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Abstract—Most common approaches to phonotactic language
recognition deal with several independent phone decodings. These
decodings are processed and scored in a fully uncoupled way,
their time alignment (and the information that may be extracted
from it) being completely lost. Recently, we have presentedtwo
new approaches to phonotactic language recognition which take
into account time alignment information, by considering time-
synchronous cross-decoder phone co-occurrences. Experiments
on the 2007 NIST LRE database demonstrated that using
phone co-occurrence statistics could improve the performance
of baseline phonotactic recognizers. In this paper, approaches
based on time-synchronous cross-decoder phone co-occurrences
are further developed and evaluated with regard to a baseline
SVM-based phonotactic system, by using: (1) counts ofn-grams
(up to 4-grams) of phone co-occurrences; and (2) the degree of
co-occurrence of phonen-grams (up to 4-grams). To evaluate
these approaches, a choice of open software (Brno University
of Technology phone decoders, LIBLINEAR and FoCal) was
used, and experiments were carried out on the 2007 NIST
LRE database. The two approaches presented in this paper
outperformed the baseline phonotactic system, yielding around
7% relative improvement in terms of CLLR. The fusion of the
baseline system with the two proposed approaches yielded1.83%
EER and CLLR = 0.270 (meaning 18% relative improvement),
the same performance (on the same task) than state-of-the-art
phonotactic systems which apply more complex models and tech-
niques, thus supporting the use of cross-decoder dependencies for
language recognition1.

Index Terms—Time-Synchronous Cross-Decoder Phone Co-
occurrences, Phonotactic Language Recognition, Support Vector
Machines

I. I NTRODUCTION

SPOKEN Language Recognition (SLR) refers to the task
of recognizing by automatic means the language spoken

in an utterance. SLR is needed in many applications, such
as multilingual conversational systems [1], spoken language
translation [2], multilingual speech recognition [3], spoken
document retrieval [4], etc.
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1EDICS: Multilingual Recognition and Identification

The term spoken language recognitioncan be used to
describe two possible tasks: (1)spoken language identification
(SLI), which consists in deciding which language is spoken
in an input utterance; and (2)spoken language verification
(SLV), which consists in deciding whether or not a target
language is spoken in an input utterance. In the first case,
the task can be further specified asclosed-set identification,
when the language spoken in an input utterance is known to
belong to a closed set of languages, oropen-set identification,
when the input utterance may contain any (known or unknown)
language. In closed-set identification, the most likely language
(according to the available models) is chosen. The same
applies for open-set identification, but only if the likelihood of
the most likely language exceeds a given threshold; otherwise
the language spoken in the input utterance is classified asun-
known. Finally, language verification can be seen as a special
case of open-set identification with just one known class: for
each target language, the input utterance isacceptedonly if
the likelihood ratio exceeds a given threshold; otherwise,it is
rejected.

This work focuses on the SLV task as defined for the
National Institute of Standards and Technology (NIST) Evalu-
ations [5]:given a segment of speech and a language of interest
(target language), determine whether or not that language is
spoken in the segment, based on an automated analysis of the
data contained in the segment. To measure the performance
of a spoken language verification system, a set of trials is
presented, each trial comprising the following elements: (1) a
segment of audio containing speech in a single language; (2)
the target language; and (3) the set of non-target languages,
that is, those languages that may be spoken in the segment.
For each trial, the system must output: (1) a hard decision
(yes/no) about whether or not the target language is spoken in
the segment; and (2) a score indicating how likely is for the
system that the target language is spoken in the segment, the
higher the score the greater the confidence that the segment
contains the target language.

Most SLR systems can be classified under two main cat-
egories [6], [7]: acoustic systems and phonotactic systems.
Acoustic systems characterize target languages by means of
low-level, usually short-time spectral features, whereasphono-
tactic systems use higher level features, typically sequences of
phones produced by a number of Parallel Phone Recognizers
(PPR). Acoustic systems are easy to develop, since they only
need speech signals to train acoustic models for the target
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languages, but they rely just on acoustic information. On the
other hand, phonotactic systems exploit the acoustic, phonetic
and phonotactic information contained in phone sequences
[8], so they should potentially yield much better performance
than acoustic systems. However, they require phonetically
transcribed resources to train phone recognizers, and their
performance and robustness is highly dependent on the per-
formance and robustness of such recognizers.

Models for target languages in phonotactic systems are built
by decoding hundreds or even thousands of training utterances
and using the phone-sequence (or phone-lattice) statistics
(typically, counts ofn-grams) in different ways. Since training
data feature a wide range of speakers and diverse linguistic
contents, beinglanguagethe common factor, it is expected that
phone sequence statistics reflect language-specific characteris-
tics. Additionally, by using parallel phone sequences, which
may be providing complementary information, phonotactic
systems can potentially exploit suchcomplementarity. Note
that each phone recognizer handles a different inventory of
soundsand a different database to train phone models.

The baseline system developed in this work follows one of
the most common phonotactic SLR approaches, which uses
counts of phonen-grams to build feature vectors that feed a set
of discriminative classifiers based on Support Vector Machines
(SVM) [9], [10]. In general,N phone decoders are applied in
parallel to the input utterance, yieldingN phone decodings.
The output of each decoder is scored for each target language,
by applying a set of SVM models estimated from the outputs
of the phone decoder for a training database. This approach
(which we call Phone-SVM), is reported to perform better
[11] than the previously proposed Parallel Phone Recognition
followed by Language Modeling (PPRLM) approach (which
we call Phone-LM) [12].

The above described structure definesN independent data
processing channels, and no cross-decoder dependencies are
exploited for language modeling, information being fused only
at the score level. A quite straightforward approach would con-
sist in building a composite feature vector by concatenating the
feature vectors corresponding to theN phone decoders, and
computing a single score per target language. But this way we
would only exploit cross-decoder dependencies among global
statistics, time synchronization information being completely
lost.

In this work, we start from the hypothesis that using time-
synchronous cross-decoder co-occurrences of events (single
phones or longer segments spanning several phones) to char-
acterize target languages may improve performance in phono-
tactic language recognition. Time synchronization information
is obtained as a by-product from phone decodings. Storing it
explicitly and building models based on that information only
represents a slight increase in computational cost compared to
the cost of phone decoding.

In a recent work, we have presented a simple approach to
phonotactic language recognition which uses statistics oftime-
synchronous cross-decoder phone co-occurrences at the frame
level [13]. In that approach, phone segmentation was extracted
as side information from 1-best phone decodings, and allowed
us to consider thesimultaneous occurrence(co-occurrence)

of N phone labels (one per decoder) at each frame. This
way, a frame-synchronous sequence of multi-phone labels was
defined and used for modeling purposes, following either the
Phone-LM or the Phone-SVM approaches.

In experiments on the 2007 NIST LRE database, it was
shown that fusing baseline phonotactic systems with sys-
tems based on time-synchronous cross-decoder phone co-
occurrences led to improved performance in all the cases (see
[13] for details). However, systems based on time-synchronous
cross-decoder phone co-occurrences did not outperform the
baseline phonotactic systems. On the other hand, the Phone-
LM approach performed better than the Phone-SVM approach,
probably due to the fact that only unigram statistics were used
in Phone-SVM, whereas up to 4-grams were considered in
Phone-LM.

The approach described above was extended in [14], by con-
sidering statistics of up to 3-grams (instead of just unigrams)
of phone co-occurrences in a SVM classifier. Additionally, a
second approach was also introduced in [14], which considered
time-synchronous cross-decoder co-occurrences of longerseg-
ments, spanning up to three phones (instead of single phones).

In this paper, we present the latest developments attained
under both approaches, using statistics of up to 4-grams of
phone co-occurrences and statistics of co-occurrences of seg-
ments spanning up to 4 phones, respectively, in an SVM-based
phonotactic language recognizer. Since the baseline system
has been improved with regard to previous works (due to the
introduction of SVM weighting), the relative improvements
provided by the proposed approaches are smaller than those
reported before, but quite remarkable, specially regarding the
second approach. As in previous works, systems have been
developed by means of open software and evaluated on the
2007 NIST LRE database.

The rest of the paper is organized as follows. Background
on spoken language technology, specially that related to
phonotactic approaches, including previous work using cross-
decoder information to model target languages, is presented
in Section II. The baseline system and approaches using
statistics of time-synchronous cross-decoder co-occurrences
of single phones or segments spanning several phones, are
described and formally defined in Section III. Issues regarding
the experimental setup (datasets, evaluation measures, phone
decoders, etc.) are addressed in Section IV. Section V presents
and discusses the results obtained in language recognition
experiments on the core task of the 2007 NIST Language
Recognition Evaluation, using the baseline system and the
two approaches proposed in this work, and compares them
with results reported by other authors on the same database.
Finally, conclusions and potential lines for future work are
outlined in Section VI.

