
UNIFIED TRAINING OF WFSA THROUGH A GENERIC INTERFACE

Mikel Penagarikano, German Bordel, Luis Javier Rodriguez

Department of Electricity and Electronics

University of the Basque Country, 48940 Leioa, Spain

E-mail: mikel.penagarikano@ehu.es

ABSTRACT
This paper describes a unified approach to the training of

Weighted Finite-State Automata (WFSA) that is based on a

generic interface. Regardless of their internal structure, any

automata implementing a simple interface can be managed

by the system, not only for decoding but also for training pur-

poses. This novel approach drastically simplifies the effort to

incorporate new formalisms into a pattern recognition engine.

This methodology has been integrated into Sautrela, a highly

modular and pluggable open source package for generic pur-

pose signal processing, focused on speech recognition.1

Index Terms— speech recognition, model integration,

weighted finite-state automata

1. INTRODUCTION

Since the beginning of the speech recognition research, many

different speech recognition systems have been developed

[1, 9, 5]. All of them were mainly focused on the research

of a few stages of the recognition process, and turned out

to be quite hardwired implementations, since they were op-

timized for a particular methodology. So, an innovation in

speech recognition technology meant the development of an

entire new system from scratch. More recently, flexibility

has played a major role in the design of new recognition

engines, which have evolved into modular frameworks that

incorporate state-of-the-art methodologies but also address

the needs for emerging research areas. However, these sys-

tems are designed as decoder machines, whereas other mat-

ters such as training of acoustic, lexical and language models,

are achieved by external packages.

Sautrela [8] is a highly modular and pluggable open

source package for generic purpose signal processing appli-

cations that is focused on speech recognition. The system has

been developed using the JavaTM Technology, thus ensuring

its portability to a large variety of computer platforms. Unlike

the previously cited systems, Sautrela defines a single frame-

work that allows not only decoding the input streams, but also

training all the required models.

1This work has been partially funded by the Basque Government, under

program SAIOTEK , projects S-PE04UN26 and S-PE05UN32.

This paper focuses on solving the problem of training a

set of models that implement a simple WFSA interface, with

no assumption about their internal structure. This novel ap-

proach drastically simplifies the effort to incorporate new for-

malisms into a pattern recognition engine.

The rest of the paper is organized as follows. Section 2

defines the WFSA interface hierarchy used for handling the

automata and Section 3 introduces the so called Trainable
interface that generalizes the reestimation of model param-

eters. Section 4 reviews two well-known training criteria and

describes their implementations. Section 5 shows the train-

ing interface implementation for three different model for-

malisms. Finally, Section 6 summarizes the main contribu-

tions of this work.

2. THE WFSA INTERFACE

2.1. The WFSA interface hierarchy

Sautrela uses a simple interface hierarchy to unify many dif-

ferent stochastic model techniques related to speech recog-

nition, on top of which lies the WFSA interface (see Figure

1). The WFSA interface is extended by two subinterfaces: the

Deterministic Weighted Finite-State Automata (DWFSA) and

the Non-Deterministic Weighted Finite-State Automata (Nd-

WFSA). Each subinterface consists of a single method that

handles the deterministic and non-deterministic parts of the

automaton. Basically, a WFSA consists of an initial state, an

input alphabet and a weighted transition function that maps an

input symbol and the current state to a next state (DWFSA)

or a set of states (NdWFSA). Furthermore, State, Symbol
and Transition are in fact relaxed interfaces that allow the

system to deal with several types of objects, as for instance

string input alphabets (language models) or continuous fea-

tures (acoustic models). Regardless of its internal structure,

any model that implements one of the mentioned subinter-

faces can be managed by the system.

However, a speech recognition system is typically com-

posed of different models standing for the corresponding

knowledge sources. Hence, a single integrated stochastic for-

malism is needed. Layered Markov Models (LMM) [7] arise

in response to this problem.

