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Abstract

Phone Log-Likelihood Ratio (PLLR) features have
been recently introduced as an effective way of mak-
ing use of frame-level phone posteriors in language and
speaker recognition systems. In this paper, a deep insight into
PLLR features is made and further evidence of the usefulness of
these features in spoken language recognition tasks is provided,
with a new set of experiments carried out on the NIST 2007
LRE dataset, combining the latest progresses made in optimiz-
ing the features. PLLR features are projected into a subspace
that enhances the information retrieved by the system. Then, di-
mensionality reduction is performed on the projected subspace
by means of Principal Component Analysis, and shifted deltas
are computed on the reduced features to optimize performance.
Figures attained are among the best reported so far on the NIST
2007 LRE dataset.

Index Terms: Spoken Language Recognition, Phone
Log-Likelihood Ratios, Feature Projection, i-vectors,
Shifted Delta

1. Introduction

Nowadays, most Language Recognition (LR) technologies ben-
efit from the combination of acoustic and phonotactic ap-
proaches [1, 2, 3]. Both approaches take advantage of differ-
ent types of information present in acoustic signals. On the
one hand, acoustic features like Mel-Frequency Cepstral-Co-
efficients (MFCC) or Perceptual Linear Prediction (PLP) fea-
tures, model the spectral characteristics of the audio signal at
the frame level. On the other hand, phonotactic approaches
are usually trained on top of the output of phone decoders,
which produce sequences or lattices of tokens that carry pho-
netic, prosodic or even word-level information, that can be ef-
fectively used to characterize the spoken language.

Recent works have introduced a different way
of extracting acoustic-phonetic information by using
frame level phone log-posteriors [4], or Phone Log-Like-
lihood Ratios (PLLR) [5], to obtain frame-by-frame feature
vectors. The approach allows for testing and assembling the
features in conventional acoustic systems like those based on
the well-known Total Variability Factor Analysis (i-vector)
approach [6], which has been successfully applied to the task
[7] and has become state-of-the-art in LR technology.

This work gives an insight into the use of the PLLRs, show-
ing the latest improvements made on the extraction and pro-
cessing of these features. With the aim of eliminating bounds
present in the original feature space, PLLRs are projected into
a hyper-plane which enhances the information retrieved by the

system [8]. Then, the feature set dimensionality is reduced by
means of Principal Component Analysis (PCA) so that Shifted
Deltas (SD) can be computed on top of them. As with MFCC
features [9], the use of SDs over the original PLLRs has proven
to be very effective [10, 11], leading to one of the best results
reported so far on the selected benchmark.

The study is carried out on the well known National Insti-
tute of Standard Technology (NIST) 2007 Language Recogni-
tion Evaluation (LRE) database. NIST LREs started in 1996
and have been held every two years since 2003 [12], setting an
excellent benchmark for research in the field, and the datasets
provided have been widely used as baseline by the community.

The rest of the paper is organized as follows: Section 2
provides details about the PLLR feature computation and post-
processing. Section 3 describes the experimental setup, includ-
ing the dataset, the language modeling, the backend applied and
the evaluation measures used in this work. In Section 4, results
are presented and compared to the ones reported by other au-
thors on the same benchmark. Finally, Section 5 outlines the
conclusions.

2. Insight into PLLR Features
2.1. Definition of PLLR Features

Let us consider a phone decoder that provides frame-by-frame
phone posteriors p; for each phone unit (1 < 7 < N), so that

SN, pi = land p; € [0,1]. The nature of the posteriors
makes them lie in the subset of R known as the (N — 1)-
dimensional standard simplex:
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The PLLR features are computed from these phone poste-

riors as follows [13]:

r; = logit(p;) = log (1571]?) i=1,.,.N (2

Thus, the hyper-surface S where the PLLRs lie can be de-
rived from Equations 1 and 2 as:
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where G(r) is the implicit hyper-surface function. These PLLR
features have been succesfully used for language and speaker
recognition [5, 13].

2.2. Projected PLLR Features

In a previous work, we showed how the transformation of phone
posteriors into PLLRs deals with the gaussanization of the fea-
tures for each individual phone model [8]. However, the (N-1)
standard simplex defined in Eq. 1, in which phone posteriors
lie, is determined by a set of bounds that are still transferred into
the PLLR feature space, making the hyper-surface S asymptot-
ically perpendicular to the basis of PLLRs [8]. This restricts
the areas where PLLRs are confined and therefore limits the
distributions of the features. The bounds are clearly displayed
when analyzing multi-dimensional distributions. Figure 1 illus-
trates two and three-dimensional distributions for some sets of
PLLRs computed from a subset of signals from NIST 2007 LRE
dataset, where limits are clearly displayed.
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Figure 1: Distribution of PLLRs for (a) three pairs of phones,
a: vs E (red), i vs i: (black) and dz vs h (blue) and (b) the set of
phones (a:, E, O), computed with the BUT HU phone decoder.

