
University of the Basque Country (EHU) Systems
for the 2011 NIST Language Recognition Evaluation

Mikel Penagarikano, Amparo Varona, Luis Javier Rodriguez-Fuentes, Mireia Diez, German Bordel

GTTS (http://gtts.ehu.es), Department of Electricity and Electronics
University of the Basque Country, Spain

mikel.penagarikano@ehu.es

Abstract
This paper describes the systems developed by the Software
Technologies Working Group (http://gtts.ehu.es) of the Uni-
versity of the Basque Country for the 2011 NIST Language
Recognition Evaluation. Four different systems (one primary
and three contrastive) were submitted, consisting of a fusion of
five subsystems: a Linearized Eigenchannel GMM (LE-GMM)
subsystem, an iVector subsystem and three phone-lattice-SVM
subsystems based on the publicly available BUT decoders for
Czech, Hungarian an Russian. The four submitted systems were
identical except for the backend approach and the development
dataset used to estimate the backend and fusion parameters.
Multiclass fusion was performed separately for each nominal
duration. A development set was defined, including the evalu-
ation sets of LRE07 and LRE09 and the development data pro-
vided by NIST for 9 additional languages in LRE11. Systems
were evaluated on 10 random partitions of the development set,
using one half for estimating backend and fusion parameters
and the other half for testing. The average cost as defined in
the LRE11 evaluation plan was used as performance measure.
The primary system yielded an actual average cost of 0.038
(±0.002), being Hindi-Urdu, by far, the most challenging pair,
with an actual average cost of 0.222.

1. Introduction
This paper describes the systems developed by the Software
Technologies Working Group (GTTS, http://gtts.ehu.es) of the
University of the Basque Country (EHU) for the 2011 NIST
Language Recognition Evaluation (LRE). Attending to prelimi-
nary evaluation on development data, this submission yields im-
proved performance with regard to previous EHU submissions
to NIST LRE in 2007 [1] and 2009 [2].

Currently, spoken language recognition systems can be
classified under two main categories, depending on the features
used to model target languages [3]: those using low level acous-
tic features and those using high level phonotactic features (re-
cently, both approaches have been successfully mixed for a di-
alect recognition task [4]). Acoustic systems are based on short-
time spectral characteristics of the audio signal, whereas phono-
tactic systems use sequences or lattices of tokens produced by
phone recognizers. Both approaches provide complementary
information and their fusion usually leads to the best results.

The EHU submission for the 2011 NIST LRE aims to take
advantage from this complementarity, by combining both types
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of systems. Two acoustic and three phonotactic subsystems
have been fused: a Linearized Eigenchannel GMM (LE-GMM)
subsystem, an iVector subsystem and three Phone-SVM subsys-
tems based on the Brno University of Technology (BUT) phone
decoders for Czech, Hungarian and Russian.

The 2011 NIST LRE features 24 target languages, some of
them already used in previous 2007 and/or 2009 LREs (Ben-
gali, Dari, English American, English Indian, Farsi/Persian,
Hindi, Mandarin, Pashto, Russian, Spanish, Tamil, Thai, Turk-
ish, Ukranian and Urdu), whereas the remaining ones (Arabic
Iraqi, Arabic Levantine, Arabic Maghrebi, Arabic MSA, Czech,
Lao, Panjabi, Polish and Slovak) have been used as target lan-
guages for the first time in this evaluation.

The main novelty with regard to previous evaluations is the
focus on the discrimination between pairs of languages (276
different pairs can be defined on a set of 24 target languages),
which is emphasized with a new performance measure which
takes into account only the 24 most challenging language pairs,
i.e. those for which system performance is worst. This means
that all the target languages should be suitably modeled and the
discriminative power suitably balanced for all the pairs. In other
words, if a single language was poorly modeled, a high number
of confusable pairs (involving that language) could appear and
cause performance to drop drastically. This is why the avail-
ability of training data to provide coverage for all the target
languages (specially for those newly added in this evaluation)
seemed critical to us. As for previous NIST evaluations, three
test conditions are defined for three nominal durations of 30, 10
and 3 seconds. More detailed information about the 2011 NIST
LRE can be found in [5].

