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Abstract
In a previous work, we introduced the use of log-likelihood
ratios of phone posterior probabilities, called Phone Log-
Likelihood Ratios (PLLR) as features for language recognition
under an iVector-based approach, yielding high performance
and promising results. However, the high dimensionality of the
PLLR feature vectors (with regard to MFCC/SDC features) re-
sults in comparatively higher computational costs. In this work,
several supervised and unsupervised dimensionality reduction
techniques are studied, based on either fusions or selection of
phone posteriors, finding that PLLR feature vectors can be re-
duced to almost a third of their original size attaining similar
performance. Finally, Principal Component Analysis (PCA) is
also applied to the original PLLR vector as a feature projection
method for comparison purposes. Results show that PCA stands
out among all the techniques studied, revealing that it does not
only reduce computational costs, but also improves system per-
formance significantly.

Index Terms: Spoken Language Recognition, iVectors,
Phone Log-Likelihood Ratios, Phonetic Broad Classes, Princi-
pal Component Analysis

1. Introduction
Log-likelihood ratios of phone posterior probabilities, here-
after called Phone Log-Likelihood Ratios (PLLR), have been
recently introduced as alternative features to the traditional
Mel Filter Cepstral Coefficients / Shifted Delta Cepstrum
(MFCC/SDC) for Spoken Language Recognition (SLR) tasks
under an iVector approach [1], achieving competitive perfor-
mance as a stand-alone system and providing significant relative
improvements when fused with state-of-the-art acoustic and/or
phonotactic approaches, which reveals the complementarity of
the features with regard to both approaches.

PLLR features can be plugged into traditional acoustic
systems, by simply replacing the MFCC/SDC features, since
PLLRs provide acoustic-phonetic information in a sequence of
frame-level feature vectors. The availability of open source de-
coders, like the open-software Temporal Patterns Neural Net-
work (TRAPs/NN) phone decoders, developed by the Brno Uni-
versity of Technology (BUT) [2] to get phoneme posteriors,
and the free software to compute PLLR features [3], provides
a handy framework to facilitate the use of the features under
different system configurations.

Nevertheless, the high dimensionality of PLLR features
with regard to acoustic representations, can pose a computa-
tional problem when dealing with certain approaches. Acous-
tic feature vectors usually range from 7 to 19 MFCC (which
are then augmented with Delta coefficients, or used to compute
Shifted Delta Cepstrum, depending on the approach) [4], [5],

whereas the number of PLLR features depends on the number
of phonetic units of the decoder, which in the case of BUT de-
coders amounts to 43 units for Czech, 59 units for Hungarian
or 50 for Russian (which are also augmented with Delta coeffi-
cients to optimize performance) [1]. This work deals with the
dimensionality issue, by studying different reduction techniques
that can be applied to PLLR features.

There is a handful of works in different fields of speech
recognition literature, aiming to reduce the number of phone
models into smaller broad classes, either by clustering or by
selection techniques. On the one hand, some works apply
supervised clustering, which requires knowledge of the lan-
guage/phonemes to define phone families, as in [6], where sev-
eral phone sets are defined for a PRLM approach used in a SLR
task, or in [7], where a reduced phone set is also used to reduce
n-gram counts on a phonotactic SLR iVector approach. On the
other hand, unsupervised clustering based on different distance
metrics like the confusion among phonemes [8] or mutual infor-
mation based merging and selection [9] have also been applied
to improve speech or language recognition. In this work, differ-
ent supervised and unsupervised methods have been tested on
phone posterior probabilities, before computing the PLLR fea-
tures. Finally, the widely known Principal Component Analysis
(PCA) has been also tested in the space of PLLR features.

The rest of the paper is organized as follows. Section 2 de-
scribes the baseline system, including the computation of the
phone log-likelihood ratios used as features and the iVector ap-
proach. In Section 3, the dimensionality reduction techniques
applied in this work are briefly described. Section 4 describes
the experimental setup. Section 5 presents language recognition
results on the NIST 2007 and 2011 datasets and compares the
performance of the proposed approaches. Finally, conclusions
are given in Section 6.

