
K-TLSS(S) LANGUAGE MODELS FOR SPEECH
RECOGNITION 1

G. Bordel , A. Varona and M. I. Torres

Dpto. Electricidad y Electr�onica
Universidad del Pa��s Vasco/Euskal Herriko Univertsitatea
(UPV/EHU)
Bilbao, Spain
german@we.lc.ehu.es

The class of K-Testable Languages in the Strict Sense
(K-TLSS) is a subclass of regular languages. Previous works
demonstrate that stochastic K-TLSS language models de-
scribe the same probability distribution as N-gram models,
and that smoothing techniques can be e�ciently applied
(Back-o� like methods). Once we have a set of k-TLSS
models (k = 1 : : :K) and a smoothing technique that specif-
ically �ts in them, here we propose an integration into a
unique self-contained model (the K-TLSS(S)) which embeds
the smoothing within the topology allowing extremely sim-
ple parsing procedures. To build this model we designed a
more general syntactic mechanism that we call Stochastic
Deterministic Finite State Automaton with Recursive Tran-
sitions. The topology of the new models (K-TLSS(S)) al-
lows an easy pruning procedure. Pruned K-TLSS(S) models
give probability distributions that are equivalent to Variable
length N-gram models. Experimental results gave as a con-
clusion that the e�ect of a small pruning is always positive.

The experiments were carried out over a corpus (BD-
GEO) consisting of 9150 sentences. BDGEO is a task-
oriented Spanish speech corpus [10][11] with 82000 words
and a vocabulary of 1284 words. It consists of a set of
Natural Language (spontaneous) queries to a Spanish geo-
graphic database. This is a speci�c task designed to test
integrated systems (acoustic, syntactic and semantic mod-
elling) in automatic speech understanding.
In order to obtain a signi�cant size for the test set a

cross-validation technique was applied [12] selecting in each
partition 9100 sentences for training purposes and 50 sen-
tences for testing. 183 partitions were made in order to
obtain an e�ective test set composed by all the sentences in
the corpus.

To illustrate the quality improvement obtained, Table 1
and the corresponding Figure 6 present the e�ect of prun-
ing the models trained from the BDGEO database. The
perplexity of the non-pruned models presents the typical
evolution with K: there is always a value from which the
perplexity increases. This e�ect is less important and ap-
pears at higher values of K for the pruned models.

Table 1. Perplexity and number of parameters of the K-

TLSS(S) models with and without pruning (corpus BDGEO).

Whole models Pruned models � (%)

K Perp. Param. Perp. Param. Perp. Param.

3 10.691 33654 10.691 33654 -0.00 -00.00
4 10.220 76664 10.063 61481 -1.54 -29.80
5 10.262 133653 9.9898 84661 -2.65 -36.66
6 10.495 203518 10.026 101635 -4.47 -50.06
7 10.785 279071 10.082 111730 -6.52 -59.96

9.8

10.0

10.2

Pe
rp

le
xi

ty

10.4

10.6

K

10.8

11.0

3

203518

Number of
parameters

33654

4

61481
84661

5 6 7

Whole models
Pruned models 279071

111730
101635

76664
133653

Figure 6. For any value of K, the best model is obtained after

pruning. This e�ect allows, for a similar size, an increase in the

value of K and an improvement in the performance by means of

deleting some low-k states and including some more signi�cant

higher-k states.

REFERENCES

[1] F. Jelinek, \Up from trigrams: the struggle for im-
proved language models," in Proceedings of the Eu-
rospeech 91, 24 26Sept. 1991, pp. 1037{1039, Genova,
Italy.

[2] E. Segarra, Una Aproximaci�on Inductiva a la Com-
prensi�on del Discurso Continuo, Ph.D. thesis, DISC,
Universidad Polit�ecnica de Valencia, 1993.

[3] P. Garc��a; E. Vidal, \Inference of k-testable languages
in the strict sense and application to syntactic pattern
recognition," IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 12, no. 9, pp. 920{925, Sept.
1990.