The rest of the paper is organized as follows. Section 2 de-
scribes the datasets used for training and development, includ-
ing details about the collection of training data for the target
languages appearing for the first time in 2011. Section 3 de-
scribes the acoustic and phonotactic subsystems on which the
EHU submission is based. Section 4 completes the picture by
briefly describing the backend and fusion strategies and the sub-
tle differences among the four systems submitted to 2011 NIST
LRE. Finally, the average performance of individual subsystems
and the fused systems on 10 random partitions of the develop-
ment corpus are presented and briefly discussed in Section 5.

2. Train and development data
2.1. Data collection for the newly added target languages

NIST has provided a development dataset specifically collected
for this evaluation, including 100 30-second segments for each
of the newly added target languages, except for Lao, for which
only 93 segments were provided. We augmented the dataset
with 10- and 3-second segments extracted from the original 30-
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second segments. Hereafter, we will refer to this dataset as
lre11.

It is not strictly necessary to train models for all the target
languages, since a backend can be trained and applied to map
scores obtained for an arbitrary set of language models into log-
likelihoods for the set of target languages. This means that lre11
may be used just to estimate the backend parameters for the
newly added languages. By doing that, we assume that any
target language can be parameterized and discriminated in terms
of the available models.

For a better coverage of target languages, we randomly split
lre11 into two disjoint subsets (each having approximately half
the segments for each language): lre11-train was used to train
specific models for the newly added languages, and lre11-dev
was used to estimate backend and fusion parameters for the
EHU submission, and to evaluate system performance during
development (see Section 5 for details).

However, splitting lre11 in two halves may lead to data
sparsity and robustness issues. Note that each subset amounted
to around 25 minutes of speech per target language, which may
be enough to estimate backend parameters, but probably not
enough to train robust models. In the context of a joint sub-
mission to 2011 NIST LRE, the INESC-ID Spoken Language
Systems Laboratory (L2F ), the University of Zaragoza and
the University of the Basque Country collaborated in order to
share, acquire and, whenever necessary, filter speech data for
the newly added languages. In some cases we collected tele-
phone speech directly from the source (that was the case of
CTS databases and BN databases including telephone speech).
When this was not possible, we used broadcast news speech,
downsampled it to 8 kHz and applied the Filtering and Noise
Adding Tool (FANT) 1 to filter speech data with a frequency
characteristic as defined by ITU for telephone equipment 2.

The VOA corpus used for the 2009 NIST LRE was ex-
plored in first place, starting from the labels provided by
NIST. Music and fragments in English were automatically de-
tected and filtered out, and telephone-channel speech frag-
ments were extracted. Around two hours of Lao were ex-
tracted this way. Then we used databases distributed by the
LDC, some of them containing conversational telephone speech
(LDC2006S45 for Arabic Iraqi and LDC2006S29 for Arabic
Levantine) and others broadcast news with fragments of tele-
phone speech (LDC2000S89 and LDC2009S02 for Czech). In
both cases, segments containing telephone speech were ex-
tracted with no further processing.

The remaining materials were extracted from wideband
broadcast news recordings, dowsampling them to 8 kHz and ap-
plying FANT to simulate a telephone channel. The COST278
Broadcast News database [6] was used to get speech segments
for Czech and Slovak. Arabic MSA was extracted from Al
Jazeera broadcasts included in the Kalaka-2 database created
for the Albayzin 2010 LRE [7]. Finally, broadcasts were also
captured from video archives in TV websites to get speech seg-
ments in Arabic Maghrebi (Arrabia TV, http://www.arrabia.ma)
and Polish (Telewizja Polska, TVP INFO, http://tvp.info). TV
broadcasts were fully audited, so that only reasonably clean
speech segments were selected for training.

We were not able to collect by any means additional train-
ing materials for Panjabi, which means that a single model
(trained on just 55 segments) was used for this language.

