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ABSTRACT

Due to computational bounds, most SVM-based phonotac-
tic language recognition systems consider only low-order
n-grams (up to n = 3), thus limiting the potential perfor-
mance of this approach. The huge amount of n-grams for
n ≥ 4 makes it computationally unfeasible even selecting
the most frequent n-grams. In this paper, we demonstrate
the feasibility and usefulness of using high-order n-grams for
n = 4, 5, 6, 7 in SVM-based phonotactic language recogni-
tion, thanks to a dynamic n-gram selection algorithm. The
most frequent n-grams are selected, but computational issues
(those regarding memory requirements) are prevented, since
counts are periodically updated and only those units with the
highest counts are retained for subsequent processing. Sys-
tems were built by means of open software (Brno University
of Technology phone decoders, HTK, LIBLINEAR and Fo-
Cal) and experiments were carried out on the NIST LRE2007
database. Applying the proposed approach, a 1.36% EER was
achieved when using up to 4-grams, 1.32% EER when using
up to 5-grams (11.2% improvement with regard to using up
to 3-grams) and 1.34% EER when using up to 6-grams or
7-grams.

Index Terms— Phonotactic Language Recognition,
SVM, high-order n-grams, Feature Selection

1. INTRODUCTION

For Language Recognition (LR) tasks, two main comple-
mentary approaches are typically used [1]: low level acoustic
modeling and high level phonotactic modeling. To model the
target language, low level acoustic systems take information
from the spectral characteristics of the audio signal, whereas
high level phonotactic systems use sequences of phones pro-
duced by Parallel Phone Recognizers (PPR).

In this paper, we focus on the currently most common
phonotactic approach: counts of phone n-grams are used to
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build feature vectors which feed a discriminative classifier
based on Support Vector Machines (SVM) [2]. In general, N
phone decoders are applied to the input utterance, yielding N
phone decodings. The output of each decoder i (i ∈ [1, N ]) is
scored for each target language j (j ∈ [1, L]), by applying the
SVM model λ(i, j) (estimated using the outputs of the phone
decoder i for a training database, taking j as the target lan-
guage). Scores for the subsystem i are calibrated, typically
by means of a Gaussian backend. Finally, N × L calibrated
scores are fused applying linear logistic regression, to get L
final scores for which a minimum expected cost Bayes de-
cision is taken, according to application-dependent language
priors and costs (see [3] for details).

The performance of each phone recognizer can be in-
creased significantly by computing the statistics from phone
lattices instead of 1-best phone strings [4], since lattices pro-
vide richer and more robust information. Another way to
increase system performance is the use of high-order n-gram
counts, which are expected to contain more discriminant
(more language-specific) information. However, the number
of n-grams grows exponentially as n increases, and SVM
parameters need to be estimated on huge amounts of data, or
alternatively most vector components would not be robustly
estimated (most of them being zero). This leads to issues
regarding either the availability of computational resources
(specially memory) or the robustness of SVM parameters.

Dimensionality reduction techniques can be applied to get
SVM vectors of a reasonable size, such as feature transfor-
mation methods (PCA, LDA, etc.) [5] and feature selection
methods [6]. Among the latter, two techniques have been suc-
cessfully applied: (1) feature selection based on frequency
(low frequency n-grams are discarded); and (2) discrimi-
native feature selection, which takes into account the rank
of feature weights in the SVM vectors (least discriminant
n-grams are discarded). In both cases, selection requires
building complete vectors (i.e. vectors containing all the
components). Again, the huge amount of n-grams for n ≥ 4
makes it computationally unfeasible a brute-force approach
to selecting n-grams. To solve this, a kind of suboptimal
expansion has been proposed [6]: starting from a relatively
small trigram SVM system, a 4-gram SVM system is built



