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Abstract
State of the art language recognition systems usually add a
backend prior to the linear fusion of the subsystems scores. The
backend plays a dual role. When the set of languages for which
models have been trained does not match the set of target lan-
guages, the backend maps the available scores to the space of
target languages. On the other hand, the backend serves as a
precalibration stage that adapts the space of scores. In this work,
well known backends (Generative Gaussian Backend, Discrim-
inative Gaussian Backend and Logistic Regression Backend)
and newer proposals (Fully Bayesian Gaussian Backend and
Gaussian Mixture Backend) are analyzed and compared. The
effect of applying a T-Norm or a ZT-Norm is also analyzed. Fi-
nally the effect of discarding development signals, those with
the highest scores, is also studied. Experiments have been car-
ried out on the NIST 2009 LRE database, using a state-of-the-
art Language Recognition System consisting of the fusion of
five subsystems: A Linearized Eigenchannel GMM (LE-GMM)
subsystem, an iVector subsystem and three phone-lattice-SVM
subsystems. Best performance was attained by Gaussian Mix-
ture Backend (1.25 EER), yielding 23% relative improvement
with respect to the baseline (1.62 EER).
Index Terms: Spoken Language Recognition, Gaussian Back-
end, Gaussian Mixture Backend, Discriminative Gaussian
Backend

1. Introduction
The general structure of a Spoken Language Recognition (SLR)
system involves five stages: (1) extracting features/tokens; (2)
applying a classifier which scores feature/token sequences with
regard to models or target languages; (3) applying a backend to
adapt/calibrate the scores; (4) doing the fusion of the scores of
each subsystem; and (5) making a task dependent hard decision.

The backend plays a dual role. When the set of languages
for which models have been trained does not match the set of
target languages (either because non-target languages are used
as anchor models, or because very few signals are available
to train a robust target language model), the backend maps the
available scores to the space of target languages. On the other
hand, the backend serves as a precalibration stage that trans-
forms the space of scores to get reliable estimates of the true
class probabilitites.

Linear backends are usually applied, being the genera-
tive (ML) Gaussian backend [1] the most common approach.
Nowadays, increasingly sophisticated calibration techniques are
being applied and state-of-the-art systems implement adapted
(MAP) Gaussian backends [2], discriminatively-trained (MMI)
Gaussian backends [3] and regularized logistic regression back-
ends [4].

In this work well known backends (Generative Gaussian
Backend, Discriminative Gaussian Backend and Logistic Re-
gression Backend) and newer proposals (Fully Bayesian Gaus-
sian Backend and Gaussian Mixture Backend) are analyzed and
compared. Score normalization techniques like the z-norm and
t-norm, which reduce the variability of the likelihood scores,
are also analyzed. Finally the effect of discarding develop-
ment signals, those with the highest scores (that supposedly
correspond to repeated speakers), is also studied. Experiments
have been carried out on the NIST 2009 LRE database, using a
state-of-the-art Language Recognition System consisting of the
fusion of five subsystems: A Linearized Eigenchannel GMM
(LE-GMM) subsystem, an iVector subsystem and three phone-
lattice-SVM subsystems.

The rest of the paper is organized as follows. Section 2
briefly describes the backend and the fusion approaches. The
experimental setup including the language recognition system
is presented in Section 3. Results obtained in language recogni-
tion experiments on the NIST 2009 LRE database are presented
and discussed in Section 4. Finally, conclusions are summarized
in Section 5.

2. Backend and score fusion
Given a test signal, the set of language models outputs an score
vector that is transformed by the backend. In this work, different
types of backends have been compared:

• Generative Gaussian Backend (GB): In a generic
Gaussian backend, the distribution of language scores is
modeled by a multivariate normal distributionN (µt,Σ)
for each target language t, where the full covariance ma-
trix Σ is shared across all target languages.
Given an score vector s of sizeK, the output (calibrated)
log-likelihood vector ŝ is obtained by:

ŝ = As + b + c (1)

where matrix A contains rows at = µTt Σ−1, bt =
− 1

2
µTt Σ−1µt and c is a constant vector (independent of

the target-language and therefore, negligible) such that
ct = −K

2
log (2π)− 1

2
log |Σ| − 1

2
sTΣ−1s.