With the aim of obtaining a smoother representation of the
features and to avoid this bounding effect, PLLRs are projected
into the hyper-plane tangential to the top of the convex hyper-
surface S (the point where all the posteriors take the same value
pi = %), using the projection matrix:

P=1-1"%1 @)
\%N [11, 12, ..., 1x] and I stands for the Identity ma-

trix. Figure 2 displays the distributions of the projected features
for the same set of PLLRs used in Figure 1, where bounds are
no longer present.
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Figure 2: Distribution of the PLLRs shown in Figures 1(a) and
1(b) after projecting them into the defined hyper-plane.

After projecting the features, Principal Component Analy-
sis (PCA) is applied to decorrelate the parameters, making them
more suitable for the diagonal covariance Gaussian Mixture
Model (GMM) used as Universal Background Model (UBM)
in the i-vector approach (see subsection 3.2). Note that, as
the projection method makes the features lie in a (N — 1)-
dimensional hyper-plane, the dimensionality of the feature vec-
tors after PCA is reduced by one (the dimension corresponding
to the null eigenvalue is removed).

Finally, the feature vector is augmented with first order dy-
namic coefficients.

2.3. Dimensionality Reduction and Shifted Deltas

First order A coefficients reflect short-term speech spectral dy-
namics which do not capture long term variations. Instead,
Shifted Delta (SD) coefficients are longer-term temporal fea-
tures, which better reflect the dynamics of the features. The use
of SDs has proven to be a very effective way of improving LR
performance [9]. Recent works have also shown the benefits of
using SDs over the original PLLR features [11, 14].

Before computing SDs on the features, the dimensionality
of the PLLR vector (without first order dynamic coefficients)
should be reduced, in order to obtain a reasonably small feature
set (to maintain an affordable computational cost of the system,
and not to face the lack of data to get reliable estimates of the pa-
rameters). For that purpose, this work makes use of PCA, which
besides decorrelating the feature space, allows for reducing the
feature set dimensionality, while minimizing the degradation of
the system. The PCA dimensionalities used for experimentation
(23 and 13) were selected according to previous works [10, 14].

The SD-PLLR features are specified by four parameters N-
d-P-k: N is the number of coefficients from which derivatives
are computed at each frame, d determines the size of analysis
windows (consisting of 2 - d + 1 frames) to compute the deriva-
tives, P is the shift (number of frames) between two consecu-
tive analysis windows and k is the number of analysis windows
whose delta coefficients are concatenated to form the final fea-
ture vector. Following previous studies [14], the SD configura-
tion applied in this work is 13-2-3-7.

3. Experimental Setup

3.1. Phone Posterior Extraction

The open software Temporal Patterns Neural Network
(TRAPs/NN) phone decoder for Hungarian, developed by the
Brno University of Technology (BUT) [8], was used to obtain
phone posteriors. The BUT decoder for Hungarian includes 58
phonetic and 3 non-phonetic units. The non-phonetic units were
combined and treated as a single unit model. Voice activity de-
tection was performed by removing the feature vectors whose
highest PLLR value correspond to the integrated non-phonetic
unit.

3.2. i-vector System

For each PLLR-based system, a gender independent 1024-
mixture GMM was used as UBM, and estimated by Maximum
Likelihood using the training set from the dataset. The Toral
Variability Factor Analysis approach maps high-dimensional
GMM supervectors into low-dimensional vectors, or i-vectors.
For each utterance, the GMM supervector is modeled as:

M=m+Tw 5)



where m is the utterance independent mean supervector, 1" is
the total variability matrix and w is the normally distributed
low-dimensional latent vector or i-vector. The total variability
matrix T was estimated as in [6], using only target languages
from the training set. A generative modeling approach was ap-
plied in the i-vector feature space (as in [7]), the set of i-vectors
of each language being modeled by a single Gaussian distribu-
tion. Thus, the i-vector scores were computed as follows:

score(f,1) = N(wy; ju, 5) ©)

where wy is the i-vector for target signal f, y; is the mean i-
vector for language [ and X is a common (shared by all lan-
guages) within-class covariance matrix.

3.3. Backend and Fusion

A ZT-norm followed by a discriminative Gaussian backend was
applied. The FoCal toolkit was used to estimate and apply the
backend and calibration/fusion models [15].

3.4. Dataset

The NIST 2007 LRE [16] defined a spoken language
recognition task for conversational speech  across
telephone channels, involving 14 target languages.

Training and development data used in this work were lim-
ited to those distributed by NIST to all 2007 LRE participants:
(1) the Call-Friend Corpus; (2) the OHSU Corpus provided by
NIST for the 2005 LRE; and (3) the development corpus pro-
vided by NIST for the 2007 LRE. A set of 23 languages/dialects
was defined for training, including target and non-target lan-
guages (french was the only non-target language used for NIST
2007 LRE). For development purposes, 10 conversations per
language were randomly selected. The remaining conversations
(amounting to around 968 hours) were used for training. De-
velopment conversations were further divided into 30-second
speech segments. The total number of 30-second segments was
3073. Results reported in this paper have been computed on
the subset of 30-second speech segments of the test set for the
closed-set condition (2158 segments), which was the primary
task in the NIST 2007 LRE.