1http://dnt.kr.hs-niederrhein.de/download.html
2Thanks to Alberto Abad from L2F for doing all the filtering tasks

on BN speech and VOA materials.

2.2. Train data

Train data have been obtained from several sources. Most of
them were provided by NIST to LRE participants in past cam-
paigns:
• Conversational telephone speech (CTS) from previous

LRE: (1) the Call-Friend Corpus; (2) the OHSU Corpus
provided by NIST for the 2005 LRE; and (3) the devel-
opment corpus provided by NIST for the 2007 LRE.

• Narrowband speech segments extracted from VOA
broadcasts, which were provided by NIST for the 2009
LRE [8][9].

• The lre11-train corpus, as defined in Section 2.1, which
amounts to half of the segments provided by NIST for
the newly added target languages in the 2011 LRE.

As noted above, we considered the two following criteria:
(1) there should be models for all the target languages, to pre-
vent performance loss due to a lack of coverage; and (2) the
amount of training data should be increased for the newly added
languages (for which only the lre11-train corpus was available),
to prevent robustness issues. Therefore, we collected additional
training data for the newly added languages (we have already
addressed this task in Section 2.1).

We ended up with 66 subsets, very heterogeneous in size
and composition, corresponding to different languages/dialects,
including target and non-target languages, and different sources
(see Table 1). We trained a different model on each subset,
which means that models account not only for the spoken lan-
guage but also for the channel and other factors related to the
source from which the speech data were drawn.

2.3. Development data

The criterion applied to define the development set was making
the process of tuning systems as robust and reliable as possi-
ble, so we decided to use only segments audited by NIST. To
cover all the target languages, the evaluation sets of the NIST
2007 and 2009 LREs (only the segments corresponding to NIST
2011 LRE target languages), together with the lre11-dev subset,
as defined in Section 2.1, were used. We defined three develop-
ment subsets: dev30, dev10 and dev03, corresponding to nom-
inal durations of 30, 10 and 3 seconds, containing 8539, 8343
and 8290 segments, respectively. Table 2 shows the distribution
of segments in the subset dev30 with regard to the target lan-
guages and sources. Target languages show large differences in
the number of segments amongst each other. The newly added
target languages are the less populated (and thereby, the most
likely to suffer from overtraining and/or robustness issues), with
around 50 segments each.

3. The EHU Language Recognition
Sub-systems

3.1. Acoustic Sub-systems

For the acoustic systems, the concatenation of 7 Mel-Frequency
Cepstral Coefficients (MFCC) and the Shifted Delta Cepstrum
(SDC) coefficients under a 7-2-3-7 configuration, were used as
acoustic features. A gender independent 1024-mixture GMM
(Universal Background Model, UBM) was estimated by Max-
imum Likelihood on the training dataset, using binary mixture
splitting, orphan mixture discarding and variance flooring. Fi-
nally, for each input utterance, UBM-MAP adaptation was ap-
plied and the centered zero-order and first-order Baum-Welch
statistics were used as features.



Table 1: Training set: distribution of subsets (66), according to
the language/dialect and source.

Source Languages

LRE 2007 (CTS)

Bengali, English-American,
English-Indian, Farsi, French,
German, Hindi, Japanese, Korean,
Mainland (Mandarin), Russian,
Spanish-Caribbean,
Spanish-Mexican,
Spanish-NonCaribbean, Taiwan
(Mandarin), Tamil, Thai, Urdu

LRE 2009 (VOA,
CTS from BN)

Albanian, Amharic, Bangla, Creole,
Dari, French, Georgian, Greek,
Hausa, Hindi, Indonesian,
Kinyarwanda/Kirundi, Korean, Lao,
Mandarin, Ndebele, Oromo, Pashto,
Persian/Farsi, Russian, Shona,
Somali, Spanish, Swahili, Tibetan,
Tigrigna, ttam (English), Turkish,
Ukrainian, Urdu

LRE 2011
(lre11-train, CTS

and/or BN)

Arabic-Iraqi, Arabic-Levantine,
Arabic-Magrebi, Arabic-MSA,
Czech, Lao, Panjabi, Polish, Slovak