II. BACKGROUND

The general structure of a SLR system is shown in Figure
1. It involves four stages: (1) extracting features/tokens, (2)
applying a classifier which scores feature/token sequenceswith
regard to models of target languages, (3) applying a backend
to normalize/calibrate the resulting scores and (4) makinga
hard decision (which depends on the task).
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Fig. 1. Structure of a Spoken Language Recognition (SLR) system.

Feature extraction aims to concentrate in few and, as far as
possible, independent (that is, uncorrelated) parametersthe in-
formation relevant to the classification task. Spoken languages
can be automatically identified based on features derived from
the speech signal at different levels [15]:sounds(i.e. short-
term spectral patterns), prosodic information, phonotactic in-
formation extracted from phone sequences/lattices produced
by phone decoders, lexical and syntactic information extracted
from word sequences/lattices produced by large vocabulary
speech recognizers, etc. In SLR systems based on high-
level features, feature extraction involves applying a speech
tokenizer (e.g. a phone decoder) which should be trained
beforehand. Phonotactic systems assume that phone decoders
can deal with acoustic variability, thus phone decodings are
assumed to be reliable enough to characterize the spoken
language. However, phone decodings may become unreliable
if not enough (or unsuitable) data are used to train phone
models. It has been shown that using a robust phone decoder
is a key issue in the design of high-performance phonotactic
SLR systems [16].

Language classifiers capture feature patterns and use them
to characterize target languages or to discriminate target
languages from each other, depending on the classification
approach (generative vs. discriminative).

The backend is introduced to alleviate differences in the
volume and type of data used to train language models (which
may yield score values in very different ranges). The backend
allows to use a single threshold for all the target languages
and makes the system work at the desired application point.
Finally, if the backend parameters are estimated on develop-
ment data matching the characteristics of test data, applying
the backend may also compensate for a mismatch between
train and test conditions (e.g. training on clean speech and
using noisy speech to estimate the backend parameters would
allow to classify noisy speech).

A. Spoken language technology: historical perspective

The availability of high-performance HMM-based phone
decoders andn-gram language modeling technology (origi-
nally developed for automatic speech recognition applications)
allowed the development of the Phone Recognition followed
by Language Models (PRLM) approach in mid nineties.
PRLM systems used language-specificn-gram models to score
the phone sequences produced by a single phone decoder,

yielding one score per target language [17], [18]. Parallel
PRLM (PPRLM) systems [19], [20] extended the PRLM
paradigm by applying several phone decoders (expected to be
complementary) and producing one score per target language
and phone decoder (a backend was needed in order to get a
single score per target language). Around 1996, the PRLM and
PPRLM approaches were state-of-the-art SLR technology.

From 1996 to date, the NIST Language Recognition Eval-
uations (LRE) [21] have provided common data, protocols
and performance measures to compare SLR systems from
all over the world, supporting and to a large degree leading
the development of new methodologies. In 1996, the PRLM
and PPRLM approaches yielded the best language recognition
performance. Around 2003, systems based on spectral features
had reached the performance of phonotactic systems. The
GMM-UBM approach, originally developed for speaker recog-
nition applications [22], was applied to language recognition
[23] and successfully combined with Shifted Delta Cepstral
(SDC) features [24]. Gaussian Mixture Model (GMM) tok-
enization was proposed as an alternative approach to phone
tokenization [25] and Support Vector Machines (SVM) were
introduced as classifiers on SDC features using a GLDS kernel
[26], [27]. The best single system presented to the 2003
NIST LRE was based on spectral features, and surpassed the
performance of PPRLM systems. The best performance was
attained by the fusion of one phonotactic and two acoustic
systems, using a duration-dependent Gaussian backend [28].

Subsequent evaluations in 2005, 2007 and 2009 dealt with
an increasing amount of data and target languages (7, 14
and 23 languages, respectively). Despite this, SLR perfor-
mance continued to improve due to the use of new and
more powerful approaches and the development of fusion and
calibration tools, which allowed the easy combination of an
arbitrary number of systems (and cross-site collaborations).
Also, identifying complementary systems (in other words,
systems providing different, uncorrelated information) became
an important issue, since they may help global performance
through fusion (see e.g. [29]).

Acoustic (spectral-based) and phonotactic (token-based)
systems have dominated the SLR technology during the last
decade. Acoustic systems have improved due to discriminative
GMM training [30], [31], acoustic adaptation (CMLLR) [32],
and specially the introduction of GMM supervectors (GSV) as
a new means of representing spoken languages for SVM-based
discriminative classification [33].

Phonotactic approaches have improved with the use of
phone lattices instead of 1-best phone decodings [34]; the
use of SVMs to model phonotactics [9], [10] (the same idea
had been previously applied to high-level speaker verification
[35]); the development of high-quality phone decoders, using
large amounts of data [16], more complex structures [36],
anti-models [37] and acoustic adaptation [38]; and the efforts
to get increasingly less supervised systems, such as ASM
tokenization [39][40], where automatically derived universal
acoustic units (Acoustic Segment Models[41]) were used
instead of language-dependent phones.

Finally, increasingly sophisticated fusion and calibration
techniques have been applied, including generative Gaussian
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backends [28], [42] and discriminative logistic regression [43].

B. Current trends

Regarding acoustic systems, authors are exploring the use
of universal articulatory features [44], prosodic features [45],
speech production traits [46] and other alternative (comple-
mentary) features. Also, Joint Factor Analysis (JFA) [47],
previously applied to speaker recognition, has been recently
applied to spoken language recognition [48].

Regarding token-based approaches, variations on the Phone-
SVM approach are being proposed which aim at simplifying,
generalizing and reducing supervision in the estimation of
models. Recently, Stolcke et al. [49] reported that using a
single multilingual phone recognizer (giving universal pho-
netic coverage) yielded better performance than using vari-
ous language-specific phone recognizers. Tong has proposed
the use of the most discriminant set of phones regarding a
language recognition task to build a target-oriented phone
tokenizer [50]. Recently, this approach has been refined by
extending the front-end with a language model per target
language, which takes into account the discriminative ability
of phones to define a set of target-aware parallel phone
tokenizers [51]. Finally, some efforts are being devoted to
deal with high-dimensionality representations in SVM-based
phonotactic systems [52], [53], [54].

C. Exploiting cross-decoder information in phonotactic SLR

There is a continued interest in integrating information from
various sources at low (feature) and intermediate (model)
levels, instead of doing it at the score level (see e.g. [55]).
Specifically, the work presented in this paper illustrates a
particular way of integrating information from various phone
decoders at the feature (token) level.

As far as we know, the idea of using phonetic information
in the cross-stream (cross-decoder) dimension was first ap-
plied for speaker recognition in the Johns Hopkins University
(JHU) 2002 Workshop, where two decoupled time and cross-
stream dimensions were modelled separately and integrated
at the score level [56]. The key idea explored in the JHU
2002 workshop was exploiting high-level features to improve
speaker recognition. At that time, the PPRLM methodology
had been successfully applied to language recognition, so
trying to model speaker-specific pronunciation dynamics by
means of token sequences produced by a set of phonetic de-
coders was almost mandatory. Taking PPRLM as the baseline
approach for speaker detection, the hypothesis was made that
the statistics of cross-decoder phone co-occurrences may be
somehow related to how different speakers realize phonemes.
The approach began by aggregating time stamps from all
phone sequences into one single segmentation. Then, assuming
that the resulting segments were statistically independent,
cross-decoder bigram probabilities for all pairs of decoders
were computed based on the co-occurrences observed in the
alignments for a training corpus. Given an input utterance,
decodings were aligned the same way and the resulting phone-
pairs were scored by means of previously trained bigram
language models (one per target speaker plus and additional

background model used for normalization). This approach
outperformed the baseline (time dimension) system, yielding
less than half the EER in experiments on NIST 2001 SRE
Extended Data Task. Moreover, a linear combination of the
scores produced by baseline and cross-stream systems further
reduced the EER, indicating that they provided complementary
information. However, an alternative time-dimension system
based on binary decision tree models yielded better resultsthan
the cross-stream approach. The same methodology was then
applied on the cross-stream dimension (actually time depen-
dencies were also included in the approach), but results were
discouraging. According to authors, binary decision treesmay
be modeling general dependencies across phonetic streams,
which strongly contaminate speaker-specific characteristics.

