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Abstract
This paper briefly describes the diarization system developed by
the Software Technology Working Group (http://gtts.ehu.es) at
the University of the Basque Country (EHU), for the Albayzin
2010 Speaker Diarization Evaluation. The system consists of
three decoupled elements: (1) speech/non-speech segmenta-
tion; (2) acoustic change detection; and (3) clustering of speech
segments. Speech/non-speech segmentation is performed by
means of one of the systems presented to the Albayzin 2010
Audio Segmentation Evaluation. With the aim to detect speaker
changes, speech segments are further segmented by means of
a naive metric-based approach which locates the most likely
spectral change points. The third element is based on a dot-
scoring speaker verification system: speech segments are rep-
resented by MAP-adapted GMM zero and first order statistics,
dot scoring is applied to compute a similarity measure between
segments (or clusters) and finally an agglomerative clustering
algorithm is applied until no pair of clusters exceeds a similar-
ity threshold.

Index Terms: Speaker Diarization, Dot Scoring, Sufficient
Statistics

1. Introduction
This paper briefly describes the dot-scoring speaker diariza-
tion system developed by the Software Technology Working
Group (http://gtts.ehu.es) at the University of the Basque Coun-
try (EHU), for the Albayzin 2010 Speaker Diarization Evalua-
tion. The system is based on three subsystems: an audio classi-
fier developed for the Albayzin 2010 Audio Segmentation Eval-
uation, an acoustic change detector which was part of the sys-
tem submitted to the Albayzin 2006 Speaker Tracking Evalu-
ation [1], and a speaker verification system developed for the
NIST 2010 Speaker Recognition Evaluation [2].

2. Feature Extraction
Mel-Frequency Cepstral Coefficients (MFCC) were used as
acoustic features. The MFCC set, comprising 13 coefficients,
including the zero (energy) coefficient, was computed in frames
of 32 ms at intervals of 10 ms for the two first modules (au-
dio segmentation and acoustic change detection). In the clus-
tering approach, the MFCC set was computed in frames of 20
ms at intervals of 10 ms and augmented with dynamic coeffi-
cients (13 first-order and 13 second-order deltas), resulting in
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a 39-dimensional feature vector. Also, an energy based voice
activity detector (VAD) was applied to remove those fragments
(short silences) with an energy level of 30 dB (or more) under
the maximum. All the speech processing computations were
done by means of the Sautrela toolkit [3].

3. Speech/non-speech segmentation
For this task, a simple audio segmentation system was de-
veloped, which considered five acoustic classes: (1) music,
(2) clean speech, (3) speech with music in the background,
(4) speech with noise in the background and (5) other (noise,
long silence fragments, etc.). An ergodic Continuous Hidden
Markov Model with 5 states and 512 mixtures per state was
defined, using the Sautrela toolkit, under the Layered Markov
Models framework [4].

The emission distributions were independently estimated
for each state, applying the Baum-Welch algorithm on the corre-
sponding sets of segments extracted from the reference segmen-
tations of 12 development sessions. The number of mixtures per
state and the transition probabilities (auto-transitions fixed to
0.999999, transitions between states and final state transitions
fixed to 2 ·10−7) were optimized on audio segmentation experi-
ments over the remaining 4 development sessions. Though sys-
tem performance was quite poor for the 4-class setup defined in
the evaluation, when considering a 2-class speech/non-speech
classification setup, the false alarm error rate was 1.16% and the
miss error rate was around 1.78% for the speech class (including
the three sub-classes mentioned above). Note that, since around
3% of the speech frames are mistaken, our speaker diarization
error will be, at best, of that order. More details can be found in
the description of the GTTS submission to the Albayzin 2010
Audio Segmentation Evaluation.

4. Acoustic change detection
Speech segments produced by the speech/non-speech detector
may contain various speakers, so before clustering, a further
segmentation is needed to detect speaker changes. We pre-
sented a very simple approach to detect acoustic changes (i.e.
any change of speaker, background or channel conditions) in
our submission to the Albayzin 2006 Speaker Tracking Evalua-
tion (see [1] for details).

