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Abstract. This paper presents the theoretical basis of layered
Markov models (LMM), which integrate all the knowledge levels
commonly used in automatic speech recognition (acoustic, lexical
and language levels) in a single model. Each knowledge level is rep-
resented by a set of Markov models (or even hidden Markov mod-
els) and all these sets are arranged in a layered structure. Given
that common supervised training and recognition paradigms can
be also expressed as simple Markov models, they can be formal-
ized and integrated into the model as an extra knowledge layer.
In addition, it is shown that hidden Markov models (HMM) and
newer HMM2 can be considered as particular instances of LMM.

INTRODUCTION

In state-of-the-art automatic speech recognition (ASR) systems, different
models corresponding to different knowledge levels are integrated in order
to get a joint probability distribution which is used to obtain the most prob-
able pronounced sentence. Most of used models can be described as Markov
models (implemented as weighted finite-state automata) and hidden Markov
models. The purpose of this paper is to introduce a novel architectural ap-
proach, layered Markov models (LMM), whom formalism allows the integra-
tion of all such knowledge levels into a single model.

First, the LMM formalism is introduced and next, HMM and HMM2 are
studied as particular instances of LMM. Afterward, the way to insert different
recognition-training paradigms into a LMM is presented, unifying all of them
and reducing the problem to the standard recognition procedure using just
one model. In the end, some conclusions are presented.



FORMAL DEFINITION

A layered Markov model (LMM) consists of a number of layers, each of them
composed by a finite set of Markov models (see Fig.1). Such a set of Markov
models represents a knowledge level that modelizes it’s units in terms of lower
level units. For example, the set of pronunciation models of an ASR system
modelizes words in terms of phonemes, diphonemes or other lower level units.
In fact, one layer is connected to the underlying one in the sense that bottom
layer’s models (classes) correspond to upper layer’s alphabet. Each Markov
model can be represented by a weighted finite-state automaton (WFA), and
thus the layered model can be described in terms of such models.

First some notation: the quintuple m ≡ (
Q, qI , QF , Σ, δ

)
refers to a WFA

implementation of a Markov model, being Q the set of states, qI the initial
state, QF the set of final (accepting) states, Σ the symbol alphabet, and
δ : Q × Σ → Q × R the weighted transition function (q́ = next (q, α)
refers to the destination state given a source state q ∈ Q and a symbol
α ∈ Σ, whereas p (α | q) is the probability of such transition, thus, δ [q, α] =
[next (q, α) , p (α | q)])1. A knowledge layer of the LMM is defined by a set
L ≡ {m ∈ M} of Markov models sharing the same alphabet ΣL, and all the
layers are arranged on a vector L = [L1, L2, . . . , LN ] 2, which last element
(the top layer) must contain only one Markov model. Each layer is connected
to the underlying one by means of the function γ : ΣLi → Li−1 that maps
ith layer’s alphabet into i-1 th layer’s models. Therefore, a LMM consists of
a vector of layers and such a mapping function: Γ ≡ (L, γ) .

The whole LMM (see Fig.1) can be seen as a new WFA, with a number of
metastates q ∈ Q, described by a vector q = [(m1, q1) , . . . , (mN , qN )] made
up of a model-state pair per layer. The alphabet of the whole LMM will
be the bottom layer’s alphabet Σ = ΣL1 and a global weighted transition
function ξ is implicit in the model description. As will be pointed later,
the weighted transition function (and therefore, the resulting WFA) will be
nondeterministic: ξ : Q × ΣL1 → {Q × R}.

LMM transitions

Admitting that the LMM is nondeterministic, as we will later see, the des-
tination of a transition is formalized as a function next (q, α) that returns
the destination metastate set Q́ = {q́q,α = [(ḿ1, q́1) , . . . , (ḿN , q́N )]} given a
source metastate q = [(m1, q1) , . . . , (mN , qN )] and a symbol α ∈ Σ = ΣL1 ,
while the transition probability is formalized as the probability distribution
function p (q́, α | q). Next, computing of both functions will be presented:

1The final state paradigm can be understood as an outgoing transition, and therefore
integrated as a particular case: δ [q, αout] = [null, p (αout | q)], where pF (q) = p (αout | q)
would be the probability of being final. All the posible transitions (inners and outgoings)
must sum to a total probability of 1, that is,

∑
α∈Σ p (α | q) + pF (q) = 1.