Some years later, cross-stream dependencies were used via
multi-string alignments in a language recognition application
[11]. Though focused on improving a PPRLM system by
applying SVM for both discriminative modeling of phonotactic
constraints and discriminative score combination, authors also
proposed the use of cross-decoder bigram features, as a way
of representing ”certain sounds that may not be adequately
represented by phones in any of the parallel streams”. So, be-
sides normalintra-streambigrams such as(aA(t− 1), aA(t)),
cross-streambigrams of the form(aB(t−1), aA(t)) were also
considered, and the resulting system outperformed the baseline
system on most conditions. Note that time-synchronous phone
co-occurrences (i.e. simultaneous cross-decoder phone depen-
dencies) were not considered in this work. Since only phone
labels were available (without time stamps), theClustal W
multiple sequence algorithm [57] was applied to align phone
streams, where a similarity weight matrix was used to encode
phonetic similarity as defined by experts (taking into account
features such as voicing, manner and place of articulation,
etc.).

Finally, cross-decoder information has been also exploited
to allow cross-lingual phonetic recognition, i.e. applying phone
decoders in foreign languages to get phone decodings in
a target language. This is accomplished by using context-
sensitive probabilistic phone mapping and assuming that the
probabilities of observing a symbol and its cross-decoder
contexts are independent [58].

III. I MPROVED MODELING OF CROSS-DECODERPHONE

CO-OCCURRENCES

Figure 2 shows the structure of the baseline phonotactic
system used in this work. The input utterance is processed
by N parallel phone decoders, which perform all the needed
signal processing operations and the computations required to
search the 1-best phone hypothesis (according to the avail-
able phone models, which are embedded in the decoders),
yielding as a by-product the time stamps corresponding to
the optimal phone segmentations. Each phone decoder defines
an independent Phone-SVM subsystem. The phone sequence
produced by each decoderi (i ∈ [1, N ]) is scored for each
target languagej (j ∈ [1, L]), by computing counts of phone
n-grams, building a feature vector with them and applying
an SVM modelλ(i, j) estimated from the outputs of the
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phone decoderi for a training database, takingj as the target
language. For ease of presentation, the computation ofn-gram
counts has been implicitly located inside the SVM modules in
Figure 2.

Scores output by each Phone-SVM subsystem are applied a
t-norm [59], and calibrated by means of a Gaussian backend.
Again, for ease of presentation, both elements have been
jointly represented in the backend module in Figure 2. Finally,
the resulting calibrated scores are discriminatively fused by
means of linear logistic regression, to getL final scores for
which a minimum expected cost Bayes decision is taken,
according to application-dependent language priors and costs
[43], [60], [61]. More details are given in Section IV.

Fig. 2. Baseline SVM-based phonotactic language recognition system.

The two approaches proposed in this paper match the
structure of the baseline system described above, except
for the way Phone-SVM modules are defined, i.e. the way
phone decodings are used to compute features for the SVM.
The remaining elements (phone decoders, SVM classification,
backend, fusion) are kept unchanged. Let us illustrate this
point.

Consider a choice of two decoders A and B from the set of
N decoders represented in Figure 2. Time-synchronous cross-
decoder phone co-occurrences can be obtained by aligning
at the frame level phone sequences produced by decoders A
and B. This implicitly yields a joint phone segmentation and
(after compacting repeated labels into one single label) the
corresponding sequence of two-phone labels. This sequence
can be processed and modelled exactly the same way as
single-phone sequences in the baseline system (see Figure 3).
This configuration can be easily extended to any choice of 2
decoders and a whole co-occurrence system can be built by
fusing the scores for all the 2-decoder subsystems. This is how
the first approach works.

The above described procedure is similar to that proposed
in [56]. However, as we explain in Section III-A, instead
of defining two decoupled models in time and cross-decoder

Fig. 3. A 2-decoder phone co-occurrence language recognition subsystem.

dimensions, we define and apply an integrated model which
usesn-gram counts of time-synchronous cross-decoder multi-
phone labels as features for a SVM-based discriminative
classifier. This way, time and cross-decoder dimensions can
be jointly modelled.

The second approach considers longer segments, spanning
up ton phones (phonen-grams) in the 1-best phone sequences.
This second approach also defines a new way of computing
co-occurrence statistics which does not rely on discrete counts,
but on a continuous measure of the degree of co-occurrence
of segments (phonen-grams) from different decoders. This
way, we circumvent the border issues (transitional multi-phone
labels appearing at phone borders that may distort sequence
modeling) observed in the first approach. Details are given in
Section III-B.

A. Approach 1:n-gram counts of phone co-occurrences

Let us consider an input utteranceX and N phone
decoders producing 1-best phone segmentationsSd(X) =
{sd(1), . . . , sd(T )}, d ∈ [1, N ], sd(t) being the phone
label produced by decoderd at frame t, for t ∈
[1, T ]. A time-synchronous (frame level) cross-decoderk-
phone co-occurrence is defined by thek-tuple cπ(t) =
(sd1

(t), sd2
(t), . . . , sdk

(t)), π = (d1, d2, . . . , dk) being a
choice ofk decoders, withk ∈ [2, N ]. A sequence of 3-phone
co-occurrences (corresponding to 3 decoders) is depicted in
Figure 4. Note that a sequence ofk-phone co-occurrences
Cπ = {cπ(1), cπ(2), . . . , cπ(T )} includes information from
both time and cross-stream dimensions.

We make the assumption that sequences of time-
synchronous cross-decoderk-phone co-occurrences are some-
how language-specific. So, a language recognition system
could be built by counting such events for a training database
and estimating SVM-based language models, which should be
able to discriminate target languages.

Note that forN decoders,N !/k!(N − k)! of such systems
can be defined, applied on an independent way and their
scores fused to get a full time-synchronous cross-decoder
phone co-occurrence language recognition system. In this
work time-synchronous cross-decoder phone co-occurrences
are considered only fork = 2 andk = 3 decoders.

This approach aimed to model cross-decoder segmental
(phone-level) dependencies, not cross-decoder frame-level de-
pendencies. The use of frame-level multi-phone labels was
motivated just by the need to synchronize phone decodings
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Fig. 4. Approach 1 (3-decoder configuration): (1) time-synchronous cross-decoder phone co-occurrence labels are built by concatenating phone labels from
different decoders on a frame-by-frame basis; (2) to handletransitional segments, a mode filter is iteratively applied(until convergence) on a sliding window
of 7 frames centered on the analyzed frame; and (3) repeated multi-phone labels are reduced to a single label.

each other. A sort of segmental representation can be recovered
by reducing each sequence of repeated multi-phone labels toa
single label. However, when analyzing frame-level sequences,
two types of segments can be identified: (1)stationary seg-
ments, corresponding to relatively long portions of speech for
which decoders keep the same labels; and (2)transitional
segments, appearing at phone borders, resulting from the fact
that each decoder detects phone transitions at different points
(see an example in Figure 4). We hypothesized that cross-
decoder phone co-occurrences corresponding to transitional
segments reflected random variations in the way each decoder
determined phone borders and could greatly distort language
models. So, before reducing repeated labels in stationary
segments to a single label, transitional segments were filtered
out. Details are given in Section IV-D.

After filtering transitional segments and reducing station-
ary segments, the resulting sequences of multi-phone la-
bels (representing time-synchronous cross-decoder phoneco-
occurrences) were used to computen-gram statistics and build
feature vectors, which were applied either to estimate SVM
parameters or to score an input signal with regard to SVM-
based language models (exactly the same way as for sequences
of single-phone labels in the baseline system).

B. Approach 2: degree of co-occurrence of phonen-grams

The development of a second approach was motivated by the
border issues described above. In Approach 1, co-occurrence
information and sequence information were extracted in first
and second place, respectively. In between, transitional seg-
ments were filtered out, since they were assumed to introduce
noise. However, segments considered transitional may actually
convey important (discriminative) information. In Approach 2,
sequence information is extracted in first place, by considering
segments spanning up ton phones (phonen-grams) in the

1-best phone decodings, and co-occurrence information is
extracted in second place, by computing the degree of time-
synchronous cross-decoder co-occurrence for such segments.

To compute the degree of co-occurrence for any combina-
tion of k segments (each coming from a different decoder), we
add the counts corresponding to frames in the input utterance
where those segments actually overlap. The count assigned to
each frame will depend on the length of the segments and
on the number of different combinations ofk segments over-
lapping at that frame. We consider time-synchronous cross-
decoder co-occurrences only for segments spanning the same
number of phones. Co-occurrence information for segments of
different length (unigrams co-occurring with bigrams, bigrams
with trigrams, etc.) is not used in this work. Note that for each
decoder, up ton phonen-grams overlap at each framet, which
means that up tonk combinations of phonen-grams can co-
occur at each frame for a choice ofk decoders.

