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Abstract—Most common approaches to phonotactic language  The term spoken language recognitionan be used to
recognition deal with several independent phone decodingShese describe two possible tasks: (d)oken language identification
decodings are processed and scored in a fully uncoupled way, (SLI), which consists in deciding which language is spoken

their time alignment (and the information that may be extracted . . t utt - and ken | ificati
from it) being completely lost. Recently, we have presentetivo in an input utterance; and (Zpoken language verification

new approaches to phonotactic language recognition whicrake (SLV), which consists in deciding whether or not a target
into account time alignment information, by considering time- language is spoken in an input utterance. In the first case,

synchronous cross-decoder phone co-occurrences. Expegnts the task can be further specified eesed-set identificatign
on the 2007 NIST LRE database demonstrated that using when the language spoken in an input utterance is known to

phone co-occurrence statistics could improve the performace . e
of baseline phonotactic recognizers. In this paper, apprazhes belong to a closed set of languagesppen-set identification

based on time-synchronous cross-decoder phone co-occurees When the input utterance may contain any (known or unknown)
are further developed and evaluated with regard to a baselia language. In closed-set identification, the most likelyglaage

SVM-based phonotactic system, by using: (1) counts of-grams  (according to the available models) is chosen. The same
(up to 4-grams) of phone co-occurrences; and (2) the degred o g jies for open-set identification, but only if the likedibd of

co-occurrence of phonen-grams (up to 4-grams). To evaluate - . ) .
these approaches, a choice of open software (Bmo Univergit the most likely language exceeds a given threshold; otlserwi

of Technology phone decoders, LIBLINEAR and FoCal) was the language spoken in the input utterance is classifiathas
used, and experiments were carried out on the 2007 NIST known Finally, language verification can be seen as a special

LRE database. The two approaches presented in this paper case of open-set identification with just one known class: fo
outperformed the baseline phonotactic system, yielding aund each target language, the input utterancadseptedonly if

7% relative improvement in terms of Cr.r. The fusion of the - . . - g
baseline system with the two proposed approaches yielddd’3% the likelihood ratio exceeds a given threshold; otherwitsis,

EER and O r = 0.270 (meaning 18% relative improvement), rejected
the same performance (on the same task) than state-of-theta  This work focuses on the SLV task as defined for the

phonotactic systems which apply more complex models and tee  National Institute of Standards and Technology (NIST) Eval
niques, thus supporting the use of cross-decoder dependeesfor  a4iong [5]:given a segment of speech and a language of interest
language recognitiort. , .
(target language), determine whether or not that language i
Index Terms—Time-Synchronous Cross-Decoder Phone Co- spoken in the segment, based on an automated analysis of the
&Cgfﬁ{ﬁgges’ Phonotactic Language Recognition, SUpportetor  qaa contained in the segmerfio measure the performance
of a spoken language verification system, a set of trials is
presented, each trial comprising the following elemerit¥:a
|. INTRODUCTION segment of audio containing speech in a single language; (2)
POKEN Language Recognition (SLR) refers to the tagke target language; and (3) the set of non-target languages
of recognizing by automatic means the language spok#at is, those languages that may be spoken in the segment.
in an utterance. SLR is needed in many applications, sut@r each trial, the system must output: (1) a hard decision
as multilingual conversational systems [1], spoken laggua(yes/no) about whether or not the target language is spaken i
translation [2], multilingual speech recognition [3], &ea the segment; and (2) a score indicating how likely is for the
document retrieval [4], etc. system that the target language is spoken in the segment, the

higher the score the greater the confidence that the segment
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languages, but they rely just on acoustic information. G tlof N phone labels (one per decoder) at each frame. This
other hand, phonotactic systems exploit the acoustic, gihmn way, a frame-synchronous sequence of multi-phone labeds wa
and phonotactic information contained in phone sequenaisfined and used for modeling purposes, following either the
[8], so they should potentially yield much better perforrm@an Phone-LM or the Phone-SVM approaches.

than acoustic systems. However, they require phoneticallyln experiments on the 2007 NIST LRE database, it was
transcribed resources to train phone recognizers, and thgiown that fusing baseline phonotactic systems with sys-
performance and robustness is highly dependent on the gems based on time-synchronous cross-decoder phone co-
formance and robustness of such recognizers. occurrences led to improved performance in all the cases (se

Models for target languages in phonotactic systems aré b{ill3] for details). However, systems based on time-synabusn
by decoding hundreds or even thousands of training uttesancross-decoder phone co-occurrences did not outperform the
and using the phone-sequence (or phone-lattice) statistimseline phonotactic systems. On the other hand, the Phone-
(typically, counts ofn-grams) in different ways. Since trainingLM approach performed better than the Phone-SVM approach,
data feature a wide range of speakers and diverse linguigiiobably due to the fact that only unigram statistics weesdus
contents, beintanguagethe common factor, it is expected thain Phone-SVM, whereas up to 4-grams were considered in
phone sequence statistics reflect language-specific ¢tkesac Phone-LM.
tics. Additionally, by using parallel phone sequences,alvhi The approach described above was extended in [14], by con-
may be providing complementary information, phonotacti&idering statistics of up to 3-grams (instead of just unmiggha
systems can potentially exploit suclomplementarity Note of phone co-occurrences in a SVM classifier. Additionally, a
that each phone recognizer handles a different inventory ssfcond approach was also introduced in [14], which consitler
soundsand a different database to train phone models.  time-synchronous cross-decoder co-occurrences of leseger

The baseline system developed in this work follows one afents, spanning up to three phones (instead of single phones
the most common phonotactic SLR approaches, which usesn this paper, we present the latest developments attained
counts of phon&-grams to build feature vectors that feed a setnder both approaches, using statistics of up to 4-grams of
of discriminative classifiers based on Support Vector Maesi phone co-occurrences and statistics of co-occurrencesgef s
(SVM) [9], [10]. In general,N phone decoders are applied irments spanning up to 4 phones, respectively, in an SVM-based
parallel to the input utterance, yieldily phone decodings. phonotactic language recognizer. Since the baseline rayste
The output of each decoder is scored for each target languaugs been improved with regard to previous works (due to the
by applying a set of SVM models estimated from the outputstroduction of SVM weighting), the relative improvements
of the phone decoder for a training database. This approguhvided by the proposed approaches are smaller than those
(which we call Phone-SVN| is reported to perform better reported before, but quite remarkable, specially regarttie
[11] than the previously proposed Parallel Phone Recammnitisecond approach. As in previous works, systems have been
followed by Language Modeling (PPRLM) approach (whickleveloped by means of open software and evaluated on the
we call Phone-LN [12]. 2007 NIST LRE database.

The above described structure defilésindependent data  The rest of the paper is organized as follows. Background
processing channels, and no cross-decoder dependeneiear spoken language technology, specially that related to
exploited for language modeling, information being fusaetyo phonotactic approaches, including previous work usingsro
at the score level. A quite straightforward approach woold-c decoder information to model target languages, is predente
sist in building a composite feature vector by concateigatie in Section Il. The baseline system and approaches using
feature vectors corresponding to thé phone decoders, andstatistics of time-synchronous cross-decoder co-ocoue®
computing a single score per target language. But this way we single phones or segments spanning several phones, are
would only exploit cross-decoder dependencies among blolbgscribed and formally defined in Section Ill. Issues reigard
statistics, time synchronization information being coetply the experimental setup (datasets, evaluation measureagph
lost. decoders, etc.) are addressed in Section IV. Section V piese

In this work, we start from the hypothesis that using timeand discusses the results obtained in language recognition
synchronous cross-decoder co-occurrences of eventslgsirgxperiments on the core task of the 2007 NIST Language
phones or longer segments spanning several phones) to cR&cognition Evaluation, using the baseline system and the
acterize target languages may improve performance in phoiwo approaches proposed in this work, and compares them
tactic language recognition. Time synchronization infation  with results reported by other authors on the same database.
is obtained as a by-product from phone decodings. StoringFinally, conclusions and potential lines for future worle ar
explicitly and building models based on that informatiortyon outlined in Section VI.
represents a slight increase in computational cost cordgare
the cost of phone decoding. Il. BACKGROUND

In a recent work, we have presented a simple approach torhe general structure of a SLR system is shown in Figure
phonotactic language recognition which uses statistitera- 1. It involves four stages: (1) extracting features/tokg23
synchronous cross-decoder phone co-occurrences at the frapplying a classifier which scores feature/token sequenites
level [13]. In that approach, phone segmentation was etlacregard to models of target languages, (3) applying a backend
as side information from 1-best phone decodings, and alow® normalize/calibrate the resulting scores and (4) maling
us to consider thesimultaneous occurrencgo-occurrence) hard decision (which depends on the task).
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5 Language labels ES e Gl yielding one score per target language [17], [18]. Parallel
evelopment > backend
data parameters v PRLM (PPRLM) systems [19], [20] extended the PRLM

