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ABSTRACT
N-grams have been extensively and successfully used for
Language Modelling in Continuous Speech Recognition tasks.
On the other hand, it has been recently shown that k-testable
Stochastic Languages (k-TS) are strictly equivalent to N-grams.

A major problem to be solved when using a Language
Model is the estimation of the probabilities of events not
represented in the training corpus, i.e. unseen events. The aim
of this work is to improve other well established smoothing
procedures by interpolating models with different levels of
complexity (Quality Weighted Interpolation - QWI).

The effect of QWI was experimentally evaluated over a set
of back-off smoothed k-TS language models. These experiments
were carried out over several corpora using the test-set
perplexity as an evaluation criterion. In all the cases the
introduction of QWI resulted in a reduction of the test-set
perplexity.

1. INTRODUCTION

It is broadly accepted that large-vocabulary and/or Continuous
Speech Recognition (CSR) Systems require a Language Model to
integrate the syntactic and/or semantic constraints of the
language. Language Modelling (LM) methodologies are often
classified into two main categories: Syntactic and Statistical.
Language constraints could be better modelled under a Syntactic
approach, i.e. regular and/or context free grammars. However,
they present computational complexity problems leading to the
use of only very simple and restrictive models. As a
consequence statistical methods are often preferred. They are
based on the estimation of the probability of observing a given
lexical unit, conditioned on the observations of N preceding
lexical units (N-gram models). The number of probabilities to
be taken into account is, in principle, an exponential function
of N. In such a case, this formulation is only able to represent
very local constraints and, as a consequence, does not model in
an adequate way the inherent redundancy of the language [1].
Alternatively, high values of N have been proposed elsewhere
(2]

On the other hand, it has been recently shown that
k-testable Stochastic Languages (k-TS) are strictly equivalent to
N-grams [3]. At this point, the above mentioned
syntactic/stochastic classification may be questioned and then,
choosing k-TS or N-grams could be just a matter of
representation convenience [4].

A major problem to be solved when using a Language
Model is the estimation of the probabilities of events not
represented in the training corpus, i.e. unseen events. This
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problem has been extensively discussed resulting in some well
known smoothing methods: linear and non linear interpolation
[5] [6], coocurrence smoothing [7], back-off smoothing [8],
etc.

This work provides an alternative method to deal with these
problems called Quality Weighted Interpolation (QWI) (Section
3). The aim of the method is to improve other well established
smoothing procedures by interpolating models with different
levels of complexity. Therefore the method is applied to
families of language models in which the same events (e.g.
transitions in the case of Finite Automata) may be observed at
the different complexity levels (k) of the family. We then chose
the K-TS languages framework to apply the QWI smoothing
method. Thus we first summarizes in Section 2 the grammatical
formalism for N-gram models previously introduced in [9]. The
classical back-off smoothing procedure [8] is also reformulated
under this approach [9].

The effect of QWI was experimentally evaluated over a set
of back-off smoothed k-TS language models. These experiments
were carried out over several corpora using the test-set
perplexity as evaluation criterion. The proposed formalism was
compared with both the classical [8] and the previously
proposed syntactical [9] back-off smoothing (Section 4). In all
the cases the introduction of QWI resulted in a reduction of the
test-set perplexity

2. N-GRAM LANGUAGE MODELLING UNDER A
GRAMMATICAL FORMALISM

In an N-gram Language model, the probability of observing a
given lexical unit, ®; conditioned on the observations of n
preceding lexical units, P(wjl®j-k+1..-0i-1), is estimated by
counting the number of occurrences of each string ®i-k+1...0j
in a given training corpus. The probability assigned to a new
sentence or string of words is the product of the probabilities of
the N-grams that appear in this sentence.

In spite of the many efforts to find alternatives to this
approach, the most successful language models have actually
been implemented according to this technique [10].
Nevertheless, the models obtained by the N-gram technique
constitute in fact a proper (small) subset of the set of Stochastic
Regular Grammars. It has been recently demonstrated that
N-grams are strictly equivalent to “K-Testable in the Strict
Sense” (K-TSS) Languages [11] [3]. Moreover, an inference
algorithm to obtain Stochastic Finite Automata accepting
K-TSS Languages was also developed [11]. These automata are
deterministic and hence unambiguous [11]. Examples of K-TSS
automata are shown in Figure 1.
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Figure 1: K-testable automata learned from the sample
{*bb’, ‘baab’, ‘baaab’, ‘baaaab’}.