The key points of count computation are: (1) each phone
n-gram is counted once for each decoder, so its count is dis-
tributed among all the frames it spans; and (2) the contribution
corresponding to a given phonen-gram at a given frame for
a given decoder is distributed among all the combinations of
phonen-grams at that frame for the remaining decoders.

In order to give a formal specification of the computation of
the degree of co-occurrence, we first provide some definitions.
We recommend to check the example in Figure 5, which is
briefly analyzed at the end of this section, to better understand
these definitions.

Let Γ(n)
d (t) be the set ofn-grams (segments spanningn

phones) overlapping at framet in decodingd. Let w(n)
d ∈

Γ
(n)
d (t) be one of suchn-grams andlen(w(n)

d , t) the number
of frames it spans. Note that|Γ(n)

d (t)| = n for all t except for
a number of frames at both ends, where1 ≤ |Γ

(n)
d (t)| < n.

Let G(n)
π (t) be the set of time-synchronous cross-decoder
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Fig. 5. Approach 2 (2-decoder configuration, up to bigrams):(1) each phonen-gram is counted once for each decoder, so its count is distributed among all
the frames it spans; (2) the contribution corresponding to agiven phonen-gram at a given frame for a given decoder is distributed among all the combinations
of phonen-grams appearing at that frame for the remaining decoders; and (3) the count corresponding to a cross-decoder co-occurrence of phonen-grams
at a given frame is computed as the average contribution of the phonen-grams appearing in the co-occurrence (one per decoder).

co-occurrences ofk phone n-grams at framet, for a
choice of decodersπ = (d1, d2, . . . , dk), and let c(n)π =

(w
(n)
d1

, . . . , w
(n)
dk

) ∈ G
(n)
π (t) be one of such co-occurrences.

The contribution of the phonen-gram w
(n)
dj

∈ c
(n)
π to the

count ofc(n)π at framet is defined as follows:

count(w
(n)
dj

, t) =
1

len(w
(n)
dj

, t) ·
k
∏

l=1

l 6=j

|Γ
(n)
dl

(t)|

(1)

The count corresponding to any co-occurrencec
(n)
π at frame

t is computed as the average contribution of the phonen-grams
included inc(n)π , only if c(n)π actually appears at framet:

count(c(n)π , t) =















1
k

k
∑

j=1

count(w
(n)
dj

, t) if c
(n)
π ∈ G

(n)
π (t)

0 otherwise
(2)

Finally, the degree of co-occurrencecorresponding to
any choice of k cross-decoder phonen-grams c

(n)
π =

(w
(n)
d1

, . . . , w
(n)
dk

) is computed by adding the counts for all
frames:

dc(c(n)π ) =

T
∑

t=1

count(c(n)π , t) (3)

In practice, the degree of co-occurrence is computed in
two passes. The first pass computes and stores|Γ

(n)
d (t)| and

len(w
(n)
d , t) for each decoderd and each framet. Starting

from these values, the second pass accumulates the counts of
cross-decoder co-occurrences on a frame-by-frame basis, by
applying equation 2 for each combination of phonen-grams
appearing at framet.

Let us consider the example in Figure 5, which shows co-
occurrences of phone unigrams and phone bigrams for a choice
of two decoders. The sets ofn-grams appearing at framet =
15 are:

Γ
(1)
1 (15) = {c} Γ

(2)
1 (15) = {ac, cb}

Γ
(1)
2 (15) = {y} Γ

(2)
2 (15) = {xy, yz}

and their lengths:

len(c, 15) = 8 len(ac, 15) = 17
len(y, 15) = 13 len(cb, 15) = 15

len(xy, 15) = 19
len(yz, 15) = 18

Starting from these values and according to equation 2, the
counts of co-occurrences of phonen-grams at framet = 15
are computed as follows:

count((c, y), 15) =
1

2
·

(

1

8 · 1
+

1

13 · 1

)

count((ac, xy), 15) =
1

2
·

(

1

17 · 2
+

1

19 · 2

)

count((ac, yz), 15) =
1

2
·

(

1

17 · 2
+

1

18 · 2

)

count((cb, xy), 15) =
1

2
·

(

1

15 · 2
+

1

19 · 2

)

count((cb, yz), 15) =
1

2
·

(

1

15 · 2
+

1

18 · 2

)

Note that, in this approach, SVM feature vectors do not con-
tain the statistics (e.g.n-gram counts) of a sequence of labels
(as in Approach 1), but a joint distribution of time-synchronous
co-occurrence counts for cross-decoder combinations of phone
unigrams, phone bigrams, phone trigrams, etc. Since storing
and using this information for all the possible cross-decoder
combinations of phonen-grams is computationally unfeasible,
only those combinations yielding the highest counts on a
training database are used to estimate the SVM and to score
input utterances (see Section IV-E for details).

IV. EXPERIMENTAL SETUP

In this Section we provide details about the task, datasets
and measures used to evaluate the proposed approaches, and
about the implementation of SLR systems (all following the
Phone-SVM modeling approach): phone decoders used as
front-end, how the lack of synchronization in phone decodings
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was handled to get time-synchronous cross-decoder features,
SVM feature representation and modeling decisions, SVM
feature weighting and score calibration and fusion. In some
cases, parameters were tuned heuristically, by choosing those
values yielding best results in preliminary experiments onthe
development dataset (which are presented too).

A. Train, development and evaluation datasets

Experiments have been carried out on the 2007 NIST
Language Recognition Evaluation (LRE) database [5]. The
2007 NIST LRE defined a spoken language recognition task
for conversational speech across telephone channels, involving
14 target languages: Arabic, Bengali, Chinese (Cantonese,
Mainland, Taiwan, Min and Wu), English, (American and
Indian), Hindustani (Hindi and Urdu), Spanish (Caribbean and
non-Caribbean), Farsi, German, Japanese, Korean, Russian,
Tamil, Thai and Vietnamese. Some languages featured various
dialects or accents (shown above in parentheses). The test set
was split into three subsets, each including 2158 segments,
according to their nominal duration: 30, 10 and 3 seconds,
respectively. Results reported in this paper have been com-
puted, except where noted, on the subset of 30-second speech
segments for the closed-set condition, which was the primary
task in the 2007 NIST LRE.

Train and development data were limited to those distributed
by NIST to all 2007 LRE participants: (1) the Call-Friend
Corpus2; (2) the OHSU Corpus provided by NIST for the
2005 LRE3; and (3) the development corpus provided by NIST
for the 2007 LRE4. Table I summarizes the languages/dialects
included in these corpora. For development purposes, 10 con-
versations per language were randomly selected, the remaining
conversations being used for training. Development conversa-
tions were further divided into segments, each containing 30
seconds of speech (see Table II for more details).

TABLE I
LANGUAGES/DIALECTS IN THE TRAINING AND DEVELOPMENT DATASETS

FOR THE2007 NIST LRE.

Data Languages
English, (Southern, non-Southern), Mandarin

CallFriend (Mainland, Taiwan), Korean, Japanese, Vietnamese,
Hindi, French, Arabic, Farsi, German, Tamil,
Spanish (Caribbean, non-Caribbean)

OHSU English, (American, Indian),Hindi, Japanese, Korean,
2005 Mandarin (Mainland, Taiwan), Tamil, Spanish,

German
LRE07 Arabic, Bengali, Chinese (Min, Wu, Cantonese),

Dev Russian, Thai, Urdu

B. Evaluation measures

In spoken language verification tasks two types of errors are
considered: (1)misses, those for which the correct answer is
Acceptbut the system saysReject; and (2)false alarms, those
for which the correct answer isRejectbut the system says

2See http://www.ldc.upenn.edu/.
3OHSU Corpora, http://www.ohsu.edu/.
4See http://www.nist.gov/speech/tests/lre/2007/.

TABLE II
2007 NIST LRECORE CONDITION: TRAINING DATA (HOURS),

DEVELOPMENT AND EVALUATION DATA (NUMBER OF 30-SECOND SPEECH
SEGMENTS), DISAGGREGATED FOR TARGET LANGUAGES.

Training Development Evaluation
Language (hours) (#segments) (#segments)
Arabic 2894 179 80
Bengali 277 76 80
Chinese 9149 567 398
English 7909 288 240
Farsi 2544 225 80
German 3139 173 80
Industani 3543 243 240
Japanese 4354 141 80
Korean 4010 150 80
Russian 277 66 160
Spanish 6460 531 240
Tamil 3202 165 160
Thai 277 64 80
Vietnamese 2570 205 160

TOTAL 50605 3073 2158

Accept. Therefore, for any test condition the corresponding
error rates can be computed as the fraction of target trials
that are rejected (miss error rate, Pmiss) and the fraction of
impostor trials that are accepted (false alarm error rate, Pfa),
and suitable cost functions can be defined as combinations of
these basic error rates.

