
SAUTRELA: A HIGHLY MODULAR OPEN SOURCE SPEECH RECOGNITION
FRAMEWORK

Mikel Penagarikano and German Bordel

Department of Electricity and Electronics
University of the Basque Country, 48940 Leioa, Spain

E-mail: mpenagar@we.lc.ehu.es, german@we.lc.ehu.es
Web: gtts.ehu.es, www.sautrela.org

ABSTRACT

This paper describes the Sautrela system (www.sautrela.org),
a highly modular and pluggable open source framework for
generic purpose signal processing, focused on speech recog-
nition. The aim of Sautrela is to unify in a single frame-
work almost all the tasks related to pattern recognition such
as signal processing, model training and decoding. This
framework has been developed using the JavaTM Technol-
ogy and thus ensures its portability to a large variety of com-
puter platforms.

1. INTRODUCTION

Since the beginning of the speech recognition research, many
different speech recognition systems have been developed
[1, 8, 16, 15]. All of them were mainly focused on the re-
search of a couple few stages of the recognition system, and
turned out to be quite hardwired implementations since they
were optimized for the studied methodology. A good exam-
ple of this can be the family of Sphinx systems at CMU. The
original system [7] was focused on the use of discrete Hid-
den Markov Models (HMM), whereas later forks focused
on semi-continuous HMMs [5] and continuous HMMs [11,
13]; Each new fork didn’t include the previous design, but
implemented a new approach to acoustic modelling (nowa-
days, Sphinx-2 and Sphinx-3 are still live projects). Even
more, all those systems were designed as decoder machines
while other involved matters, such as models training, were
achieved by other packages.

On the other hand, Sautrela aims to unify in a single
modular framework most important tasks related to pattern
recognition including signal processing, model training and
decoding. The framework shares its modular essence with
the design of a recent fork of the Sphinx system, Sphinx-
4 [14]. Although Sphinx-4 started as a port of Sphinx-3
to Java programming language, it evolved into a completely
different speech recognition system; flexibility played a ma-
yor role in the design, resulting on a really modular frame-

work for speech decoding research. Sautrela, also devel-
oped using the JavaTM Technology, goes one step beyond
and defines a framework where not only decoding, but train-
ing and any signal processing derived task can be achieved.
In addition, no assumption is made on the nature of the pro-
cessed signal, thus being possible to use many different sig-
nal source types.

2. SOME REMARKS ON JAVA TECHNOLOGY

Java is a platform-independent object-oriented programming
language. Java byte-codes can be executed in almost all op-
erating systems by the corresponding Java Virtual Machine
(JVM), ensuring the portability of the framework to a large
variety of computer platforms without any need of config-
uration or recompilation. Java code can also be compiled
to native code in order to increase performance, but at the
expense of platform independence.

The performance of Java applications is sometimes seen
as a negative issue. First implementations of JVM used to
run java code more slowly than equivalent programs writ-
ten in C or C++, but today’s just-in-time compilers (JIT) or
newer dynamic-recompilation VMs achieve closer perfor-
mance. It should be also taken into account that Java offers
a rich and very efficient data structure framework that can
be widely used without any effort. Note that the compar-
ison carried out between the native code Sphinx-3 and the
Java based Sphinx-4, showed that the performances of both
systems were about the same [14].

The run-time of Java is dynamic in the sense that classes
are linked on demand, and therefore, any application written
in java is straightforward pluggable. In addition, the object-
oriented paradigm offers the possibility to design the frame-
work by only providing the required interfaces, leaving for
a later step the implementation of each concrete module.

Java supports both multi-threading and synchronization
at the language level. The ability of performing multiple
tasks simultaneously enhances the performance and func-



tionality of a software design. As it will later be stated,
Sautrela is based on multiple data processing modules run-
ning on different threads. This schema not only simplifies
the required programming effort, but also takes advantage of
Symmetric Multiprocessing machines (SMP) and emerging
multi-core processor architectures (common desktop com-
puters already enhances the performance of multi-threaded
applications). In addition, the automatic garbage collection
allows the programmer not to worry about memory man-
agement.

Finally, it should be mentioned that the really important
set of enhancements introduced to the last version of Java
(1.5 - sept 2004), dramatically contributes to improve the
previous formulation of Sautrela, taking full advantage of
these benefits.