Given the unambiguous nature of any K-gram automaton the
probability assigned to a sentence Q=w1...w1 of length [ is

obtained as the product of the transitions used to accept Q:

1
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the word wj,

The unambiguity of the Automaton also allows to obtain a

simple maximum likelihood estimation of the probability of
each transition {12]:
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where c(milwi=} . .) is the number of times the word w; appears
JF'Yi-K+1 1 2pp!

at the end of the K-gram ®j-K+1...0i-10j; i.e. the count of the

transition labelled @; coming from state m}'}<+]

In classical smoothing techniques a specific probability
mass is reserved to be shared among unseen events, 1.e. K-grams
not appearing in the training corpus. In Back-off smoothing [8]
the probability to be assigned to unseen K-grams is recursively
obtained from less accurate models, i.e. K-1, ...,I. At each step
of the recursion the Turing formula [13] is used to estimate the
discounted probability. Due to the drawbacks of the Turing
formula in a practical application, the Back-off technique has
been later tested under alternative estimations for the discount
[6] [14). In any case the same discount is established for all
K-grams having the same counts.

The syntactic formalism suggests a state-dependent
estimation of the total discount. In this case a counter is
incremented by one each time a new word appears as an
outgoing transition. This value represents the probability to be
assigned to the “set of unseen words”. The first time a new word

is seen in a given state the new transition is established and its
counter initialized to one [9].

In consequence, a set of transitions corresponding to the
seen K-grams and one transition representing the set of unseen

K-grams can be considered at each state. Let E= ml-K+1 €eQk
be an state of the finite automaton (X, Qg, 9k, 9k dy)
representing a K-gram model and e= “’x—K+ZEQK"1 the
corresponding state of the (K-/)-gram model. Let ug=Z-XE,
where ZEE{mjlc(mle);tO}, represent the set of unseen

K-grams at state E. Considering a maximum likelihood
estimation the probability redistribution can be formulated as:

c(wjlE . .
(_ClE_)' if o(wjlE)#0 :
. if EeQx
P(w:lE)= c(uglE) P(wlle) if AE) =
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P(wjle) if Ee Qi
where Cg =c(uglE)+ ZC(U),IE).
Voreipg

3. QWI SMOOTHING

The aim of the method is to improve other well established
smoothing procedures by interpolating models with different
levels of complexity. The contribution of each individual model
is calculated on the basis of its “quality”. Thus, different
language models need to be previously established, possibly
using classical methods like flat smoothing or back-off
smoothing.

According to QWI, given two models with complexity K
and K-I, the probability of observing a given event § is
calculated as:

PL(Q) = AP (©) + (1~ Ak )Pk-1(C") 0))
where Px(£) is the probability assigned to the same event by

the corresponding classical model, Pk_1({*) represents the
probability obtained by QWI for the same event in the K-/
model and Ay is the interpolation coefficient.

This formulation can be applied to families of language models
in which the same events, i.e. transitions in the case of Finite
Automata, may be observed at the different complexity levels
(K) of the family. Within the N-Gram or k-TS languages
framework:

Pf(((ole)=lkPk(wle)+(l—lk)P{‘q(mjle) )

These formulae constitute a linear interpolation smoothing
procedure as proposed by other authors [15]. Here, however,
Pk (0;1E) is recursively obtained from less accurate models as
in the back-off smoothing [8].

On the other hand, in QWI the calculation of the
coefficients Ay k=1, 2, ... is performed in such a way that the
contribution of each model ts weighted by its quality. The
previously obtained models need thus to be evaluated over a
specific validation set T. Using the inverse of the test-set
perplexity (PP) as evaluation criterion, A can be computed as:

= PP{-1(T) €))]
PPy (T)+ PPL-1(T)

186



By using (3) in (2), a set of recursive equations is obtained as:
Pk(mle)__‘PP&-](T)Pk(w]'IE)+PPk(T)Pi(_1(0)jle) @)
PPy (T)+PPk-1(T)
In the base of the recursion (K = 1), the model consists of only
the void state (see Figure 1). Thus P} (wjE) becomes P1(w}) and:
PPo(T)P1(w;) +PP1(T)Ph (5)
PP1(T)+PPo
where Pp and PPp(T) represent the probability and the

perplexity corresponding to a null model (K=0) and are
calculated as:

1
P =Pp=—
1ZI

Pi(wjlE)=Pi(wj) =

PPH(T)=PPo(T)=|Z} (6)

where IZ| 1s the size of the vocabulary.

If a given fixed training set R is available, we can partition
R into training and validation sets in many ways. Obviously,
better estimates can be obtained by performing a
cross-validation type partitioning procedure [16]. On the other
hand, once the QWI values of Ag have been obtained, we can use
the corresponding k-TS models to evaluate the validation-set
perplexities. In this way, the whole process can be iterated until
stable, and hopefully “optimal”, values for Ay are achieved.
Iterating Equation (4) until convergence:

PP&-1(T)Pk(wjlE) + PP& (T)Pk-1(wjle)

PL(w;IE)= @)
k(o)) PPL(T)+ PPe_1 (D)
The base of the recursion is now:
[Z|P1(0)jIE)+PP~'1(T)%
Pi(;iE) = 12 (8)

PP1(T)+|Z
where PP’ is the perplexity value obtained through the
previously smoothed model.