In the case of the generative Gaussian backend, Maxi-
mum Likelihood (ML) estimates of the means and the
covariance matrix are usually computed.

• Discriminative Gaussian Backend (DGB): The ML es-
timates of the means and the common covariance matrix
are used initially, but further reestimates of the means are
iteratively computed in order to maximize the Maximum
Mutual Information (MMI) criterion:



FMMI (λ) =
∑
∀s

log
pλ (s|l (s))C∑
∀l pλ (s|l)C p (l)

(2)

where pλ (s|l (s)) is the likelihood of the score vector s
given the true target language l (s) and model parame-
ters λ, p (l) is the probability of language l and C is an
heuristic factor. In this work, C has been set to 10 and
20 MMI iterations have been conducted.

• Fully-Bayesian Gaussian Backend (FBGB): Under the
generative, fully Bayesian Gaussian backend paradigm
[5], the distribution of trained languages scores is mod-
eled by a multivariate normal distributionN (µt,Σ) too,
but instead of using a maximum likelihood estimate of
the model parameters, it integrates over all possible pa-
rameters (according to their respective priors).

• Generative Gaussian Mixture Backend (GMB): The
Gaussian backend model is augmented to a Gaussian
mixture, while a ML full covariance matrix Σ is shared
across all target languages. Mixture means are estimated
using the Expectation-Maximization (EM) algorithm.

• Logistic Regression Backend (LR): Regularized Mul-
ticlass Logistic Regression (MLR) can be used to train
an affine transform:

ŝ = Cs + d (3)

Note that equations (1) and (3) are basically the same,
the only difference being the estimation criteria of the
affine transform.

• Z-norm and T-norm score normalization: Score nor-
malization techniques such as Z-norm and T-norm [6],
can help reducing the environmental effects on the score
space. Nevertheless, they are rarely used alone in Lan-
guage Recognition systems, but instead they are usually
applied before some other backend. Impostor develop-
ment signals are used to estimate language dependent
means and variances of the Z-norm. T-norm means and
variances are estimated for each test signal and language
score, using the rest of the scores (of the same test signal)
as impostors.

Backend output score vectors are further calibrated and
fused according to a discriminative linear model which mini-
mizes the so called CLLR function (more precisely Cmxe, the
multiclass cross entropy) on the development set, by means of
logistic regression under a multiclass paradigm [7]. After the
fusion, well-calibrated log-likelihoods are obtained, for which
a minimum expected cost Bayes decision threshold is applied
according to application-dependent language priors and costs.

Backend and fusion parameters have been separately esti-
mated on the development set, and then applied to the corre-
sponding segments in the evaluation set. The FoCal toolkit has
been used to estimate and apply the fusion models [8].

3. Experimental Setup
3.1. Training, development and evaluation datasets

Training and development data were limited to those distributed
by NIST to all 2009 LRE participants [9]: (1) conversational
telephone speech from previous LREs: the Call-Friend Corpus,
the OHSU Corpus provided by NIST for LRE05 and the devel-
opment corpus provided by NIST for the 2007 LRE; and (2) nar-
row band (telephone channel) speech segments from Voice Of

America (VOA) broadcast news recordings (provided by NIST
for the 2009 LRE).