by using an alternating wrapper/filter method. In the wrapper
step, the most discriminant/frequent trigrams are selected.
Then, in the filter step, the subset of 4-grams is generated
by appending/prepending each phone in the phone set to
each selected trigram. In [6] the most discriminant features
were selected according to their weights in the SVM. The
resulting SVMs (including up to 4-grams) yielded a rela-
tive improvement of 18% with regard to the baseline SVMs
(including up to trigrams). Following the same method,
SVMs including counts of up to 5-grams were estimated,
but their performance degraded significantly. Recently in
[7], high order n-grams (actually, 4-grams) were used (and
performance improvements were reported), by applying the
alternating wrapper/filter method on the weights of the SVM
and the Chi-squared measure. However, as far as we know, no
performance improvements have been reported when using
5-grams (or higher order n-grams) in SVM-based phonotactic
language recognition.

In this paper, we propose a new n-gram selection algo-
rithm that allows the use of high-order n-grams (for n =
4, 5, 6, 7) to improve the performance of a baseline system
based on trigram SVMs. The algorithm requires one single
parameter: M , the desired number of features, and works by
dynamically updating a ranked list of the most frequent units
(from unigrams to n-grams), retaining only those units whose
counts are higher than a given threshold. Finally, after pro-
cessing all the training data, the M most frequent units are
output.

The rest of the paper is organized as follows. Section 2
presents the main features of the baseline phonotactic lan-
guage recognition system used in this work. Section 3 de-
scribes the proposed dynamic feature selection method. The
experimental setup is briefly described in Section 4. Results
obtained in language recognition experiments on the NIST
LRE2007 database (pooled for all the target languages) are
presented in Section 5. Finally, conclusions are summarized
in Section 6.

2. BASELINE SVM-BASED PHONOTACTIC
LANGUAGE RECOGNIZER

In this work a SVM-based phonotactic language recognizer is
used as baseline system, and the NIST LRE2007 database is
used for development and evaluation. An energy-based voice
activity detector is applied in first place, which splits and re-
moves long-duration non-speech segments from the signals.
Then, the Temporal Patterns Neural Network (TRAPs/NN)
phone decoders, developed by the Brno University of Tech-
nology (BUT) for Czech (CZ), Hungarian (HU) and Russian
(RU) [8], are applied to perform phone tokenization. BUT
decoders have been previously used by other groups (be-
sides BUT [9], the MIT Lincoln Laboratory [10]) as the
core elements of their phonotactic language recognizers, with
high-accuracy results. Before processing phone sequences,
non-phonetic units: int (intermittent noise), pau (short pause)

and spk (non-speech speaker noise) are mapped to sil (silent
pause). After mapping, the number of units is 43 for Czech,
59 for Hungarian and 49 for Russian.

BUT recognizers are used along with HTK [11] to pro-
duce phone lattices. Lattices encode multiple hypotheses with
acoustic likelihoods and are used to produce expected counts
of phone n-grams. Each BUT decoder runs its own acoustic
front-end, which takes a speech signal as input and gives the
lattice decoding as output. Regarding channel compensation,
noise reduction, etc. all the systems presented in this paper
rely on the acoustic front-end provided by BUT decoders.

In the baseline system, phone lattices are modeled by
means of SVM. SVM vectors consist of counts of phone
n-grams (up to 3-grams), weighted as proposed in [6]. A
Crammer and Singer solver for multiclass SVMs with linear
kernels has been applied, by means of LIBLINEAR [12],
which has been modified by adding some lines of code to
compute regression values. Finally, the baseline system is
built by fusing the scores of the three calibrated SVM-based
phonotactic subsystems. The FoCal toolkit is used for cali-
bration and fusion (see [3] for details).

3. DYNAMIC FEATURE SELECTION

As noted in Section 1, when high-order n-grams are consid-
ered, the number of n-grams grows exponentially, leading to
huge computational costs and making the baseline SVM ap-
proach impracticable. To reduce the dimensionality of the
SVM feature vector, feature selection can be applied, but an
exhaustive search of the optimal feature set is computation-
ally unfeasible. The wrapper/filter method [6] tries to select
the most discriminant (n− 1)-grams and expands them to get
a suboptimal subset of n-grams. However, this method has
proven useful only for n = 4.