A paradigm by applying several phone decoders (expected to be
parameters .
R complementary) and producing one score per target language

speECH | [Fodlure | feaums ; Classifior scores a.nd phone decoder (a backend was needed in order to get a
. 43‘? single score per target language). Around 1996, the PRLM and
scores PPRLM approaches were state-of-the-art SLR technology.
T AJ o Decision From 1996 to date, the NIST Language Recognition Eval-
e {Eﬁ%‘i‘agei i uations (LRE) [21] have provided common data, protocols
e peason  and performance measures to compare SLR systems from
all over the world, supporting and to a large degree leading
Fig. 1. Structure of a Spoken Language Recognition (SLRiesys the development of new methodologies. In 1996, the PRLM
and PPRLM approaches yielded the best language recognition
) ) ) performance. Around 2003, systems based on spectral ésatur
Feature extraction aims to concentrate in few and, as far@sy reached the performance of phonotactic systems. The

possible, independent (that is, uncorrelated) paramtter®-  y\-UBM approach, originally developed for speaker recog-
formation relevant to the classification task. Spoken lag@s ition applications [22], was applied to language recdgnit

can be automatically identified based on features derivad fr [23] and successfully combined with Shifted Delta Cepstral

the speech signal at different levels [15punds(i.e. short- (spcy features [24]. Gaussian Mixture Model (GMM) tok-
term spectral patterns), prosodic information, phon@ant — opization was proposed as an alternative approach to phone
formation extracted from phone sequences/lattices pelluGyyenization [25] and Support Vector Machines (SVM) were
by phone decoders, lexical and syntactic information @ inoquced as classifiers on SDC features using a GLDS kernel
from word squences/lathces produced by large vocabulﬂl%]’ [27]. The best single system presented to the 2003
speech recognizers, etc. In SLR systems based on higlist | RE was based on spectral features, and surpassed the
level features, feature extraction involves applying aespe herformance of PPRLM systems. The best performance was
tokenizer (e.g. a phone decoder) which should be traingf,ineq by the fusion of one phonotactic and two acoustic
beforehand. Phonotactic systems assume that phone dsco tems, using a duration-dependent Gaussian backend [28]
can deal with acoustic variability, thus phone decodings ar’ g, hsequent evaluations in 2005, 2007 and 2009 dealt with
assumed to be reliable enough to characterize the Spo'é‘?{‘increasing amount of data and target languages (7, 14
language. However, phone decodings may become unreli 23 languages, respectively). Despite this, SLR perfor-
if not enough (or unsuitable) datg are used to train PhoRe e continued to improve due to the use of new and
models. It has been shown that using a robust phone decod@fe powerful approaches and the development of fusion and
is a key issue in the design of high-performance phonotactigiipration tools, which allowed the easy combination of an
SLR systems [16]. arbitrary number of systems (and cross-site collaborajion

Language_classmers capture feature patt(_erns_, a_nd use trmgb' identifying complementary systems (in other words,
to characterize target languages or to discriminate tarQgkiems providing different, uncorrelated informatioapame
languages from each other, depending on the classificatig jnortant issue, since they may help global performance
approach (genergtl\(e VS. d|scr|m|nat|vg). . _through fusion (see e.g. [29]).

The backend is introduced to aI_Iewate differences in the Acoustic (spectral-based) and phonotactic (token-based)
volum_e and type of data_ used to_tram language models (Whgyhstems have dominated the SLR technology during the last
may yield score vglues in very different ranges). The bagkefecqqe Acoustic systems have improved due to discrim@ati
allows to use a single threshold for all .the targe_t Ia.mguagémM training [30], [31], acoustic adaptation (CMLLR) [32],
and makes the system work at the desired application poigfy shecially the introduction of GMM supervectors (GSV) as

Finally, if the backend parameters are estimated on develQp, .. means of representing spoken languages for SVM-based
ment data matching the characteristics of test data, amplyljiscriminative classification [33]

the backend may also compensate for a mismatch betweepy,,notactic approaches have improved with the use of

train and test conditions (e.g. training on clean speech aﬂﬂone lattices instead of 1-best phone decodings [34]; the

using noisy speechn to estimate the backend parameters wq}gg of SVMs to model phonotactics [9], [10] (the same idea
allow to classify noisy speech). had been previously applied to high-level speaker verificat
o . [35]); the development of high-quality phone decodersnagisi
A. Spoken language technology: historical perspective large amounts of data [16], more complex structures [36],
The availability of high-performance HMM-based phonanti-models [37] and acoustic adaptation [38]; and ther&sffo
decoders anch-gram language modeling technology (origito get increasingly less supervised systems, such as ASM
nally developed for automatic speech recognition apptica) tokenization [39][40], where automatically derived unisa
allowed the development of the Phone Recognition followextoustic units Acoustic Segment Modelgll]) were used
by Language Models (PRLM) approach in mid ninetiesnstead of language-dependent phones.
PRLM systems used language-speacifigram models to score  Finally, increasingly sophisticated fusion and calilati
the phone sequences produced by a single phone decotmhniques have been applied, including generative Gaussi
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backends [28], [42] and discriminative logistic regreaqd3]. background model used for normalization). This approach
outperformed the baseline (time dimension) system, vigldi
B. Current trends less than half the EER in experiments on NIST 2001 SRE

. . . Extended Data Task. Moreover, a linear combination of the
Regarding acoustic systems, authors are exploring the use

: : . scores produced by baseline and cross-stream systemsrfurth
of universal articulatory features [44], prosodic feaf[45], reducedpthe EER izdicating that they provided corBT/wpIemgnta

speech production traits [46.] and other altern_ative (Cmm'nformation. However, an alternative time-dimension eyst
men_tary) features. Also, Joint Facto_r_AnaIyS|s (JFA) [47 ased on binary decis’ion tree models yielded better rethalts
previously applied to speaker recognition, has been rls;per} e cross-stream approach. The same methodology was then

applied to spoken language recognition [48]. . i . . .
Regarding token-based approaches, variations on the Phog%)“ed on the cross-stream dimension (actually time depen

SVM approach are being proposed which aim at simplifyin%enC'eS were also included in the approach), but resulte wer

- ] L oo }scouraging. According to authors, binary decision treey
generalizing and reducing supervision in the estimation Be modeling general dependencies across phonetic streams
models. Recently, Stolcke et al. [49] reported that using 99 P P '

. i . o . vihich strongly contaminate speaker-specific charactesist
single multilingual phone recognizer (giving universaloph

; - - . Some years later, cross-stream dependencies were used via
netic coverage) yielded better performance than using vari y P

o . ti-string alignments in a language recognition appiaa
ous language-specific phone recognizers. Tong has propo & ThoS h gf]ocused on im r%vir? a PIgRLM spsi:em b
the use of the most discriminant set of phones regardin g ' g P 9 Y y

language recognition task to build a target-oriented phoﬁl plying SVM for both discriminative modeling of phonotact

tokenizer [50]. Recently, this approach has been refined Bonstralnts and discriminative score combination, astladso

extending the front-end with a language model per targ%YOposed the use of cross-decoder bigram features, as a way

: . e 0# representing Certain sounds that may not be adequately
language, which takes into account the discriminativeitgbil represented by phones in any of the parallel streai@e, be-

of phones to define a set of target-aware parallel phon .
tokenizers [51]. Finally, some efforts are being devoted %des normalntra-streambigrams such agu(t — 1), aa(t)),

deal with high-dimensionality representations in SVM4xhs gcrjonsss';jsgiznzlr?ﬁ?esr(;];tr]'[e'rforsmgtz g;lg’gﬁgr)r)névde:ﬁ ﬂ;os e
phonotactic systems [52], [53], [54]. ! ’ ulting sy utp ]

system on most conditions. Note that time-synchronous @hon
- ) o . co-occurrences (i.e. simultaneous cross-decoder phqrende
C. Exploiting cross-decoder information in phonotactidSL gencies) were not considered in this work. Since only phone

There is a continued interest in integrating informatianir labels were available (without time stamps), tBaistal W
various sources at low (feature) and intermediate (modehultiple sequence algorithm [57] was applied to align phone
levels, instead of doing it at the score level (see e.g. [555treams, where a similarity weight matrix was used to encode
Specifically, the work presented in this paper illustrates ghonetic similarity as defined by experts (taking into actou
particular way of integrating information from various pleo features such as voicing, manner and place of articulation,
decoders at the feature (token) level. etc.).