LDC 2006S45
(CTS) Arabic-Iraqi

LDC 2006S29
(CTS) Arabic-Levantine

Arrabia TV (BN) Arabic-Magrebi
Al Jazeera (BN) Arabic-MSA
LDC 2000S89

(CTS from BN) Czech

LDC 2009S02
(CTS from BN) Czech

COST278 (BN) Czech, Slovak
Telewizja Polska

(BN) Polish

3.1.1. Dot Scoring Sub-system

The Linearized Eigenchannel GMM (LE-GMM) sub-system,
that we briefly call Dot-Scoring sub-system, makes use of a lin-
earized procedure to score test segments against target models
[10]. The log-likelihood ratio between the target model and the
UBM used for scoring can be approximated as follows:

score (f, l) = log
P (f |λl)

P (f |λubm)
≈ mt

l · x̂f (1)

where ml denotes the vector of normalized means correspond-
ing to language l and x̂f is the vector of channel-compensated
first-order statistics corresponding to the target signal f . Chan-
nel compensation was performed by using Niko Brümer’s
recipe [11]. The channel matrix was estimated using only data
from target languages.

3.1.2. iVector Sub-system

The estimation of the total variability matrix T and the compu-
tation of iVectors started from the channel-compensated suffi-
cient statistics obtained with the Dot-Scoring system. This is
not the common procedure, since compensation is usually per-
formed in the iVector space, but we had a hardware issue 3 and

3 We lost the LRE11 data (speech signals, statistics, etc.), due to a
mechanical failure of a disk, two weeks before the submission deadline.

Table 2: Development set (30-second segments): distribution
with regard to the target language and source.

LRE LRE LRE
Language 2007 2009 2011 Total

(eval) (eval) (lre11-dev)
Arabic Iraqi - - 48 48

Arabic Levantine - - 49 49
Arabic Maghrebi - - 54 54

Arabic MSA - - 51 51
Bengali 80 43 - 123
Czech - - 56 56
Dari - 389 - 389

English American 80 896 - 976
English Indian 160 574 - 734
Farsi/Persian 80 390 - 470

Hindi 160 667 - 827
Lao - - 41 41

Mandarin 158 1015 - 1173
Panjabi 32 9 45 86
Pashto - 395 - 395
Polish - - 46 46

Russian 160 511 - 671
Slovak - - 56 56
Spanish 240 385 - 625
Tamil 160 - - 160
Thai 80 188 - 268

Turkish - 394 - 394
Ukrainian - 388 - 388

Urdu 80 379 - 459
Total 1470 6623 446 8539

no time to reestimate Baum-Welch statistics for training the T
matrix. We had the iVector software prepared, so we decided to
go ahead with this alternative computation method. Except for
the compensation of statistics, computations were performed as
in [12]. Once again, the total variability matrix was estimated
using only data from target languages.

3.2. Phonotactic Sub-systems

Three phonotactic sub-systems were developed under a phone-
lattice-SVM approach. Given an input signal, an energy-based
voice activity detector was applied in first place, which split and
removed long-duration non-speech segments. Then, the Tem-
poral Patterns Neural Network (TRAPs/NN) phone decoders
developed by the Brno University of Technology (BUT) for
Czech (CZ), Hungarian (HU) and Russian (RU) [13], were
applied to perform phone tokenization. Non-phonetic units:
int (intermittent noise), pau (short pause) and spk (non-speech
speaker noise) were mapped to sil (silent pause). Regarding
channel compensation, noise reduction, etc. the three sub-
systems relied on the acoustic front-end provided by BUT de-
coders.

BUT decoders were configured to produce phone lattices.
Lattices, which encode multiple hypotheses with acoustic like-
lihoods, were then used to produce expected counts of phone
n-grams, by means of HTK [14]. Finally, a Support Vector Ma-
chine classifier was applied, SVM vectors consisting of counts
of features representing the phonotactics of an input utterance.
In this work, phone n-grams up to n = 3 were used, weighted
as in [15]. L2-regularized L1-loss support vector classification
was applied, by means of LIBLINEAR [16], whose source code
was slightly modified to get regression values.