2. System Description
2.1. Phone Log-Likelihood Ratio features

To compute the PLLRs, let us consider a phone decoder includ-
ingN phone units, each of them represented typically by means
of a model of S states. Given an input sequence of acoustic
observations X , we assume that the acoustic posterior proba-
bility of each state s (1 ≤ s ≤ S) of each phone model i
(1 ≤ i ≤ N) at each frame t, p(i|s, t), is output as side in-
formation by the phone decoder. Then, the acoustic posterior
probability of a phone unit i at each frame t can be computed
by adding the posteriors of its states:

p(i|t) =
∑
∀s

p(i|s, t) (1)

Assuming a classification task with flat priors, the log-
likelihood ratios at each frame t can be computed from posterior



probabilities as follows:

LLR(i|t) = log
p(i|t)

1
(N−1)

(1− p(i|t))
i = 1, ..., N (2)

The resulting N log-likelihood ratios per frame are the
PLLR features considered in our approach. Free software to
compute them can be found in [3].

2.2. PLLR iVector System

As a first step to get the PLLR features, we applied the
open-software Temporal Patterns Neural Network (TRAPs/NN)
phone decoders, developed by the Brno University of Technol-
ogy (BUT) for Czech, Hungarian and Russian [2], which in-
clude 42, 58 and 49 phonetic units, respectively, plus 3 non-
phonetic units. Note that BUT decoders represent each phonetic
unit by a three-state model and output the transformed posterior
probabilities pi,s(t) [1] as side information, for each state s of
each phone model i at each frame t.

Before computing PLLR features, the three non-phonetic
units were integrated into a single 9-state non-phonetic unit
model. Then, a single posterior probability was computed for
each phone i (1 ≤ i ≤ N), according to Equation 1. Finally,
the log-likelihood ratio for each phone i was computed accord-
ing to Equation 2. In this way, using the BUT decoders for
Czech, Hungarian and Russian, we get 43, 59 and 50 PLLR
features per frame, respectively.

Under the total variability modeling approach [10], an ut-
terance dependent GMM supervector M (stacking GMM mean
vectors) is decomposed as follows:

M = m + Tw (3)

where m is the utterance independent mean supervector, T
is the total variability matrix (a low-rank rectangular matrix)
and w is the so called iVector (a normally distributed low-
dimensional latent vector). That is, M is assumed to be nor-
mally distributed with mean m and covariance TT′. The la-
tent vector w can be estimated from its posterior distribution
conditioned to the Baum-Welch statistics extracted from the ut-
terance and using a Universal Background Model (UBM). The
iVector approach maps high-dimensional input data (a GMM
supervector) to a low-dimensional feature vector (an iVector),
hypothetically maintaining most of the relevant information.

A generative modeling approach can be applied in the iVec-
tor feature space (as in [11]), the set of iVectors of each lan-
guage being modeled by a single Gaussian distribution. Thus,
the iVector scores are computed as follows:

score(f, l) = N(wf ;µl,Σ) (4)

where wf is the iVector for target signal f , µl is the mean iVec-
tor for language l and Σ is a common (shared by all languages)
within-class covariance matrix.

3. Dimensionality Reduction Techniques
3.1. Supervised Techniques

In phonotactic SLR approaches, it is a common practice to take
advantage of the phonetic knowledge to reduce the set of phone
units [6], [7]. Different clusterings can be performed in the
phone posterior probability space (on which PLLRs are com-
puted) based on expert knowledge. Four different phone sets
were considered in this study:

• Family-R: The set of Reduced (R) phones used in [7]
to reduce the number of n-gram counts in a phonotactic
approach.

• Family-SL: A set of phonemes defined by merging all
Short and Long (SL) phonemes. Vowels belonging to
the same regions in the IPA charts were also merged.

• Family-MP: A set of phonemes defined according to
phonetic categories following IPA charts. Phones pro-
duced with the same Manner and Place (MP) of articula-
tion were merged.

• Family-M: A more generic phonetic classification, where
consonants produced with the same Manner (M) of ar-
ticulation were merged. Vowels belonging to the same
regions in the IPA charts were also merged.

For each of the above families, phones included in the same
phonetic class were used to define a single unit by adding the
posteriors obtained in Equation 1, before computing the log-
likelihood ratios.

3.2. Unsupervised Techniques

Supervised clustering poses some problems: knowledge of each
language is needed to define suitable phone sets, and the dimen-
sionality is constrained to a certain range according to the nature
of the language (that is, we are not free to choose an arbitrary di-
mensionality). Unsupervised clustering techniques, instead, are
more flexible and can be easily tuned to define set of phones of
arbitrary dimensions [8], [9]. In this work, the following criteria
have been applied:

• Correlation: An iterative clustering algorithm is used.
In each step, the algorithm merges the closest phone pair
(or phone group pair) according to the correlation among
the phone posterior probabilities.