Though it was found that not only speaker changes were
detected, but also many other changes, even those related to the
presence of spontaneous speech events (filled pauses, coughs,
etc.), the key point was that almost all the speaker changes were
detected. Note that consecutive short segments corresponding
to the same speaker can be grouped together by the clustering
algorithm.
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As other metric-based approaches (e.g. [5]), our algorithm
defines and applies a metric to compare the spectral stastistics
at both sides of successive points of the audio signal, and hy-
pothesizes those boundaries whose metric values exceed a given
threshold. In our approach, a kind of normalized crossed-BIC
(XBIC) [6] is applied:

d(X,Y ) = − log

(
P (x|λy)P (y|λx)

P (x|λx)P (y|λy)

)
(1)

The algorithm considers a sliding windowW ofN acoustic
vectors and computes the likelihood of change at the center of
that window, then moves the window n vectors ahead and re-
peats the process until the end of the vector sequence. To com-
pute the likelihood of change, each window is divided in two
halfs, Wl and Wr , then a Gaussian distribution (with diago-
nal covariance matrix) is estimated for each half and finally the
cross-likelihood ratio (Eq. 1) is computed and stored as like-
lihood of change. This yields a sequence of cross-likelihood
ratios which is post-processed to get the hypothesized segment
boundaries. This involves applying a threshold τ and forcing a
minimum segment size δ. In practice, a boundary t is validated
when its cross-likelihood ratio exceeds τ and there is no candi-
date boundary with greater ratio in the interval [t−δ, t+δ]. All
the parameters were heuristically optimized on the development
set. The optimal values were N = 500, n = 10, τ = 1800 and
δ = 0.6 seconds.

5. Clustering of speech segments
5.1. Gaussian Mixture Models

More than 35 hours of TV broadcast speech in Spanish, Cata-
lan, Galician and Basque, taken from the Kalaka database [7],
were used to train a gender independent GMM (Universal Back-
ground Model, UBM) consisting of 256 mixture components.
Again, the Sautrela toolkit was used to estimate GMM parame-
ters, applying binary mixture splitting, orphan mixture discard-
ing and variance flooring.

5.2. Sufficient statistics

Zero (n) and first order (x) sufficient statistics were computed
for each speech segment. The one-iteration relevance-MAP
adapted and normalized mean vectors m =

µmap−µUBM

σ
were

computed according to the following expression [8, 2]:

m = (τI + diag (n))−1 · x

5.3. Dot scoring similarity measure

Linear scoring (dot-scoring) is a simple and fast technique used
in speaker verification that makes use of a linearized proce-
dure to score test segments against target models. Given a fea-
ture stream f (the target signal) and a speaker spk, the first-
order Taylor-series approximation to the GMM log-likelihood
is given by:

logP (f |spk) ≈ logP (f |UBM) +mt
spk · ∇P (f |UBM)

where mspk denotes the normalized mean vector of speaker
spk, ∇ denotes the gradient vector with regard to the
standard-deviation-normalized means of the UBM, and
∇P (f |UBM) = xf is the first order statistics vector of the
target signal f . Then, the log-likelihood ratio between the tar-
get model and the UBM, used for scoring, can be expressed as

follows:

score (f, spk) = log
P (f |spk)

P (f |UBM)
≈ mt

spk · xf

For the diarization task, the similarity sim(a, b) between
two segments a and b was defined as:

sim (a, b) = min {score (fa, spkb) , score (fb, spka)}
= min

{
mt
b · xa,mt

a · xb
}

5.4. Score normalization

TZ normalization was applied to dot-scores. Two development
sessions were used for the estimation of T-norm and Z-norm
parameters. Taking into account score normalization, the simi-
larity measure was redefined as:

sim (a, b) = min
{
score (fa, spkb)

TZ , score (fb, spka)TZ
}

5.5. The clustering algorithm

The similarity measure defined above was used to perform ag-
glomerative hierarchical clustering. Given two segments (or
two clusters of segments), if they are clustered together, com-
putation of sufficient statistics for the joint cluster is straightfor-
ward:

xa+b = xa + xb

na+b = na + nb

This leads to a very simple clustering algorithm:
1. Find smax = argmax

∀(a,b)
{sim (a, b)}

2. If smax < Θ then STOP
3. Set xa = xa + xb

na = na + nb

4. Remove cluster b
5. Jump to 1

Based on preliminary results on the development set, the
threshold Θ was set to 3.38. Figure 1 shows system perfor-
mance as a function of Θ, for the development sessions 3-16.
Note that results are consistent across sessions, the optimal per-
formance being attained for threshold values between 3 and 4.