4. EXPERIMENTAL RESULTS

The effect of QWI was experimentally evaluated over a set of
back-off smoothed k-TS language models. Both back-off
proposed by Katz [8] and back-off recently introduced by the
authors in the syntactic framework [9] were considered.

These experiments were carried out over three different
corpora consisting in 9150 sentences each one. However the
task difficulty is not the same. Moreover, the sentence length,
total number of words and size of the vocabulary are different in
each case. As a consequence, different perplexity values were
obtained. The first one consists of a set of simple English
sentences describing visual scenes (Miniature Language

Acquisition task — MLA) {17]. The required number of sentences
were randomly generated by using a context-free model of the
language [17]. It includes 147002 words and a very limited
vocabulary size (29 words). Thus in this case the back off
proposed by Katz could not be applied since the Turing formula
assumes a certain probability distribution which is only
guaranteed with wide vocabularies. The second corpus (BDGEOQ)
is a task-oriented Spanish speech corpus [18] consisting in
82000 words and a vocabulary of 1284 words. This corpus
consists of a set of Natural Language (spontaneous) queries to a
Spanish geographic database. This is a very specific task
designed to test integrated systems (acoustic, syntactic and
semantic modelling) in automatic speech understanding, which
leads to low perplexity values. The third corpus is a subset of
the English transcription of the Bible (BIB). This is the most

difficult corpus including 255380 words and having a
vocabulary size of 8122 words.

A cross-validation technique was applied {16] selecting in
each random partition 9100 sentences for training purposes and
50 sentences for testing. In each case a validation subset of 300
sentences was selected from the training set to obtain the Ay
coefficients required by QWI. In all the cases the test-set
perplexity was used as evaluation criterion.

Figures 2, 3 and 4 show the test set perplexities for the
experiments carried out over the MLA, the BDGEO and the BIB
corpus respectively. In the first case (Figure 2, MLA task) only
the syntactic approach was considered. The minimum perplexity
value was obtained at a high value of k (7) the relatively large
amount of training data with respect to the complexity of the
language. In this case the introduction of QWI did not improve
this value. In Figure 3 (BDGEO) both back-off approaches were
improved by the introduction of QWI. The best perplexity value
was obtained by the syntactic back-off with QWI and k = 6.
Finally, both classical and syntactical back-off were improved
by the introduction of QWI when the BIB corpus was used
(Figure 4). Due to the high computational cost of this
experiment, Figure 4 only represents one partition (not the
entire cross-validation process). So, it should be interpreted in
comparative terms (the values for the perplexity may slightly
change at the end of the process). The relationship between the
training size and the size of the vocabulary lead to obtain the
minimum perplexity at a lower value of k (5).
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Figure 2: Test set perplexities for k = 3, ..., 15 obtained
trough the experiments carried out over the MLA corpus.
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Figure 3: Test set perplexities for & = 3, ..., 15 obtained
trough the experiments carried out over the BDGEO corpus.
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Figure 4: Test set perplexities for k = 3, ..., 10 obtained

trough the experiments carried out over the BIB corpus
5. CONCLUSIONS

The aim of this work was to improve other well established
smoothing procedures by interpolating models with different
levels of complexity. Therefore the method was applied within
the K-TS languages framework which are strictly equivalent to
N-grams. Both the back-off proposed by Katz and the back-off
recently introduced by the authors in the syntactic framework
were chosen to be improved by QWL

The experimental evaluation was carried out over three
corpora including different sentence length, total number of
words, vocabulary size and task difficulty. The introduction of
QWI resulted in a reduction of the test-set perplexity for values
of k higher than a certain threshold. This reduction, usualy lead
to obtain the minimum perplexity value. The value of k at which
this minimum was obtained was strongly related with the
relationship between the training size and the size of the
vocabulary. Thus for the largest vocabulary size (BIB) this value
is lower than for the smallest one (MLA) when the same number
of training sentences was considered. On the other hand the
significance of the improvement introduced by QWI was more
important for large vocabulary sizes.

Regardless of the smoothing method there is always a value
of K from which the perplexity value began to increase when K
did. However this effect was less important and appeared at
higher values of K for QWI, specially within the syntactic
framework.

Finally let us to note that even the number of probabilities
to be calculated in an N-gram model is, theoretically, an
exponential function of N, this function is in practice attenuated
very early. Moreover, the global automaton required by the
syntactic approach leads to a very fast procedure to get sentence
probabilities and provides a good expectation of integration
with the acoustic models in real speech understanding tasks.
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