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Abstract. The GTTS submission for the NIST 2011 Speaker Recogni-
tion Evaluation (SRE) Analysis Workshop comprises two systems, which
perform eigenchannel compensation in the sufficient statistics space and
dot product scoring. Both systems differ in the method used for Chan-
nel Matrix computation: the former applies Speaker Mean Subtraction
to eliminate speaker variability (which should not be modeled as eigen-
channels) and then estimates the matrix by Principal Component Anal-
ysis, while the latter makes use of Speaker Locations and the Maximum-
Likelihood Minimum-Divergence algorithm.

Index Terms: Speaker Recognition, NIST SRE, Dot Scoring, Sufficient Statis-
tics, Eigenchannel Compensation

1 Introduction

In this paper we describe the speaker recognition systems developed by the
Software Technology Working Group (http://gtts.ehu.es) at the University of
the Basque Country (EHU), for the NIST 2011 Speaker Recognition Evaluation
(SRE) Analysis Workshop. These two systems combine two technologies: suffi-
cient statistics space eigenchannel compensation and dot scoring. The first sys-
tem is based on a previous work [1], where channel matrix is estimated by Prin-
cipal Component Analysis (PCA). In the second system, the channel matrix is
computed by means of the Maximum-Likelihood and Minimum-Divergence (ML-
MD) algorithm. Furthermore, to avoid modeling speaker variability as eigenchan-
nels, the system based on PCA applies Speaker Mean Subtraction, whereas the
system based on the ML-MD algorithm makes use of Speaker Locations, as in
[2].
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2 Sufficient statistics

Let λ ≡ {ωk, µk, Σk|k = 1..K} be a GMM consisting of K Gaussians in a F -
dimensional space, with diagonal covariance matrices Σk. Let ft be the feature
vector at time t. Let γk (t) be the posterior probability of Gaussian k at time t.
We define:

nk =
∑
t

γk (t) (1)

xk =
∑
t

γk (t)Σ
− 1

2

k (ft − µk) (2)

The parameter vectors n = [

F︷ ︸︸ ︷
n1, . . . , n1, . . . ,

F︷ ︸︸ ︷
nK , . . . , nK ]′ and x = [x1, . . . , xK ]

′

(both having size F ·K) are known as the zero and first order sufficient statistics,
respectively (′ denotes transpose). The one-iteration relevance-MAP adapted
and normalized mean vectors m = Σ

1
2 (µMAP − µUBM) can be then computed

according to the following expression [3,1]:

m = (τI+ diag (n))
−1 · x (3)

3 Eigenchannel compensation

3.1 PCA System

Channel compensation in the space of sufficient statistics is performed using
the eigenchannel recipe developed by the Brno University of Technology Speech
Group [4].

In this method, we first model and then compensate for channel variability.
Therefore, before estimating eigenchannels, we try to remove speaker variability
by taking the set of feature vectors corresponding to each speaker and sub-
tracting them the mean vector computed on all the sessions for that speaker.
Eigenchannel estimation is then performed by means of PCA. All the algorithms
for channel compensation were implemented using Matlab (further details can
be found in [1]).

3.2 ML-MD System

In this system, eigenchannel estimation is based on the method proposed for
Language Recognition in [2]. With this technique, speaker variabilities (the ones
to be subtracted before eigenchannel estimation) are modeled by Speaker Loca-
tions, which are defined as follows:

ts =

τI + diag

 ∑
f∈D(s)

nf

−1 · ∑
f∈D(s)

xf (4)



In Eq. (4), xfk and nfk stand for the zero and first order statistics computed
on the feature stream f ; ts denotes the speaker location for speaker s, τ is
the relevance factor and D(s) denotes the set of feature streams corresponding
to speaker s. Once speaker locations are estimated, a factor analysis model is
defined as follows:

mf = tf + U · cf (5)

where mf denotes the normalized mean vector computed on the feature stream
f , tf is the speaker location corresponding to f , U is the channel matrix and cf
is a f-dependent channel factor vector. Finally, starting from the model given by
Eq. (5), the channel matrix U is computed by ML-MD [5].

4 Linear Scoring

Linear scoring (dot-scoring) computes the similarity of test segments to target
models by means of a linearized procedure [3]. Given a speaker s and a feature
stream f (the target signal), the metric used for scoring is computed as follows:

score(s, f) = m̂T
s · x̂f (6)

where m̂T
s is the (transposed) compensated normalized mean vector of speaker

s, and x̂f is the compensated first order statistics vector of target signal f .

5 Experimental setup

5.1 Partitioning of the previous SRE databases

To implement the dot-scoring speaker recognition systems, five datasets were de-
fined and used (their names identifying the use they were given): (1) Universal
Background Models, (2) Channel Compensation, (3) Z-Norm score normaliza-
tion, (4) T-Norm score normalization and (5) Development. In order to create
these sets, SRE04 to SRE08 (including FollowUp SRE08) were used. A parti-
tioning of the databases was carried out to avoid including signals from the same
speaker in two different sets.

5.2 Preprocessing and Feature Extraction

The Qualcomm-ICSI-OGI (QIO)[6] noise reduction technique was independently
applied to the audio streams. The full audio stream was taken as input to esti-
mate noise characteristics, thus avoiding the use of voice activity detectors on
which most systems rely to constrain noise estimation to non-voice fragments.