1221424408733/06/$20.00 ©2006 IEEE SLT 2006



(a) The WFSA interface

// Returns the name of the WFSA.
String getName();

// Returns the so named Symbol
Symbol getSymbolByName(String name);

// Returns the initial State
State getIniState();

// Returns the probability of being final
double getFinProb(State state);

// Returns all possible transitions
Transition[] getTrans(State state);

(b) The DWFSA interface (extends WFSA)

// Returns the transition for the
// given state and symbol
Transition getTrans(State state, Symbol sy);

(c) The NdWFSA interface (extends WFSA)

// Returns all possible transitions for the
// given source state and symbol
Transition[] getTrans(State from, Symbol sy);

Fig. 1. The WFSA interface (a) consists of a minimum set

of methods to handle an automaton. Each subinterface (b and

c) adds a single method that accounts for the deterministic or

non-deterministic nature of the weighted transition function.

2.2. Integration of knowledge sources using LMMs

A LMM consists of a number of layers, each composed of a

finite set of WFSA. Each layer represents a knowledge source

that models its units in terms of lower level layer units. Re-

gardless of the number of layers and the types of WFSA in-

volved, a LMM can be seen as a non-deterministic WFSA.

There are no limitations on the number of layers, models,

states or symbols that set up a LMM. Therefore, integrating

different knowledge sources into a single stochastic automa-

ton turns out to be a highly flexible solution. State of the

art speech recognition systems are made up of various mod-

els which are based on different formalisms, such as Hidden

Markov Models (HMM), pronunciation dictionaries, graph-

driven grammars or stochastic n-grams. All of them can easily

implement the WFSA interface, and thus, hardwired model

coupling found on most systems can be formalized as a sin-

gle LMM. Similar approaches can be found in [1] and [6].

However, they are mainly focused on the decoding stage and

do not provide generic tools for training purposes.

3. THE TRAINABLE INTERFACE

The WFSA interface, along with the DWFSA and NdWFSA

subinterfaces, make up a minimum set of methods capable

of addressing the decoding problem. Any training or reesti-

mation process starts from a decoding-like stage that involves

// Initializes the training counts.
void initTrCounts();

// Increments the training counts associated
// to a Transition.
void incTrTransCount(Transition tr, double c);

// Increments the training counts associated
// to a final state.
void incTrFinalCount(State state, double c);

// Dumps the trained data to the model.
void dumpTrCounts();

Fig. 2. Using the Trainable interface, the counts can be exter-

nally obtained, whereas the model just deals with translating

those counts to its internal representation.

the computation of an objective function and then reestimates

the internal parameters in order to increase the value of that

function. In the same way, the WFSA interface parameters

(transition weights and final probabilities) can be reestimated

in order to maximize the target function. The recomputed pa-

rameters can be then transmitted to the underlying models,

which will be responsible of transforming their internal rep-

resentation to add that information.

The reestimated parameters are transmitted as incremental

counts that must be later normalized (a count is nothing but

the probability of an event at time t, given the input source

sequence and the target objective function). The set of meth-

ods that conforms the Trainable interface allows to initialize,

transmit and dump the counts to update the model parameters

(see Figure 2).

4. TRAINING CRITERIA

Different training criteria (and the corresponding transforma-

tions) can be applied using this methodology. In the following

paragraphs two well-known criteria are reviewed: Maximum

Likelihood and Maximum Mutual Information.

4.1. Maximum Likelihood

Maximum Likelihood (ML) is the most widely used estima-

tion criterion. Let X be a random variable wich is drawn ac-

cording to the probability distribution function pφ (x), where

the parameter vector φ belongs to some parameter space

Φ. Given a sequence of independent observations x =
{x1, ..., xn}, the likelihood function is given by:

L = pφ (x) =
∏n

i=1 pφ (xi)

The ML estimation of φ is obtained by maximizing L:

φML = arg max
φ

pφ (x)

123



The Baum-Sell theorem for growth transformations [3]

can be applied for such maximization, and reestimation for-

mulae can be calculated for all parameters. In the case of

WFSA, the parameters are restricted to transition and final

probabilities, which must add up to one for each source state.