• Frequency: The N phones with the highest posterior
probabilities overall in the training set are selected as
most relevant, and therefore used as (reduced) phone set.

Finally, PCA was also tested. Since PCA is an orthogonal
transformation that is assumed to deal with normally distributed
data ranging in [−∞,∞], it was not a suitable transformation
to be applied on the phone posterior probability space, which
ranges in [0,1]. Instead, PCA can be directly applied on the
normally distributed PLLR space, which ranges in [−∞,∞].

4. Experimental Setup
4.1. Datasets
4.1.1. NIST 2007 LRE

The NIST 2007 LRE [12] defined a spoken language recogni-
tion task for conversational speech across telephone channels,
involving 14 target languages.

Training and development data used in this work were lim-
ited to those distributed by NIST to all 2007 LRE participants:
(1) the Call-Friend Corpus1; (2) the OHSU Corpus provided
by NIST for the 2005 LRE2; and (3) the development cor-
pus provided by NIST for the 2007 LRE3. A set of 23 lan-
guages/dialects was defined for training, including target and
non-target4 languages. For development purposes, 10 conversa-
tions per language were randomly selected, and the remaining

1See http://www.ldc.upenn.edu/.
2OHSU Corpora, http://www.ohsu.edu/.
3See http://www.itl.nist.gov/iad/mig/tests/lre/2007/.
4French was the only non-target language used for NIST 2007 LRE.



conversations (amounting to around 968 hours) were used for
training. Development conversations were further divided into
30-second speech segments. The total number of 30-second
segments was 3073. Results reported in this paper have been
computed on the subset of 30-second speech segments of the
test set for the closed-set condition (2158 segments), which was
the primary task in the NIST 2007 LRE.

4.1.2. NIST 2011 LRE

The NIST 2011 LRE [13] involved a pairwise language detec-
tion task with 24 target languages 9 of which had been never
used as target languages in previous NIST evaluations. Devel-
opment data specifically collected for these 9 languages, includ-
ing 100 30-second segments per language, were randomly split
into approximately two half disjoint subsets: the first half was
used to train specific models for the new languages, and the sec-
ond half was used to estimate backend and fusion parameters.

To train more robust models for the target languages,
we added data from databases distributed by the Linguis-
tic Data Consortium (LDC) (LDC2006S45 for Arabic Iraqi,
LDC2006S29 for Arabic Levantine and LDC2000S89 +
LDC2009S02 for Czech). The remaining materials were ex-
tracted from wide-band broadcast news recordings, dowsam-
pling them to 8 kHz: COST278 Broadcast News database [14]
was used to get speech segments for Czech and Slovak; Arabic
MSA was extracted from Al Jazeera broadcasts included in the
KALAKA-2 database created for the Albayzin 2010 LRE [15];
broadcasts were also captured from video archives in TV web-
sites to get speech segments in Arabic Maghrebi (Arrabia TV)
and Polish (Telewizja Polska, TVP INFO). We were not able to
collect additional training materials for Panjabi by any means.

A set of 66 languages/dialects was defined for training [16].
Each of them was mapped either to a target language or to non-
target languages5. The training dataset also includes 2007 CTS
and 2009 VOA signals [1]. The whole training dataset for the
NIST 2011 LRE benchmark amounts to 1953 hours.

For development purposes, the second half of the audited
segments provided for new target languages, along with the
NIST 2007 and 2009 evaluation datasets, and 30-second sig-
nals used for development in 2007 and 2009 [1] were used. The
whole development dataset consists of 13663 segments.

Performances reported in this paper have been computed
on the 30-second closed-set condition of the test set (primary
evaluation task).

4.2. System Configuration
As shown in [1], adding first order dynamic coefficients im-
proved significantly the performance of the PLLR-based iVec-
tor system. Therefore, PLLR+∆ were used as features also in
this work. Voice activity detection was performed by removing
the feature vectors whose highest PLLR value corresponded to
the integrated non-phonetic unit.