3. SAUTRELA FRAMEWORK

The Sautrela architecture is inspired on the front-end mod-
ule defined in the Sphinx-4 speech recognition system, whe-
re input signals are processed by a pluggable data-processor
pipeline in order to obtain the features to be processed by the
decoder module. Those data-processors perform all the sig-
nal processing steps previous to the decoding task (such as
preemphasis, windowing, Fourier transform, filtering, co-
sine transform and mean normalization), and the decoder
module does the search task based on the processed input
signal. Thus the Sphinx-4 system differentiates both mod-
ules, the front-end and the decoder.

On the contrary, Sautrela treats the decoder like another
pluggable data-processor, unifying the system architecture.
Even more, all training procedures such as cluster training
for vector quantization and acoustic/lexical/language model
training are formalized using the dataprocessor paradigm,
and thus integrated in a single and simple framework. Such
a framework relaxes almost all constraints that other sys-
tems present and offers a high freedom to explore emerging
methodologies on pattern recognition without the need to
build a new system from scratch. Although most of the cur-
rently developed modules are related to speech processing
(the team involved in the development is mainly focused
on speech technologies and software engineering), it repre-
sents a useful tool for many other disciplines. Summarizing,
Sautrela defines a flexible signal processing framework us-
able for almost all the tasks involved in many pattern recog-
nition research areas.

3.1. Engine

The Engine (see Fig.1) is the basis of the Sautrela frame-
work. An Engine is an arbitrary-length connected list of
processing modules (DataProcessor) running on multiple
threads. Each module performs a data-processing stage,

Fig. 1. An Engine is a connected list of DataProcessors
running on multiple threads. Each module performs a data-
processing stage.

while the Engine represents the whole process. There are
two ways of creating a working Engine at runtime: It can be
instantiated and then filled with newly instantiated modules,
or it can also be entirely instantiated from a XML descrip-
tor that contains the list of involved modules as well as the
information to correctly instantiate and configure each of
them. In the first case, any class implementing the simple
DataProcessor interface can be plugged into, whereas in or-
der to be instantiated from XML, those modules must also
conform the Java Beans design pattern.

Encapsulated in a generic Data object, input data sig-
nal propagates through the Engine, being processed by each
module. Data objects are used not only for signal encap-
sulation, but many other tasks such as input-output control
and marks. For example, data streams can be simply cre-
ated with encapsulated begin and end marks, and since those
streams are composed by Data objects, it is possible to de-
fine nested data streams (for example, a speech segmentator
could convert an input signal in sentence streams, while a
later acoustic segmentator could create inner streams repre-
senting word or phone boundaries).

Each module in the Engine can run on a separate thread,
and once an Engine is fully defined and started, all the pro-
cessing modules start running and there is no way to directly
stop the engine. Indeed, the first module in the pipeline
will decide when there is no more data to process (or could
be externally notified to stop) and a terminating signal will
be propagated encapsulated in a Data object. The multi-
threaded nature of the engine allows plugging processing
modules with any input-output configurations in the time
domain, such as Multiple-Input Multiple-Output. It should
be noted that we are talking about the time domain, and thus
we mean that a module is not forced to generate a valid out-
put data for each input data, and can also generate output
data even in the absence of input.

The engine is responsible of the interconnection of all
the modules. This is performed using intermediate buffers.
As depicted in Fig.2, the input Data of a module is pulled
from the prior buffer, processed and pushed into the later



Fig. 2. Input Data of a module is pulled from the prior
buffer, processed and pushed into the later one. Buffering
policies allow static/dynamic size as well as blocking.

one. Different buffering policies are available: buffer size
can be fixed or ideally unlimited (in the absence of memory
or resource constraints) and a blocking mechanism can be
applied to the push action (it waits if necessary for space
to become available). Note that the pull action is always
blocking oriented, since no Data can be retrieved from an
empty input buffer. Blocking should not be used when live
input signals are used, whereas it is strongly recommended
for batch processing (otherwise any module slower than the
input signal reading one would result in a bottleneck).

3.2. DataProcessor

A DataProcessor represents an isolated processing module.
It is defined as a very simple interface that should be imple-
mented by any class in order to be pluggable into the frame-
work. Such a module must implement a simple input-output
method for processing the input Data already returned by
the predecessor DataProcessor. In the case of a simple Single-
Input-Single-Output module, this method will return the pro-
cessed Data, while in more complex modules, encapsulated
empty signals (EmptyData) are used for input-output con-
trol: a Multiple-Input-Single-Output module returns Emp-
tyData on non empty Data inputs to report that no output
Data is available yet, and a Single-Input-Multiple-Output
module returns valid non empty Data on EmptyData inputs
to report that more output Data is still available (output data
end is reported returning an EmptyData). EmptyData ob-
ject is just used for module’s input-output management, and
is never propagated through the engine. Note that the En-
gine must deal with the connection of modules, multiple
input-output management and Data buffering, while mod-
ules must only implement the simple DataProcessor inter-
face.