1) Graphical evaluation:Detection Error Tradeoff (DET)
curves [62] provide a straightforward way of comparing global
performance of different systems for a given test condition.
A DET curve is generated by computingPmiss andPfa for
a wide range of operation points (thresholds), based on the
scores yielded by the analyzed system for a given test set.
DET curves are used in NIST evaluations to support system
performance comparisons. In this work, DET curves were
generated by means of NIST software.

2) Equal Error Rates: The most common performance
measure is the Equal Error Rate (EER), which reports system
performance when at the operation point for which the false
alarm error rate (Pfa) is equal to the miss error rate (Pmiss).
EER is a very simple measure, useful in many contexts, but
it does not allow to compare the global performance of two
systems.

3) Log-Likelihood Ratio Average Cost (CLLR): When
scores represent (or can be interpreted) as log-likelihoodratios,
it is possible to evaluate systems also in terms of the so
calledCLLR [63], which is used as an alternative performance
measure in NIST evaluations. We internally considerCLLR as
the most relevant performance indicator, for three reasons: (1)
CLLR allows us to evaluate system performance globally by
means of a single numerical value, which is somehow related
to the area below the DET curve, provided that scores can be
interpreted as log-likelihood ratios; (2)CLLR does not depend
on application costs; instead, it depends on the calibration
of scores, an important feature of detection systems; and (3)
CLLR has higher statistical significance than EER, since it
is computed starting from verification scores (in contrast to
EER, which depends only on Accept/Reject decisions). Let
us now recall howCLLR is computed.

Let LR(X, i) be the likelihood ratio corresponding to
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segmentX and target languagei. The likelihood ratio can be
expressed in terms of the conditional probabilities ofX with
regard to the alternative target and non-target hypotheses, as
follows:

LR(X, i) =
prob(X |i)

prob(X |¬i)
(4)

Let E be an evaluation set, consisting of the union ofL
disjoint subsets:Ej (j ∈ [1, L]) containing segments with
speech in the target languagej. Pairwise costsCLLR(i, j),
for i, j ∈ [1, L], are defined as follows:

CLLR(i, j) =







1
|Ei|

∑

X∈Ei

log2(1 + LR(X, i)−1) j = i

1
|Ej |

∑

X∈Ej

log2(1 + LR(X, i)) j 6= i

(5)
Finally, the average costCLLR is computed by adding the

pairwise costs for all the combinations of target and non-target
languages, as follows:

CLLR =
1

L

L
∑

i=1

{Pt · CLLR(i, i) +

L
∑

j=1

j 6=i

Pnt · CLLR(i, j)} (6)

where Pt is the prior probability of target languages and
Pnt = (1− Pt)/(L− 1) is the prior probability of non-target
languages.

The cost functionCLLR returns an unbounded non-negative
value which can be interpreted as information bits, with
lower values representing better performance, the value0
corresponding to a perfect system and the valuelog2(L)
corresponding to a system which just relies on (uniform)
priors, thus providing no information to decide a trial. To
computeCLLR, the FoCal toolkit can be used [64]. Further
details about the reasons for using and the interpretation of
CLLR can be found in [63], [43].

C. Phone decoders

The Temporal Patterns Neural Network (TRAPs/NN) phone
decoders, developed by the Brno University of Technology
(BUT) for Czech (CZ), Hungarian (HU) and Russian (RU)
[65] are the core elements of all the systems developed in
this work. BUT decoders have been previously used by other
groups (besides BUT [66], the MIT Lincoln Laboratory [6])
as the core elements of their phonotactic language recog-
nizers, with high-accuracy results. Before processing phone
sequences, non-phonetic units:int (intermittent noise),pau
(short pause) andspk (non-speech speaker noise) are mapped
to sil (silence). After mapping, we get phone inventories of
size 43 for Czech, 59 for Hungarian and 50 for Russian.
Also, before doing phone tokenization, an energy-based voice
activity detector is applied to split and remove non-speech
segments from the signals. Since each BUT decoder runs an
acoustic front-end, it can be seen as a black box which takes
a speech signal as input and gives the 1-best phone decoding
as output. Regarding channel compensation, noise reduction,
etc. all the systems presented in this paper rely on the acoustic
front-end provided by BUT decoders, whose main features are:

• Czech Decoder (CZ) - 8 kHz, trained on the Czech
SpeechDat(E) Database, containing 12 hours of speech

from 1052 Czech speakers (526 males, 526 females),
recorded over the Czech fixed telephone network.

• Hungarian Decoder (HU) - 8 kHz, trained on the Hun-
garian SpeechDat(E) Database, containing 10 hours of
speech from 1000 Hungarian speakers (511 males, 489
females), recorded over the Hungarian fixed telephone
network.

• Russian Decoder (RU) - 8 kHz, trained on the Russian
SpeechDat(E) Database, containing 18 hours of speech
from 2500 Russian speakers (511 males, 489 females),
recorded over the Russian fixed telephone network.

D. Filtering cross-decoder synchronization noise

As pointed above, different decoders determine different
phone boundaries, which generate what we callcross-decoder
synchronization noise. The effect of this noise differs for the
two approaches proposed in this work, which make use of
co-occurrence information.

In Approach 1 (n-gram counts of phone co-occurrences),
the synchronization noise generates short transitional co-
occurrence segments (see Figure 4). These short segments
must be filtered out, and then feature counts can be computed
from the reduced (collapsed) sequence of multi-phone (time-
synchronous cross-decoder co-occurrence) labels. In thiswork,
filtering is performed by replacing the multi-phone label at
each frame by the mode (the label with the largest number
of observations) computed on a window of sizew around
it (applied iteratively until convergence). Table III shows
language recognition performance attained with Approach 1
by applying a mode filter for different window sizes. Best
results were obtained with a window of size 7, which roughly
makes sequences of length shorter than 3 to beabsorbedby
the surrounding sequences (see an example in Figure 4).

TABLE III
NOISE REDUCTION INAPPROACH1 USING A MODE FILTER: EERAND

CLLR FOR DIFFERENT VALUES OF THE WINDOW SIZE(w).

w %Unit reduction %EER CLLR

1 (none) 0.00 2.58 0.364
5 27.97 2.16 0.338

k = 2 7 38.28 2.23 0.312
9 42.64 2.25 0.339
11 50.40 2.74 0.398

1 (none) 0.00 4.43 0.629
5 40.31 4.50 0.625

k = 3 7 46.65 3.98 0.608
9 54.41 4.43 0.647
11 60.42 5.15 0.730

In Approach 2 (degree of co-occurrence of phonen-grams),
the cross-decoder synchronization noise also generates short
transitional co-occurrences of phonen-grams (see Figure 5).
The main difference with respect to Approach 1 is that all the
observed combinations of segments receive counts, including
short transitional (maybe noisy) combinations. By keeping
transitional segments, we circumvent the possible lack of
information related to deleting such segments. However, short
transitional segments get low counts, and their distribution is
not expected to depend on the language, whereas stationary
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segments (corresponding to relatively long portions of speech
for which decoders keep the same labels) get higher counts
which dominate the feature vectors used to model target
languages. Moreover, as we explain in Section IV-E, only the
most frequent features (those with the highest counts) willbe
used for SVM modeling. Therefore, since both the method
used to compute feature counts and the way features are used
in SVMs are expected to minimize the effect of transitional
segments, we did not apply any filtering approach in this case.

E. SVM modeling

All the SLR systems developed in this work follow the
Phone-SVM phonotactic approach described above. SVM vec-
tors consist of counts of features representing the phono-
tactics of an input utterance: phonen-grams (baseline),n-
grams of phone co-occurrences (Approach 1) or the degree
of co-occurrence of phonen-grams (Approach 2). Given an
input utteranceX and a featuref , the probabilityp(f |X) is
computed as follows:

p(f |X) =
count(f,X)

∑

∀f ′ count(f ′, X)
(7)

where count(f,X) is the count of featuref for the input
utteranceX . These probabilities are then used to fill a sparse
vector with entriesD(f) ·p(f |X), whereD(f) is a weighting
function [67] (details are given in Section IV-F).