A set of 66 languages/dialects was defined. Each of them
was mapped either to a target language of the NIST 2009 LRE
or to Out-Of-Set (OOS). For example, Mainland and Taiwan
from the NIST 2007 LRE and Mandarin from VOA were all
mapped to Mandarin, whereas Arabic was mapped to OOS.
Persian and Farsi were mapped to the same language, as was
properly pointed in [10]. For the languages appearing in VOA
recordings, the longest speech segment out of each file was
posted to the training dataset, with a minimum of 225 seg-
ments per language. The number of segments extracted per file
was relaxed (augmented) for those languages with few files in
VOA. The training dataset consisted of 43278 segments, which
amounted to 2286 hours. For development, speech segments
lasting around 30 seconds (between 25 and 35 seconds) were
randomly extracted, using no more than 2 segments per file,
and a minimum of 225 segments per language. Segments of 30-
seconds of the evaluation set of NIST 2007 LRE were also con-
sidered. The development dataset consisted of 13269 segments,
which amounted to around 380 hours. Evaluation was carried
out on the NIST 2009 LRE evaluation corpus, specifically on
the 30-second, closed-set condition (primary evaluation task).

3.2. Language Recognition Systems

3.2.1. Acoustic Subsystems

Acoustic features consisted of the concatenation of 7 Mel-
Frequency Cepstral Coefficients and the Shifted Delta Cepstrum
coefficients [11] under a 7-2-3-7 configuration. A gender in-
dependent 1024-mixture Gaussian Mixture Model (GMM) was
used as Universal Background Model (UBM) and zero-order
and centered and normalized first-order Baum-Welch statistics
were computed for each input utterance.

The first acoustic subsystem followed the Linearized Eigen-
channel GMM (LE-GMM) approach (also known as Dot-
Scoring), which makes use of a linearized, channel compen-
sated and normalized approximation of the likelihood ratio in
the GMM-UBM approach to score test segments against target
models [12]. The second acoustic subsystem followed the Total
Variability generative iVector approach, as described in [13].

3.2.2. Phonotactic Subsystems

Three phonotactic sub-systems were developed under a phone-
lattice Support Vector Machine (SVM) approach. Given an
input signal, an energy-based voice activity detector was ap-
plied in first place, which split and removed long-duration non-
speech segments. Then, the Temporal Patterns Neural Network
(TRAPs/NN) phone decoders developed by the Brno University
of Technology (BUT) for Czech, Hungarian and Russian [14],
were applied to perform phone tokenization. Regarding chan-
nel compensation, noise reduction, etc. the three sub-systems
relied on the acoustic front-end provided by BUT decoders.

BUT decoders were configured to produce phone posteri-
ors that were converted to phone lattices by means of HTK [15]
along with the BUT recipe, on which expected counts of phone
n-grams were computed using the lattice-tool of SRILM [16].
Finally, a SVM classifier was applied, SVM vectors consisting
of counts of features representing the phonotactics of an input
utterance. In this work, phone n-grams up to n = 4 were used,
weighted as in [17]. L2-regularized L1-loss support vector clas-
sification was applied, by means of LIBLINEAR [18], whose
source code was slightly modified to get regression values.
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Figure 1: EER for the five state-of-the-art subsystems using
different backends.
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Figure 2: Cmxe for the five subsystems using a generative Gaus-
sian mixture backend, the number of the components of the
mixture ranging from 1 to 9.

3.3. Evaluation measures

In this work, systems will be compared in terms of Equal Error
Rate (EER), one of the most common ways of comparing the
performance of language recognition systems, but also in terms
of the so called CLLR (more precisely Cmxe, the multiclass
cross entropy) [7], an alternative performance measure used in
NIST evaluations.

4. Results
Figure 1 shows EER results for the five subsystems using dif-
ferent backends. For many of the backends, the relative perfor-
mance remains constant, being the Russian phonotactic subsys-
tem (Phon-RU) the winner, followed by the Dot-Scoring sub-
system. Regarding the backends, the fully Bayesian Gaussian
backend (FBGB) shows an almost imperceptible improvement
with respect to the generative Gaussian backend (GB). The
Bayesian estimation is supposed to guard against overfitting,
which could indicate that the development set is large enough
to estimate a simple GB. The generative Gaussian mixture back-
end (GMB) improves the performance in all the cases, achiev-
ing the best results with Phon-RU. The discriminative Gaussian
backend (DGB) gets the best overall performance, but at the
expense of having to tune the MMI factor and the number of
training iterations, and at the risk of overfitting. Last, the multi-
class Logistic Regression backend (LR) didn’t get the expected
results, maybe due to the lack of an optimum estimation algo-
rithm.

