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ABSTRACT

Phonotactic language recognizers are based on the ability
of phone decoders to produce phone sequences containing
acoustic, phonetic and phonological information, which is
partially dependent on the language. Input utterances are de-
coded and then scored by means of models for the target lan-
guages. Commonly, various decoders are applied in parallel
and fused at the score level. A kind of complementarity ef-
fect is expected when fusing scores, since each decoder is
assumed to extract different (and complementary) informa-
tion from the input utterance. This assumption is supported
by the performance improvements attained when fusing sys-
tems. However, decodings are processed in a fully uncou-
pled way, their time alignment (and the information that may
be extracted from it) being completely lost. In this paper, a
simple approach is proposed, which takes into account time
alignment information, by considering cross-decoder phone
coocurrences at the frame level. To evaluate the approach, a
choice of open software (BUT front-end and phone decoders,
SRI-LM toolkit, libSVM, FoCal) is used, and experiments
are carried out on the NIST LRE2007 database. Adding
phone coocurrences to the baseline phonotactic systems pro-
vides slight performance improvements, revealing the poten-
tial benefit of using cross-decoder dependencies for language
modeling.

Index Terms— Language Recognition, Phone Decoding,
Phone Coocurrence

1. INTRODUCTION

Phonotactic language recognizers exploit the ability of phone
decoders to convert a speech utterance into a sequence of
phones containing acoustic, phonetic and phonological infor-
mation. Models for target languages are built by decoding
hundreds or even thousands of training utterances and using
the phone-sequence (or phone-lattice) statistics (unigrams, bi-
grams, etc.) in different ways. Since training data featurea
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wide range of speakers and diverse linguistic contents, being
languagethe common factor, it is expected that phone statis-
tics reflect language-specific characteristics.

The most common approaches are the so called PPRLM
(Parallel Phone Recognizers followed by Language Models)
[1] (referred to as Phone-LM in this paper) and the Phone-
SVM (Support Vector Machines applied on phone n-gram
counts) [2]. In both cases,N phone decoders are applied to
the input utterance, yieldingN phone decodings (or lattices).
The output of the phone decoderi (i ∈ [1, N ]) is scored for
each target languagej (j ∈ [1, L]), by applying the model
λ(i, j) (estimated using the outputs of the phone decoderi
for the subset of the training database corresponding to lan-
guagej). Scores for the subsystemi are calibrated, typically
by means of a Gaussian backend. Sometimes, a t-norm [3] is
applied before calibration. Finally,N × L calibrated scores
are fused applying linear logistic regression, to getL final
scores for which a minimum expected cost Bayes decision
is taken, according to application-dependent language priors
and costs (see [4, 5] for details). Figure 1 shows the structure
of a phonotactic language recognizer.

Fig. 1. A phonotactic language recognition (LR) system.

However, the above described structure definesN inde-
pendent data processing channels, and no cross-decoder de-
pendencies are exploited for language modeling, information



being fused only at the score level. In this paper, a simple
approach is proposed which takes into account cross-decoder
phone coocurrences at the frame level. Time stamps are ex-
tracted as side information from the 1-best phone decoding.
This way, each frame may be assignedN phone labels (one
per decoder), and a sequence of multi-phones could be de-
fined and used for modelling purposes. The simplest case
would consist of sequences of two-phone labels correspond-
ing to two decoders A and B, which could be processed and
modelled exactly the same way as phone sequences (see Fig-
ure 2). In fact, there could beN(N − 1)/2 of such 2-
decoder subsystems. This configuration can be easily gen-
eralized tok-decoder subsystems, being the most general ap-
proach considering a singleN -decoder system producingN -
phone coocurrence sequences. As for n-grams, the number
of k-phone coocurrences increases exponentially withk, so
in practice it will only make sense to model 2-phone and 3-
phone coocurrences.

Fig. 2. A 2-decoder phone coocurrence LR subsystem.

The idea of using phonetic information in the cross-stream
(cross-decoder) dimension was first applied for speaker
recognition in the JHU 2002 Workshop [6]. However, the ap-
proach proposed in [6] considered two decoupled time and
cross-stream dimensions, which were modelled separately
and integrated at the score level.

The rest of the paper is organized as follows. The baseline
phonotactic systems used in this work and the cross-decoder
phone coocurrence approach are described in Sections 2 and
3, respectively. The experimental setup is described in Sec-
tion 4. Results of language recognition experiments on the
NIST LRE2007 database (pooled for all the target languages)
are presented and discussed in Section 5. Finally, conclusions
and some ideas for future work are outlined in Section 6.