In all approaches, up to 4-grams have been considered.
Therefore, using the raw SVM feature space became unfeasi-
ble, due to its huge dimension: the number of possible 4-grams
could be up to594, (59 ∗ 50)4 and (43 ∗ 59 ∗ 50)4 for the
baseline system, a system based onn-grams of two-decoder
phone co-occurrences and a system based onn-grams of three-
decoder phone co-occurrences, respectively. In this work,a
sparse representation was used instead, which stored counts
only for the most frequent features. That is, instead of using
a full space representation, features were ranked according to
their counts on a training dataset, and only those with the
M highest counts were considered. On a previous work [14],
using up to 3-grams on the baseline system, the total number
of features with non-null counts in the training dataset was
below 100000 (though the number of possible 3-grams could
be up to 593 = 205379). Taking that result into account,
in this work the parameterM (i.e. the number of features
used to perform language recognition) has been heuristically
fixed to 200000. However, given an input utterance, most of
them have null counts and are not explicitly included in the
representation, so the actual size of the SVM feature vector
is far less than200000. Table IV shows the average size
of the SVM feature vectors under a sparse representation,
computed on the development set, for the baseline and the two
proposed approaches. Note that for Approach 1 (n-grams of
phone co-occurrences), the average size of the feature vector
is very similar to that found for the baseline system, whereas
for Approach 2 (co-occurrences of phonen-grams) more
dense vectors are obtained (maybe meaning more reliable and
informative features). On the other hand, training and decoding
times depend linearly on the actual size of SVM feature

vectors. So, whereas the computational cost of Approach 1 is
similar to that of the baseline system, Approach 2 has twice
the cost of the baseline system.

SVM modeling was performed using LIBLINEAR [68],
an open source SVM software library for large-scale linear
classification that shares many features with the popular SVM
library LIBSVM [69]. A Crammer and Singer solver for
multiclass SVMs was applied [70], and some minor changes
were made to the source code of LIBLINEAR in order to
obtain regression values instead of class labels.

TABLE IV
AVERAGE SIZE OFSVM FEATURE VECTORS UNDER A SPARSE

REPRESENTATION, COMPUTED ON THE DEVELOPMENT SET, FOR THE

BASELINE SYSTEM AND SYSTEMS BASED ONAPPROACH1 AND

APPROACH2.

CZ HU RU
Baseline 726 786 835

CZ-HU CZ-RU HU-RU
Approach 1 (k=2) 731 790 809
Approach 2 (k=2) 1380 1488 1563

CZ-HU-RU
Approach 1 (k=3) 744
Approach 2 (k=3) 1099

F. SVM Weighting

As noted in [67], a suitable selection of the weightD(f)
is critical for good system performance. A typical choice has
the following form:

D(f) = min

(

C,

√

1

p(f |S)

)

(8)

whereC is a constant andS is a set ofbackgroundutterances
(including utterances for all the classes considered in the
application task) used to estimate what could be seen as an
averagefeature probability. Note that ifC = 1 thenD(f) = 1
and raw feature probabilities are used (without weigthing).
On the other hand, ifC = ∞, then feature probabilities are
weighted by the inverse of the square root of theaverage
feature probability (as in [67], [52] and [53]).

The constantC can be heuristically optimized by choosing
that value yielding the best performance on a development set.
Table V shows EER andCLLR using the baseline language
recognition system on the development and evaluation sets for
different values ofC (maxWeight). Results confirm that the
choice ofC is critical to obtain best performance, and that
the development set defined for these experiments matches
quite well the evaluation set, since the optimalC values for
both datasets are very close each other, being slightly lower
for evaluation than for development. The optimalC values
found for the development dataset were taken as reference to
choose slightly lowerC values for evaluation. TheC values
applied for each approach are shown in Table VI.

G. Calibration and fusion

Each Phone-SVM subsystem generatesL scores for each
input utterance. Each score is then applied a t-norm [59] that is
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TABLE V
EERAND CLLR PERFORMANCE OF THE BASELINE SYSTEM FOR

DIFFERENT VALUES OF THE MAXIMUM ALLOWED FEATURE WEIGHT, IN
LANGUAGE RECOGNITION EXPERIMENTS ON THE DEVELOPMENT AND

EVALUATION SETS.

%EER CLLR

maxWeight devel eval devel eval
50 1.19 3.03 0.171 0.483
100 0.83 2.50 0.127 0.395
200 0.77 2.29 0.111 0.349
300 0.72 2.19 0.108 0.334
400 0.69 2.21 0.106 0.332
500 0.65 2.22 0.105 0.337
700 0.67 2.30 0.106 0.349
1000 0.73 2.45 0.110 0.361
1500 0.77 2.59 0.115 0.378
2000 0.78 2.79 0.119 0.392
3000 0.77 2.73 0.122 0.397

estimated from the otherL−1 scores. The resulting scores are
calibrated by means of a generative Gaussian backend trained
on the development data, and the final scores are obtained
by fusing the scores of the calibrated SVM-based phonotactic
subsystems. Fusion is based on discriminative linear logistic
regression, its parameters being estimated on the development
dataset too. TheFoCal toolkit has been used for calibration
and fusion (see [43] and [60] for details).

Calibration and fusion optimize the information deliveredto
the user by the fused system and offer application-independent
scores. Well-calibrated and fused scores can be interpreted as
proper log-likelihoods and, therefore, be used to make cost-
effective Bayes decisions according to application-dependent
language priors and costs.

V. RESULTS

Table VI shows EER andCLLR performance in language
recognition experiments on the 2007 NIST LRE database us-
ing the baseline phonotactic system and the time-synchronous
cross-decoder co-occurrence approaches proposed in this
work. First of all, note that we callsystemseither to those
that, for a given approach, are obtained by fusing subsystems
of one or two decoders, or to those working on the whole set of
three decoders. For the sake of completeness, the performance
of single subsystems and partial fusions is also shown in Table
VI, the fusion operation being represented by means of the
symbol ’+’. Rows corresponding to complete fusions have
been shaded. Scores from single subsystems have been also
calibrated in order to get comparable performance measures.

Under the baseline approach, SVMs were also trained on
mixed sets of features, by concatenating then-gram counts
from two or three decoders in a single vector, thus obtaining
four different concatenations: (CZ,HU), (CZ,RU), (HU,RU)
and (CZ,HU,RU). Results under this approach were similar
to or slightly worse than those obtained by fusing single
subsystems, except when using the counts of all subsystems,
which yielded slightly lower EER (2.17%) than fusing the
corresponding subsystems (2.21%). By inspecting these re-
sults, it may seem that no performance gain can be extracted
from cross-decoder dependencies in SVM-based phonotactic
language recognition. However, gathering feature frequencies

from different decoders into a single representation does not
provide feature synchronization (i.e. time alignment) informa-
tion. This is just what time-synchronous cross-decoder co-
occurrences provide, and that information will significantly
help to improve performance, as is shown below.

TABLE VI
EERAND CLLR PERFORMANCE OF THE BASELINE PHONOTACTIC

SYSTEM AND SYSTEMS BASED ON THE TIME-SYNCHRONOUS

CROSS-DECODER CO-OCCURRENCE APPROACHES PROPOSED IN THIS
WORK (C : MAXIMUM WEIGHT IN SVMS, k: NUMBER OF DECODERS).

System %EER CLLR

CZ 5.07 0.724
HU 4.62 0.659
RU 4.64 0.691
CZ + HU 2.85 0.417

Baseline CZ + RU 2.91 0.467
(C=400) HU + RU 2.53 0.381

CZ + HU + RU 2.21 0.332
(CZ,HU) 2.85 0.423
(CZ,RU) 3.22 0.488
(HU,RU) 2.56 0.392
(CZ,HU,RU) 2.17 0.350

CZ-HU 3.65 0.520
Approach 1 CZ-RU 3.81 0.588
(k=2, C=500) HU-RU 3.36 0.484

CZ-HU + CZ-RU + HU-RU 2.23 0.312

Approach 1
(k=3, C=400)

CZ-HU-RU 3.98 0.608

CZ-HU 3.09 0.424
Approach 2 CZ-RU 3.50 0.514

(k=2, C=1000) HU-RU 2.70 0.399
CZ-HU + CZ-RU + HU-RU 2.09 0.308

Approach 2
(k=3, C=700)

CZ-HU-RU 3.59 0.510

When considering complete fusions fork = 2 decoders,
the two approaches proposed in this work outperformed the
baseline system in terms ofCLLR. The approach 2 yielded
better results (2.09% EER,CLLR = 0.308) than the approach
1 (2.23% EER,CLLR = 0.312), the improvement provided by
the former being around 5% relative in terms of EER and 7%
relative in terms ofCLLR with regard to the baseline system.

Going further in analyses, 2-decoder co-occurrence subsys-
tems performed consistently better than single-decoder sub-
systems; in particular, those based on Approach 2 performed
better than those based on Approach 1. This result is quite
interesting, since it indicates that co-occurrence information
is actually helping language recognition (specially in theway
it is conveyed by Approach 2). However, fusions of two
single-decoder subsystems performed better than the corre-
sponding 2-decoder co-occurrence subsystems. For instance,
the fusion of the HU and RU baseline subsystems yielded
2.53% EER andCLLR = 0.381, whereas the HU-RU co-
occurrence subsystem based on Approach 2 yielded 2.70%
EER andCLLR = 0.399. This result seems contradictory, since
baseline subsystems are based on token sequences in time and
co-occurrence subsystems hypothetically convey both timeand
cross-decoder information. However, the comparison is not
fair, because fusion parameters are optimized for class discrim-
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ination. In fact, the fusion of the three 2-decoder co-occurrence
subsystems performs better than the fusion of the three single-
decoder baseline subsystems. This supports the hypothesisthat
time-synchronous cross-decoder co-occurrences convey useful
information for language discrimination.

