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Abstract
This paper describes the systems developed by the Software
Technologies Working Group of the University of the Basque
Country (EHU) for the NIST 2011 Language Recognition Eval-
uation (LRE). One primary and three contrastive systems were
submitted, all of them fusing five component subsystems: a Lin-
earized Eigenchannel GMM (LE-GMM) subsystem, an iVector
subsystem and three phone-lattice-SVM subsystems based on
the publicly available BUT decoders for Czech, Hungarian an
Russian. The four submitted systems were identical except for
the backend approach and the development dataset used to esti-
mate the backend and fusion parameters. Multiclass discrimina-
tive fusion was performed separately for each nominal duration.
A development set was defined, including the evaluation sets of
LRE07 and LRE09 and the development data provided by NIST
for 9 additional languages in the 2011 campaign. The official
results, which were among the best submitted to the evaluation,
are presented and briefly discussed. Post-key analyses are also
addressed in the paper, including the performance attained by
component subsystems and a study of their contribution to fu-
sion performance by means of a greedy selection procedure.
Index Terms: Spoken Language Recognition, NIST 2011 LRE,
Gaussian Backend, Multiclass Discriminative Fusion

1. Introduction
This paper describes the systems developed by the Software
Technologies Working Group (GTTS, http://gtts.ehu.es) of the
University of the Basque Country (EHU) for the NIST 2011
Language Recognition Evaluation (LRE). Currently, most ap-
proaches to spoken language recognition can be classified ei-
ther as acoustic or phonotactic, depending on the features used
to model target languages. Acoustic systems are based on short-
time spectral characteristics of the audio signal, whereas phono-
tactic systems use sequences or lattices of tokens produced by
phone recognizers. Both approaches provide complementary
information and their fusion usually leads to the best results.
The EHU submission to the NIST 2011 LRE aimed to take ad-
vantage from this complementarity, by combining both types of
systems. Two acoustic and three phonotactic subsystems were
fused: a Linearized Eigenchannel GMM (LE-GMM) subsys-
tem, an iVector subsystem and three Phone-SVM subsystems
based on the Brno University of Technology (BUT) phone de-
coders for Czech, Hungarian and Russian.

The NIST 2011 LRE featured 24 target languages, some
of them already used in previous evaluations (Bengali, Dari,
English American, English Indian, Farsi/Persian, Hindi, Man-
darin, Pashto, Russian, Spanish, Tamil, Thai, Turkish, Ukranian
and Urdu), whereas the remaining ones (Arabic Iraqi, Arabic
Levantine, Arabic Maghrebi, Arabic MSA, Czech, Lao, Pun-
jabi, Polish and Slovak) had been never used before as target
languages. As for previous NIST evaluations, test segments

of three nominal durations (30, 10 and 3 seconds) were evalu-
ated separately. More detailed information about the NIST 2011
LRE can be found in [1].

The main novelty of the NIST 2011 LRE with regard to pre-
vious evaluations was the focus on the discrimination between
pairs of languages (note that 276 different pairs can be defined
on a set of 24 target languages). This was emphasized by defin-
ing a new performance metric which considered only the 24
language pairs for which system performance (assuming a per-
fect calibration) was worst. This meant that if a single language
was poorly modeled, a high number of confusable pairs (involv-
ing that language) could appear and cause performance to drop
drastically. Thus, the availability of training and development
data to provide a suitable coverage of all the target languages (in
particular, of those newly added in this evaluation) was critical
to obtain good performance under the new metric.

The rest of the paper is organized as follows. The datasets
used for training and development are described in Section 2.
Section 3 describes the most relevant features of the acoustic
and phonotactic subsystems on which the EHU submission to
the NIST 2011 LRE was based, along with the backend and fu-
sion approaches. Finally, the official results obtained by EHU
systems in the NIST 2011 LRE and post-key experiments aim-
ing to study fusion performance in detail are presented and
briefly discussed in Section 4.