2We will refer to L1 as the bottom layer, and LN as the top layer, in order to set up an
intuitive graphical image of the model.
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Figure 1: A schematic image of a 3layer -LMM. Only one model must be placed at
top level. A metastate is a vector with a model-state pair per layer.

first a very simple case will be considered, later a more complex one and in
the end the general one.

If the lowest state of the metastate is not a final one (at its own model),
the transition only alters the lowest layer state:

q́1 = nextm1 (q1, α)

In such a case, we will say that the transition happens at bottom layer, that
is, only bottom layer model is involved and therefore only the lowest layer
state changes. As all models in the layers are deterministic, in this case there
will be only one destination metastate:

Q́ = nextL1 (q, α) = q́q,α = [(m1, q́1) , . . . , (mN , qN )]

and the transition probability is straightforward:

p (q́, α | q) = p (α | q) = pm1 (α | q1)

But in a more complex case, transition might happen at higher layers and
lead to more than one destination metastates. For instance, if the lowest state
is final, transitions at second layer must be considered: if second layer state is
not final, transition will happen at second layer. As only lowest layer symbols
are observed, all possible α2 ∈ ΣL2 symbols (and therefore transitions) must
be taken into account.3 Each transition at this layer fixes the destination
state at layer 2, and the emitted symbol α2 is mapped to a Markov model of
the underlying layer:

q́2 = nextm2 (q2, α2)

ḿ1 = γ (α2)

The destination state at layer 1 arises from the transition given the initial
state of the mapped Markov model and the observed symbol,

q́1 = nextḿ1

(
qI , α

)

3By α2 ∈ ΣL2 , we don’t mean the complete alphabet ΣL2 , but only those symbols
related to existing transitions from state q2.



and the destination metastate set, given all possible transitions at the upper
layer can be stated as:

q́q,α (α2) = [(ḿ1, q́1) , (m2, q́2) , (m3, q3) . . . , (mN , qN )]

nextL2 (q, α) = {q́q,α (α2)}α2∈ΣL2

Therefore, there exist more than one possible transitions for each metastate
(as much as transitions at layer 2), justifying our previous definition of the
LMM as a nondeterministic weighted finite-state automaton. Moreover, if
state q1, as well as being final, could transit at model m1 and observable α,
such a transition should be added as considered for the first case:

Q́ = nextL1 (q, α) ∪ nextL2 (q, α)

The probability of each metastate transition in the set nextL2 (q, α) is the
joint probability of q1 being final (layer 1), transition q2 → q́2 (layer 2) and
transition qI → q́1 (layer 1):

p (q́q,α (α2) , α | q) = pF
m1

(q1) · pm2 (α2 | q2) · pḿ1

(
α | qI

)

In a more general case, states q1 . . . qi−1 of the metastate q could be
final states. Hence, the transition will happen at layer i and, once again, all
possible transitions from the source state qi should be processed to obtain
destination states q́i. Each emitted symbol αi ∈ ΣLi is then mapped to a
model ḿi−1 = γ (αi) at layer i− 1. If layer i− 1 is not the bottom one (or,
i > 2), there is no fixed symbol, and therefore all possible transitions from
mapped models initial state must be taken into account. All the symbols
αi−1 ∈ ΣLi−1 of such transitions are mapped again to models at layer i − 2
and the process is repeated until the bottom layer is reached. At bottom layer,
only transitions from initial states and observed symbol α can be performed:

q́i = nextmi (qi, αi)

q́j = nextḿj=γ(αj+1)

(
qI , αj

)
1 < j < i

q́1 = nextḿ1=γ(α2)

(
qI , α

)

q́q,α (αi, . . . , α2) = [(ḿ1, q́1) , . . . , , (mi, q́i) , . . . , (mN , qN )]
nextLi (q, α) = {q́q,α (αi, . . . , α2)}αj∈ΣLj

Once again, as states q1 . . . qi−1, as well as being finals, could lead to transi-
tions, the destination metastate set is the union of transitions at each layer:

Q́ =
i⋃

j=1

nextLj (q, α)

The probability of each transition in the set nextLi (q, α) is the joint proba-
bility of being final for q1 . . . qi−1 (layers 1 . . . i−1), transition qi → q́i (layer
i) and initial transitions qI → ´qi−1 . . . qI → q́1 (layers i− 1 . . . 1):

p (q́q,α (αi, . . . , α2) , α | q) =
i−1∏

j=1

pF
mj

(qj) · pmi (αi | qi) ·
1∏

k=i−1

pḿk

(
αk | qI

)



Final states

A metastate q = [(m1, q1) , . . . , (mN , qN )] will be accepting or final, if and
only if all the states qi are finals. Thus there exists a set QF of final metas-
tates and their final probabilities are the joint final probabilities:

pF
(
q ∈ QF

)
=

N∏

i=1

pF
mi

(qi)

As stated for Markov models, LMM final metastate paradigm can be
understood as an outgoing transition, and thus all transitions, inner and
outgoing, must sum to a total probability of 1:

pF (q) +
∑

α∈Σ

∑

q́∈next(q,α)

p (q́, α | q) = 1

Initial states

In contrast to common WFA and in order to maintain coherence with the
formalism about LMM transitions explained before, there exists no such an
only metastate q = [(m1, q1) , . . . , (mN , qN )] that could be the initial one.4
Indeed, there exists a set QI of initial metastates, and all of them can be
obtained in a similar way that was presented for transitions.

Starting at top level layer, all possible transitions from its only initial
state (and the corresponding symbols αN ) lead to all possible destination
states q́N . Once again, each symbol is mapped to an underlying model at
layer N−1, and all possible transitions starting at initial states at layer N−1
should be taken into account. The recursion ends at bottom level, where just
initial states are considered, due to the fact that there is not any α = αL1

symbol to process. To summarize, the initial metastates are of the form:

q́N = nextmN

(
qI , αN

)

q́i = nextḿi=γ(αi+1)

(
qI , αi

)
1 < i < N

q́1 = qI ∈ Qḿ1=γ(α2)

qI (αN , . . . , α2) =
[(

ḿ1, q
I
)
, . . . , (ḿN−1, ´qN−1) , (mN , q́N )

]

QI =
{
qI (αN , . . . , α2)

}
αj∈ΣLj

4Actually, we could define a special state q =
[
(null, null) , . . . , (null, null) ,

(
m, qI

)]
which’s top layer’s state should be the initial state of the Markov model and other layer’s
model and states would be null. Such state could easily lead to correct initial transitions,
just starting to process them from the top layer down to the bottom one instead of as
explained for other metastates (starting at bottom, up to the transition layer, then down
to the bottom). Anyway, that should require to adapt the metastate transition formalism
to include this exception.



Furthermore, each initial metastate owns an initial probability, which is
the joint initial transition probability at each layer, and all initial metastates
sum to a total probability of 1:

pI
(
q ∈ QI

)
=

2∏

i=N

pḿi

(
αi | qI

) ∑

q∈QI

pI (q) = 1

LMM-S AND HMM-S

In spite of the LMM formalism is versatile enough to add as much knowledge
layers as we would like to, there is a fundamental restriction that should
be stated: layers must contain Markov models. However, in state-of-the-art
automatic speech recognition [2, 1, 5, 4, 7], hidden Markov models (HMM)
are the uncontested model for the temporal decoding stage, mostly due to the
fact that they are able to face up to temporal variations. Therefore, the novel
architecture would be useless unless HMMs could be integrated in them.

One could suggest to relax the constraint about Markov models, just
allowing nondeterministic WFA to be part of a layer (HMM should be handled
as such an automaton). But a much more interesting solution can be stated:
a HMM can be actually represented as a 2-layer LMM and a HMM set can
be also translated into 2 knowledge layers, which can be straight added under
LMMs’ formalism.