Under 3-decoder configurations, both approaches showed
a poor performance compared to the baseline system (see
Figures 6 and 7). We knew that robustness issues could arise
from the huge amount of co-occurrences that are theoretically
possible when dealing withk ≥ 3 decoders.

In Approach 1, the number of transitional segments may
explode as the number of decoders increases, thus producing
noisy sequences of phone co-occurrences. We tried to avoid
short segments by means of a mode filter (see Section IV-D),
but attending to system performance (3.98% EER,CLLR

= 0.608, worse than those of 2-decoder subsystems for the
Approach 1), it seems that such a filtering was not enough or
not suitable.

In Approach 2, a huge number of combinations of cross-
decoder phonen-grams could appear, specially in the case
of 3-grams and 4-grams. As noted in Section IV-E, the
SVM feature vector may include at most200000 elements,
corresponding to co-occurrences with the highest counts on
a training database. This way, we expected to overcome
robustness issues. However, attending to system performance
(3.59% EER,CLLR = 0.510, similar or worse than that of
2-decoder subsystems for the Approach 2), we conclude that
Approach 2 under a 3-decoder configuration is also remarkably
affected by synchronization noise, maybe because too many
short transitional segments are being used to characterizeinput
utterances.

A lesson learned is that co-occurrence information can be
effectively extracted in 2-decoder configurations (less sensitive
to robustness issues) and recovered by means of fusion. In any
case, we still hope (and will keep trying) to find an exit to the
combinatorial dead end intrinsic to cross-decoder approaches,
and future work will be partly devoted to that task.

A. Fusing baseline and cross-decoder co-occurrence systems

Attending to results, one may conclude either that cross-
decoder information can only provide small performance
improvements in SVM-based language recognition, or (more
probably) that issues related to cross-decoder co-occurrence
sparseness (unreliable estimations, lack of coverage) strongly
limit the discriminative power of the proposed approaches.In
any case, further improvements can be expected from fusing
the baseline system (which focuses on time sequences) and the
proposed cross-decoder co-occurrence systems (which convey
complementary cross-decoder information).

Table VII shows EER andCLLR performance of several
system fusions, including confidence intervals for a confidence
level of 99% under a t-test. The t-test was computed by se-
lecting 1000 random segments in the test set for 100 different
experiments. This way, reasonably different subsets were used
in the experiments and, at the same time, EER andCLLR

were estimated with enough accuracy. Note that results shown
above in Table VI are different, since they were computed in
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Fig. 6. Pooled DET curves for the baseline phonotactic language recognition
system, two systems based on Approach 1 (n-gram counts of cross-decoder
phone co-occurrences, fork = 2 andk = 3 decoders) and the fusionBaseline
+ Approach 1(k = 2).
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Fig. 7. Pooled DET curves for the baseline phonotactic language recognition
system, two systems based on Approach 2 (degree of cross-decoder co-
occurrence of phonen-grams, fork = 2 and k = 3 decoders) and the
fusion Baseline + Approach 2(k = 2).

a single experiment on the whole test set. In any case, they
fall within the confidence intervals shown in Table VII.

First, the system (CZ,HU,RU), which uses the concatenation
of n-gram counts for the three BUT decoders as SVM repre-
sentation, slightly improved EER performance with regard to
the baseline system, but fusing it with the baseline system did
not lead to significantly better results. As noted above, this
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suggests that using just cross-decoder dependencies between
n-gram counts, without time-alignment information, do not
help language recognition.

Systems based on 3-decoder co-occurrences did only
slightly improve (or nothing at all) the performance of systems
based on 2-decoder co-occurrences. This means that they
basically model the same cross-decoder information and do not
complement each other in any way. This argument is supported
by the fact that when fused with the baseline system, 3-decoder
co-occurrence systems provided remarkable improvements,
leading to 2.05% EER and 2.02% EER (8.48% and 9.82%
relative improvement) for approaches 1 and 2, respectively.
But adding a 3-decoder co-occurrence system to the fusion
of the baseline system and a 2-decoder co-occurrence system
did not improve performance for Approach 2, and did slightly
improve performance in terms of EER for Approach 1.

TABLE VII
AVERAGE EERAND CLLR PERFORMANCE AND CONFIDENCE INTERVALS

(FOR A CONFIDENCE LEVEL OF99% IN A T-TEST) FOR SEVERAL FUSED

SYSTEMS, INVOLVING THE BASELINE SYSTEM AND SYSTEMS BASED ON
APPROACH1 (A1) AND APPROACH2 (A2).

Single and Fused Systems %EER CLLR

Baseline 2.24 (± 0.07) 0.338 (± 0.009)
(CZ,HU,RU) 2.13 (± 0.06) 0.354 (± 0.010)
Baseline + (CZ,HU,RU) 2.21 (± 0.06) 0.338 (± 0.010)
A1 (k=2) 2.24 (± 0.07) 0.308 (± 0.009)
A1 (k=3) 3.99 (± 0.10) 0.608 (± 0.011)
A2 (k=2) 2.11 (± 0.05) 0.308 (± 0.009)
A2 (k=3) 3.56 (± 0.09) 0.510 (± 0.011)
A1 (k=2) + A1 (k=3) 2.20 (± 0.06) 0.306 (± 0.008)
A2 (k=2) + A2 (k=3) 2.09 (± 0.05) 0.301 (± 0.008)
A1 (k=2) + A2 (k=2) 2.02 (± 0.06) 0.289 (± 0.009)
Baseline + A1 (k=2) 1.91(± 0.06) 0.276 (± 0.008)
Baseline + A2 (k=2) 1.94 (± 0.06) 0.287 (± 0.008)
Baseline + A1 (k=3) 2.05 (± 0.07) 0.301 (± 0.009)
Baseline + A2 (k=3) 2.02 (± 0.08) 0.312 (± 0.009)
Baseline + A1 (k=2) + A1 (k=3) 1.88 (± 0.06) 0.272 (± 0.008)
Baseline + A2 (k=2) + A2 (k=3) 1.97 (± 0.07) 0.291 (± 0.010)
Baseline + A1 (k=2) + A2 (k=2) 1.83 (± 0.06) 0.270 (± 0.008)

Separate fusions of the baseline system with systems based
on 2-decoder co-occurrences yielded very competitive perfor-
mances: 1.91% and 1.94% EER (14.73% and 13.39% relative
improvement) for approaches 1 and 2, respectively (two first
shaded rows in Table VII). Fusing 2-decoder co-occurrence
systems for approaches 1 and 2 improved performance by
around 4% with regard to the 2-decoder system based on
Approach 2. Finally, the best performance (1.83% EER and
CLLR = 0.270) was attained by fusing the baseline system
with 2-decoder co-occurrence systems for approaches 1 and 2
(last shaded row in Table VII), meaning around 18% relative
improvement. This result reveals that time-synchronous cross-
decoder co-occurrences convey useful (complementary) infor-
mation that can effectively help (through discriminative fusion)
to improve state-of-the-art phonotactic language recognition. It
is worth noting that cross-decoder time alignment information
is already there and no additional computations are needed,
but only building and applying models based on it.

Additional experiments were carried out to check how
the proposed approaches helped state-of-the-art phonotactic
language recognition when dealing with shorter (10- and 3-
second) speech segments, which is a very interesting task
in practical applications. As shown in Table VIII, the per-
formance of Approach 1 was almost identical to that of the
baseline system in all conditions, whereas the performance
of Approach 2, which was the best for 30-second speech
segments, degraded for 10- and 3-second speech segments.
This may be due to the fact that Approach 2 is based
on frequencies of longer units (phonen-grams), which are
scarce and less predictable as less speech is available. Best
performance for 10- and 3-second speech segments was found
when fusing the baseline system and Approach 1, leading to
12.9% and 6.6% relative improvements, respectively.

TABLE VIII
AVERAGE EERPERFORMANCE AND CONFIDENCE INTERVALS(FOR A

CONFIDENCE LEVEL OF99% IN A T-TEST) ON THE SUBSETS OF30-, 10-
AND 3-SECOND SPEECH SEGMENTS, FOR SEVERAL SINGLE AND FUSED

SYSTEMS.