First and last modules of an Engine are somehow spe-
cial: The initial module must behave as a No-Input Multiple-
Output system, that is, must always generate non empty
Data on EmptyData input, whereas the last one should be-
have as a Multiple-Input No-Output system, since processed
Data cannot be managed. Typically, the first module re-

Fig. 3. Sautrela can manage a list of connected modules as
a simple DataProcessor, simply plugging it into an engine
like any other threaded module.

quires Data from a device (file system or audio capture) and
the last one dumps Data to another device (file system or
audio playback).

A DataProcessor finishes its processing as soon as it
processes an incoming encapsulated close signal (CloseData):
it returns a CloseData object (or even a Data sequence with a
final CloseData), all Data is sent to the next module and the
thread of the module terminates. The remaining modules
are terminated as CloseData propagates through the Engine.

A multi-threaded engine can take advantage of thread-
ing techniques of the latest microprocessors as well as SMP
computers, while at the same time it could result on an un-
necessary overload if too many simple modules were plu-
gged. In those cases, it is possible to share a single thread
among a set of consecutive modules (see Fig.3). Sautrela
can manage such a list of connected modules as a simple
DataProcessor, and therefore simply plug it into an engine.
The ability to join a set of modules on a single thread can
be used to optimize overall performance of the system de-
pending on the underlying hardware.

Next, some implemented modules are briefly explained.

3.2.1. Simple signal processing modules

Sautrela provides a set of signal processing modules mainly
focused on state of the art speech processing technologies:
live audio recording and playback, batch audio reading and
writing, silence detection, preemphasis, raised cosine trans-
form windowing, discrete Fourier transform (FFT), Mel fre-
quency filtering, discrete cosine transform (DCT), cepstral
mean normalization (CMN), Mel-cepstra frequency coeffi-
cient extraction (MFCC), delta and acceleration (delta-delta)
coefficients and vector quantization (VQ). All modules can
be configured at runtime and there are no static limits like
maximum window size, FFT sizes and so on.



Fig. 4. Different knowledge levels can be integrated into a
single layered Markov model. The whole model can be seen
as a non-deterministic WFA and its meta-states are com-
posed by a model-state pair (mi, qi) out of each layer.

3.2.2. An ELBG clustering module

Although a vector quantization module is implemented in
the framework, a codebook must be obtained prior to use
it. Namely, some clustering algorithm must be applied to
the training data in order to get an optimum set of code-
words. Sautrela implements a multidimensional clustering
module using the Enhanced LBG algorithm [9] that can be
connected at the end of a processing pipeline. Once all input
Data is buffered clustering algorithm is performed. When
convergence is reached, the module saves the codebook and
the processing thread is finished.

Note that there is no need to build a pre-processed data-
base in order to set up a training Data set, since the same
pre-processing modules used at decoding can also be used
at training and thus it is possible to work with original input
signals.

3.2.3. A general purpose decoding module

Sautrela defines two major interfaces to unify many differ-
ent stochastic model techniques related to speech recogni-
tion: the deterministic and the non-deterministic Weighted
Finite-state Automata (WFA). Regardless of its internal
structure, any model that implements one of them can be
managed by the system: An integrated module takes ad-
vantage of the said interfaces and turns out to be a simple
and general decoder. However, a speech recognition sys-
tem is composed of many different models standing for as
many more knowledge sources. Hence, a single integrated
stochastic model is needed, and layered Markov models
(LMM) [10] have been implemented for that purpose.

A LMM consists of a number of layers, each of them
composed by a finite set of deterministic WFAs (see Fig.4).
Each set represents a knowledge layer that models its units
in terms of lower level layer units (for example, the set
of pronunciation models of an speech decoder models the

Fig. 5. A 3-layer LMM model for the phonetic transcription
of a spelled 6-digit number. The top layer (1 model) repre-
sents how a 6-digit number can be segmented in 1, 2 and 3
digit numbers. The middle layer (3 models) describes the
1, 2 and 3 digit numbers in terms of words. And last, the
bottom layer (31 models) represents the phonetic transcrip-
tion of each word. In the example, a random phoneme list
is decoded.

words in terms of phonemes, diphonemes or other similar
units). In other words, each layer is connected to the un-
derlying one by means of a mapping of its alphabet into the
lower’s model set. The states of a LMM, called meta-states,
are characterized by a vector made up of a model-state pair
per layer, and the alphabet of the whole model is the bottom
layer’s alphabet (a similar architecture can be found in [1]).