2. Train and development data
2.1. Data collection for the newly added target languages

NIST provided a development dataset specifically collected for
the 2011 LRE, including 100 30-second segments for each of
the newly added target languages, except for Lao, for which
only 93 segments were provided. We augmented the dataset
with 10- and 3-second segments extracted from the original 30-
second segments. Hereafter, we will refer to this dataset as
lre11.

For a better coverage of target languages, we randomly split
lre11 into two disjoint subsets (each having approximately half
the segments for each language): lre11-train was used to train
specific models for the newly added languages, and lre11-dev
was used to estimate backend and fusion parameters for the
EHU submission. However, splitting lre11 in two halves may
lead to data sparsity and robustness issues. Note that each subset
amounted to around 25 minutes of speech per target language,
which may be enough to estimate backend parameters, but prob-
ably not enough to train robust models. In the context of a joint
submission to the NIST 2011 LRE, the INESC-ID Spoken Lan-
guage Systems Laboratory (L2F ), the University of Zaragoza
and the University of the Basque Country collaborated in order
to share, acquire and, whenever necessary, filter speech data for
the newly added languages. In some cases we collected tele-
phone speech directly from the source. When this was not pos-



sible, we used broadcast news speech, downsampled it to 8 kHz
and applied the Filtering and Noise Adding Tool1 (FANT) to
get a frequency characteristic as defined by ITU for telephone
equipment2.

The Voice-of-America (VOA) corpus used for the 2009
NIST LRE was explored in first place, starting from the
labels provided by NIST. Music and fragments in English
were automatically detected and filtered out, and telephone-
channel speech fragments were extracted. Around two hours
of Lao were extracted this way. Then we used databases
distributed by the LDC, some of them containing conver-
sational telephone speech (LDC2006S45 for Arabic Iraqi
and LDC2006S29 for Arabic Levantine) and others con-
taining broadcast news with fragments of telephone speech
(LDC2000S89 and LDC2009S02 for Czech). In both cases,
segments containing telephone speech were extracted with no
further processing.

The remaining materials were extracted from wideband
broadcast news recordings, dowsampling them to 8 kHz and
applying FANT to simulate a telephone channel. The COST-
278 Broadcast News database [2] was used to get speech seg-
ments for Czech and Slovak. Arabic MSA was extracted from
Al Jazeera broadcasts included in the Kalaka-2 database created
for the Albayzin 2010 LRE [3]. Finally, broadcasts were also
captured from video archives in TV websites to get speech seg-
ments in Arabic Maghrebi (Arrabia TV, http://www.arrabia.ma)
and Polish (Telewizja Polska, TVP INFO, http://tvp.info). TV
broadcasts were fully audited, so that only those segments sub-
jectively judged to contain clean speech were selected for train-
ing. We were not able to collect by any means additional train-
ing materials for Punjabi, so that a single model (trained on just
55 30-second segments) was used for this language.

2.2. Training data

Training data included Conversational Telephone Speech (CTS)
from previous LRE (Call-Friend, OHSU, NIST 2007 LRE de-
velopment corpus) and narrow-band speech segments extracted
from VOA broadcasts provided by NIST for the 2009 LRE [4].
For the newly added target languages, the lre11-train corpus
and additional training data collected from several sources (see
Section 2.1) were used. We ended up with 66 subsets, corre-
sponding to different languages/dialects (including target and
non-target languages) and different sources. We trained a dif-
ferent model on each subset, which means that models account
not only for the spoken language but also for the channel and
other factors related to the source from which the speech data
were drawn.