As far as we know, the idea of using phonetic information Finally, cross-decoder information has been also exmloite
in the cross-stream (cross-decoder) dimension was first &pallow cross-lingual phonetic recognition, i.e. apptyjshone
plied for speaker recognition in the Johns Hopkins Unitgrsidecoders in foreign languages to get phone decodings in
(JHU) 2002 Workshop, where two decoupled time and cross-target language. This is accomplished by using context-
stream dimensions were modelled separately and integrateg@isitive probabilistic phone mapping and assuming thet th
at the score level [56]. The key idea explored in the JHProbabilities of observing a symbol and its cross-decoder
2002 workshop was exploiting high-level features to imgrowontexts are independent [58].
speaker recognition. At that time, the PPRLM methodology
had been successfully applied to language recognition, Sl
trying to model speaker-specific pronunciation dynamics by
means of token sequences produced by a set of phonetic de-
coders was almost mandatory. Taking PPRLM as the baselind-igure 2 shows the structure of the baseline phonotactic
approach for speaker detection, the hypothesis was matle gystem used in this work. The input utterance is processed
the statistics of cross-decoder phone co-occurrences maybly N parallel phone decoders, which perform all the needed
somehow related to how different speakers realize phonem&gnal processing operations and the computations resjtore
The approach began by aggregating time stamps from sdlarch the 1-best phone hypothesis (according to the avail-
phone sequences into one single segmentation. Then, agsurable phone models, which are embedded in the decoders),
that the resulting segments were statistically independeyielding as a by-product the time stamps corresponding to
cross-decoder bigram probabilities for all pairs of decedethe optimal phone segmentations. Each phone decoder defines
were computed based on the co-occurrences observed indhendependent Phone-SVM subsystem. The phone sequence
alignments for a training corpus. Given an input utterancproduced by each decodér(i € [1, N]) is scored for each
decodings were aligned the same way and the resulting photeeget language (5 € [1, L]), by computing counts of phone
pairs were scored by means of previously trained bigramgrams, building a feature vector with them and applying
language models (one per target speaker plus and additicax@l SVM model A(i, j) estimated from the outputs of the

| MPROVED MODELING OF CROSSDECODERPHONE
CO-OCCURRENCES
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phone decoder for a training database, takingas the target > D§2§EER
language. For ease of presentation, the computatiengrim T
N C . (a),ay,...,ar) , —

counts has been implicitly located inside the SVM modules in \ / G 2
Flgure 2 W co»orézﬂ?reence P SVM (AB, 2) C —

Scores output by each Phone-SVM subsystem are applie atframelevel | (4,b,, ayb,, ..., apby) K
t-norm [59], and calibrated by means of a Gaussian backend. A (bbb ﬁ
Again, for ease of presentation, both elements have been e D
.. . . . . PHONE —
jointly represented in the backend module in Figure 2. Bymal P> DECODER

the resulting calibrated scores are discriminatively fubg

means of linear logistic regression, to getfinal scores for Fig. 3. A 2-decoder phone co-occurrence language recognstibsystem.

which a minimum expected cost Bayes decision is taken,

according to application-dependent language priors astsco

[43], [60], [61]. More details are given in Section IV. dimensions, we define and apply an integrated model which
usesn-gram counts of time-synchronous cross-decoder multi-

SVM (i,L)

!
!

—»‘ SVM (1 1)|—> 5 L» phone labels as features for a SVM-based discriminative
A classifier. This way, time and cross-decoder dimensions can
C e
»| pecober H svM (1)) | k | be jointly modelled. . .
! e . Bayes The second approach considers longer segments, spanning
m g decision up ton phones (phone-grams) in the 1-best phone sequences.
T This second approach also defines a new way of computing
: co-occurrence statistics which does not rely on discretetsy
g B e ,? " F but on a continuous measure of the degree of co-occurrence
' PHONE Tl g of segments (phone-grams) from different decoders. This
DECODER » SVM (i,j) K — . . " .
i {:I e I way, we circumvent the border issues (transitional muttpe
N 0 labels appearing at phone borders that may distort sequence
D N

1

modeling) observed in the first approach. Details are given i

T Section I11-B.
SVM (N,1) [ B [—»
A Language
priors
| oPHONE E and costs A. Approach 1:n-gram counts of phone co-occurrences
N . .
ﬁ Let us consider an input utteranc&¥ and N phone
SVM(N.L) D[ ™ decoders producing 1-best phone segmentatigif(s\) =

{54(1),...,84(T)}, d € [1,N], sq(t) being the phone
Fig. 2. Baseline SVM-based phonotactic language recogniiystem. label produced by decoderl at frame ¢, for t €
[1,7]. A time-synchronous (frame level) cross-decoder

The two approaches proposed in this paper match thBone co-occurrence is defined by thetuple c,(f) =
structure of the baseline system described above, excépt (1), Sd,(t),...,54,(t)), @ = (di,d2,...,d;) being a
for the way Phone-SVM modules are defined, i.e. the waoice ofk decoders, with: € [2, N]. A sequence of 3-phone
phone decodings are used to compute features for the SM@:-occurrences (corresponding to 3 decoders) is depicted i
The remaining elements (phone decoders, SVM classificatidrigure 4. Note that a sequence bfphone co-occurrences
backend, fusion) are kept unchanged. Let us illustrate tii& = {cx(1),cx(2),...,¢-(T)} includes information from
point. both time and cross-stream dimensions.

Consider a choice of two decoders A and B from the set of We make the assumption that sequences of time-
N decoders represented in Figure 2. Time-synchronous crosgachronous cross-decodephone co-occurrences are some-
decoder phone co-occurrences can be obtained by alignimyv language-specific. So, a language recognition system
at the frame level phone sequences produced by decodersatild be built by counting such events for a training databas
and B. This implicitly yields a joint phone segmentation andnd estimating SVM-based language models, which should be
(after compacting repeated labels into one single labed) thble to discriminate target languages.
corresponding sequence of two-phone labels. This sequenchlote that forN decodersN!/k!(N — k)! of such systems
can be processed and modelled exactly the same waycas be defined, applied on an independent way and their
single-phone sequences in the baseline system (see Figures®res fused to get a full time-synchronous cross-decoder
This configuration can be easily extended to any choice ofphone co-occurrence language recognition system. In this
decoders and a whole co-occurrence system can be builtviigrk time-synchronous cross-decoder phone co-occursence
fusing the scores for all the 2-decoder subsystems. Thigvis hare considered only fok = 2 andk = 3 decoders.
the first approach works. This approach aimed to model cross-decoder segmental

The above described procedure is similar to that proposgihone-level) dependencies, not cross-decoder frangd-dev
in [56]. However, as we explain in Section IlI-A, insteacbendencies. The use of frame-level multi-phone labels was
of defining two decoupled models in time and cross-decod®otivated just by the need to synchronize phone decodings
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time

DECODER 1 ] N I I | | J e e I | — I I —

DECODER 2 | NSl S I S S [ e e o o [y

DECODER 3 | NSl I [ S [ e e o e S [ Y

+LHULULLLLLLLL L L4
\, . \, N N\
NDO NH NH \NH NH \H N0 N0 N0 N0 N0 £ N4 N4 \4 ‘i,f (\}4 NF N4 N4

filterin ULLULULLLLLLLLLL L9944, 4.4,
g NDO NHO \H N\H N\H \H \H \H \H \H N0 N0 N0 N0 NO o\ faf f{- i{- i;f NF N4 N4
reduction axn ayn cy_p b_z k

Fig. 4. Approach 1 (3-decoder configuration): (1) time-$ywaous cross-decoder phone co-occurrence labels atebpusbncatenating phone labels from
different decoders on a frame-by-frame basis; (2) to hatrdiesitional segments, a mode filter is iteratively appliedtil convergence) on a sliding window
of 7 frames centered on the analyzed frame; and (3) repeatété¢phone labels are reduced to a single label.

each other. A sort of segmental representation can be resmvel-best phone decodings, and co-occurrence information is
by reducing each sequence of repeated multi-phone labals textracted in second place, by computing the degree of time-
single label. However, when analyzing frame-level seqasncsynchronous cross-decoder co-occurrence for such segment
two types of segments can be identified: étationary seg-  To compute the degree of co-occurrence for any combina-
ments corresponding to relatively long portions of speech faion of k segments (each coming from a different decoder), we
which decoders keep the same labels; and t@psitional add the counts corresponding to frames in the input utteranc
segmentsappearing at phone borders, resulting from the fagthere those segments actually overlap. The count assigned t
that each decoder detects phone transitions at differéntpoeach frame will depend on the length of the segments and
(see an example in Figure 4). We hypothesized that crossr the number of different combinations bfsegments over-
decoder phone co-occurrences corresponding to traraltiolpping at that frame. We consider time-synchronous cross-
segments reflected random variations in the way each decodecoder co-occurrences only for segments spanning the same
determined phone borders and could greatly distort languagumber of phones. Co-occurrence information for segments o
models. So, before reducing repeated labels in stationalifferent length (unigrams co-occurring with bigrams, raigis
segments to a single label, transitional segments wereefilte with trigrams, etc.) is not used in this work. Note that foclea
out. Details are given in Section IV-D. decoder, up ta phonen-grams overlap at each framewhich

After filtering transitional segments and reducing statiomeans that up ta* combinations of phone-grams can co-
ary segments, the resulting sequences of multi-phone &ecur at each frame for a choice bfdecoders.
bels (representing time-synchronous cross-decoder pbmne The key points of count computation are: (1) each phone
occurrences) were used to computgram statistics and build »-gram is counted once for each decoder, so its count is dis-
feature vectors, which were applied either to estimate SVivibuted among all the frames it spans; and (2) the conidhut
parameters or to score an input signal with regard to SVMerresponding to a given phonegram at a given frame for
based language models (exactly the same way as for sequencgiven decoder is distributed among all the combinations of
of single-phone labels in the baseline system). phonen-grams at that frame for the remaining decoders.

