
dataset. For each subsystem, the 64 log-probabilities are
calibrated before mapping them to 24 log-probabilities (co-
rresponding to 23 target languages plus OOS) according to

Primary System

|

‘ ‘ GLDS-SVM ‘ GMM-SVM ‘ Phone-SVM

’ ‘ MFCC ‘ SDC ‘ MFCC ‘ SDC ‘ Phono ‘ Co-occ ‘
’ Param ‘ 3,02 ‘ 0,89 ‘ (done) ‘ (done) ‘ 0,53 ‘ (done) ‘
’pre-SVM‘ 2,17 ‘ 4,06 ‘ 12,50 ‘ 14,71 ‘ 735 ‘ (done) ‘
’ SVM ‘ 8,00 ‘25,50‘ 3,55 ‘ 525 ‘ 6,50 ‘ 450 ‘
’ Total ‘ 13,19 ‘30,45 ‘ 16,05 ‘ 19,96 ‘ 14,38 ‘ 450 ‘
’ Speed ‘ 0,06 ‘ 0,139 ‘ 0,073 ‘ 0,091 ‘ 0,066 ‘ 0,021 ‘
| Total | 98,53 |
’ Speed ‘ 0,45 ‘

Table 3: Primary system processing time (in hours) and
speed (in xRT).

the folowing average sum:

log (P (X|T})) = log <;| 3 P<X|L>>

LeS;

where S; is the set of languages that map to target language
T;, and X is an input utterance. Then, a two-step hierarchi-
cal fusion is performed with all the 15 subsystems, as it is
shown in Figure 1.

3.5. Processing speed

The NIST LRE 2009 evaluation data is about 218 hours
long. Table 3 shows the time employed at each proce-
ssing stage. The step labeled as pre-SVM contains the time
needed for GLDS kernel expansion, GMM MAP calcula-
tion and phone decoding. Experiments where carried out
on a dual Opteron 2378 server (8 cores) with 16 GBytes
of memory. Note that, when possible, the processing was
parallelized in 8 threads.

3.6. System performance

Figures 2a and 2b show the DET curves for the primary
system in Closed-Set and Open-Set conditions, computed
over the development and test sets.

4. Contrastive System

The submitted contrastive system uses both the develop-
ment ant test sets for calibration and fusion. Figures 2c
and 2d show the DET curves for the contrastive system
in Closed-Set and Open-Set conditions, computed over the
union of the development and test sets.
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Figure 2: DET curves of a) Primary Closed-Set b) Primary Open-Set ¢) Contrastive Closed-Set and d) Contrastive Open-Set.
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