2.3. Development data

The criterion applied to define the development set was making
the process of tuning systems as robust and reliable as possi-
ble, so we decided to use only segments audited by NIST. To
cover all the target languages, the evaluation sets of the NIST
2007 and 2009 LREs (only the segments corresponding to NIST
2011 LRE target languages), together with the lre11-dev subset,
as defined in Section 2.1, were used. We defined three develop-
ment subsets: dev30, dev10 and dev03, corresponding to nom-
inal durations of 30, 10 and 3 seconds, containing 8539, 8343
and 8290 segments, respectively. Table 1 shows the distribu-
tion of segments in dev30 with regard to target languages and
sources. Note that few development data (around 50 segments)

1 http://dnt.kr.hs-niederrhein.de/download.html
2 Thanks to Alberto Abad from L2F for doing all the filtering tasks.

were available for the newly added target languages, thereby be-
ing the most likely to suffer from overtraining and/or robustness
issues.

Table 1: Development set (30-second segments): distribution
with regard to target languages and sources.

LRE LRE LRE
Language 2007 2009 2011 Total

(eval) (eval) (lre11-dev)
Arabic Iraqi - - 48 48

Arabic Levantine - - 49 49
Arabic Maghrebi - - 54 54

Arabic MSA - - 51 51
Bengali 80 43 - 123
Czech - - 56 56
Dari - 389 - 389

English American 80 896 - 976
English Indian 160 574 - 734
Farsi/Persian 80 390 - 470

Hindi 160 667 - 827
Lao - - 41 41

Mandarin 158 1015 - 1173
Punjabi 32 9 45 86
Pashto - 395 - 395
Polish - - 46 46

Russian 160 511 - 671
Slovak - - 56 56
Spanish 240 385 - 625
Tamil 160 - - 160
Thai 80 188 - 268

Turkish - 394 - 394
Ukrainian - 388 - 388

Urdu 80 379 - 459
Total 1470 6623 446 8539

3. The EHU Language Recognition Systems
3.1. Acoustic Subsystems

For the acoustic subsystems, the concatenation of 7 Mel-
Frequency Cepstral Coefficients (MFCC) and the Shifted Delta
Cepstrum (SDC) coefficients under a 7-2-3-7 configuration,
were used as acoustic features. A gender independent 1024-
mixture GMM was used as Universal Background Model
(UBM). For each input utterance, UBM-MAP adaptation was
applied. Finally, zero-order and centered and normalized first-
order Baum-Welch statistics were computed.

3.1.1. Dot-Scoring Subsystem

The Linearized Eigenchannel GMM (LE-GMM) subsystem,
that we briefly call Dot-Scoring subsystem, makes use of a lin-
earized procedure to score test segments against target models
[5]. The log-likelihood ratio between the target model and the
UBM used for scoring can be approximated as follows:

score (f, l) = log
P (f |λl)

P (f |λubm)
≈ m̂t

l · x̂f (1)

where m̂l denotes the centered and normalized channel-
compensated MAP-means corresponding to language l, com-
puted as follows:

m̂l = (τI + diag(nl))
−1 x̂l (2)

where τ = 16 is the relevance factor, nl are the zero-
order statistics for language l and x̂l and x̂f are the channel-



compensated first-order statistics corresponding to language l
and target signal f , respectively. Channel compensation was
performed by using Niko Brümmer’s recipe [6]. The channel
matrix was estimated using only data from target languages.

3.1.2. iVector Subsystem

The estimation of the total variability matrix T and the compu-
tation of iVectors started from the channel-compensated suffi-
cient statistics computed for the Dot-Scoring subsystem. This is
not the common procedure, since compensation is usually per-
formed in the iVector space, but we had a hardware issue3 and
no time to reestimate Baum-Welch statistics for training the T
matrix. We had the iVector software prepared, so we decided to
go ahead with this alternative computation method. Except for
the compensation of statistics, all the computations were per-
formed as in [7]. The total variability matrix was estimated us-
ing only data from target languages. The iVector scores were
computed as follows:

score (f, l) = N (wf ;µl,Σ) (3)

where wf is the iVector for target signal f , µl is the mean iVec-
tor for language l and Σ is a common (shared by all languages)
within-class covariance matrix.

