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Abstract
The combination of several heterogeneous systems is

known to provide remarkable performance improvements in
verification and detection tasks. In Spoken Term Detection
(STD), two important issues arise: (1) how to define a com-
mon set of detected candidates, and (2) how to combine system
scores to produce a single score per candidate. In this paper,
a discriminative calibration/fusion approach commonly applied
in speaker and language recognition is adopted for STD. Under
this approach, we first propose several heuristics to hypothesize
scores for systems that do not detect a given candidate. In this
way, the original problem of several unaligned detection can-
didates is converted into a verification task. As for other ver-
ification tasks, system weights and offsets are then estimated
through linear logistic regression. As a result, the combined
scores are well calibrated, and the detection threshold is au-
tomatically given by application parameters (priors and costs).
The proposed method not only offers an elegant solution for
the problem of fusion and calibration of multiple detectors, but
also provides consistent improvements over a baseline approach
based on majority voting, according to experiments on the Me-
diaEval 2012 Spoken Web Search (SWS) task involving 8 het-
erogeneous systems developed at two different laboratories.
Index Terms: Spoken Term Detection, Majority Voting,
Discriminative Calibration and Fusion, MediaEval 2012 SWS.

1. Introduction
Query-by-Example Spoken Term Detection (QE-STD) is a par-
ticularly relevant problem for low-resourced languages, which
has recently gained interest partially due to the success of the
Spoken Web Search(SWS) task at the MediaEval evaluation
series [1, 2]. In practice, the query-by-example task can be
considered as a sort of generalization of the problem of speech
search based on text queries, which has been the focus of ex-
tensive research activity in the past [3, 4, 5, 6, 7, 8]. In the case
of well-resourced languages, a simple straightforward approach
to the QE-STD task would first perform speech-to-text conver-
sion of the queries and then apply any of the methods used in
text-based speech search. However, when no specific acous-
tic or lexical knowledge is available for the target languages,
like in the SWS task, alternative approaches that do not rely
on well-trained acoustic models are needed. In the case of QE-
STD, some of the most recent approaches are based on template
matching methods, such as different flavours of dynamic time
warping (DTW) of posterior derived features [9, 10]. Other sys-
tems use acoustic keyword spotting (AKWS) [11, 12], exploit-
ing multilingual acoustic models in several ways. A review of
these and other methods can be found in [1, 2].

A common trend in current QE-STD systems is the com-
bination of several (probably weak) detectors, each providing
complementary information, which usually leads to improved
detection performance. In some cases, the combination is per-
formed at early processing stages, based on the combination of
features or DTW matrices (see e.g. [13]). However, when the
combination is performed at the final detection stage, the out-
puts of several heterogeneous systems must be mixed and two
important issues arise: (1) how to define a common set of can-
didate detections (trials), and (2) how to combine system scores
to produce a single score per candidate detection. These issues
are addressed in [12] by taking only those segments detected
by a majority of the systems and averaging the scores of those
systems. Under this simple majority voting approach, all the
systems are expected to produce scores in the same range, their
contributions are equally weighted and the detection threshold
is heuristically optimized on a development dataset.

In this paper, a discriminative fusion technique, commonly
used in speaker and language verification tasks, is applied for
the first time (as far as we know) to the fusion of STD sys-
tems. To that end, some heuristic methods are proposed to
combine the outputs of several systems, so that a common
set of trials can be defined. A majority voting approach such
as the one described above is used as baseline and eventu-
ally combined with the discriminative fusion to get improved
performance. In order to validate the proposed approach, we
present results on the SWS challenge included in the MediaE-
val 2012 evaluation campaign [2]. In this QE-STD task, both
the queries and the audio files were extracted from the LWAZI
corpus [14], and consist of 8 kHz telephone recordings in
four South African languages, containing either read or elicited
speech. Separate development and evaluation sets were pro-
vided, each containing approximately 1600 audio files and 100
spoken queries. The SWS 2012 official scoring metric based on
the Actual/Maximum Term Weighted Value (ATWV/MTWV)
[15] is used in this work to assess the systems.

The paper is organized as follows. The problem of fusing
several heterogeneous QE-STD systems, along with the base-
line and the proposed fusion approaches, are addressed in Sec-
tion 2. Section 3 describes the QE-STD systems applied in this
work, and Section 4 presents and discusses the performance of
the baseline and the proposed fusion approaches. Finally, con-
clusions are given in Section 5.