In order to give a formal specification of the computation of
the degree of co-occurrence, we first provide some defirsition

We recommend to check the example in Figure 5, which is

The development of a second approach was motivated by fiesfiy analyzed at the end of this section, to better undabt
border issues described above. In Approach 1, co-ocClerelgase definitions.

information and sequence information were extracted in firs Let T

and second place, respe.ctlvely. In between, transnm_mgﬂ S hones) overlapping at framein decodingd. Let w™ e
ments were filtered out, since they were assumed to mtroleqQ) (n) d

noise. However, segments considered transitional matagtu | ¢ (t) be_one of suchz-gram(i)anden(wd ,t) the number
convey important (discriminative) information. In Appe2, ©f frames it spans. Note thdf ;' (¢)| = n for all ¢ except for
sequence information is extracted in first place, by comsige & number of frames at both ends, where P ()] < n.
segments spanning up to phones (phone:-grams) in the  Let G;’” (t) be the set of time-synchronous cross-decoder

B. Approach 2: degree of co-occurrence of phengrams

g") (t) be the set ofn-grams (segments spannimg
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l cb I
I 1
l ac |
I 1 11 1
: C : count((c,y), 15)=5(ﬁ+m)
aaaaaaaaaccccc|clccbbbbbbb count((ac,xy),15)= %(]7%-1—];—2)
DECODER 1 [ Il [ I I [ [ [ I [ [ I [ | [ [ I [ [ I [ I [ ] | 1 1
count((ac,yz),lS):E(m-i-m)
X X X XXXYYyYYyYYYVYylyyyyzzzzz i
DECODER 2 1SS S S 5 e S count ((cb, xy),15)=5 (m‘*m)
y 1 (1 1
: : count((ch, yz),15)= 7(m+m)
1 Xy |
1

-

Fig. 5. Approach 2 (2-decoder configuration, up to bigrar(is):each phone:-gram is counted once for each decoder, so its count ishlis#d among all
the frames it spans; (2) the contribution corresponding goven phonen-gram at a given frame for a given decoder is distributed ayredhthe combinations
of phonen-grams appearing at that frame for the remaining decodeis;(3) the count corresponding to a cross-decoder co-amueerof phone:-grams
at a given frame is computed as the average contributioneoptionen-grams appearing in the co-occurrence (one per decoder).

co-occurrences ofk phone n-grams at framet, for a and their lengths:

ch?ic):e of dglc):odersr(n): (di1,da,...,dy), and let cST”) = len(c, 15) = 8 len(ac 15) = 17
(wg’,...,wy’) € G5”(t) be one of such co-occurrences. len(y, 15) = 13 len(ch, 15) —15
The contribution of the phone-gram wfi’;) e ™ to the len(zy,15) = 19
count of ™ at framet is defined as follows: len(yz’ 15) =18
count(wgﬁ),t) _ 1 (1) Starting from these values and according to equation 2, the
! len( ’ H |F ( ) counts of co-occurrences of phonegrams at frame = 15
=

are computed as follows:
l#ﬂ

The count corresponding to any co-occurred?e at frame count((c,y),15) = L <L + ! )
t is computed as the average contribution of the phegeams 2 \8-1 13-1
included inc™, only if ¢ actually appears at frame count((ac, zy),15) = 1 < t 1 >
’ ’ 2 17-2 19-2
T Z count(w, ),t) if M eat (t) 1 1 1
count(e), =4 count(fae.v2)15) = 5+ (775 + 35-3)
0 otherwise _ 1 1 1
@ count((cb,zy),15) = 3 <m + m)
Finally, the degree of co-occurrenceorresponding to 1 1 1
an%/ )choice( c);f k cross-decoder phone-grams c) = count((cb,yz),15) = 7’ <15 T 2>
f(:;?ﬁés. 1w, s computed by adding the counts for all Note that, in this approach, SVM feature vectors do not con-
T tain the statistics (e.gi-gram counts) of a sequence of labels
de(clM) = Z count(c{™ 1) (3) (asin Approach 1), but a joint distribution of time-synchouis
t=1 co-occurrence counts for cross-decoder combinationsaig@h

In practice, the degree of co-occurrence is computed umigrams, phone bigrams, phone trigrams, etc. Since gtorin
two passes The first pass computes and stﬁrgg t)] and and using this information for all the possible cross-decod
len(w) (n) ,t) for each decoded and each frame. Starting combinations of phone-grams is computationally unfeasible,
from these values, the second pass accumulates the count@nf those combinations yielding the highest counts on a
cross-decoder co-occurrences on a frame-by-frame b@5|3,tl'@lnlng database are used to estimate the SVM and to score
applying equation 2 for each combination of phongrams input utterances (see Section IV-E for details).
appearing at frame.

Let us consider the example in Figure 5, which shows co- IV. EXPERIMENTAL SETUP
occurrences of phone unigrams and phone bigrams for a choic
of two decoders. The sets afgrams appearing at frame=
15 are:

fh this Section we provide details about the task, datasets
and measures used to evaluate the proposed approaches, and
about the implementation of SLR systems (all following the
iV (15) = {c} r{?(15) = {ac, cb} Phone-SVM modeling approach): phone decoders used as
Fél)(15) ={y} Fég)(IS) = {xy,yz} front-end, how the lack of synchronization in phone decgslin
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. TABLE Il
was handled to get time-synchronous cross-decoder feature 5007 NIST LRECORE CONDITION TRAINING DATA (HOURS),

SVM feature representation and modeling decisions, SVIEVELOPMENT AND EVALUATION DATA (NUMBER OF 30-SECOND SPEECH
feature weighting and score calibration and fusion. In some  SEGMENTS, DISAGGREGATED FOR TARGET LANGUAGES
cases, parameters were tuned heuristically, by choosoggth

. . _ . Training | Development| Evaluation
values yielding best results in preliminary experimentgtom Language | (hours) | (#segments)| (#segments)
development dataset (which are presented too). Arabic 2894 179 80

Bengali 277 76 80

Chinese 9149 567 398

A. Train, development and evaluation datasets English 7909 288 240
) ] Farsi 2544 225 80
Experiments have been carried out on the 2007 NIST German 3139 173 80
Language Recognition Evaluation (LRE) database [5]. The Industani 3543 243 240
defined k | iti task Japanese 4354 141 80

2007 NIST LRE defined a spoken language recognition tas Korean 4010 150 80
for conversational speech across telephone channeldyiimgo Russian 277 66 160
14 target languages: Arabic, Bengali, Chinese (Cantonese, | Spanish 6460 531 240
: . . . . Tamil 3202 165 160
Ma!nland,. Talwan,_ M!n gnd Wu), Engllsh, (Ame_rlcan and Thai 277 64 80
Indian), Hindustani (Hindi and Urdu), Spanish (Caribbead a Vietnamese| 2570 205 160
non-Caribbean), Farsi, German, Japanese, Korean, Russian TOTAL 50605 3073 2158

Tamil, Thai and Vietnamese. Some languages featured \&ariou
dialects or accents (shown above in parentheses). Theetest s

was split into three subsets, each including 2158 segmerg et Therefore, for any test condition the corresponding
according to their nominal duration: 30, 10 and 3 seconqSyqr rates can be computed as the fraction of target trials
respectively. Results reported in this paper have been cos; gre rejectednfiss error rate P,.;..) and the fraction of
puted, except where noted, on the subset of 30-second Sp%ﬁ?ﬁbstor trials that are accepteflge alarm error rate Py.),

segments for the closed-set condition, which was the psimag, g jitable cost functions can be defined as combinations of
task in the 2007 NIST LRE. these basic error rates.