Let pφ (τ) denote the probability of transition τ = (s, d, y)
from source state s to destination state d and emitting the sym-

bol y. The final probability can be seen as a special external

transition with null emission, pφ (s, out, null), and therefore

can be integrated in the transition function. The reestimation

of pφ (τ) is given by:

p
eφ (τ) =

pφ (τ) ·
(

∂L
∂P (τ)

)
φ∑

τ ′=(s,d′,y′)
pφ (τ ′) ·

(
∂L

∂P (τ)

)
φ

(1)

This expression can be rewritten in terms of the incremental

counts computed for all the training samples. Let count (τ)t,i

be the probability of transition τ at time t for the observation

xi. These counts can be efficiently computed by using the so

called forward and backward probabilities (see [2]). Finally,

the expression (1) can be rewritten as follows:

p
eφ (τ) =

n∑
i=1

mi∑
t=1

count (τ)t,i

∑
τ ′=(s,d′,y′)

n∑
i=1

mi∑
t=1

count (τ ′)t,i

(2)

4.2. Maximum Mutual Information

Any pattern recognition problem can be formalized using the

noisy channel metaphor. Given a source random variable Ω
and the observed data X , the mutual information I (X; Ω)
accounts for the reduction in the uncertainty of X due to the

knowledge of Ω. Assuming that the available sample vector

(x, ω) = {(x1, ω1) , ..., (xn, ωn)} is representative, the mu-

tual information can be approximated by:

I (X; Ω) ≈ log
∏n

i=1 pφ (xi | ωi)∏n
i=1 pφ (xi)

= log

∏n
i=1 psup

φ (xi)∏n
i=1 punsup

φ (xi)

Note that the numerator psup
φ (xi) is the expectation of the

observation xj when the source class ωj (labelling) is known.

The denominator punsup
φ (xi) accounts for the expected prob-

ability of xi in the absence of supervision. Both probabili-

ties can be computed in a straightforward way by building a

LMM with an additional knowledge layer that accounts for

such supervision or unsupervision. The Maximun Mutual In-

formation (MMI) estimation of φ is obtained by maximizing

I (X; Ω):

φMMI = arg max
φ

∏n
i=1 psup

φ (xi)∏n
i=1 punsup

φ (xi)

The Gopalakrishnan theorem for rational functions [4]

proves that there exists a constant C, such that the following

expression is a growth transformation:

p
eφ (τ) =

pφ (τ) ·
((

∂I
∂P (τ)

)
φ

+ C

)

∑
τ ′=(s,d′,y′)

pφ (τ ′) ·
((

∂I
∂P (τ)

)
φ

+ C

) (3)

As for the ML estimation, forward and backward proba-

bilities can be used to compute the counts. In this case, there

will be two partial counts, count (τ)sup
t,i and count (τ)unsup

t,i ,

and the resulting count will be the difference between them:

count (τ)t,i = count (τ)sup
t,i − count (τ)unsup

t,i

The aforementioned constant C will ensure the conver-

gence even in the presence of negative counts2. Finally, the

expression (3) can be rewritten as follows:

p
eφ (τ) =

C · pφ (τ) +
n∑

i=1

mi∑
t=1

count (τ)t,i

∑
τ ′=(s,d′,y′)

C · pφ (τ ′) +
n∑

i=1

mi∑
t=1

count (τ ′)t,i

(4)

5. INTERFACE IMPLEMENTATION EXAMPLES

5.1. Layered Markov Models

The core of the training approach presented in this paper

lies in the possibility of training a single LMM composed

of several layers, corresponding to different, hierarchically

organized, knowledge sources. As shown in Section 2, a

LMM can be seen as a non-deterministic WFSA. Therefore,

its parameters can be iteratively reestimated by computing the

counts for all the training samples according to a given crite-

rion (for instance, ML or MMI), and transmitting them to the

LMM by means of the Trainable interface. Now, the issue

arises of how the training information is transmitted to all the

inner models the LMM is made up.

The answer turns out to be quite simple. A LMM transi-

tion τ consists of a sequence of transitions ∆τ = {δτ
1 , ..., δτ

k}
within internal layers. So, count (τ)t,i is transmitted to all

the transitions τ is made up. In other words, the count for

the inner transition δ, count (δ)t,i, is computed by adding

the counts of the LMM transitions τ such that δ ∈ ∆τ . Let

T (δ) = {τ | δ ∈ ∆τ}. Then,

count (δ)t,i =
∑

τ∈T (δ)

count (τ)t,i

2Although the expression (3) is proven to be a growth transformation for

sufficiently large values of C, experiments show that small values of C pro-

vide a faster convergence.