4. The EHU submission
The EHU submission consists of one primary and three con-
trastive systems, fusing the 5 sub-systems described in Section
3 under four different configurations, depending on the type of
backend and on the datasets used to estimate backend and fu-
sion parameters for nominal durations 10 and 3 (see Table 3).
Note that backend and fusion were estimated and applied sep-
arately for each nominal duration. The four submitted systems
have the same complexity and processing speed (see Section 4.1
for details).

Table 3: Main features of the EHU primary and contrastive
systems. Backend and fusion were estimated and applied sepa-
rately for each nominal duration.

System zt-norm
Backend & Fusion Train Dataset

30s 10s 3s
Pri No dev30 dev10 dev03

Con1 No dev30 dev10+dev30 dev03+dev10+dev30
Con2 Yes dev30 dev10 dev03
Con3 Yes dev30 dev10+dev30 dev03+dev10+dev30

Each sub-system produces 66 scores (one score per trained
model). These scores are taken as input by the backend, which
outputs 24 log-likelihoods, one per target language. A Gaus-
sian backend, preceded by an optional zt-norm [17], has been
applied in all cases. Though discriminative backends have been
also tried, the (generative) Gaussian backend outperformed
them in most cases, probably due to a lack of samples which
led to overtraining on the development set used in the experi-
ments. Finally, the resulting 5 × 24 log-likelihood values are
fused by applying linear logistic regression, under a multiclass
paradigm, to get 24 calibrated scores for which a minimum ex-
pected cost Bayes decision is made, according to application-
dependent language priors and costs. We have also tried pair-
wise backends and fusions but they did not provide signifi-
cant improvements with regard to the basic multiclass approach
(much easier to implement). The FoCal toolkit has been used to
estimate and apply the backend and calibration/fusion models
[18, 19].

4.1. Processing times

Processing times were all measured on a computer with 2 Intel
Xeon 5550 CPUs (x 4 cores x 2 turbo HT) running at 2.66GHz
with 32GB of memory. Real-time factors for the five subsys-
tems and the overall fused systems are shown in Table 4. For
the iVector sub-system, the real-time factor only accounts for
the iVector estimation from the total variability matrix and pre-
computed statistics, since it relies on the compensated statis-
tics computed for the Dot-Scoring sub-system. Sub-processes
with relatively small (negligible) run times, such as dot product,
iVector scoring and SVM vector scoring, have not been taken
into account. Processing times for the backend and fusion op-
erations have been also omitted, since they are extremely fast.
The overall fused systems run at 0.7295 times real time.

5. System performance: results on the
development dataset

5.1. Evaluation methodology

To measure system performance, the development dataset can
be split in two halves, the first being used to estimate backend
and fusion parameters and the second to generate a set of trials,

Table 4: Real-time factors of the five sub-systems and the cor-
responding sub-processes. The fused systems are obtained by
sequentially running the five sub-systems, so the real-time fac-
tor is computed by adding the real-time factors of sub-systems.

Dot-Scoring 0.0467
Acoustic Parameterization 0.0020

Sufficient Statistics 0.0187
Channel Compensation 0.0260

iVector 0.0250
Phone-SVM-CZ 0.2114

Lattice Decoding 0.1267
Expected Counts 0.0847

Phone-SVM-HU 0.2300
Lattice Decoding 0.1517
Expected Counts 0.0783

Phone-SVM-RU 0.2164
Lattice Decoding 0.1327
Expected Counts 0.0837

Fused Systems 0.7295

on which the performance measure, as defined in the Evaluation
Plan, can be computed. Note, however, that if we consider a sin-
gle partition, a positive or negative bias may be introduced. To
have a more robust measure of system performance, we define
10 random partitions (always the same) and compute the aver-
age performance on them. This strategy pursues (via random
subset selection) the same goal than a 2-fold cross-validation
strategy, but providing a better balance between the size of the
evaluation subset (large enough for the results to be reliable)
and the number of partitions considered in the average (for sta-
tistical significance).