2. BASELINE PHONOTACTIC SYSTEMS

In this work, we aimed to test the proposed approach with re-
gard to a well-established methodology (phonotactic systems)
and a relevant corpus of data (NIST LRE2007 database). We
also aimed to allow other researchers to easily verify our re-
sults. So we made a choice of open software resources to
build two phonotactic systems. Three phone decoders devel-
oped by the Brno University of Technology (BUT) for Czech,
Hungarian and Russian [7] are the core elements of the base-

line systems. BUT decoders have demonstrated a high accu-
racy and have been previously used by other groups (besides
BUT [8], the MIT Lincoln Laboratory [9]) as the backend
for phonotactic language recognition. Since each BUT de-
coder runs an acoustic front-end, it can be seen as a black
box which takes a speech signal as input and gives the 1-best
phone decoding as output. Regarding channel compensation,
noise reduction, etc. all the systems presented in this paper
rely on the acoustic front-end provided by BUT decoders.

Two baseline systems were built matching the structure
shown in Figure 1. The Phone-LM system scored phone de-
codings with language models estimated by means of the SRI
Language Model toolkit [10]. The Phone-SVM system was
based on bag-of-N-grams vectors that were weighted as pro-
posed in [11]. SVMs were trained by means of libSVM [12],
applying a linear kernel, and using the log-likelihoods pro-
vided by the package (instead of the scores). In fact, both
the Phone-LM and Phone-SVM systems were built by fus-
ing three sub-systems, for Czech, Hungarian and Russian de-
coders.

3. USING CROSS-DECODER PHONE
COOCURRENCES

Given an input sequence of feature vectorsX =
(X1, . . . , XT ), T being the length of X, assuming
that N phone decoders are available, consider the 1-
best phone decodings:D(i)(X) = {d

(i)
1 , . . . , d

(i)
K(i)},

i ∈ [1, N ], K(i) being the length of D(i)(X),
and segmentations (defined by considering phone la-
bels at frame level): S(i)(X) = {s

(i)
1 , . . . , s

(i)
T },

i ∈ [1, N ]. Language modeling should consider not
only intra-decoder phone (time) dependencies (phone n-
grams: p(d(i)t |d

(i)
1 , . . . , d

(i)
t−1)), but also cross-decoder time-

synchronous (frame level) phone dependencies, which we call
coocurrences: p(s

(i)
t |s

(1)
t , . . . , s

(i−1)
t , s

(i+1)
t , . . . , s

(N)
t )), be-

cause language-specific information may be also extracted
from these latter. In fact, the most general approach to lan-
guage modeling should combine both dependencies into one
single model, so thats(i)t would depend on all thes(j)k , with
k ∈ [1, t − 1] andj ∈ [1, N ], j 6= i. However, taking into
account that each phone decoder handles between 30 and 60
phones, the resulting model would be too complex and the
number of parameters too large, making it unfeasible com-
puting robust estimations.

It is even unfeasible to model time-synchronous phone
dependencies for a high number of decoders. Here we pro-
pose a simple approach where a restricted model is defined
by taking into account time-synchronous phone dependencies
for a choice ofk decoders (out ofN ). There can be defined
N !/k!(N−k)! of such models, which could be estimated and
applied on an independent way, and their scores fused with
those of other models.



In this work, a sequence of frame-level phone coocur-
rences is built for each combination ofk = 2 and k = 3
decoders (withN = 3). A sequence of coocurrences can
be used the same way as a sequence of phones, either to es-
timate n-gram language models (like in Phone-LM systems)
or to compose a bag-of-N-grams vector (like in Phone-SVM
systems). This way, the resulting models include information
from both time and cross-stream dimensions.

4. EXPERIMENTAL SETUP

4.1. Training, development and test corpora

Training and development data were limited to those dis-
tributed by NIST to all LRE2007 participants: (1) the Call-
Friend Corpus; (2) the OHSU Corpus provided by NIST for
LRE05; and (3) the development corpus provided by NIST
for LRE07. For development purposes, 10 conversations per
language were randomly selected, the remaining conversa-
tions being used for training. Each development conversation
was further split in segments containing 30 seconds of speech.
Evaluation was carried out on the LRE07 evaluation corpus,
specifically on the 30-second, closed-set condition (primary
evaluation task for the LRE07).