In this work, we propose a new feature selection method
with the following characteristics:
• Selection is performed in the target feature space, using

an estimate of the feature frequency as criterion.
• The algorithm works by periodically updating a ranked

list of the most frequent units, so it doesn’t need to in-
dex all the possible n-grams but just a relatively small
subset of them.

• A single parameter is required: M , the total number of
units (unigrams + bigrams + . . . + n-grams).

• The process involves accumulating counts until their
sum is higher than K and updating the ranked list of
units by retaining only those counts higher than a given
threshold τ . Note that the algorithm depends on two
heuristics: K, the updating period (sum of accumulated
counts that must be attained before performing a new
update); and τ , the threshold applied to retain counts.

• At each update, all the counts lower than τ are implic-
itly set to zero; this means that the selection process is
suboptimal, since many counts are discarded.



• The algorithm outputs the M leading items of the
ranked list; note that K and τ must be tuned so that
enough number of alive counts (at least, M ) are kept at
each update.

A hash table is used to rank features according to their
counts (the table is indexed by features and stores counts).
Though counts increase monotonically, the size of the hash ta-
ble increases at a slower pace as more updates are performed,
since less likely units should rarely accumulate counts higher
than τ in an updating periodK. In any case, K and τ must be
tuned with an eye put on trying the size of the hash table not
to grow too much. In practice, suitable values for K and τ
produce hash tables with final sizes around 10×M , M being
the highest size considered for an n-gram order. Given a set of
training samples Ω, the dynamic feature selection algorithm
can be summarized as follows:

Dynamic feature selection algorithm

table← ∅
t← 0

for X ∈ Ω do
accumulate counts(table,X)
t← t + total counts(X)
if t > K then

t← 0
update(table,τ )

truncate(table,M )

4. EXPERIMENTAL SETUP

4.1. Train, development and evaluation datasets

Train and development data were limited to those distributed
by NIST to all 2007 LRE participants: (1) the Call-Friend
Corpus; (2) the OHSU Corpus provided by NIST for LRE05;
and (3) the development corpus provided by NIST for the
2007 LRE. For development purposes, 10 conversations per
language were randomly selected, the remaining conversa-
tions being used for training. Each development conversation
was further split in segments containing 30 seconds of speech.
Evaluation was carried out on the 2007 LRE evaluation cor-
pus, specifically on the 30-second, closed-set condition (pri-
mary evaluation task).

4.2. Evaluation measures

In this work, systems will be compared in terms of Equal
Error Rate (EER), which, along with DET curves, is the most
common way of comparing the performance of language
recognition systems, but also in terms of the so called CLLR

[13], an alternative performance measure used in NIST eval-
uations. We internally consider CLLR as the most relevant
performance indicator, for three reasons: (1) CLLR allows
us to evaluate system performance globally by means of a

single numerical value, which is somehow related to the area
below the DET curve, provided that scores can be interpreted
as log-likelihood ratios; (2) CLLR does not depend on appli-
cation costs; instead, it depends on the calibration of scores,
an important feature of detection systems; and (3) CLLR has
higher statistical significance than EER, since it is computed
starting from verification scores (in contrast to EER, which
depends only on Accept/Reject decisions).

5. RESULTS

The phonotactic system described in Section 2, based on
phone lattices, has been developed and evaluated on the NIST
LRE2007 database. Note that we call system to the fusion of
three subsystems, each corresponding to a TRAPS/NN phone
decoder. When a 4-gram SVM system was considered, the
total number of features was about 2000000 for each decoder
(1895778 for CZ, 2920755 for HU and 2300064 for RU).
But, obviously, not all of them appeared in the SVM vectors.
We studied the average size of the SVM vector, and found
that it was about 70000. This system yielded 1.32% EER and
CLLR = 0.22508, meaning a relative improvement of 11%
and 6%, respectively, compared to the trigram SVM system.