The above described strategy may introduce a positive bias
if signals used for testing also appear in the subset used to esti-
mate backend and fusion parameters. In this regard, note that
for the 9 newly added target languages, 10-second segments
in the development set were entirely extracted from 30-second
segments, and 3-second segments were entirely extracted from
10-second segments. Moreover, we suspect that 10- and 3-
second segments provided by NIST in the evaluation sets of the
2007 and 2009 LREs (which have been also included in the de-
velopment set) were partly obtained using a similar procedure.
This means that, for contrastive systems 1 and 3, whose devel-
opment sets for nominal durations 10 and 3 consist of dev10 +
dev30 and dev03 + dev10 + dev30, respectively, some signals
may appear two or even three times. Due to these dependencies,
performance results for contrastive systems 1 and 3 have been
omitted 4.

5.2. Overall performance results

The actual and minimum average costs for the EHU primary
system and the EHU contrastive system 2, along with the costs
for the sub-systems involved in the corresponding fusions, in
experiments on 10 fixed partitions of the development set, are
shown in Table 5. The only difference between the primary and
contrastive systems regards the introduction of a zt-norm before
the backend in the contrastive system, which consistently leads
to a slight (but not significant) improvement in performance.

4 Regarding performance on 30-second segments, the contrastive
system 1 is identical to the primary system, and the contrastive system
3 is identical to the contrastive system 2.



Table 5: Actual and minimum average costs for the EHU primary system, the EHU contrastive system 2 and the sub-systems involved
in the respective fusions, in experiments on 10 fixed partitions of the development set.

Cact
avg Cmin

avg
30s 10s 3s 30s 10s 3s

Primary 0.038 (±0.002) 0.084 (±0.005) 0.209 (±0.009) 0.029 (±0.002) 0.067 (±0.003) 0.179 (±0.007)
Dot-Scoring 0.071 (±0.005) 0.140 (±0.007) 0.276 (±0.010) 0.056 (±0.004) 0.116 (±0.005) 0.248 (±0.008)

iVector 0.086 (±0.006) 0.172 (±0.008) 0.304 (±0.010) 0.069 (±0.003) 0.144 (±0.005) 0.271 (±0.007)
Phone-SVM-CZ 0.078 (±0.005) 0.161 (±0.007) 0.321 (±0.011) 0.062 (±0.004) 0.139 (±0.007) 0.284 (±0.008)
Phone-SVM-HU 0.086 (±0.005) 0.160 (±0.006) 0.300 (±0.008) 0.068 (±0.004) 0.135 (±0.004) 0.264 (±0.003)
Phone-SVM-RU 0.073 (±0.005) 0.158 (±0.011) 0.300 (±0.009) 0.059 (±0.005) 0.133 (±0.008) 0.261 (±0.007)

Contrastive 2 0.037 (±0.002) 0.082 (±0.004) 0.205 (±0.009) 0.028 (±0.002) 0.066 (±0.003) 0.174 (±0.007)
Dot-Scoring 0.073 (±0.004) 0.135 (±0.008) 0.276 (±0.011) 0.056 (±0.003) 0.112 (±0.003) 0.243 (±0.008)

iVector 0.082 (±0.006) 0.169 (±0.007) 0.304 (±0.009) 0.067 (±0.005) 0.141 (±0.005) 0.271 (±0.008)
Phone-SVM-CZ 0.077 (±0.004) 0.160 (±0.008) 0.322 (±0.012) 0.061 (±0.004) 0.139 (±0.007) 0.282 (± 0.007)
Phone-SVM-HU 0.082 (±0.004) 0.157 (±0.006) 0.297 (±0.008) 0.066 (±0.003) 0.132 (±0.004) 0.263 (±0.004)
Phone-SVM-RU 0.073 (±0.006) 0.154 (±0.009) 0.299 (±0.008) 0.058 (±0.005) 0.130 (±0.007) 0.262 (±0.007)