HMM as a 2-layer LMM

A HMM [3] can be defined as a sextuple h ≡ (Q, Σ, A, B, Π, Φ) , where Q is
the set of states and Σ the output alphabet, A = {aq→q́ = p (q́ | q)} refers to
transition probabilities, B = {bq (α) = p (α | q)} to output (emission) prob-
abilities, Π =

{
πq = pI (q)

}
to initial probabilities and Φ =

{
φq = pF (q)

}
refers to final probabilities.

In essence, a HMM is a metaphor of a process whose inner states cannot
be observed but some other indirect observables. The statistical dependence
among these observables and the states is given by output probability dis-
tributions. Equivalently, in a LMM the only observables are bottom layer’s
symbols. Hence, given a sequence of such symbols we cannot determine a
sequence of metastates (or states in the case of HMM), and must work out a
sequence which is optimal in some meaningful sense [6].

The equivalent 2 layer LMM of a given h ∈ H HMM (see Fig. ??) is
obtained simply splitting transitions and emissions: the former to the top
layer and the latter to the bottom one. Thus, layer 2 (L2) contains the
knowledge about h topology, whereas the knowledge related to emissions is
contained at layer 1 (L1). Next, both layers will be briefly described.

The HMM and the LMM are both equivalents, so their symbol alphabets



should be the same. Thus, L1’s alphabet is h’s alphabet:

Σ = ΣL1 = ΣH

Each emission distribution at states q ∈ Qh can be represented in L1 by a
2 states Markov model, one state being initial and the other final. Therefore,
there will be one model at L1 per each state at model h, that is, there exists
a mapping λ : Qh → L1 that connects h states and L1 models:

L1 ≡ {m = λ (q)}q∈Qh

In each Markov model m = λ (q) at L1, the transition set qI → qF is equiv-
alent to the emission probability distribution bq (α) at state q ∈ Qh :

∀α ∈ Σ , nextm=λ(q)

(
qI , α

)
= qF

pm=λ(q)

(
α | qI

)
= bq (α)

At layer 2, there is only one Markov model m ∈ L2 with all the knowledge
about h’s topology. One more state than those at h is needed: the extra state
is the initial one, qI , and there exists a mapping ω : Qh → Qm−

{
qI

}
among

h states and m states (except qI). All transitions that end at a mapped state
qm = ω (qh) generate the same symbol α2 ∈ ΣL2 , and this symbol is related
to the Markov model at L1 that modelizes the emission of the state qh:

∀qm ∈ Qm ∀qh ∈ Qh , nextm (qm, α2) = ω (qh) ⇔ γ (α2) = λ (qh)

Hence, transitions destination function is

nextm (q, α) = ω
(
λ−1 (γ (α))

)

and transition weights will have the value of HMM probabilities πq and aq→q́,
depending on source state at L2 being initial or not:

pm (α | q) =
{

πλ−1(γ(α)) , q = qI

aω−1(q)→λ−1(γ(α)) , q 6= qI

Finally, the set of accepting (final) states will be the set of states related to
h’s final states, having the same probability:

QF
m = {q = ω (qh)}φqh

>0 pF
m (q = ω (qh)) = φqh

The previous equivalence between a HMM and a 2 layer LMM can be
generalized to a set of HMM. Each emission pattern at HMMs states is mod-
elized by a two-state Markov model at layer 1, whereas each topology is
represented by another model at layer 2; all transitions ending at the same
state at layer 2 are related to the same symbol α2 ∈

∑
, which represents

an emission pattern, that is, a Markov model at layer 1. These layers can
be directly added as two knowledge levels into a LMM. In ASR, for exam-
ple, acoustic models are usually HMMs, whereas at upper knowledge levels



(lexical or pronunciation models, language models, etc.) Markov models are
typically used. Thus, using LMMs, a single model integrating all the knowl-
edge can be defined. Such a model would be bottom-up formed by: two layers
of acoustic knowledge (derived by a HMM set), one layer or lexical knowledge
(pronunciation models) and a language model (n-grams, for example).

HMM2 as a 3-layer LMM

HMM2 [8, 9] extends HMM framework to simultaneously accommodate com-
plex constraints in both the temporal and frequency domains. On this ap-
proach, multi-gaussians typically used in standard HMMs are replaced by
frequency based HMM which perform frequency warping and integration.
That is, a frequency based HMM is associated with each (temporal) HMM-
state.