6. Results
Table 1 shows the performance of the clustering algorithm de-
scribed above on the evaluation set, using four different seg-
mentations:

• Seg1: Reference Speaker Segmentation
• Seg2: Reference Speaker Segmentation + GTTS Acous-

tic Change Detection
• Seg3: Reference Acoustic Segmentation + GTTS

Acoustic Change Detection
• Seg4: GTTS Acoustic Segmentation + GTTS Acoustic

Change Detection
The Overall Speaker Diarization Error obtained with the

Reference Speaker Segmentation (Seg1, 20.48%) would be the
best performance that our clustering system could reach for the
evaluation set. The difference between this result and the result
obtained by the fully automated system (Seg4, 33.16%) may be
explained as follows:
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Figure 1: Overall Speaker Diarization Error as a function of the similarity threshold applied as stopping criterion in the clustering
algorithm, for sessions 3-16 of the development set.

Table 1: Overall Speaker Diarization Error obtained by apply-
ing the clustering algorithm on four different segmentations of
the evaluation set (see text for details).

Seg1 Seg2 Seg3 Seg4
OSDErr (%) 20.48 26.14 29.61 33.16

• Difference between Seg3 and Seg4: 3.55%. Seg3 starts
from a perfect audio classification, whereas Seg4 applies
the GTTS audio classification system. So, the difference
can be explained by the acoustic classification error.

• Difference between Seg1 and Seg2: 5.66%. Since both
systems take the reference speaker segmentation as a
starting point, the difference in performance can only be
due to over-segmentation. Applying the acoustic change
detector on the optimal speaker segmentation does not
remove speaker boundaries but produces many short seg-
ments whose statistics strongly depend on local variabili-
ties. This explains why the performance of the clustering
algorithm, which is based on those statistics, degrades
for short segments.

• Difference between Seg2 and Seg3: 3.47%. Seg2 in-
cludes all the speaker boundaries (plus a number of
acoustic changes inside speaker turns), whereas Seg3
may be missing some of them. This explains the dif-
ference.

6.1. Processing time

Table 2 shows the CPU time (expressed as real-time factor,
×RT) employed in six separate operations: (1) feature extrac-
tion for segmentation; (2) audio segmentation; (3) acoustic

Table 2: CPU time (real-time factor, ×RT) employed by the
speaker diarization system modules.

Segmentation
Reference Automatic

Features (segmentation) – 0.0033
Audio segmentation – 0.0375
Acoustic change detection – 0.1058
Features (clustering) 0.0026
Statistics 0.0050
Clustering 0.038 0.139

change detection; (4) feature extraction for clustering; (5) com-
putation of sufficient statistics; and (6) hierarchical clustering
of speech segments, for both the reference speaker segmenta-
tion and the automatic segmentation. Note that the CPU time
employed in clustering is almost four times higher for the au-
tomatic segmentation than for the reference segmentation, be-
cause of the different number of speech segments: 7.24 and
3.62 segments/minute, respectively. The total CPU time of the
speaker diarization system is 0.2932×RT.

Computations were made in two servers. The first one, de-
voted to acoustic classification and acoustic change detection,
was a Dell PowerEdge 1950, equipped with two Xeon Quad
Core E5335 microprocessors at 2.0GHz (allowing 8 simulta-
neous threads) and 4GB of RAM. The second one, devoted to
clustering, was a Dell PowerEdge R610, equipped with 2 Xeon
5550 (each featuring 4 cores) at 2.66GHz and 32GB of RAM.
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7. Conclusions
This paper describes the speaker diarization system developed
by the Software Technology Working Group (http://gtts.ehu.es)
at the University of the Basque Country for the Albayzin 2010
Speaker Diarization Evaluation. Though quite simple in its
structure, based on a chain of four uncoupled modules: audio
segmentation, acoustic change detection, computation of suffi-
cient statistics and hierarchical clustering of speech segments,
the proposed system attained competitive results in the evalua-
tion.

Experiments carried out on different segmentations
showed: (1) that the lowest error rate that the clustering algo-
rithm could attain for the evaluation set was around 20%; and
(2) that over-segmentation introduced by the acoustic change
detector was the main source of degradation, because the lack
of robustness in the estimation of statistics for short segments.
Future work may try to improve the robustness of the clus-
tering algorithm to short segments, or alternatively, to avoid
over-segmentation while keeping the detection rate of speaker
boundaries.

Though not analysed in this paper, we developed an ex-
tended version of the clustering algorithm that performed
speaker diarization simultaneously on the whole set of sessions,
thus producing a single set of speaker labels. In fact, we only
realized that the optimal mapping of speaker labels would be
done independently for each session the day before the dead-
line (October 16th, 2010). The extended algorithm included
a refinement stage which grouped together session clusters ac-
cording to the algorithm described above, applying the same
similarity threshold. We found no way of evaluating this ap-
proach because a given label corresponded to different speakers
in different sessions.
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