Systems are not perfectly calibrated, as the differences between
Cact

avg and Cmin
avg reveal. In fact, a perfect calibration may provide

cost reductions ranging from 15% to 25%. Calibration issues
probably arise due to a lack of samples in the development set
for some of the target languages. This effect is more notice-
able in these experiments than in the scores submitted to NIST
2011 LRE, because only one half of the development set (maybe
unbalanced) has been used to estimate backend and fusion pa-
rameters. The dot-scoring sub-system consistently yields the
best performance, followed by the Phone-SVM sub-systems for
Russian, Czech and Hungarian. Finally, the iVector subsystem
does not perform as well as expected, maybe because the pre-
compensation issue commented in Section 3. In any case, the
five sub-systems provide a reasonably good fusion. We found
that the iVector sub-system contributed with complementary in-
formation, improving the fusion of the four other sub-systems,
despite being trained on the same compensated statistics used
for the dot-scoring sub-system.

5.3. Most challenging language pairs

Figure 1 shows the minimum and actual average costs for the 24
language pairs yielding the highest minimum average costs on
dev30, when using the EHU primary system. The pair Hindi-
Urdu yields, by far, the highest cost, with Cact

avg = 0.222, the
next highest costs being one third that value: Cact

avg ≈ 0.073
for the pairs English American-English Indian, Czech-Slovak
and Arabic Levantine-Arabic Iraqui. There are only three more
pairs with actual costs greater than 0.05: Dari-Farsi, Hindi-
Panjabi and Panjabi-Urdu. In all cases, the involved pairs were
expected to be highly confusable. However, the pair Hindi-Urdu
accounts for a large fraction of the overall cost, so specific ef-
forts should be devoted to analyze the reasons for this result
and to study ways to improve the discrimination between both
languages.

On the other hand, the EHU primary system seems to be
reasonably well calibrated for some language pairs, but very
poorly for other pairs. Table 6 shows the 5 worst calibrated
pairs, in terms of the absolute and relative difference between
Cact

avg and Cmin
avg . In all cases, one of the languages of the pair, or

both, have few development utterances (less than 100, in most
cases around 50, see Table 2), and only half of them (on average)
are used to estimate backend and fusion parameters for each of
the 10 partitions considered in these experiments. Therefore,

as we suggested above, the lack of samples is the most plausi-
ble explanation for the calibration issues observed in Figure 1.
We expect the scores to be better calibrated in the submission
to NIST 2011 LRE, since backend and fusion parameters were
estimated on all the development utterances.

Table 6: The 5 worst calibrated language pairs (on average)
in absolute and relative terms, when using the EHU primary
system on 10 fixed partitions of the development set (30-second
segments).

Absolute Relative
Cact

avg − Cmin
avg Cact

avg/C
min
avg − 1

Arabic Levantine, Arabic MSA 0.032 Arabic Levantine, Arabic MSA 3.22
Lao, Thai 0.028 Polish, Slovak 2.88

Arabic Iraqi, Arabic Levantine 0.025 Bengali, Panjabi 2.24
Czech, Slovak 0.018 Bengali, English Indian 2.24

Arabic Iraqi, Arabic MSA 0.018 Lao, Thai 1.75
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[19] N. Brümmer, L. Burget, J. Cernocky, O. Glembek,
F. Grezl, M. Karafiat, D. van Leeuwen, P. Matejka,
P. Schwarz, and A. Strasheim, “Fusion of heterogeneous
speaker recognition systems in the STBU submission for
the NIST speaker recognition evaluation 2006,” IEEE
Transactions on Audio, Speech, and Language Process-
ing, vol. 15, no. 7, pp. 2072–2084, 2007.


	 Introduction
	 Train and development data
	 Data collection for the newly added target languages
	 Train data
	 Development data

	 The EHU Language Recognition Sub-systems
	 Acoustic Sub-systems
	 Dot Scoring Sub-system
	 iVector Sub-system

	 Phonotactic Sub-systems

	 The EHU submission
	 Processing times

	 System performance: results on the development dataset
	 Evaluation methodology
	 Overall performance results
	 Most challenging language pairs

	 Acknowledgements
	 References