Train and development data were limited to those distribute 1) Graphical evaluation:Detection Error Tradeoff (DET)
by NIST to all 2007 LRE participants: (1) the Call-Friend,ryes [62] provide a straightforward way of comparing gibb
Corpus; (2) the OHSU Corpus provided by NIST for theyerformance of different systems for a given test condition
2005 LRE; and (3) the developmer_wt corpus provided by.NIS}}i DET curve is generated by computiri@,;,, and Py, for
for the 2Q07 LRE. Table | summarizes the languages/dialects \yige range of operation points (thresholds), based on the
included in these corpora. For development purposes, 10 cQ@qres yielded by the analyzed system for a given test set.
versations per language were randomly selected, the réTgainpeT cyrves are used in NIST evaluations to support system
conversations being used for training. Development c@a/€r yarformance comparisons. In this work, DET curves were
tions were further divided into segments, each containi®g 3cnerated by means of NIST software.
seconds of speech (see Table Il for more details). 2) Equal Eror Rates: The most common performance
TABLE | measure is the Equal Error Rate (EER), which reports system
LANGUAGES/DIALECTS IN THE TRAINING AND DEVELOPMENT DATASETs ~ Performance when at the operation point for which the false
FOR THE2007 NIST LRE. alarm error rate f¢,) is equal to the miss error raté’(;s).
EER is a very simple measure, useful in many contexts, but
Data Languages .
English, (Southern, non-Southern), Mandarin it does not allow to compare the global performance of two
CallFriend | (Mainland, Taiwan), Korean, Japanese, Vietnamese,  Systems.

Hindi, French, Arabic, Farsi, German, Tamil, 3) Log-Likelihood Ratio Average CosiCfrz): When
Spanish (Caribbean, non-Caribbean) . A
ORSU English, (American, Indian),Hindi, Japanese, Korean, SCOTES represent (or can be interpreted) as_log—hkehlnamﬂs,
2005 Mandarin (Mainland, Taiwan), Tamil, Spanish, it is possible to evaluate systems also in terms of the so
German calledCy g [63], which is used as an alternative performance

LREOQO7 Arabic, Bengali, Chinese (Min, Wu, Cantonese),
Dev Russian, Thai, Urdu

measure in NIST evaluations. We internally consider, r as

the most relevant performance indicator, for three reaqdns

Crrr allows us to evaluate system performance globally by

means of a single numerical value, which is somehow related

B. Evaluation measures _to the area below t_he _DET curve, provided that scores can be
e interpreted as log-likelihood ratios; (2); .z does not depend

In spoken language verification tasks two types of errors il application costs; instead, it depends on the calibratio

Zonsidelz)red:h(l)nisses those f or Whighzﬂ;el Corrlect anﬁwer iSof scores, an important feature of detection systems; apd (3
cceptbut the system sayReject and (2)false alarmsthose Crrr has higher statistical significance than EER, since it

for which the correct answer iRejectbut the system says g’ comnyted starting from verification scores (in contrast t
2See http:/www.ldc.upenn.edu/. EER, which depends only on Accept/Reject decisions). Let

30OHSU Corpora, http:/Avww.ohsu.edu/. us now recall howCrrr iS_ CqmpUted- . _
4See http://www.nist.gov/speech/tests/Ire/2007/. Let LR(X,i) be the likelihood ratio corresponding to
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segmentX and target language The likelihood ratio can be
expressed in terms of the conditional probabilitiesXdfwith

from 1052 Czech speakers (526 males, 526 females),
recorded over the Czech fixed telephone network.

regard to the alternative target and non-target hypotheses « Hungarian Decoder (HU) - 8 kHz, trained on the Hun-

follows: , garian SpeechDat(E) Database, containing 10 hours of
LR(X,i) = M (4) speech from 1000 Hungarian speakers (511 males, 489
prob(X|—i) females), recorded over the Hungarian fixed telephone

Let £ be an evaluation set, consisting of the union/of network.
disjoint subsets:E; (j € [1,L]) containing segments with « Russian Decoder (RU) - 8 kHz, trained on the Russian
speech in the target language Pairwise costsCrr(i,7), SpeechDat(E) Database, containing 18 hours of speech
for i,j € [1, L], are defined as follows: from 2500 Russian speakers (511 males, 489 females),
. N recorded over the Russian fixed telephone network.
B 2 108a(1+ LR(X,i)™%) j=i

CLLR(i j) _ ‘ XeFE;
’ 1 2 logy(1+ LR(X,0)  j#i
7 XeE;

D. Filtering cross-decoder synchronization noise

(5) As pointed above, different decoders determine different

Finally, the average cost; ;. r is computed by adding the phone boundaries, which generate what we calss-decoder
pairwise costs for all the combinations of target and nogeta synchronization noiseThe effect of this noise differs for the
languages, as follows: two approaches proposed in this work, which make use of
co-occurrence information.

In Approach 1 f-gram counts of phone co-occurrences),
the synchronization noise generates short transitional co
. ) . occurrence segments (see Figure 4). These short segments
where P; is the prior probability of target languages angnyst be filtered out, and then feature counts can be computed
Pny = (1= P;)/(L — 1) is the prior probability of non-target rom the reduced (collapsed) sequence of multi-phone ¢time
languages. _ ~ synchronous cross-decoder co-occurrence) labels. Imwtis,

The cost functiorC’; . r returns an unbounded non-negativgjiering is performed by replacing the multi-phone label at
value which can be m_terpreted as information bits, Withach frame by the mode (the label with the largest number
lower valuqs representing better performance, the valueys observations) computed on a window of sizearound
corresponding to a perfect system and the valug,(L) it (applied iteratively until convergence). Table Ill shew
corresponding to a system which just relies on (uniforminguage recognition performance attained with Approach 1
priors, thus providing no |nfor_mat|on to decide a trial. Tq_,y applying a mode filter for different window sizes. Best
computeC’z ., the FoCal toolkit can be used [64]. Further jagyits were obtained with a window of size 7, which roughly

details about the reasons for using and the interpretation fakes sequences of length shorter than 3 tafsorbedby
Crrr can be found in [63], [43]. the surrounding sequences (see an example in Figure 4).

L L
CLLr = % > AP Crrrliyi)+ > Pat - Crrr(i,j)} (6)

i=1 j=1
J#i

TABLE Il
NOISE REDUCTION INAPPROACHL USING A MODE FILTER: EERAND
Cr..R FOR DIFFERENT VALUES OF THE WINDOW SIZEw).

C. Phone decoders

The Temporal Patterns Neural Network (TRAPs/NN) phone
decoders, developed by the Brno University of Technology

(BUT) for Czech (CZ), Hungarian (HU) and Russian (RU) w %Unit reduction| %EER | Crrr
[65] are the core elements of all the systems developed in 1 (rg’”e) 207'0;’7 g'f_’g 8-22;‘
this work. BUT decoders have been previously used by other | ,_ o 7 38.28 223 0.312
groups (besides BUT [66], the MIT Lincoln Laboratory [6]) 9 42.64 2.25 0.339
as the core elements of their phonotactic language recog- 1(i<l>ne) %Obto 421'4713 g-ggg
nizers, with high-accuracy results. Before processingngho 5 40.31 450 | 0625
sequences, non-phonetic uniigt (intermittent noise), pau =3 7 46.65 3.98 0.608
(short pause) andpk (non-speech speaker noise) are mapped 191 gg-g g-‘l‘g g-ggg

to sil (silence). After mapping, we get phone inventories of
size 43 for Czech, 59 for Hungarian and 50 for Russian.
Also, before doing phone tokenization, an energy-basetkvoi |n Approach 2 (degree of co-occurrence of phangrams),
activity detector is applied to split and remove non-speeghe cross-decoder synchronization noise also generates sh
segments from the signals. Since each BUT decoder runstgihsitional co-occurrences of phonegrams (see Figure 5).
acoustic front-end, it can be seen as a black box which takege main difference with respect to Approach 1 is that all the
a speech signal as input and gives the 1-best phone decodibgerved combinations of segments receive counts, imgudi
as output. Regarding channel compensation, noise reduictishort transitional (maybe noisy) combinations. By keeping
etc. all the systems presented in this paper rely on the icougansitional segments, we circumvent the possible lack of
front-end provided by BUT decoders, whose main features algformation related to deleting such segments. Howeventsh

o Czech Decoder (CZ) - 8 kHz, trained on the Czectransitional segments get low counts, and their distridsuts

SpeechDat(E) Database, containing 12 hours of speett expected to depend on the language, whereas stationary
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segments (corresponding to relatively long portions okspe vectors. So, whereas the computational cost of Approach 1 is

for which decoders keep the same labels) get higher cousisnilar to that of the baseline system, Approach 2 has twice

which dominate the feature vectors used to model targée cost of the baseline system.

languages. Moreover, as we explain in Section IV-E, only the SVM modeling was performed using LIBLINEAR [68],

most frequent features (those with the highest counts)beill an open source SVM software library for large-scale linear

used for SVM modeling. Therefore, since both the methadassification that shares many features with the populdi SV

used to compute feature counts and the way features are ug@mdry LIBSVM [69]. A Crammer and Singer solver for

in SVMs are expected to minimize the effect of transitionahulticlass SVMs was applied [70], and some minor changes

segments, we did not apply any filtering approach in this.caseere made to the source code of LIBLINEAR in order to
obtain regression values instead of class labels.