Regardless of the number of layers involved, a LMM
can be seen as a non-deterministic WFA and straightforward
integrated in the aforementioned decoder module. The de-
coder, implements well known search algorithms such as
frame-synchronous Viterbi, A*, and a configurable pruning
[6]. There are no static limitations on the number of layers,
models, states or alphabet size that shape a LMM, and so
it turns out to be a highly flexible structure to implement a
generic stochastic decoder (see Fig.5).

State of the art speech recognition systems use deter-
ministic WFAs and hidden Markov models (HMM) as ma-
jor techniques for modelling, and both can be integrated in
a LMM (a set of HMM can be broken down in a 2-layer
LMM that can be then added to another LMM [10]). There-
fore, many hardwired model mixing found at most systems
can be formalized as a LMM. For example, the Sphinx-4
system implements a Linguist (the structure used to create a



<?xml version=”1.0” encoding=”UTF-8” ?>
<Engine name="KT Language Model Trainer">

<DataProcessor name=”dp 1”
code=”edu.gtts.sautrela.util.TextReader” />
<param name=”inputURL” value=”file://simple.text” />

</Dataprocessor>

<DataProcessor name=”dp 2”
code=”edu.gtts.sautrela.util.TextCleaner” />
<param name=”regexp” value=”file://rules.regexp” />

</Dataprocessor>

<DataProcessor name=”dp 3”
code=”edu.gtts.sautrela.model.Trainer” />
<param name=”wfaURL” value=”file://emptymodel.lm” />
<param name=”criteria” value=”ML” />

</Dataprocessor>

<Thread name="A">
<addDataProcessor name="dp 1" />
<addDataProcessor name="dp 2" />

</Thread>

<Thread name="B">
<addDataProcessor name="dp 3" />

</Thread>

<Link from="A" to="B" bufferSize=”10” blocking=”true”/>
</Engine>

Fig. 6. This XML represents and Engine designed to train
a KT[3] Language Model. Three main DataProcessors are
used: a simple text reader that reads text from a given URL
and generates String streams and a second module that ap-
plies regular expressions to ensure proper string format,
both running on the same thread, and a general trainer that
calculates the optimum probabilities for the given automata
and optimization criterion.

search graph) made up of three knowledge layers: a bottom
acoustic layer with HMMs, an intermediate dictionary and
a language layer at the top. Dictionary and language layers
are in fact made up of Markov models, although they can be
defined in a conceptually different manner, as for the lan-
guage model that can be given as a graph-driven grammar
or a stochastic n-gram model.

3.2.4. A general purpose training module

A somehow analogous idea has been carried out to design a
general purpose training module. Using the WFA interface
of a model, the training processor can estimate the optimum
probabilities (from the interface point of view) for a given
observation set and a maximization criterion. The model
is then responsible of translating those probabilities to its
internal representation. Well known training criteria [12]
and corresponding transformations [2, 4] are implemented.
Figure 6 shows an instantiable xml description of an engine
that contains a trainer processor.

4. GRAPHICAL ENGINE BUILDER

Sautrela incorporates a graphical building-blocks interface
able to manage the XML descriptors and the engines them-
selves. This graphical tool simplifies the assembly and tun-
ing of the engines and offers a friendly user interface to the
framework. The builder relies on the Java Beans software
component model, which must be implemented by any ex-
ternal pluggable module in order to be accessible from the
builder.

5. FUTURE WORK

Some preliminary speech recognition experiments are
now being carried out with Sautrela. As a result, some
performance figures and structural metrics will be obtained
for future reference. It is planned to make this first ver-
sion available to general public as open source by the fourth
quarter of 2005, though a beta version and other documenta-
tion related to the project can be found at www.sautrela.org.

Future development efforts point to various directions.
Some of them are:

Allowing a distributed Engine: in order to increase the
performance for intensive experiments, and to admit more
flexible architectures, it is planned to weak the DataProces-
sor links. Given that these links are now very neat, it seems
reasonably to think that this enhancement will not present
much difficulty.