A gender independent 1024-mixture GMM (Universal
Background Model, UBM) was estimated by Maximum Like-
lihood using the training sets. The total variability matrix (on
which the iVector approach relies) was estimated as in [10], us-
ing only target languages in the training sets. For the first bunch
of experiments, carried out to compare different dimensionality
reduction techniques (see Section 5.1), 5 iterations were used

5 The set of non-target languages defined for the NIST 2011 LRE in-
cludes: French, German, Japanese, Korean and Vietnamese from CTS
recordings, and Albanian, Amharic, Creole, French, Georgian, Greek,
Hausa, Indonesian, Kinyarwanda/Kirundi, Korean, Ndebele, Oromo,
Shona, Somali, Swahili, Tibetan and Tigrigna from VOA broadcasts.

to compute the total variability matrix. For the final results (see
Section 5.2), 10 iterations of the algorithm were applied for ma-
trix estimation to optimize results.

4.3. Backend and Fusion

The backend setup was separately optimized for each dataset.
A ZT-norm followed by a discriminative Gaussian backend was
applied in experiments on the NIST 2007, whereas a generative
Gaussian backend was applied in experiments on the NIST 2011
LRE dataset. Discriminative multiclass calibration/fusion mod-
els were estimated on the development set and applied to scores
after the backend. The FoCal toolkit was used to estimate and
apply the backend and calibration/fusion models [17].

4.4. Evaluation Measures

In this work, systems are compared in terms of: (1) the aver-
age cost performance Cavg as defined in NIST evaluations up
to 2009, (2) the Log-Likelihood Ratio Cost CLLR [17]; and (3)
the primary measureC24

avg used to evaluate system performance
in the NIST 2011 LRE [13], which first computes pairwise min-
imum and actual costs for all pairs of target languages, and then
averages the actual cost for the 24 pairs with the highest mini-
mum cost.

5. Results
5.1. Comparison of Dimensionality Reduction Techniques

Table 1 shows results for the baseline system trained on PLLR
features obtained with the Hungarian (HU) decoder and without
any dimensionality reduction, along with results for different
dimensionality reduction techniques.

Table 1: %Cavg and CLLR performance for the PLLR iVector
system when each dimensionality reduction techniques, on the
NIST 2007 LRE primary task.

HU PLLR System Dim %Cavg CLLR

Baseline 59 2.86 0.389
R 33 3.07 0.422
SL 31 3.46 0.467
MP 23 2.98 0.426Supervised Merge

Phones Family

M 14 4.22 0.580
Merge
Phones Correlation 23 3.76 0.523

Select
Phones Frequency 23 3.56 0.480Unsupervised

PLLR
Projection PCA 23 2.45 0.333

Focusing on the supervised clustering results, we see that
the 33-dimensional Family-R feature set gets litle degradation
with regard to the baseline system (3.07% vs 2.86% in terms
of Cavg). The system based on the Family-MP phone set de-
fined for this work, reaches even better performance (2.98%
Cavg) in spite of comprising the information to a smaller 23-
dimensional feature vector. On the contrary, the results ob-
tained with the systems trained on Family-SL (31-dimensional)
and Family-M (14-dimensional) phone-sets, show a clear per-
formance degradation (3.46% and 4.22% Cavg, respectively).
Therefore, Family-MP clustering provides a phone set that re-
duces the feature vector to almost a third of the original PLLR
vector size, with almost no performance degradation.

For the unsupervised methods, and given the previous anal-
ysis, results are shown for the same dimensionality of the
Family-MP approach (23-dimensional systems) in order to al-
low meaningful comparisons. The systems trained on sets de-
fined by phone merging according to correlation achieve worse



performance (3.76% Cavg) than the systems based on super-
vised dimensionality reduction techniques. Systems trained on
phones selected according to frequency, achieve better results
than those based on correlation, but still worse that those at-
tained by supervised approaches (3.56% Cavg).

Finally, results are also shown for the system that applies
PCA directly on the PLLR features, revealing that it even out-
performs the baseline system, attaining 2.45% Cavg and 0.333
in terms of CLLR.

5.2. Results using Multiple Decoders
In this section, results are first presented for the NIST 2007
LRE database and then for the more challenging NIST 2011
LRE database. Results are presented for the baseline phone
set and the two best reduction approaches: Family-MP (super-
vised clustering) and PCA (unsupervised projection). The for-
mer achieves similar performance as the baseline system, while
keeping the phonetic dependence of each unit of the feature vec-
tor, which makes the merging approach suitable also for phono-
tactic approaches [6], [7]. The latter provides a significant gain
in performance, which enhances the competitiveness of the sys-
tem. Note that, for a fair comparison of both approaches, PCA
dimensionality was not optimized, but chosen according to the
Family-MP phone set.