4.2. Phone decoders

The phonotactic language recognition systems used in this
work were all based on the Brno University of Technology
(BUT) TRAPS/NN decoders for Czech, Hungarian and Rus-
sian [7]. Non phonetic units appearing in the decodings (int,
pauandspk) were mapped to silence (sil). Prior to phone tok-
enization, an energy-based voice activity detector was applied
to split and remove non-speech segments from the signals.
Phone decoder outputs were used in three different ways:

PHONE: 3 × phone outputs (CZ, HU and RU). Output di-
mensions were respectively 43, 59 and 49.

COOC2: 3 × frame-level 2-phone coocurrence outputs
(CZ_HU, CZ_RU and HU_RU). Output dimensions
were respectively 2537, 2107 and 2891.

COOC3: 1 × frame-level 3-phone coocurrence output
(CZ_HU_RU). Output dimension was 124313.

4.3. Language models

Two different language modeling techniques were compared:
(1) 4-gram language models (LM) with Witten-Bell smooth-
ing; and (2) Support Vector Machine-based language models
(SVM), using weighted bag-of-N-grams vectors. In the SVM
case, forPHONE outputs, up to 3-grams where estimated,
whereas forCOOC2andCOOC3outputs, only 1-gram statis-
tics where estimated, due to the high number of coocurrences,
which made unfeasible even the use of 2-grams.

5. RESULTS

Tables 1 and 2 show the Equal Error Rate (EER) performance
of single systems and various system combinations (fusions),
respectively. Although the performance of the best 2-phone
coocurrence system (COOC2-LM) was far from those of the
baseline systems, improvements were obtained when fused
with any of them, yielding a relative 11% improvement with
regard toPHONE-LM performance, and a relative 23% im-
provement with regard toPHONE-SVMperformance (see
Figure 3). TheCOOC2-LM system contributed useful in-
formation even when fused with the high-accuracyPHONE-
LM + PHONE-SVMsystem, yielding a 7% relative improve-
ment (see Figure 4). On the other hand,COOC3systems
yielded worse performance thanCOOC2systems, specially
in the case of the LM (n-gram) approach (see Table 1). Fi-
nally, though contributing useful information when fused with
the baseline phonotactic systems, COOC3 did not outperform
COOC2 (see Table 2). These results could be explained by the
high number of 3-phone coocurrences and the limited amount
of training data, which may be leading to unreliable estimates.
To overcome this, a kind of selection strategy could be defined
which would allow to apply only statistically reliable and/or
discriminant 3-phone coocurrences.

Table 1. Performance (EER) of baseline phonotactic and
coocurrence-based LR systems.

EER
LM SVM

PHONE-CZ 8,31% 5,87%
PHONE-HU 5,88% 5,49%
PHONE-RU 6,71% 5,85%

PHONE 2,96% 2,71%
COOC2 3,62% 4,84%
COOC3 11,26% 5,63%

Table 2. Performance (EER) of various fused LR systems.
Fusions EER

PHONE-LM + PHONE-SVM 2,15%
COOC2-LM + COOC3-SVM 3,06%
PHONE-LM + COOC2-LM 2,39%
PHONE-LM + COOC3-SVM 2,59%
PHONE-SVM + COOC2-LM 2,00%
PHONE-SVM + COOC3-SVM 2,40%
PHONE-LM + PHONE-SVM + COOC2-LM 1,95%
PHONE-LM + PHONE-SVM +

COOC2-LM + COOC3-SVM
1,99%

6. CONCLUSIONS AND FUTURE WORK

A simple approach to phonotactic language recognition,
which takes into account cross-decoder phone information,
has been proposed and evaluated. Adding phone coocur-
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Fig. 3. Pooled DET curves for the baseline phonotactic lan-
guage recognition systems (PHONE-LM and PHONE-SVM),
the coocurrence approach COOC2-LM and the fused systems
PHONE-LM+COOC2-LM and PHONE-SVM+COOC2-LM.

rences to the baseline phonotactic systems provides slightper-
formance improvements, revealing the potential benefit of us-
ing cross-decoder dependencies for language modeling. On
the other hand, this approach does not involve hard computa-
tions. It is just a way of extracting more information from ex-
isting decodings. We are currently working on a coocurrence
selection scheme which allow the use of bigram and trigram
counts in the COOC-SVM approach. Future work includes
the design and evaluation of a more general phonotactic ap-
proach integrating time and cross-stream dependencies.
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