E. SVM modeling TABLE IV

f : AVERAGE SIZE OFSVM FEATURE VECTORS UNDER A SPARSE
All the SLR systems develOped in this work follow the REPRESENTATION COMPUTED ON THE DEVELOPMENT SETFOR THE

Phone-SVM phonotactic approach described above. SVM VEC- gaseLINE SYSTEM AND SYSTEMS BASED ONAPPROACHL AND

tors consist of counts of features representing the phono- APPROACH?Z.
tactics of an input utterance: phomegrams (baseline)p- = - =0
grams of phone co-occurrences (Approach 1) or t.he degree Baseline 796 786 835
of co-occurrence of phone-grams (Approach 2). Given an CZ-HU | CZ-RU [ HU-RU
i ili i Approach 1 (k=2) 731 790 809
input uttt(zlranc;a)fl anq a featuref, the probabilityp(f|X) is Anroach 2 ()| 1380 s bt
computed as follows: L
Approach 1 (k=3) 744
p(f|1X) = count(f, X) @) Approach 2 (k=3) 1099

N > g count(f’, X)

where count(f, X) is the count of featuref for the input
utteranceX . These probabilities are then used to fill a spar N
vector with entriesD(f) - p(f]X), whereD(f) is a weighting ¥ swu Weighting
function [67] (details are given in Section IV-F). As noted in [67], a suitable selection of the weight f)

In all approaches, up to 4-grams have been considerécritical for good system performance. A typical choice ha
Therefore, using the raw SVM feature space became unfedbe following form:
ble, due to its huge dimension: the number of possible 4-gram
could be up t059?%, (59 = 50)* and (43 * 59 x 50)* for the D(f) = min (C, L) 8)
baseline system, a system basedmegrams of two-decoder p(f15)

phone co-occurrences and a system based-grams of three- \,herec is a constant and is a set ofbackgroundutterances
decoder phone co-occurrences, respectively. In this warkyincjyding utterances for all the classes considered in the
sparse representation was used instead, which storedscodjication task) used to estimate what could be seen as an
only for the most frequgnt features. That is, instead Ong_S'%verage‘eature probability. Note that ' = 1 then D(f) = 1

a full space representation, features were ranked ac@tdin 4, raw feature probabilities are used (without weigthing)
their counts on a training dataset, and only those with th, the other hand, i’ — oo, then feature probabilities are
M highest counts were considered. On a previous work [%Jleighted by the inverse of the square root of tneerage
using up to 3-grams on the baseline system, the total numigr; -« probability (as in [67], [52] and [53]).

of features with non-null counts in the trgining dataset Was The constant’ can be heuristically optimized by choosing
below 100009 (though the number of possible 3-grams coulg 4t yajye yielding the best performance on a development se
_be up t059° = 205379). Taklng that result into account, t5ple Vv shows EER and'; . using the baseline language

in this work the parameted/ (i.e. the number of features oqqqnition system on the development and evaluation eets f
used to perform language recognition) has been heurigticalitterent values ofC' (maxWeight Results confirm that the
fixed to 200000. However, given an input utterance, most ofpgice of - is critical to obtain best performance, and that
them have null counts and are not explicitly included in the gevelopment set defined for these experiments matches
representation, so the actual size of the SVM feature vecigfiie el the evaluation set, since the optindalvalues for

is far less than200000. Table IV shows the average siz&,,i gatasets are very close each other, being slightlyrlowe
of the SVM feature vectors under a sparse representatiql}, oyajuation than for development. The optin@lvalues

computed on the development set, for the baseline and the 8§ for the development dataset were taken as reference to
proposed approaches. Note that for Approachuyams of 5456 slightly lower values for evaluation. The' values

phone co-occurrences), the average size of the featurerve%tpp”ed for each approach are shown in Table VI.
is very similar to that found for the baseline system, wherea

for Approach 2 (co-occurrences of phomegrams) more o )

dense vectors are obtained (maybe meaning more reliable §hdCalibration and fusion

informative features). On the other hand, training and dewp Each Phone-SVM subsystem generatescores for each
times depend linearly on the actual size of SVM featuiiaput utterance. Each score is then applied a t-norm [5%]isha
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TABLE V
EERAND C11,r PERFORMANCE OF THE BASELINE SYSTEM FOR
DIFFERENT VALUES OF THE MAXIMUM ALLOWED FEATURE WEIGHT, IN
LANGUAGE RECOGNITION EXPERIMENTS ON THE DEVELOPMENT AND
EVALUATION SETS.

from different decoders into a single representation dags n
provide feature synchronization (i.e. time alignmentpinfa-
tion. This is just what time-synchronous cross-decoder co-
occurrences provide, and that information will signifidant

%EER CLLR help to improve performance, as is shown below.
maxWeight | devel | eval | devel | eval
50 119 [ 3.03 | 0.171 | 0.483 TABLE VI
100 0.83 | 2.50 | 0.127 | 0.395 EERAND Cf;,r PERFORMANCE OF THE BASELINE PHONOTACTIC
200 0.77 | 229 | 0.111 | 0.349 SYSTEM AND SYSTEMS BASED ON THE TIMESYNCHRONOUS
300 0.72 | 2.19 | 0.108 | 0.334 CROSSDECODER CGOCCURRENCE APPROACHES PROPOSED IN THIS
400 0.69 | 2.21 | 0.106 | 0.332 WORK (C': MAXIMUM WEIGHT IN SVMS, k: NUMBER OF DECODERS.
500 0.65 | 2.22 | 0.105 | 0.337
foo0 | 073 | 245 | 0110 | 0361 —— T
1500 | 0.77 | 2.50 | 0.115| 0.378 ELZJ i'g; 8'223
2000 0.78 | 2.79 | 0.119 | 0.392 : :
3000 0.77 | 2.73 | 0.122 | 0.397 RU 4.64 0.691
CZ + HU 2.85 0.417
Baseline CZ+RU 291 0.467
(C=400) HU + RU 2.53 0.381
estimated from the othdr — 1 scores. The resulting scores are CZ + HU + RU 2.21 0.332
calibrated by means of a generative Gaussian backenddrain (CZ,HY) 2.85 | 0423
on the development data, and the final scores are obtain (Eﬁ'iﬂ) zgg 8'232
by fusing the scores of the calibrated SVM-based phonatact Ecz ’HU)RU) R 350
subsystems. Fusion is based on discriminative linear tiogis — ' '
o . . CZ-HU 3.65 0.520
regression, its parameters being estimated on the develdpm Approach 1 | CZ-RU 381 D8
dataset too. Thé&oCal toolkit has been used for calibration | = c=500) [ HURU 336 | 0484
and fusion (see [43] and [60] for details). _ CZHU + CZ-RU + HU-RU | 223 | 0312
Calibration and fusion optimize the information deliveted
ation.i Approach 1 1 7 1y Ry 398 | 0.608
the user by the fused system and offer application-inde@@nd | k=3, c=400) R : :
scores. Well_-ca_hbrated and fused scores can be intetheste CZ-HU 3.09 0.424
proper log-likelihoods and, therefore, be used to make-cos| approach 2 | Cz-RU 350 0514
effective Bayes decisions according to application-depan (k=2, C=1000) | HU-RU 2.70 0.399
language priors and costs. CZ-HU + CZ-RU + HU-RU | 2.09 0.308
Approach 2 | 1y Ry 359 | 0.510
V. RESULTS (k=3, C=700)

Table VI shows EER and’;.r performance in language
recognition experiments on the 2007 NIST LRE database us\When considering complete fusions fér= 2 decoders,
ing the baseline phonotactic system and the time-synclui®nohe two approaches proposed in this work outperformed the
cross-decoder co-occurrence approaches proposed in Haseline system in terms d@f..z. The approach 2 yielded
work. First of all, note that we calbystemseither to those better results (2.09% EER]; .z = 0.308) than the approach
that, for a given approach, are obtained by fusing subsystein(2.23% EER( . r = 0.312), the improvement provided by
of one or two decoders, or to those working on the whole setitife former being around 5% relative in terms of EER and 7%
three decoders. For the sake of completeness, the perfoemarlative in terms o' ; gz with regard to the baseline system.
of single subsystems and partial fusions is also shown iteTab Going further in analyses, 2-decoder co-occurrence subsys
VI, the fusion operation being represented by means of ttems performed consistently better than single-decoder su
symbol '+'. Rows corresponding to complete fusions hawgystems; in particular, those based on Approach 2 performed
been shaded. Scores from single subsystems have been bétter than those based on Approach 1. This result is quite
calibrated in order to get comparable performance measur@geresting, since it indicates that co-occurrence infatfon