3.5. Performance Measures

In this work, systems are compared in terms of: (1) the aver-
age cost performance Clayg as defined in NIST evaluations up
to 2009 and (2) the Log-Likelihood Ratio Cost function C'r.1.r
[17]. Equal Error Rate is also used for comparative purposes.

4. Results
4.1. Projected PLLR Features

Table 1: Cavg x 100 and CLpr performance for the Baseline ,
Projected PLLR and Projected PLLR + PCA approaches.
[ PLLR System | %cave | Crrr |

Baseline 2.66 0.389
Projection 2.31 0.320
Projection + PCA 58 2.10 0.310

Table 2 shows a Cavg and CLpr performance comparison
between three systems: the baseline using the original PLLR
features, the one based on the projected features and a third one

trained on the projected features after applying PCA to decor-
relate the parameters. Performance is significantly enhanced by
the projection of the features, going from 2.66 to 2.31 in terms
of Caveg X 100, whereas PCA still provides a further gain in
performance, reaching 2.10 Clayg x 100, which means a 21%
relative improvement overall.

4.2. Shifted Delta PLLRs

Results attained with several sets of PLLR features, reduced to
different dimensionalities by means of PCA, are shown in Table
2. As expected, system performance suffers some degradation
when the set of features is reduced to smaller dimensions. But
the use of shifted deltas on the smallest set under a 13-2-3-7
configuration led to the best performance: 1.52 Cayg % 100.

Table 2: Cavg x 100 and Crrr performance for the Projected
PLLR + PCA, Projected PLLR + PCA reduced and Projected
PLLR + PCA reduced + SD approaches.

[ PLLR System [ %cave | Crir |
Projection + PCA 58 2.10 0.310
Projection + PCA 23 2.16 0.316
Projection + PCA 13 243 0.330
Projection + PCA 13 + SD 1.52 0.225

Figure 3 shows graphically the overall performance gain at-
tained with the final Projected PLLR + PCA reduced + SD sys-
tem: a 43% improvement with regard to the baseline approach.
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Figure 3: Cayvg X 100 performance for the Baseline (blue), Pro-
jected PLLR (red), Projected PLLR + PCA 58 (green) and Pro-
jected PLLR + PCA 13 + SD (purple) approaches.

4.3. Performance comparison

For comparative purposes, Table 3 shows some of the results
published on the literature for the primary task (30 second,
closed-set) of the NIST 2007 LRE. Figures show how the ap-
proach presented in this paper outperforms the single systems
reported on the Table, as well as some of the pairwise fusions.
In particular, the Projected HU + SD approach outperforms the
acoustic i-vector (a), the phone-SVM lattice phonotactic (b) and
the PLLR HU+SD (non-projected) approaches, attaining 47%,
27% and 13% relative improvements in terms of Clyg, respec-
tively. The fusion of the Projected + PCA reduced + SD PLLR,
acoustic (a) and phonotactic (b) systems leads (as far as we
know) to the best result reported to date on this benchmark.



Table 3: Performance figures reported on the primary task of
the NIST 2007 LRE.

Model EER Caug X 100
GMM-MMI [18] - 2.10
GSV-SVM [18] - 1.92
Discriminative GMM-MAP [19] - 1.74
P-gram i-vectors [20] - 3.15
Acoustic i-vectors [20] - 2.40
Acoustic i-vectors [7] - 1.91
Acoustic i-vectors [21] 2.59 2.61
HU, Phone-SVM, lattices [22] 1.84 -
HU, Phone-SVM, lattices [23] 2.40 -
EN, Phone-SVM, lattices [23] 1.80 -
Acoustic, i-vector [5] (a) 2.75 2.85
HU, Phone-SVM, lattices [5] (b) 1.95 2.08
PLLR HU+SD, i-vector [14] 1.70 1.75
Projected PLLR HU+SD, i-vector (c) 1.44 1.52
2 subsystems [7] — 1.66
2 acoustic subsystems [18] - 1.55
2 phonotactic subsystems [18] - 1.55
Fusions 2 subsystems [20] - 1.25
4 subsystems [18] 0.93 0.97
3 phonotactic subsystems [24] - 0.90
(a+b+c) 0.60 0.75

5. Conclusions

In this work, we have presented an in-depth study of PLLR fea-
tures, aiming to show the latest progress made on PLLR post-
processing. In order to avoid bounded feature distributions, the
original PLLRs have been projected into a hyper-plane, enhanc-
ing the information retrieved by the system. Then, dimensional-
ity reduction has been performed by means of PCA, and shifted
deltas have been computed on the reduced features to optimize
performance.

Results presented on the 2007 LRE database show that the
projection method and the application of SDs on the reduced
set of projected PLLR features has provided an overall 43%
improvement with regard to the system trained on the original
PLLR feature set. A performance comparison has also been
performed with regard to results published by other authors on
the same database, revealing that the developed system yields
among the best performance figures reported so far on the con-
sidered benchmark.
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