The GMB backend in Figure 1 is composed by two com-
ponents per mixture. Figure 2 shows how the performance de-
grades as the number of components increases, being 2 the most
conservative size.
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Figure 3: Cmxe for the best phonotactic and two acoustic sub-
systems using T-norm and ZT-norm prior to different backends.
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Figure 4: EER and Cmxe for the i-Vector subsystem using a
generative Gaussian backend, when the highest scored develop-
ment signals are discarted.

Figure 3 shows the effect of applying Z-norm and T-norm
for the three best performing backends and subsystems. Note
that a Z-norm has no effect if it precedes any Gaussian model,
so only the T-norm and the ZT-norm are considered. The Phon-
RU subsystem shows a very slight improvement when either a
T-norm or the ZT-norm are applied. On the other hand, and
despite being quite similar approaches, the behavior of the two
acoustic systems differs when the score normalizations are ap-
plied. The Dot-Scoring subsystem degrades when the T-norm
is applied, while it improves with the ZT-norm. The iVector
subsystem, however, improves with the T-norm and shows an
irregular behavior under the ZT-norm.

4.1. Filtering out development signals

A well designed development set should not contain speakers
that were previously used to train the language models. Nev-
ertheless, when uncontrolled recordings (such as VOA broad-
cast news recordings) are used, this requirement may be unen-
forceable. Repeated speakers should have high likelihoods, and
therefore, a straightforward cleaning method could be to remove
the highest score signals from the development set. Figure 4
shows that removing such signals clearly improves the iVector
subsystem’s performance. Since an excessive reduction could
affect the robustness of the more complex backends, removing
the 1200 highest likelihood signals (out of 13269) seems to be
appropriate. Figure 5 shows the histogram of the fused devel-
opment target scores, which clearly features a stretched tail to
the right. The 1200 highest scores are just those above 16.5
(marked in red), a threshold that fits quite well the right tail.

Table 1 summarizes EER results for each subsystem and the
fusion of all of them, aplying the three best performing back-
ends, with and without score normalization and filtering. Best
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Figure 5: Histogram of fused development target scores. The
1200 highest scores are above 16.5 (marked in red).

Table 1: EER for each subsystem and fusion aplying the three
best performing backends, with and without score normaliza-
tion and filtering.

Norm & Filtering
GB GMB DGB GB GMB DGB

Phon-CZ 3.39 3.05 2.93 3.34 2.92 2.88
Phon-HU 3.04 2.79 2.56 2.85 2.71 2.43
Phon-RU 2.56 2.22 2.24 2.48 2.34 2.19

Dot-Scoring 2.85 2.42 2.36 2.63 2.15 2.13
iVectors 3.82 3.13 2.85 2.88 2.68 2.56

Fused 1.62 1.41 1.39 1.47 1.25 1.32

performance was attained by GMB (1.25EER) when the score
normalization and filtering was used, yielding 23% relative im-
provement with respect to GB (1.62 EER) when no score nor-
malization or filtering was used.

5. Conclusions
A study of different backends has been carried out in a state-
of-the-art Language Recognition system. The backend plays
a dual role, mapping the trained language scores to the target
languages and adapting and calibrating the score space. The
2-component Gaussian Mixture Backend and the Discrimina-
tive Gaussian Backend attained the best performance, being the
GMB a more conservative alternative. Both T-norm and ZT-
norm may improve results, but their effect was shown to be
different when applied to quite similar subsystems. Filtering
out high score development signals (probably avoiding repeated
speakers) was in practice a simple and efficient method to im-
prove performance.
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