Under the baseline approach, SVMs were also trained @nactually helping language recognition (specially in ey
mixed sets of features, by concatenating thgram counts it is conveyed by Approach 2). However, fusions of two
from two or three decoders in a single vector, thus obtainirsingle-decoder subsystems performed better than the-corre
four different concatenations: (CzZ,HU), (CZ,RU), (HU,RU}sponding 2-decoder co-occurrence subsystems. For irstanc
and (CZ,HU,RU). Results under this approach were similtie fusion of the HU and RU baseline subsystems yielded
to or slightly worse than those obtained by fusing singl2.53% EER andC..r = 0.381, whereas the HU-RU co-
subsystems, except when using the counts of all subsysteoturrence subsystem based on Approach 2 yielded 2.70%
which yielded slightly lower EER (2.17%) than fusing theEER andC ;g = 0.399. This result seems contradictory, since
corresponding subsystems (2.21%). By inspecting these baseline subsystems are based on token sequences in time and
sults, it may seem that no performance gain can be extractadoccurrence subsystems hypothetically convey both dginte
from cross-decoder dependencies in SVM-based phonotactioss-decoder information. However, the comparison is not
language recognition. However, gathering feature freqigsn fair, because fusion parameters are optimized for classintis
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ination. In fact, the fusion of the three 2-decoder co-ommre LRE2007 eval (30s, closed)
subsystems performs better than the fusion of the thredesing 20l ‘ ! T—— Approach 1 (k=3)
decoder baseline subsystems. This supports the hypothasis Baseline

time-synchronous cross-decoder co-occurrences conedylus — Approach 1 (k=2)
Baseline + Approachl (k=2)

information for language discrimination.

Under 3-decoder configurations, both approaches show
a poor performance compared to the baseline system (:
Figures 6 and 7). We knew that robustness issues could ai
from the huge amount of co-occurrences that are theorigtice
possible when dealing with > 3 decoders.

In Approach 1, the number of transitional segments m:
explode as the number of decoders increases, thus produc
noisy sequences of phone co-occurrences. We tried to av
short segments by means of a mode filter (see Section IV-I
but attending to system performance (3.98% EKER, r
= 0.608, worse than those of 2-decoder subsystems for -
Approach 1), it seems that such a filtering was not enough
not suitable. s o w

In Approach 2, a huge number of combinations of cros False Alarm probability (in %)
decoder phonei-grams could appear, specially in the cas.
of 3-grams and 4-grams. As noted in Section IV-E, the _ . "

. Fig. 6. Pooled DET curves for the baseline phonotactic lagguecognition
SVM feature vector may include at mo3060000 elements, system, two systems based on Approachigfam counts of cross-decoder
corresponding to co-occurrences with the highest counts gione co-occurrences, far= 2 andk = 3 decoders) and the fusidaseline
a training database. This way, we expected to overcorhépproach 1(k = 2).
robustness issues. However, attending to system perfaenan
(3.59% EER,Cr.r = 0.510, similar or worse than that of LRE2007 eval (30s, closed)
2-decoder subsystems for the Approach 2), we conclude tl i ‘ ‘

Miss probability (in %)

Approach 2 under a 3-decoder configuration is also remaykal © _2222322“ 209
affected by synchronization noise, maybe because too ms — Approach 2 (k=2)

short transitional segments are being used to charactepine Baseline + Approach 2 (k=2)
utterances. 10

A lesson learned is that co-occurrence information can
effectively extracted in 2-decoder configurations (lessire
to robustness issues) and recovered by means of fusionyIn
case, we still hope (and will keep trying) to find an exit to th
combinatorial dead end intrinsic to cross-decoder appresc
and future work will be partly devoted to that task.

Miss probability (in %)

A. Fusing baseline and cross-decoder co-occurrence sgste

Attending to results, one may conclude either that cros oo

decoder information can only provide small performanc

improvements in SVM-based language recognition, or (mo 02 i i ‘ ‘ ‘ ‘
. 0.2 0.5 1 2 5 10 20

probably) that issues related to cross-decoder co-oqutgre False Alarm probability (in %)

sparseness (unreliable estimations, lack of coverage)giir

limit the discriminative power of the proposed approaches.

any case further improvements can be expected from fus?ﬁ 7. Pooled DET curves for the baseline phonotactic lagguecognition

! . . %tem, two systems based on Approach 2 (degree of croesateco-

the baseline system (which focuses on time sequencgs) @NGotiurrence of phoner-grams, fork = 2 and k = 3 decoders) and the

proposed cross-decoder co-occurrence systems (whicleygonusion Baseline + Approach Zk = 2).

complementary cross-decoder information).

Table VIl shows EER and’; ;i performance of several

system fusions, including confidence intervals for a comftée a single experiment on the whole test set. In any case, they

level of 99% under a t-test. The t-test was computed by dell within the confidence intervals shown in Table VII.

lecting 1000 random segments in the test set for 100 differen First, the system (CZ,HU,RU), which uses the concatenation

experiments. This way, reasonably different subsets weed u of n-gram counts for the three BUT decoders as SVM repre-

in the experiments and, at the same time, EER éhdr sentation, slightly improved EER performance with regard t

were estimated with enough accuracy. Note that resultsishotlie baseline system, but fusing it with the baseline systiein d

above in Table VI are different, since they were computed ot lead to significantly better results. As noted aboves thi
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suggests that using just cross-decoder dependenciesdretwe Additional experiments were carried out to check how
n-gram counts, without time-alignment information, do nathe proposed approaches helped state-of-the-art phditotac
help language recognition. language recognition when dealing with shorter (10- and 3-

Systems based on 3-decoder co-occurrences did oaBcond) speech segments, which is a very interesting task
slightly improve (or nothing at all) the performance of gmt in practical applications. As shown in Table VIII, the per-
based on 2-decoder co-occurrences. This means that tfmynance of Approach 1 was almost identical to that of the
basically model the same cross-decoder information anabtio baseline system in all conditions, whereas the performance
complement each other in any way. This argument is supportgfd Approach 2, which was the best for 30-second speech
by the fact that when fused with the baseline system, 3-d=codegments, degraded for 10- and 3-second speech segments.
co-occurrence systems provided remarkable improvemerfiBjs may be due to the fact that Approach 2 is based
leading to 2.05% EER and 2.02% EER (8.48% and 9.820f frequencies of longer units (phomegrams), which are
relative improvement) for approaches 1 and 2, respectivepgarce and less predictable as less speech is available. Bes
But adding a 3-decoder co-occurrence system to the fusip@rformance for 10- and 3-second speech segments was found
of the baseline system and a 2-decoder co-occurrence systenen fusing the baseline system and Approach 1, leading to
did not improve performance for Approach 2, and did slightl$2.9% and 6.6% relative improvements, respectively.

improve performance in terms of EER for Approach 1.
TABLE VIl
AVERAGE EERPERFORMANCE AND CONFIDENCE INTERVALYFOR A
CONFIDENCE LEVEL OF99%IN A T-TEST) ON THE SUBSETS OR30-, 10-
AND 3-SECOND SPEECH SEGMENT,$OR SEVERAL SINGLE AND FUSED

TABLE VI
AVERAGE EERAND Cf,1, R PERFORMANCE AND CONFIDENCE INTERVALS
(FOR A CONFIDENCE LEVEL OF99%IN A T-TEST) FOR SEVERAL FUSED

SYSTEMS INVOLVING THE BASELINE SYSTEM AND SYSTEMS BASED ON SYSTEMS
APPROACH1 (A1) AND APPROACHZ2 (A2).
_ %EER
Single and Fused Systems %EER CLLR S = T =
" ystems S S S

Baseline 2.24 & 0.07) | 0.338 & 0.009

(CZHU RU) 513 g 0.06; 0354 St 0.010; Baseline 2.24 ¢+ 0.07) | 8.22( 0.14) | 20.30 ¢ 0.16)
Baseline + (CZ,HU.RU) 221 (- 0.06) | 0.338 (£ 0.010) ﬁ; Etfg gﬁ zt ggg fdzslt%llzz)) 22;2 & gig

Al (k=2 2.24 & 0.07) | 0.308 & 0.009 — - : : - : -

Al Ek=3; 399 g 0 10; 0.608 St 0 011; Baseline + Al 1.91 @ 0.06) | 7.16 (= 0.12) | 18.96 @ 0.14)

A2 (k=2) 2'11 o 0'05) 0'308 « 0'009) Baseline + A2 1.94 (4 0.06) | 7.48 @ 0.12) | 19.36 ¢ 0.16)

A2 (k=3) 3.56 (£ 0.09) | 0.510 £ 0.010) Baseline + Al+ A2| 1.83 & 0.06) | 7.21 @ 0.13) | 18.97 & 0.16)

Al (k=2) + AL (k=3) 2.20 (£ 0.06) | 0.306 (- 0.008)

A2 (k=2) + A2 (k=3) 2.09 & 0.05) | 0.301 ¢ 0.008)

Al (k=2) + A2 (k=2) 2.02 (£ 0.06) | 0.289 (- 0.009) .