Features were obtained with the Sautrela toolkit [7]. Mel-Frequency Cepstral
Coefficients (MFCC) were used as acoustic features, computed in frames of 25
ms at intervals of 10 ms. The MFCC set comprised 13 coefficients, including the
zero (energy) coefficient. Cepstral Mean Subtraction (CMS), RelAtive SpecTrAl



(RASTA) processing and short time gaussanization (Feature Warping) were ap-
plied to cepstral coefficients. Finally, the feature vector was augmented with
dynamic coefficients (13 first-order and 13 second-order deltas), resulting in a
39-dimensional feature vector.

5.3 System configuration

The Sautrela toolkit was used to train two gender dependent UBMs consisting of
1024 mixture components, applying binary splitting, orphan mixture discarding
and variance flooring.

In the both PCA and ML-MD approaches, channel compensation was trained
for telephone-telephone, microphone-microphone and telephone-microphone vari-
abilities, using 20, 20 and 40 eigenchannels, respectively. The relevance factor
was set to 16.

Trials were conditioned on four different channel type conditions: 0INT-
0MIC, 0INT-1MIC, 1INT-1MIC and 2MIC, where INT denotes the number of
interview speech sides in the trial (telephone conversational speech otherwise)
and MIC denotes the number sides in a trial recorded over a microphone chan-
nel (telephone channel otherwise). Gender dependent and channel type condition
dependent ZT normalization was performed on trial scores.

The fusion of the two systems developed for this evaluation, PCA and ML-
MD, was calibrated on the operating point defined for the NIST 2008 SRE
(SRE08) (Pfa=0.01, Cmiss=10, Cfa=1). Side-info-conditional calibration was
performed using FoCal [8], with channel type and gender conditioning.

Table 1. DCF, Minimum DCF and Equal Error Rate (EER) for the fusion of PCA and
ML-MD systems for the development set, evaluated on SRE08 (Old) and SRE10 (New)
operating points, (Pfa=0.01, Cmiss=10, Cfa=1) and (Pfa=0.001, Cmiss=1, Cfa=1),
respectively.

Gender EER (%) OldDCF OldMinDCF NewDCF NewMinDCF

0INT-0MIC Male 3.04 0.150 0.132 1.180 0.620
Female 3.16 0.144 0.138 0.644 0.610

0INT-1MIC Male 4.84 0.240 0.228 0.383 0.323
Female 8.78 0.332 0.313 0.639 0.421

1INT-1MIC Male 3.03 0.159 0.154 0.386 0.272
Female 6.40 0.288 0.273 0.613 0.503

2MIC Male 2.84 0.125 0.119 0.818 0.456
Female 3.12 0.183 0.179 1.248 0.792

6 Results

Table 1 shows the Detection Cost Function (DCF) as defined by the NIST for
SRE08 and SRE10 [9], the Minimum DCF and the Equal Error Rate on the



development set. In order to obtain the scores for the development set, the
corpus was divided into two halves. One of the halves was used for training
the calibration parameters and the other for testing. The same experiment was
repeated after swapping the roles of the halves. Performance was computed by
accumulating results for both experiments.

Results in Table 1 show performance on the four conditions used for calibra-
tion, that is, 0INT-0MIC, 0INT-1MIC, 1INT-1MIC and 2MIC.

Table 2. DCF, Minimum DCF and Equal Error Rate (EER) for the fusion of PCA
and ML-MD systems for the SRE10 (not extended) dataset for five core conditions
evaluated on SRE08 (Old) and SRE10 (New) operating points, (Pfa=0.01, Cmiss=10,
Cfa=1) and (Pfa=0.001, Cmiss=1, Cfa=1), respectively.

Gender EER (%) OldDCF OldMinDCF NewDCF NewMinDCF

Condition 1 Male 2.53 0.977 0.106 14.357 0.370
Female 3.44 0.791 0.161 7.968 0.573

Condition 2 Male 4.13 0.318 0.205 2.313 0.625
Female 6.56 0.369 0.307 1.288 0.717

Condition 3 Male 3.46 0.176 0.135 0.747 0.358
Female 4.52 0.235 0.198 0.613 0.597

Condition 4 Male 3.67 0.558 0.157 6.502 0.470
Female 5.00 0.514 0.224 4.460 0.803

Condition 5 Male 4.25 0.213 0.195 0.959 0.799
Female 4.51 0.182 0.182 0.925 0.854

Table 2 shows results on the evaluation set for the system calibrated and
evaluated on the SRE08 and SRE10 operating points, for the five core condi-
tions: interview speech from the same microphone in training and test (condition
1), interview speech from different microphones in training and test (condition
2), interview training speech and normal vocal effort conversational telephone
test speech (condition 3), interview training speech and conversational telephone
test speech recorded over a room microphone channel (condition 4) and conversa-
tional telephone speech in training and test (condition 5). The system achieves
competitive EER, but it can be seen that conditions 1 and 4 are poorly cali-
brated, as they are not suitably covered with the conditions used for calibration.
The side-info used to calibrate our systems did not cover the type of micro-
phone used in each trial (useful for core condition 1), and our side-info was
not-directional, that is, when a trial involved different types of speech (Inter-
view, Telephone conversational) or different recording channels (microphone,
telephone) in training and test, we could not distinguish which conditions cor-
responded to train and which to test (useful for core conditions 3 and 4).

As expected for SRE10, the DCF and Minimum DCF in all conditions de-
graded significantly with regard to SRE08. Calibration errors increased in all
cases in this operating point, specially for conditions 1 and 4.



7 Conclusions

The fusion of PCA and ML-MD systems achieves competitive results, but cali-
bration errors suggest a mismatch between the development and evaluation sets.
Future work should focus on developing new (more robust) techniques and on
improving calibration on “extreme” operating points, such as that defined in the
SRE10. Also, the extended NIST SRE 2010 dataset will be included in future
experiments in order to improve performance.
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