Some Signal Processing applications like multimedia
processing or multi-modal systems need not just a linear
structure of DataProcessors but the possibility to insert mul-
tiple input and/or multiple output modules giving place to
parallel paths for the data. There is no much problem to
adapt the actual Sautrela to these needs, slightly affecting
to the DataProcessor interface and to the XML descriptor
structure and processing.

6. CONCLUSION

Sautrela, a novel framework for signal processing and pat-
tern recognition has been presented. It turns out to be a
highly modular, flexible and pluggable system, useful for
generic signal processing and pattern recognition, includ-
ing both model training and decoding. General purpose
processing modules as well as training modules have been
introduced, and with respect to the decoding, it has been
shown that commonly hardwired mixture of models can be
reflexively formalized as a layered-knowledge model and
integrated in an implemented generic decoder module.

Developed using the JavaTM technology, Sautrela is
architecture-neutral and, at the same time, can benefit from
emerging thread oriented hardware.



7. REFERENCES

[1] J.K. Baker. The dragon system – an overview.
IEEE Trans. Acoust. Speech Signal Processing, ASSP-
23(1):24–29, 1975.

[2] Leonard. E. Baum and George R. Sell. Growth trans-
formations for functions on manifolds. Pacific Journal
of Mathematics, 27, 1968.

[3] G. Bordel and A. Varona. K-tlss(s) language models
for speech recognition. In Proceedings of the ICASSP,
1997.

[4] P. S. Gopalakrishnan, D. Kanevsky, A. Nádas, and
D. Nahamoo. An inequality for rational funations with
applications to some statistical estimation problems.
IEEE Trans. Information Theory, 37:107–113, 1991.

[5] X. Huang, F. Alleva, H. Hon, M. Hwang, and
R. Rosenfeld. The SPHINX-II speech recognition sys-
tem: an overview. Computer Speech and Language,
7(2):137–148, 1993.

[6] F. Jelinek. Statistical methods for speech recognition.
MIT Press, Cambridge, MA, USA, 1997.

[7] K. Lee, H. Hon, and R Reddy. An overview of the
SPHINX speech recognition system. IEEE Trans-
actions on Acoustics, Speech and Signal Processing,
38(1):35 – 45, January 1990. see also IEEE Transac-
tions on Signal Processing.

[8] B.T. Lowerre. The harpy speech recognition system.
PhD thesis, Carnegie Mellon University, Pittsburgh,
PA, 1976.

[9] G. Patanè and M. Russo. The enhanced lbg algorithm.
Neural Networks, 14(9):1219–1237, November 2001.

[10] M. Penagarikano and G. Bordel. Layered Markov
Models: a new architectural approach to automatic
speech recognition. In Proceedings of the MLSP Work-
shop, 2004.

[11] P. Placeway, S. Chen, M. Eskenazi, U. Jain, V. Parikh,
B. Raj, M. Ravishankar, R. Rosenfeld, K. Seymore,
M. Siegler, R. Stern, and E. Thayer. The 1996 Hub-4
Sphinx-3 System. In Proceedings of the 1997 DARPA
Speech Recognition Workshop, 1997.

[12] L. R. Rabiner. A tutorial on hidden markov models
and selected applications in speech recognition. Pro-
ceedings of the IEEE, 77(2):237–240, 1989.

[13] K. Seymore, S. Chen, S. Doh, M. Eskenazi, E. Gou-
vea, B. Raj, M. Ravishankar, R. Rosenfeld, M. Siegler,

R. Stern, and E. Thayer. The 1997 CMU Sphinx-
3 English Broadcast News Transcription System. In
Proceedings of the 1998 DARPA Speech Recognition
Workshop, 1998.

[14] W. Walker, P. Lamere, P. Kwok, B. Raj, R. Singh,
E. Gouvea, P. Wolf, and J. Woelfel. Sphinx-4: A
Flexible Open Source Framework for Speech Recog-
nition. Technical Report TR-2004-139, Sun Microsys-
tems, 2004.

[15] P.C. Woodland, J.J. Odell, V. Valtchev, and S.J. Young.
Large vocabulary continuous speech recognition using
HTK. In Proceedings of the ICASSP, Adelaide, April
1994.

[16] S. Young. The htk hidden markov model toolkit: De-
sign and philosophy. Technical Report TR.153, De-
partment of Engineering, Cambridge University, Cam-
bridge, UK, 1993.