%EER

Systems 30s 10s 3s

Baseline 2.24 (± 0.07) 8.22(± 0.14) 20.30 (± 0.16)
A1 (k=2) 2.24 (± 0.07) 8.23 (± 0.12) 20.16 (± 0.17)
A2 (k=2) 2.11 (± 0.05) 10.01 (± 0.12) 22.93 (± 0.17)
Baseline + A1 1.91 (± 0.06) 7.16 (± 0.12) 18.96 (± 0.14)
Baseline + A2 1.94 (± 0.06) 7.48 (± 0.12) 19.36 (± 0.16)
Baseline + A1+ A2 1.83 (± 0.06) 7.21 (± 0.13) 18.97 (± 0.16)

B. Overall Performance Comparison

For the primary task of the 2007 NIST LRE (30-second
speech segments, closed-set condition) many results have been
published in the literature. Best performance has been reported
when fusing several subsystems, specially when acoustic and
phonotactic subsystems were fused [6] [7] [66]. Table IX
shows the best performance attained in the NIST 2007 LRE
[5], and results reported by the Massachusetts Institute of
Technology (MIT) [6] and the Brno University of Technology
(BUT) [66].

TABLE IX
BENCHMARK ON THE PRIMARY TASK OF THE2007 NIST LRE

(30-SECOND SPEECH SEGMENTS, CLOSED-SET CONDITION) FOR THE

FUSION OF ACOUSTIC AND PHONOTACTIC SYSTEMS.

Fused systems %EER 100 · Cavg

2007 NIST LRE [5] – 1.00
seven subsystems [6] 0.93 0.97
three subsystems [66] – 1.28

Results shown in Table IX were obtained by fusing several
acoustic and phonotactic subsystems. However, the approaches
presented in this paper are purely phonotactic. Table X shows
the most significant references and the best results reported
to date using phonotactic approaches on the primary task of
the 2007 NIST LRE, corresponding to systems developed by
MIT [52], BUT [71] [72], the Institute for Infocomm Research
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(IIR) [50][54] and the Laboratoire d’Informatique pour la
Mecanique et les Sciences de l’Ingenieur (LIMSI) [73].

TABLE X
BENCHMARK ON THE PRIMARY TASK OF THE2007 NIST LRE

(30-SECOND SPEECH SEGMENTS, CLOSED-SET CONDITION) USING

PHONOTACTIC SYSTEMS

Classifier Model %EER 100 · Cavg

4-gram, 1-best [73] 4.9 –
LM 3-gram, lattices [71], [72] – 5.54

4-gram, lattices [73] 2.8 –
Binary Tree 3-gram, lattices [71], [72] – 4.52

3-gram, 1-best [50] 4.64 –
3-gram, lattices [50] 3.54 –

SVM 3-gram, lattices [52] 2.20 –
4-gram, lattices [54] 1.84 –
4-gram, lattices [52] 1.80 –

Results in Table X first suggest that applying SVM-based
scoring leads to better results than using eithern-gram or
binary tree-based scoring. Second, that using phone lattices
to computen-gram statistics leads to better results than using
1-best phone sequences. And third, that using up to 4-gram
statistics is useful, despite robustness issues related tothe
high dimension of the feature space. In particular, best results
(around 1.80% EER) were attained by systems based on the
Phone-SVM approach, using phone lattices and up to 4-gram
statistics, and applying discriminative feature selection based
on SVM weights and a wrapper/filter method [52][54]. Finally,
it must be noted that the phonotactic approaches proposed in
this paper, based on 1-best phone sequence statistics and using
up to 4-grams but without discriminative feature selection,
yielded the same performance than state-of-the-art phonotactic
systems. On the other hand, time-synchronous cross-decoder
co-occurrence information can be easily extracted in most
PPR-based phonotactic systems. So, improved performance at
almost no cost can be attained in phonotactic SLR by using
features with both time (sequence) and cross-decoder (time-
synchronous co-occurrence) information.

C. Discussion

There is an important difference between approaches 1
and 2, which regards how cross-stream and time dimensions
are processed. Approach 1 first concentrates on the cross-
decoder dimension and then considers the time dimension,
but phone sequence modeling is somehow lost in the way.
Approach 2 runs the opposite route: it can be seen as a
phonotactic system (whose factory equipment includes phone
sequence modeling) enhanced with additional modeling of
cross-decoder co-occurrences of phonen-grams. This may
explain why, when the available amount of speech was large
enough (30-second speech segments), the latter provided the
best performance among single systems (specially in terms of
CLLR), its DET curve being close to that of the optimal fusion
(see Figure 7). However, since the baseline system provides
phone sequence information partly lost in Approach 1, they
complement each other well, and may explain why Approach
2 did not outperform Approach 1 when fused with the baseline
system.

VI. CONCLUSIONS ANDFUTURE WORK

Two approaches using time-synchronous cross-decoder co-
occurrence information in SVM-based phonotactic language
recognition have been defined and evaluated (for combinations
of k = 2 and k = 3 decoders): Approach 1 (n-gram counts
of phone co-occurrences) and Approach 2 (degree of co-
occurrence of phonen-grams). Both approaches rely on the as-
sumption that time-synchronous cross-decoder co-occurrence
information is somehow specific to each target language. They
do not involve significant additional computation with regard
to a baseline phonotactic system, and represent just a means
to extract more information from existing decodings.

Systems based on 2-decoder co-occurrences outperformed
the baseline system in language recognition experiments on
the primary task of the 2007 NIST LRE. The system based
on Approach 2 using 2-decoder phonen-grams yielded the
best performance among all single systems, with 2.11% EER
(above 5% relative improvement with regard to baseline 2.24%
EER) andCLLR = 0.308 (above 8% relative improvement
with regard to baselineCLLR = 0.338). However, when
using 3-decoder configurations, both approaches showed a
poor performance compared to the baseline system. This may
reveal robustness issues related to: (1) significant differences in
the detection of phone boundaries (Approach 1) which make
transitional segments to be dominant, thus producing noisy
sequences of phone co-occurrences; and (2) a huge number
of phonen-gram combinations (Approach 2), whose statistics
cannot be robustly estimated.

When considering fusions, best results were attained when
combining the baseline system with systems based on 2-
decoder co-occurrences, with no significant differences be-
tween approaches 1 and 2. The best fused system (Baseline
+ Approach 1 (k = 2) + Approach 2 (k = 2)) yielded 1.83%
EER andCLLR = 0.270, meaning around 18% and 20%
relative improvement, respectively, with regard to the base-
line system. Finally, using time-synchronous cross-decoder
co-occurrences led to improved performance (by fusing the
baseline system with Approach 1) also when applied to short
(10- a 3-second) speech segments.

We are currently working on various co-occurrence selec-
tion schemes, with the aim to improve performance by using
more discriminant features, and on replacing 1-best phone
sequences by phone lattices, with the aim to increase the
robustness of co-occurrence statistics. Future work will focus
on increasing the robustness of phonotactic approaches that
integrate time and cross-stream dependencies, specially when
usingk ≥ 3 decoders.
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[63] N. Brümmer and J. A. du Preez, “Application-independent evaluation of
speaker detection,”Computer Speech & Language, vol. 20, no. 2-3, pp.
230–275, 2006.

[64] FoCal,Toolkit for Evaluation, Fusion and Calibration of statistical pat-
tern recognizers, 2008, http://sites.google.com/site/nikobrummer /focal.

[65] P. Schwarz, “Phoneme recognition based on long temporal context,”
Ph.D. dissertation, Faculty of Information Technology, Brno University
of Technology, http://www.fit.vutbr.cz/, Brno, Czech Republic, 2008.

[66] P. Matejka, L. Burget, O. Glembek, P. Schwarz, V. Hubeika, M. Fapso,
T. Mikolov, and O. Plchot, “BUT system description for NIST LRE
2007,” in Proceedings of the 2007 NIST Language Recognition Evalu-
ation Workshop, Orlando, US, 2007, pp. 1–5.

[67] W. M. Campbell, F. Richardson, and D. A. Reynolds, “Language recog-
nition with word lattices and support vector machines,” inProceedings
of IEEE ICASSP, Honolulu, HI, 2007, pp. 15–20.

[68] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“LIBLINEAR: A library for large linear classification,” Journal of
Machine Learning Research, vol. 9, pp. 1871–1874, 2008, software
available at http://www.csie.ntu.edu.tw/∼cjlin/liblinear.

[69] C. Chang and C. Lin,LIBSVM: a library for support vector machines,
2001, http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[70] K. Crammer and Y. Singer, “On the algorithmic implementation of
multiclass kernel-based vector machines,”The Journal of Machine
Learning Research, vol. 2, pp. 265–292, 2002.
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