Baseline + AL (k=2) 191 006) | 0276 cooog)| B Overall Performance Comparison

Baseline + A2 (k=2) 1.94 & 0.06) | 0.287 ¢ 0.008) For the primary task of the 2007 NIST LRE (30-second
Baseline + Al (k=3) 2.05 @ 0.07) | 0.301 ¢ 0.009) speech segments, closed-set condition) many results leave b
Baseline + A2 (k=3) 2.02 (£ 0.08) | 0.312 (& 0.009) published in the literature. Best performance has beerntegho
Baseline + Al (k=2) + Al (k=3) | 1.88 ( 0.06) | 0.272 { 0.008) |  \yhen fusing several subsystems, specially when acoustic an
Baseline + A2 (k=2) + A2 (k=3) | 1.97 (£ 0.07) | 0.291 ( 0.010) | hhonotactic subsystems were fused [6] [7] [66]. Table IX
Baseline + Al (k=2) + A2 (k=2) | 1.83 (& 0.06) | 0.270 & 0.008)

shows the best performance attained in the NIST 2007 LRE
[5], and results reported by the Massachusetts Institute of

Separate fusions of the baseline system with systems basgghnology (MIT) [6] and the Brno University of Technology
on 2-decoder co-occurrences yielded very competitiveqoerf(BUT) (66].
mances: 1.91% and 1.94% EER (14.73% and 13.39% relative TABLE IX
improvement) for approaches 1 and 2, respectively (two firSt BENCHMARK ON THE PRIMARY TASK OF THE2007 NIST LRE
shaded rows in Table VII). Fusing 2-decoder co-occurrence(30-SECOND SPEECH SEGMENTSLOSED-SET CONDITION) FOR THE
systems for approaches 1 and 2 improved performance by FUSIONOF ACOUSTIC AND PHONOTACTIC SYSTEMS

around 4% with regard to the 2-decoder system based on Fused systems | %EER | 100 - Cuvg

Approach 2. Finally, the best performance (1.83% EER and 2007 NIST LRE [5] - 1.00
- ; ; ; seven subsystems [6] 0.93 0.97

Crrr = 0.270) was attained by fusing the baseline system thiee subsystems [66]  — 158

with 2-decoder co-occurrence systems for approaches 1 and 2
(last shaded row in Table VII), meaning around 18% relative
improvement. This result reveals that time-synchronoassr  Results shown in Table IX were obtained by fusing several
decoder co-occurrences convey useful (complementany)-infacoustic and phonotactic subsystems. However, the agpesac
mation that can effectively help (through discriminatiusibn) presented in this paper are purely phonotactic. Table X show
to improve state-of-the-art phonotactic language redamilt the most significant references and the best results reporte
is worth noting that cross-decoder time alignment infoiorat to date using phonotactic approaches on the primary task of
is already there and no additional computations are need#itg 2007 NIST LRE, corresponding to systems developed by
but only building and applying models based on it. MIT [52], BUT [71] [72], the Institute for Infocomm Research



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING

(IIR) [50][54] and the Laboratoire d’Informatique pour la
Mecanique et les Sciences de I'lIngenieur (LIMSI) [73].

(30-SECOND SPEECH SEGMENT,SLOSED-SET CONDITION) USING

TABLE X
BENCHMARK ON THE PRIMARY TASK OF THE2007 NIST LRE

PHONOTACTIC SYSTEMS

14

VI. CONCLUSIONS ANDFUTURE WORK

Two approaches using time-synchronous cross-decoder co-
occurrence information in SVM-based phonotactic language
recognition have been defined and evaluated (for combimatio
of £k = 2 andk = 3 decoders): Approach Inf{gram counts
of phone co-occurrences) and Approach 2 (degree of co-

Classifier | Model %EER | 100 - Cavg occurrence of phone-grams). Both approaches rely on the as-
4-gram, I-best [73] 4.9 - sumption that time-synchronous cross-decoder co-oaucere
LM 3gram, ::g:ggz [;é]' (2] e 554 information is somehow specific to each target languagey The
Binary Tree 3_gram: Tatiices [71], [72]] = 52 do not involve significant additional computation with rega
3-gram, 1-best [50] 4.64 - to a baseline phonotactic system, and represent just a means
3-gram, lattices [50] 3.54 - to extract more information from existing decodings.
SVM 3-gram, lattices [52] 2.20
4-gram, lattices [54] 1.84 Systems based on 2-decoder co-occurrences outperformed
4-gram, lattices [52] 1.80 - the baseline system in language recognition experiments on

the primary task of the 2007 NIST LRE. The system based
. ) i on Approach 2 using 2-decoder phonegrams yielded the
Rgsults in Table X first suggest that gpplyl_ng SVM-basgghq performance among all single systems, with 2.11% EER
scornng leads to better_ results than using _elthegjram or _(above 5% relative improvement with regard to baseline%.24
binary tree-based scoring. Second, that using phonedattl%ER) andCy. = 0.308 (above 8% relative improvement
to computen-gram statistics leads to better results than usi%th regard to baseline&C;.r = 0.338). However, when
1-best phone sequences. And third, that using up 10 4-gralllng 3 decoder configurations, both approaches showed a
s’gatlsn_cs is _useful, despite robustness issues relatettheto poor performance compared to the baseline system. This may
high dimension of the feature Space. In particular, bestit®s o, 05| robustness issues related to (1) significant eiffess in
(around 1.80% EER) were attained by ;ystems based on € jetection of phone boundaries (Approach 1) which make
Phone-SVM approach, using phone lattices and up to 4-9rgmqjtional segments to be dominant, thus producing noisy
statistics, and applying discriminative feature selectiased sequences of phone co-occurrences; and (2) a huge number

on SVM weights and a wrapper/filter method [52][54]. Finallyo¢ hhone),-gram combinations (Approach 2), whose statistics
it must be noted that the phonotactic approaches proposeq i} o+ he robustly estimated.

this paper, based on 1-best phone sequence statisticsiagd us When considering fusions, best results were attained when

up to 4-grams but without discriminative feature Selectio'&ombining the baseline system with systems based on 2-
yielded the same performance than state-of-the-art paotiot o . qer co-occurrences, with no significant differences be

systems. On the other hand, time-synchronous cross-dec en approaches 1 and 2. The best fused system (Baseline
co-occurrence information can be easily extracted in mo?tApproach 1§ =2) + Approach 2 § = 2)) yielded 1.83%
PPR-based phonotactic systems. So, improved performang%é\R andCy.r = 0.270, meaning around 18% and 20%

almost no _COSt can .be attained in phonotactic SLR by USIPGative improvement, respectively, with regard to theehas
features with both time (sequence) and cross-decoder—(‘urrnﬂe system. Finally, using time-synchronous cross-decod

synchronous co-occurrence) information. co-occurrences led to improved performance (by fusing the
baseline system with Approach 1) also when applied to short
(10- a 3-second) speech segments.

. . . We are currently working on various co-occurrence selec-
There is an important difference between approaches,.1 . : . )
. . : ~1i0n schemes, with the aim to improve performance by using
and 2, which regards how cross-stream and time dimensions o .
; more discriminant features, and on replacing 1-best phone
are processed. Approach 1 first concentrates on the cross- : . . .
: : ) . . sequences by phone lattices, with the aim to increase the
decoder dimension and then considers the time dimensig o .
robustness of co-occurrence statistics. Future work wius

but phone sequence modeling is somehow lost in the way. . . .
. o increasing the robustness of phonotactic approachés tha
Approach 2 runs the opposite route: it can be seen as . . .
. . . Integrate time and cross-stream dependencies, specihby w
phonotactic system (whose factory equipment includes @hon .
. . " 1 fusing k > 3 decoders.
sequence modeling) enhanced with additional modeling 0
cross-decoder co-occurrences of phongrams. This may

explain why, when the available amount of speech was large REFERENCES
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