[4] F. Jelinek; R. L. Mercer, Interpolated Estimation
of Markov Source Parameters from Sparse Data, pp.
381{397, North-Holland Publ. Company, Amsterdam,
1980.

[5] G. Bordel; I. Torres; E. Vidal, \Back-o� smoothing
in a syntactic approach to language modelling," in
Proceedings of the International Conference on Spoken
Language Processing (ICSLP), Sept. 1994, pp. 851{
854, Yokohama (Japan).

[6] S. M. Katz, \Estimation of probabilities from sparse
data for the language model component of a speech
recognizer," IEEE Trans. on Acoustics, Speech and
Signal Processing, vol. ASSP-35, no. 3, pp. 400{401,
Mar. 1987.

[7] S. Deligne; F. Bimbot, \Language modeling by variable
length sequences: Theoretical formulation and evalua-
tion of multigrams," in Proc. of the IEEE International
Conference on Acoustics, Speech and Signal Processing,
1995, vol. 1, pp. 169{172, Detroit.

[8] P. Placeway; R. Schwartz; P. Fung; Long Nguyen, \The
estimation of powerful language models from small and
large corpora," in Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech and Signal Pro-
cessing, 1993, vol. 2, pp. 33{36, Minneapolis, Min-
nesota.

[9] G. Riccardi; E. Bocchieri; R. Pieraccini, \Non deter-
ministic stochastic language models for speech recog-
nition," in Proceedings of the IEEE International Con-
ference on Acoustics, Speech and Signal Processing,
1995, vol. 1, pp. 237{240, Detroit, Michigan.

[10] J. E. Diaz; A. J. Rubio; A. M. Peinado; E. Segarra;
N. Prieto; F. Casacuberta, \Development of a task
oriented spanish speech corpora," in Proc. of the Eu-
rospeech 93, 1993, p. Addendum, Berlin, Germany.

[11] A. Moreno; D. Poch; A. Bonafonte; E. Lleida; J. Llis-
terri; J.B. Mari~no; C. Nadeu, \Albayzin database: De-
sign of the phonetic corpus," in Proc. of the Eurospeech
93, 1993, pp. 175{178, Berlin, Germany.

[12] S. J. Raudys; A. K. Jain, \Small sample e�ects in
statistical pattern recognition: Recommendations for
practitioners and open problems," IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 13,
no. 3, pp. 252{263, 1991.

The SDFSART must assure that, for each state and each
word in � [f$g, there is a destination state and that the
stochastic condition meets:X

8!2(�[f$g)

�Xp(q; !) = 1 8q 2 Q
�

5. K-TLSS(SMOOTHED) AS A SDFSART.

For the smoothing formula in section 3, is easily proved that
the stochastic condition is ful�lled when:

�Xp(q;U) =
j�qj

C(q) + j�qj

1

1�
P

8!02�q
P̂ (!0jq�)

To assure that for each state and each word in � [f$g
there is a destination state, some properties can be estab-
lished. Nevertheless, we are interested in the application of
the SDFSART to solve the integration of our K-TLSS into
a unique smoothed model (the K-TLSS(S)), and the pro-
cedure developed meets this requirement by construction.
This procedure starts building the K levels trie whose level
l is formed by nodes associated to word chains of length l

(see Figure 3(a)). After that, as a second step, the start-
ing sequences are separated obtaining two tries; one node
for each non-leaf node is added; and one probability is as-
sociated to each node attending to the chosen smoothing
formula. As a third step, one transition for every node in
the whole structure is added transforming the original trie
structure into a graph with the topology of the K-TLSS(S)
(Figure 3(b)).

a/b

ab/c

abcd

$/a

$a/b

a$

$abc

b/c

bc/d

c

c/d

d

λ

a/b

ab/c

abcd

$/a

$a/b

a$

$abc

b

b/c

bc/d

c

c/d

d

λ

(a)

(b)

b

Figure 3. To build the K-TLSS(S), a trie is extracted from the

sample text (a) and, after that, a process is applied to transform

it into the adequate topology.