Table 1. EER and CLLR on the NIST LRE07 closed-set evalua-
tion subset of 30-second speech segments, for various 4-gram SVM
systems working on feature sets obtained with the dynamic selection
algorithm. The number of features (M ) and the average SVM vec-
tor size are shown too. All systems are fusions of three subsystems
corresponding to CZ, HU and RU decoders.

n-gram Average
order M vector size %EER CLLR

3 96416 13634 1.4932 0.23949
2000000 68627 1.3274 0.22508
1000000 66871 1.3269 0.22534

500000 61963 1.3189 0.21874
200000 49614 1.3417 0.22123
100000 37635 1.3747 0.21861
90000 35793 1.4229 0.22048
80000 33754 1.4334 0.21997

4 70000 31477 1.3768 0.22335
60000 28931 1.3862 0.22197
50000 26028 1.3536 0.22613
40000 22689 1.3838 0.22834
30000 18778 1.3676 0.22810
20000 14076 1.4109 0.23404
10000 8178 1.6077 0.25932
5000 4507 1.6981 0.28028

Taking the 4-gram SVM system as baseline, we applied
the proposed dynamic selection algorithm for M ranging
from 2000000 down to 5000. In this case, we heuristically
fixed K = 106 and τ = 10−5 to ensure that more than
2000000 features were kept at the end of each iteration. Ta-
ble 1 shows the EER and CLLR performance attained with



SVM systems based on the selected features. Note that,
due to local effects around the EER region, the EER shows
some oscillations. On the other hand, the CLLR, which al-
lows us to evaluate systems globally, reflects no significant
loss of performance for M = 30000 and higher values. In
particular, for M = 30000, the average vector size was re-
duced from 68637 to 18888, still yielding 1.36% EER and
CLLR = 0.2281 (a relative improvement of 8.5% and 4.6%,
respectively, compared to the trigram SVM system).

Two reference M values have been selected taking into
account results for n = 4 in Table 1: M = 100000 pro-
vided better performance than the trigram SVM system, with
a similar number of features (though 3 times larger vectors
on average); on the other hand, M = 30000 provided bet-
ter performance than the trigram SVM system with similar
vector sizes on average. Finally, the proposed dynamic selec-
tion algorithm has been also applied for n = 5, 6, 7, using
the two reference values of M . Results are shown in Table 2.
Note that best performance was obtaind for n = 5: 1.3267%
EER (CLLR = 0.2230) for M = 100000 and 1.3576% EER
(CLLR = 0.2261) for M = 30000. Moreover, performance
does not degrade when increasing the n-gram order, as it was
the case of other selection approaches in the literature. These
results prove that the feature selection algorithm proposed in
this work is providing suitable and robust sets of features.

Table 2. EER and CLLR on the NIST LRE07 closed-set evalua-
tion subset of 30-second speech segments, for different n-gram SVM
systems working on feature sets obtained with the dynamic selection
algorithm using M = 100000 and M = 30000. All systems are
fusions of three subsystems corresponding to CZ, HU and RU de-
coders.
n-gram Average
order M vector size %EER CLLR

3 96416 13634 1.4932 0.23949
100000 37635 1.3747 0.218614

30000 18778 1.3676 0.22810
100000 41161 1.3267 0.223005

30000 19195 1.3576 0.22613
100000 40823 1.3415 0.223666

30000 19187 1.3671 0.23007
100000 39357 1.3451 0.221527

30000 19119 1.3987 0.22973

6. CONCLUSIONS

A dynamic feature selection method has been proposed which
allows to perform phonotactic SVM-based language recog-
nition with high-order n-grams. Performance improvements
with regard to a baseline trigram SVM system have been re-
ported in experiments on the NIST LRE2007 database when
applying the proposed algorithm to select the most frequent
units up to 4-grams, 5-grams, 6-grams and 7-grams. The best

performance was obtaind when selecting the 100000 most
frequent units up to 5-grams, which yielded 1.3267% EER
(11.2% improvement with regard to using up to 3-grams). We
are currently working on the evaluation of smarter selection
criteria under this approach.
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