3.2. Phonotactic Subsystems

Three phonotactic subsystems were developed under a phone-
lattice-SVM approach. Given an input signal, an energy-based
voice activity detector was applied in first place, which split and
removed long-duration non-speech segments. Then, the Tem-
poral Patterns Neural Network (TRAPs/NN) phone decoders
developed by the Brno University of Technology (BUT) for
Czech (CZ), Hungarian (HU) and Russian (RU) [8], were ap-
plied to perform phone tokenization. Regarding channel com-
pensation, noise reduction, etc. the three subsystems relied on
the acoustic front-end provided by BUT decoders.

BUT decoders were configured to produce phone posteri-
ors that were converted to phone lattices by means of HTK
[9] along with the BUT recipe, on which expected counts of
phone n-grams were computed using the lattice-tool of SRILM
[10]. Finally, a Support Vector Machine (SVM) classifier was
applied, SVM vectors consisting of counts of features repre-
senting the phonotactics of an input utterance. In this work,
phone n-grams up to n = 3 were used, weighted as in [11]. L2-
regularized L1-loss support vector classification was applied,
by means of LIBLINEAR [12], whose source code was slightly
modified to get regression values.

3.3. The EHU submission

The EHU submission consisted of one primary and three con-
trastive systems, fusing the 5 subsystems described above, un-
der four different configurations, depending on the type of back-
end and on the datasets used to estimate backend and fusion pa-
rameters for nominal durations 10 and 3 (see Table 2). Note
that the backend and fusion models were estimated and applied
separately for each nominal duration.

Each subsystem produced 66 scores (one score per trained
model), that were taken as input by the backend, which out-
put 24 log-likelihoods (one per target language). A Gaussian
backend, preceded by an optional zt-norm [13], was applied
in all cases. Though discriminative backends were also tried,

3 We lost the LRE11 data (speech signals, statistics, etc.), due to a
mechanical failure of a disk, two weeks before the submission deadline.

Table 2: Backend and fusion configuration for the EHU systems
submitted to the NIST 2011 LRE.

System zt-norm
Backend & Fusion Training Dataset

30s 10s 3s
Pri No dev30 dev10 dev03

Con1 No dev30 dev10+dev30 dev03+dev10+dev30
Con2 Yes dev30 dev10 dev03
Con3 Yes dev30 dev10+dev30 dev03+dev10+dev30

the (generative) Gaussian backend outperformed them in most
cases, probably due to a lack of samples which led to overtrain-
ing on the development set used in the experiments. Finally, the
resulting 5 × 24 log-likelihood values were fused by applying
linear logistic regression, under a multiclass paradigm, to get 24
calibrated scores for which a minimum expected cost Bayes de-
cision was made, according to application-dependent language
priors and costs. We also tried pairwise backends and fusions
but they did not provide significant improvements with regard
to the basic multiclass approach (much easier to implement).
The FoCal toolkit was used to estimate and apply the backend
and calibration/fusion models [14].

4. Results
4.1. Overall Results

The actual and minimum average costs for the EHU systems are
shown in Table 3, in terms of: (1) the Cavg computed for all the
language pairs (full Cavg), which approximately matches the
traditional Cavg used in previous LRE; and (2) the new Cavg

computed on the 24 language pairs with the highest min-Cavg .
These figures are among the best attained in the NIST 2011
LRE, especially in the 30-second track. No significant differ-
ences in performance can be found among the four developed
systems, except for 3-second segments, where the first and third
contrastive systems clearly outperformed the primary and sec-
ond contrastive systems, probably because the dataset used to
estimate backend and fusion parameters was more reliable. It
is worth noting the poor calibration achieved in all cases (dif-
ferences between minimum and actual Cavg are remarkable), a
common issue for most of the systems submitted to the evalu-
ation, which may reveal either a mismatch between the devel-
opment and evaluation datasets or, more probably, just the fact
that the development dataset was not large enough for some lan-
guages. Finally, applying a zt-norm before the backend did not
significantly affect performance.