As stated for HMMs, a HMM2 can be converted into a LMM too. In this
case 3 layers are needed: layer 3 represents the topology knowledge of the
HMM2, whereas layer 2 and layer 1 arise from the already described decom-
position of emission-HMMs into 2 knowledge layers (topology of emission-
HMMs plus the emissions themselves). Therefore, HMM2 approach differs
from traditional HMM in the sense that they add an extra knowledge layer:
the frequency warping.

The fact that both HMM and HMM2 can be considered as particular
instances of LMM, clarifies and suggests the search of alternative models
based on the LMM paradigm.

ADDING TRAINING AND RECOGNITION PARADIGMS

In ASR, during the recognition and also the training5 of the models, all
knowledge sources are usually integrated on a single system. But as well as
the models commonly considered to take part on such integrations, some-
times some extra knowledge is added to the system. For instance, when
phonetic HMMs are trained from labeled (there is some information about
what has been said) but unsegmented data (there is no information about
when each phoneme starts or ends), some restrictions can be stated: the
order of phonemes and the possibility of silence between them, for exam-
ple. Even in a much simpler situation, at acoustic-phonetic decodification,
the way phonetic units can be combined must be fixed : all phonetic strings
could be equally probable, less probable as they are longer, and so on.

Whenever there is more than one class (model) at the top knowledge
level of such a system, some extra information about those classes strings’
probabilities must be added. This information can be easily formalized as an
extra layer (containing only one Markov model) and integrated into a LMM,
and thus, such recognition tasks can be converted to the standard recognition
procedure using just one LMM. Next, some usual cases will be presented.

5By training, we mean the supervised recognition stage used for sentence segmentation.
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Figure 2: Recognition paradigm can be achieved adding a simple Markov model at
LMM’s top layer. Three different recognition paradigms are shown, a) equiprob-
able, b) length-dependent equiprobable and c) supervised (with silences insertion)
for the word need ([n] [iy] [d]).

Equiprobable recognition

If there is no a priori knowledge about the classes’ combination probability,
all strings should be equally probable, P (Si) = P (Sj) = 1

|{S}| . As all possible
strings range |{S}| depends on the input-data maximum size bound, an easy
solution is to consider an unnormalized distribution such as P (Si) = P (Sj) =
1.0. This distribution can be achieved by a one state Markov model, with as
much transitions over itself as classes to combine. All probabilities, transition
and final, are 1.0 valued:

next (q, α) = q p (α | q) = 1.0 pF (q) = 1.0

Length-dependent equiprobable recognition

Many times, the equiprobable paradigm is modified in such a way that only
strings of same length are equiprobable, and the probability decreases as the
string length goes longer. Such a distribution can be achieved by another
one state Markov model, where all transitions have the same probability and
final probability is just the necessary to add up to one. Actually, this is the
most used paradigm at unsupervised recognition, may be due to the fact that
it is the simplest normalized case to implement:

next (q, α) = q p (α | q) =
β

|Σ| pF (q) = 1− β

Supervised recognition for training segmentation

In ASR, when some models (acoustic HMMs, for instance) are trained, a por-
tion of the labeled training data can be manually segmented in order to ini-
tialize those models and afterwards use themselves to segment the rest of the
data for more training iterations. But in absence of manually segmented data,
that is, starting with random models, trained parameters hardly converge to



good values unless recognition constraints are enough relaxed. A valid solu-
tion is to allow the insertion of silence between any labeled phonemes (silences
are supposed not to be labeled) and let all possible results be equiprobables
(once again, an unnormalized distribution will be useful). Nevertheless, in
both cases there is a supervised recognition in order to obtain a segmentation
for parameter training. Such a supervision can be easily achieved by a simple
Markov model with at least as much states as labeled phonemes (or twice for
the silence introduction case).

CONCLUSION

A new architectural approach to automatic speech recognition has been pro-
posed. Both HMM and HMM2 have been presented as particular instances
of LMM, suggesting the possibility of alternative models based on the LMM
paradigm. Finally, it has been stated that recognition paradigms, also used
for model training, can be integrated as an extra knowledge layer, so, they
are all reduced to the one model standard recognition procedure.
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