124



(a) A 3-state HMM

(b) The equivalent WFSA

Fig. 3. Each transition in the HMM generates as many transi-

tions in the equivalent WFSA as emissions in the destination

HMM state. The extra initial state in the WFSA contains tran-

sitions to the equivalent initial states in the HMM.

5.2. Discrete Hidden Markov Models

In HMMs, emissions are tied to states, whereas WFSA emis-

sions happen at transitions. An equivalent WFSA can be ob-

tained by assuming that emissions happen just before arriving

to HMM states (see Figure 3).

To reestimate HMM parameters, each WFSA count

must be translated into internal HMM counts (initial, tran-

sition and emission counts for each HMM state). Let

TA (s, d) =
⋃

∀y {τ = (s, d, y)} be the set of WFSA transi-

tions with source state s and destination state d, TB (d, y) =⋃
∀s {τ = (s, d, y)} the set of WFSA transitions with desti-

nation state d and emission symbol y, and sI the initial state

of the WFSA. Then, the HMM internal counts are given by:

countinit (s)t,i =
∑

τ∈TA(sI ,s)

count (τ)t,i

counttrans (s, d)t,i =
∑

τ∈TA(s,d)

count (τ)t,i

countemit (s, y)t,i =
∑

τ∈TB(s,y)

count (τ)t,i

That is, each WFSA count is transmitted to either initial or

transition HMM counts (depending on the source state), and

always to the emission counts of the destination HMM state.

In the case of ML training, these HMM counts match exactly

those obtained with the Baum-Welch algorithm [2].

5.3. Continuous Hidden Markov Models

The WFSA equivalent to a continuous HMM is analogous to

that presented for discrete HMMs, but defining a continuous

set of transitions for each state. This is not a problem for the

WFSA formalism, since it does no assumption on the nature

of the observed data and can handle infinite transition sets.

6. CONCLUSIONS

In this paper, a novel approach to the training of WFSA has

been introduced. Any model that implements a simple WFSA

interface can be trained regardless of its internal structure. In

the case of ML training of Hidden Markov Models, the rees-

timations match exactly those obtained with the Baum-Welch

algorithm. Layered Markov Models have proved to be a good

formalism for the integration of knowledge sources in a sin-

gle WFSA and the transmission of the training information to

its inner models. Based on this approach, a general training

module has been developed for the Sautrela system, drasti-

cally simplifying the effort to incorporate new modelling for-

malisms into this framework.

7. REFERENCES

[1] J.K. Baker. The DRAGON system - An Overview. IEEE
Transactions on Acoustics, Speech and Signal Process-
ing, 23(1):24–29, 1975.

[2] Leonard. E. Baum. An inequality and associated maxi-

mization technique in statistical estimation for probabilis-

tic functions of Markov processes. Inequalities, 3:1–8,

1972.

[3] Leonard. E. Baum and George R. Sell. Growth transfor-

mations for functions on manifolds. Pacific Journal of
Mathematics, 27:211–227, 1968.

[4] P. S. Gopalakrishnan, D. Kanevsky, A. Nádas, and D. Na-

hamoo. An inequality for rational functions with applica-

tions to some statistical estimation problems. IEEE Trans.
Information Theory, 37:107–113, 1991.

[5] K. Lee, H. Hon, and R Reddy. An overview of the

SPHINX speech recognition system. IEEE Transactions
on Acoustics, Speech and Signal Processing, 38(1):35 –

45, January 1990.

[6] M. Mohri, F. Pereira, and M. Riley. Weighted finite-state

transducers in speech recognition. Computer Speech &
Language, 16(1):69–88, 2002.

[7] M. Penagarikano and G. Bordel. Layered Markov Mod-

els: a new architectural approach to automatic speech

recognition. In Proceedings of the MLSP Workshop,

2004.

[8] M. Penagarikano and G. Bordel. Sautrela: A highly mod-

ular open source speech recognition framework. In Pro-
ceedings of the ASRU Workshop, 2005.

[9] S. Young. The HTK Hidden Markov Model Toolkit: De-

sign and Philosophy. Technical Report TR.153, Depart-

ment of Engineering, Cambridge University, 1993.

125