The K-TLSS(S) topology matches with the one reported,
for the bigram level, in [8], and with the posterior gener-
alization given in [9]. In the latter work, allowing null-
transitions, it is always possible to reach one state assigning

a probability for the next word. So, it is a non-deterministic
automaton giving an alternative probability distribution to
the N-gram model. The SDFSART provides the mecha-
nism to perform a deterministic analysis giving exactly the
same results as the N-gram model in a compact, robust and
e�cient manner.

6. PRUNING THE K-TLSS(S) MODELS.

EXPERIMENTAL RESULTS.

The K-TLSS(S) has been proven to present the same per-
formance as the separated K-TLSS models in terms of Per-
plexity for a test set. E�ectively, the results presented in
[5] applying the back-o� in section 3 were reproduced with
this model.

procedure prune KTLSSS (KTLSSS,threshold)
var actual node: "node
begin

8 actual node of the trie proceeding in width
if not erased(actual node) and
probability(actual node)<threshold
then

mark erased subtrie(actual node)
pack KTLSSS(KTLSSS)
end

Figure 4. The pruning procedure (Proc D in Figure 5).

Nevertheless, one of the strengths of this model is that
the pruning can be easily performed, with complete disre-
gard for the automaton structure, like the pruning of a tree
(see Figure 4), if the third step of the construction proce-
dure is re-applied (see Figure 5). Some pruning experiments
gave as a result that a small pruning is always positive for
the performance of the model. So, to build a K-TLSS(S),
the pruning procedure must always be applied.

Proc.
C

Pruned
smoothed

bi-trie

Proc.
C

K-TLSS(S)
equiv. to
N-GRAM

K-TLSS(S)
equiv. to

Variable N-GRAM

smoothed
bi-trie

Proc.
D

Proc.
BTrie

Proc.
A

Training
text

Figure 5. The building process for a K-TLSS(S) should include

a pruning step on the trie (proc D) prior to the trie to automaton

transformation (proc C).

The pruning applied consisted of eliminating those states
with a probability under a certain threshold. The proba-
bility of a state is e�ciently obtained applying through the
trie the recursive expression:

P̂ (qr) = P̂ (!i�1i�k+1) =

= P̂ (!i�1j!
i�2
i�k+1)� P̂(!i�2i�k+1) =

= �Rp(qs; !i�1)P (qs) with qs = father(qr)

Each word chain of length K in the whole text also
de�nes a value for �K :

�K(!i�1i�K+1; !i) = (!ii�K+2; P̂ (!ij!
i�1
i�k+1))

Finally, for each state whose associated word chain
ends a sentence in the training text:

�K(!i�1i�k+1; $) = (qf ; P̂($j!
i�1
i�k+1)) k � K

In this case, P̂ ($j
) is the estimated probability for the
string
 being at the end of a sentence.

� q0 is the initial state. This is the state associated to
the null string.

� qf is the �nal state.

3. SMOOTHING THE K-TLSS PROBABILITY

DISTRIBUTION.

In [5] a back o� smoothing method for K-TLSS models is
proposed and a simple mechanism to implement it as part
of the training procedure is developed.
Each state of the K-TLSS automaton, q, has an associate

alphabet, �q, formed by all the words seen when it was at
q. The �nal equation smoothes the probabilities based on
a lower level model (k-1)-TLSS in the following manner:

P̂ (!jq) =

8<
:

C(!jq)

C(q)+j�q j
if! 2 �q

j�q j

C(q)+j�q j

P̂ (!jq�)

1�
P

8!02�q

P̂ (!0 jq�)
if! =2 �q

where C(!=q) is the counter for ! in the state q, C(q) is the
total count for the state (

P
8!2�q

C(!jq)), and j�qj is the

number of words in �q. P̂ (!ijq
�) is the estimated proba-

bility given by the (k-1)-TLSS model to the same situation
(that is, if q � !i�1i�k+1 then q� � !i�1i�k+2).