Unlike acoustic systems, PLLR-based systems can take ad-
vantage of the use of different decoders, and perform fusion for
an optimal performance, like other phonotactic approaches do
[18], [4], [5]. In this Section, results for individual and fused
PLLR systems based on Czech (CZ), Hungarian (HU) and Rus-
sian (RU) phone decoders are presented.

5.2.1. Results on NIST 2007 LRE

As in Table 1, individual system performances reported in Table
2 show little degradation when using the Family-MP phone-set
and a remarkable improvement when PCA is applied. When
the three PLLR systems (each based on a different decoder) are
fused, performance improves significantly. The fusion of base-
line systems attains 2.09% Cavg, whereas the fusion of Family-
MP system reaches 2.24% Cavg and the fusion of PCA pro-
jected systems achieves a remarkable 1.79% Cavg.

Table 2: %Cavg and CLLR performance for PLLR iVector
baseline system, and systems using PLLR features reduced to
the Family-MP set and projected with PCA, for each of the BUT
decoders, and their fusion, on the NIST 2007 LRE primary task.

PLLR System %Cavg CLLR

CZ (43+∆) 4.18 0.550
HU (59+∆) 2.66 0.382
RU (50+∆) 4.08 0.549Baseline

CZ+HU+RU 2.09 0.299
CZ (25+∆) 4.55 0.619
HU (23+∆) 3.08 0.424
RU (21+∆) 4.30 0.598Family-MP

CZ+HU+RU 2.24 0.313
CZ (25+∆) 3.12 0.432
HU (23+∆) 2.17 0.320
RU (21+∆) 3.29 0.451PCA

CZ+HU+RU 1.79 0.240

5.2.2. Results on NIST 2011 LRE

In Table 3, the performance of the baseline and the reduced di-
mensionality PLLR systems on the NIST 2011 LRE database
is presented. Results are consistent with those reported on the
NIST LRE 2007 database. Performance of individual systems

slightly degrades with regard to the baseline system when us-
ing the Family-MP phone set. On the contrary, performance
improves when PLLRs are projected using PCA.

Table 3: %Cavg, CLLR and C24
avg×100 performance for PLLR

iVector baseline system, and systems using PLLR features re-
duced to Family-MP set and projected with PCA, for each of
the BUT decoders, and their fusion, on the NIST 2011 LRE
primary task.

PLLR System %Cavg CLLR %C24
avg

CZ (43+∆) 5.31 0.978 12.46
HU (59+∆) 5.18 0.982 12.12
RU (50+∆) 4.70 0.898 11.27Baseline

CZ+HU+RU 3.79 0.720 9.10
CZ (25+∆) 5.53 1.054 13.62
HU (23+∆) 5.40 1.015 12.64
RU (21+∆) 5.13 0.961 11.57Family-MP

CZ+HU+RU 3.82 0.693 9.79
CZ (25+∆) 4.46 0.855 11.20
HU (23+∆) 4.48 0.877 10.88
RU (21+∆) 4.20 0.803 11.01PCA

CZ+HU+RU 3.21 0.634 8.45

Focusing on the results when the three decoder-specific sys-
tems are fused, note that no performance loss is observed when
fusing the Family-MP systems with regard to fusing the base-
line systems (3.82% Cavg vs 3.79% Cavg). Performance at-
tained with the fusion of PCA based systems, stands out as the
best result once again, achieving 3.21% Cavg.

6. Conclusions

Several dimensionality reduction techniques have been studied
for a PLLR-iVector system. Results show that, using a su-
pervised phone merging criteria based on phonetic knowledge,
PLLR feature vectors can be reduced up to almost a third of
the original size (reaching a dimensionality comparable to the
one of the MFCC-SDC features), attaining similar performance.
Since merging is performed in the phone posterior probabil-
ity space, the resulting components keep the phonetic depen-
dence/meaning, which makes the merging criteria useful also
for phonotactic approaches.

Regarding unsupervised methods, results have consistently
shown that applying PCA in the PLLR feature space not only
reduces the computational cost, but also improves system per-
formance significantly.

Finally, the study has also revealed that PLLR systems can
take advantage of the specific acoustic-phonetic information
provided by different decoders. PLLR systems built on dif-
ferent phone decoders can be fused to get significant gains in
performance.
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