4.2. Post-key experiments

Results have been studied in detail by measuring the perfor-
mance of component subsystems and fusions involving the three
phonotactic subsystems and the two acoustic subsystems under
the configuration applied for the primary system (see Table 4).
The phonotactic subsystem based on the BUT decoder for Rus-
sian (Phone-RU) yielded the best performance among compo-
nent subsystems: act-Cavg×100 = 13.76. The fusion of phono-
tactic subsystems yielded a quite interesting act-Cavg × 100
= 10.13, outperforming the fusion of acoustic subsystems by
more than 3 absolute points. However, acoustic subsystems did
actually provide complementary information, as the complete
fusion reveals, with a 12% additional improvement over the fu-
sion of phonotactic subsystems.

The information provided by each subsystem to the com-
plete fusion was further studied by means of a greedy selec-



Table 3: Official NIST 2011 LRE results for the EHU systems.
All pairs (Full Cavg) 24 worst pairs (New Cavg)

30s min-Cavg act-Cavg min-Cavg act-Cavg

Pri 0.0093 0.0169 0.0615 0.0895
Con1 0.0094 0.0169 0.0615 0.0895
Con2 0.0091 0.0175 0.0608 0.0909
Con3 0.0091 0.0175 0.0607 0.0907
10s min-Cavg act-Cavg min-Cavg act-Cavg

Pri 0.0337 0.0408 0.1299 0.1477
Con1 0.0323 0.0403 0.1244 0.1455
Con2 0.0331 0.0412 0.1272 0.1468
Con3 0.0314 0.0395 0.1236 0.1436

3s min-Cavg act-Cavg min-Cavg act-Cavg

Pri 0.1160 0.1288 0.2554 0.2725
Con1 0.1107 0.1205 0.2397 0.2534
Con2 0.1162 0.1286 0.2552 0.2705
Con3 0.1087 0.1206 0.2331 0.2528

Table 4: Performance (in terms of Cavg × 100) of the EHU
acoustic and phonotactic subsystems and partial and complete
fusions on the subset of 30-second segments of LRE11.

New Cavg × 100 Full Cavg × 100
min act min act

Phone-CZ 12.15 14.02 2.97 3.76
Phone-HU 11.96 14.28 2.71 3.62
Phone-RU 11.38 13.76 2.57 3.46

Phonotactic 7.73 10.13 1.47 2.28
Dot-Scoring 11.62 14.18 2.19 3.17

iVector 11.58 14.15 2.60 3.50
Acoustic 11.18 13.30 2.00 2.85

All 6.15 8.95 0.93 1.69

tion strategy: the best combination of k subsystems was deter-
mined by extending the best combination of k − 1 subsystems
with each one of the available subsystems, and the combination
that yielded the best performance on the evaluation dataset was
selected. This way, the minimum and actual Cavg evolved as
shown in Figure 1, where EHUCZ, EHUHU and EHURU refer
to the phonotactic subsystems based on the BUT decoders for
Czech, Hungarian and Russian, respectively, EHUDOT refers
to the Dot-Scoring subsystem and EHUIVGEN to the (gen-
erative) iVector subsystem. The highest relative improvement
(above 25%) was found when fusing the Phone-RU and iVec-
tor subsystems (significantly, involving one phonotactic and one
acoustic subsystems, which are known to complement well each
other). Then, adding Phone-CZ provided a still remarkable 10%
improvement, but further fusions only introduced small reduc-
tions in act-Cavg . According to Figure 1, the fusion Phone-RU
+ iVector + Phone-CZ seems to provide the best balance be-
tween the attained performance and the computational cost.
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Figure 1: Actual and minimum Cavg on the development set
(30-second segments) for the optimal fusions of k subsystems
according to a greedy selection algorithm.
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