4. THE SDFSART: A SYNTACTIC MACHINE.

The previous scheme allowed the parsing of new sentences
based on a set of K automata that must be run in parallel.
It would be better to have only one automata whose tran-
sition function domain were the whole D � QK� (�[f$g).
But this implies the expansion of the learned �K to all the
words at each state applying the smoothing function, which
is clearly prohibitive in terms of spatial e�ciency.
A new kind of automata can be de�ned to simulate a

complete �K function (without the expansion) by means
of a recursive behaviour. That is what we call SDFSART
(Figure 1).
The SDFSART is described by the

quintuple (�;Q�; �R; q0; qf), where �; q0, and qf are the
same de�ned in section 2, Q� is the union of all the sets of
states Qk of the separate k-TLSS automata, and �R is the
recursive transition function explained below:

�R � (�Rs; �Rp) : Q
� � (� [f$g) ! Q� � [0; 1]

that is:

�Rs : Q
�

� (� [f$g)! Q
�

�Rp : Q
�

� (� [f$g)! Q
�

� [0; 1]

...

ωj
|qk|

ωj
1

ωj
|qj|

ωj
|qj|+1

...
U

ωl

ωl
|ql|

...

U

ωj
1

ωj
|qj|

...

U

“qk”

βk

“qj”

βj

“ql”

βl

1

ω

ω

βj=
1

ω ∈ {ω ...ω }i
j

1 |qj|
j

1−ΣPML(ωi|qk)

Figure 1. SDFSART models are automata where transitions

can go through some states. When the word ! appears being at

qj the state ql is reached by means of crossing qk. This behaviour

is due to the transition function (�R) which is composed of an

explicit transition function (�X) and a recursive strategy.

The de�nition of �R is (an implementation of this func-
tion is shown in Figure 2):

�R(q; !) =

�
�X(q; !) if! 2 �q

(�Rs(p; !); �Xp(q;U)�Rp(p; !)) if! =2 �q

with p � �Xs(q;U)

which is based on �X, an 'extension' of the �k (k=1..K)
functions given by the union of all these �k and the addition
of one (internal) extra symbol to the alphabet axis of the
dominion:

�X � (�Xs; �Xp) : Q
� � (� [f$g [fUg)! Q� � [0; 1]

function �R(state,word):stateandprob

var output, tmp :stateandprob

begin

if 9 �X(state,word)

then return �X(state,word)

else

begin

tmp=�X(state,U)

output=�R(tmp.state,word)

output.prob=tmp.prob� output.prob

return output

end

end

Figure 2. The recursive function �R is based on �X, which

is a direct data extraction from a 'sparse matrix like' structure.

The recursive function is shown for the sake of clarity, but a

more e�cient non-recursive function is clearly straightforward

obtained from this one.

The values given to �Xs(q;U) allow for a word w not seen
in q, the transition to a di�erent sub-model (to the state p).

The function �X can be seen like a sparse matrix, and
stored in a very e�cient way related to this kind of struc-
tures. Moreover the access can be optimized attending to
the values of the probability part of the function.

K-TLSS(S) LANGUAGE MODELS FOR SPEECH RECOGNITION �

G. Bordel A. Varona M. I. Torres

Dpto. Electricidad y Electr�onica
Universidad del Pa��s Vasco/Euskal Herriko Univertsitatea (UPV/EHU)

Bilbao, Spain
german@we.lc.ehu.es

ABSTRACT

The class of K-Testable Languages in the Strict Sense
(K-TLSS) is a subclass of regular languages. Previous works
demonstrate that stochastic K-TLSS language models de-
scribe the same probability distribution as N-gram models,
and that smoothing techniques can be e�ciently applied
(Back-o� like methods). Once we have a set of k-TLSS
models (k = 1 : : :K) and a smoothing technique that specif-
ically �ts in them, here we propose an integration into a
unique self-contained model (the K-TLSS(S)) which em-
beds the smoothing within the topology allowing extremely
simple parsing procedures. To build this model we designed
a more general syntactic mechanism that we call Stochas-
tic Deterministic Finite State Automaton with Recursive
Transitions. The topology of the new models (K-TLSS(S))
allows an easy pruning procedure. Pruned K-TLSS(S) mod-
els give probability distributions that are equivalent to Vari-
able length N-gram models. Experimental results gave as
a conclusion that the e�ect of a small pruning is always
positive.

1. INTRODUCTION.

In 1991, talking about Language Modeling, Jelinek said:
\: : : after all the solid progress in speech recognition, the
trigram model remains fundamental" [1]. Basically, the va-
lidity of this statement continues today, so while the search
for new improved methods persists, it would be worth it to
make advances in the application of the N-gram model.
In this way, we paid attention to the fact that the prob-

ability distribution given by an N-gram model is strictly
equivalent to the distribution determined by a stochastic
grammar for a certain subclass of regular languages called
K-Testable Languages in the Strict Sense (K-TLSS)[2]. So,
the bene�ts of the well structured computational framework
of Formal Language Theory can be applied instead of the
classical N-gram procedures. In this way, an automaton can
be inferred from the training set for a given value of K [3]
(K stands for the same meaning as N in N-gram). In section
2 this aspect is formalized.
Nevertheless, the application of an automatically learned

Language Model to a Speech Recognition task requires a so-

�This work has been partially supported by the CICYT under

project TIC-95-0884-C04-03. The authors would like to thank es-

pecially Enrique Vidal from Universidad Polit�ecnica de Valencia

for much helpful advice.

lution to the \lack of samples" problem [4]. A way to give a
solution to this problem for the proposed syntactic approach
consists of the translation of the solutions developed for the
N-gram approach. In [5] this issue is studied and a smooth-
ing technique called \syntactic Back-o�" is proposed. The
origin of this technique is the classical Back-o� introduced
for N-grams in [6]. The mathematical expression for this
smoothing is shown in section 3.
Once we have di�erent k-TLSS models (k = 1 : : :K) and

a smoothing technique that speci�cally �ts in them, here we
propose an integration into a unique self-contained model
(the K-TLSS(S)). To build this model we designed a syn-
tactic mechanism (the Stochastic Deterministic Finite State
Automaton with Recursive Transitions - SDFSART) which
is explained in section 4 and applied to construct the K-
TLSS(S) models in section 5.
Section 6 explains how this new method allows an easy

pruning step as a natural part of the construction of the
model. The probability distribution provided by these mod-
els issimilar to that of the Variable length N-grams [7]. Some
experimental results were obtained with these models re-
vealing that a moderate pruning should always be done.

2. K-GRAM MODEL AND K-TLSS

LANGUAGES.

The SDFSA for a K-TLSS is described by the quintu-
ple (�;QK ; �K ; q0; qf) where, in terms of word chains (N-
grams):

� � is the vocabulary inferred from the sample.

� QK is a set of states. Each state represents a word
chain of length up to K � 1. There is one state in
QK for each word chain shorter than K � 1 starting
the sentences of the training text (including the null
string). For each word chain of length K � 1 in the
whole training text there is also one state in QK .

� �K is a stochastic transition function (�K : D ! QK �

[0; 1]) where D � QK � (�[f$g) and $ is an (internal)
symbol. Each word chain shorter than K starting a
sentence in the training text !i�k+1 : : : !i�1 � !i�1i�k+1

de�nes a value for �K :

�K(!i�1i�k+1; !i) = (!ii�k+1; P̂(!ij!
i�1
i�k+1)) k < K

where P̂(!j
) is the estimated probability for a word
! to appear after the string
.