2. Fusion of heterogeneous STD systems
In speaker and language recognition, the combination of multi-
ple systems at the score detection level using different hetero-



geneous systems is known to provide considerable performance
gains [16, 17]. Similarly, STD is expected to benefit from the
combination of multiple systems. The approaches typically fol-
lowed for score fusion in verification tasks assume that a score
is output by each system for every possible trial. This is not
the case in STD tasks, since each system produces scores for
a different set of unaligned candidate detections. Alternatively,
some kind of heuristic rule can be used to hypothesize the miss-
ing scores for each candidate detection. By doing so, the origi-
nal detection task is converted into a verification task in which,
for each candidate detection (or trial), a score is either output or
hypothesized by each system.

2.1. Score normalization

Score normalization methods have proven quite useful in detec-
tion tasks such as speaker verification [18]. In QE-STD, system
scores may vary depending on the query (for instance, due to
different lengths). Moreover, different heterogenous systems
may produce scores in different ranges, which in the case of
averaging scores to get the fused score may reduce the over-
all performance, since a single detection threshold is applied.
Thus, a kind of normalization is required so that, for any given
query and/or subset of systems, the resulting scores are all in
the same range. In this work, system scores have been applied a
per-query zero-mean and unit-variance normalization (q-norm).

2.2. How to hypothesize the missing scores

Detections produced by different QE-STD systems may be un-
synchronized/unaligned. Thus, the first issue that must be ad-
dressed when fusing several heterogeneous systems is how to
align unsynchronized detection scores. First, a list of candidate
detections is obtained. Each detectiont is associated to a spe-
cific query termqt, an audio filedt, with initial time it, final
timeft, and a vectorst containing the scores produced by QE-
STD systems. Two candidate detections of a query (produced
by two different systems) are considered to be aligned if they
(partially) overlap in time. Note that the complete list of de-
tections is equivalent to the list of trials in a verification task,
but two important differences can be observed: first, in contrast
to a conventional verification task, the whole set of trials is not
available beforehand; and second, the score vectorst may be
sparse, since not all the systems generate scores for every can-
didate detectiont.

In this work, two heuristic criteria have been considered to
hypothesize the missing scores: (1) using aper-query minimum,
i.e. the minimum score produced by the system for that query;
or (2) using aglobal minimum, i.e. the minimum score pro-
duced by the system for all queries.

2.3. Baseline fusion approach

In [12], three simple heuristic fusion schemes were investigated,
among which the Majority Voting (MV) strategy showed the
highest and more consistent performance improvements. Under
this approach, only candidate detections given by at least half
of the systems are kept and the fused score is computed as the
mean of the scores for the systems that detected each candidate.
In this work, MV is used as the baseline fusion approach.

The MV scheme consists of three decoupled stages: (1) fil-
tering; (2) score hypothesizing; and (3) score fusion. In the
filtering stage, some candidate detections are removed. In the
score hypothesizing stage, the missing scores are replaced by
the mean of the available scores for the considered candidate.
Finally, in the fusion stage, system scores are averaged to get the

fused score. Note that under this decoupled interpretation of the
MV scheme, we could consider alternative score hypothesizing
strategies, such as the ones proposed in Section 2.2, or alterna-
tive fusion approaches, such as discriminative fusion, which is
described in next Section.

2.4. Discriminative calibration and fusion

Under this approach, givenN system scores for a candidate
detection (trial)t, the fused score is computed as:

ŝt = β +

N∑

i=1

αi · st(i) (1)

where the system dependent scaling factorsαi and the off-
set β are estimated by logistic regression on a development
dataset [19, 16]. Logistic regression estimations lead to im-
proved discriminative and well-calibrated scores that approxi-
mate the log-likelihood ratio:

ŝt ≈ log
P (ŝt|Htarget)

P (ŝt|Hnon−target)
(2)

whereHtarget andHnon−target denote target and non-target hy-
potheses, respectively. Well-calibrated scores allow the use of
theoretically determined decision thresholds that only depend
on the prior and costs (the operating point) of the evaluation
cost function.

For example, in past NIST Speaker Recognition Evalua-
tions, the so called Detection Cost Function was used:

CDet = Cmiss · Pmiss · Ptar + Cfa · Pfa · (1− Ptar) (3)

whereCmiss andCfa are the costs of detection errors andPtar is
thea priori probability of the target speaker. For such cost func-
tion, and given well-calibrated scores, the theoretical minimum
expected cost Bayes threshold would be:

θBayes = log
Cfa · (1− Ptar)

Cmiss · Ptar

(4)

In Mediaeval 2012 SWS, the Term-Weighted Value was
used as the evaluation metric:

TWV = 1− average
term

{Pmiss(term) + βPfa(term)} (5)

Note that maximizingTWV is equivalent to minimizing
1 − TWV . Assuming that all the terms are equally likely, an
equivalent cost function would be:

C = Pmiss + βPfa (6)

which can be seen as a particular case of the Detection Cost
Function (forCmiss = 2, Cfa = 2β andPtar = 0.5). Thus, the
theoretical minimum expected cost Bayes threshold would be:

θBayes = log β (7)
In a first attempt to apply discriminative fusion to QE-STD

systems, well-calibrated scores were not obtained (the theoreti-
cal threshold fell far from the optimum). After a first analysis,
we noticed that logistic regression estimations must rely on the
full set of trials, but QE-STD systems generate just a few of
them. Therefore, the full set of trials was generated, by hypoth-
esizing the missing scores as stated in Section 2.2. Figure 1
shows theTWV curve along with the theoretical Bayes thresh-
old on the evaluation set of the SWS task, for the fusion of 8
systems under a combination of MV and discriminative fusion
(see Section 4.2 for details). Note that the theoretical Bayes
threshold matches almost perfectly the optimal threshold ob-
tained empirically.

In this work, discriminative calibration and fusion have
been estimated and applied by means of the Bosaris toolkit [20].
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Figure 1: TWV , Pmiss and Pfa curves, maximum TWV
and theoretical Bayes threshold for a combination of MV and
discriminative fusion of 8 systems on the evaluation set of the
SWS task.

3. QE-STD systems
3.1. L2F systems

L2F systems are based on hybrid connectionist methods [21]
for both query tokenization and search. Four individual
sub-systems have been developed exploiting four different
language-dependent acoustic models trained for European Por-
tuguese (PT), Brazilian Portuguese (BR), European Spanish
(ES) and American English (EN). The acoustic models from
each system are in fact multi-layer perceptron (MLP) networks
that are part of L2F in-house hybrid connectionist ASR system
named AUDIMUS [22].

3.1.1. The baseline connectionist ASR system

Speech recognizers combine four MLP outputs trained with
Perceptual Linear Prediction features (PLP, 13 static + first
derivative), PLP with log-RelAtive SpecTrAl speech processing
features (PLP-RASTA, 13 static + first derivative), Modulation
SpectroGram features (MSG, 28 static) and Advanced Font-End
from ETSI features (ETSI, 13 static + first and second deriva-
tives). The language-dependent MLP networks were trained us-
ing different amounts of annotated data. Each MLP network is
characterized by the input frame context size (13 for PLP, PLP-
RASTA and ETSI; 15 for MSG), the number of units of the two
hidden layers (500), and the size of the output layer. In this case,
only monophone units are modeled (EN: 41, PT: 39, BR: 40 and
ES: 30). The decoder is based on a weighted finite-state trans-
ducer (WFST) approach to large vocabulary speech recognition
[23, 24].

3.1.2. Spoken Query tokenization and search

The phonetic transcription of each spoken query is obtained for
every sub-system using a phone-loop grammar with phoneme
minimum duration of three frames. Simple1-bestphoneme
chain output has been used. Then, search is carried out with
a sliding window of 5 seconds (2.5 seconds time shift) using
an equally-likely 1-gram language model formed by the target
query and a competing speech background model. On the one
hand, keyword/query models are described by the sequence of
phonetic units obtained in the tokenization. On the other hand,
the likelihood of a background speech unit representing “gen-
eral speech” is estimated based on the other phonetic classes

[25, 26]. The output score for each candidate detection is com-
puted as the average of the phonetic log-likelihood ratios that
form the detected query term.

3.2. GTTS systems

3.2.1. Feature extraction

GTTS systems used a frame-level sequence of phone log-
likelihoods to represent both the query and the audio docu-
ment. The open software Temporal Patterns Neural Network
(TRAPs/NN) phone decoders, developed by the Brno Univer-
sity of Technology (BUT) for Czech (CZ), Hungarian (HU) and
Russian (RU) [27] were applied to get frame-level phone pos-
terior probabilities at a rate of 100 frames per second. Fea-
ture vectors consisted of 43, 59 and 50 log-likelihoods for the
systems based on the Czech, Hungarian and Russian decoders,
respectively. A fourth system (called B3) was also developed
by concatenating log-likelihood features for the three BUT de-
coders.

3.2.2. Spoken Query search

Based on the above described representation, multiple occur-
rences of the spoken query inside an audio document were de-
tected just by defining a cosine distance measure between two
feature vectors and recursively applying a Dynamic Time Warp-
ing (DTW) approach which minimized the length-normalized
accumulated distance, based on a distance matrix with query-
normalized distances (each element ranging from0 to 1). All
the frames of the audio segment were explored as initial points
of a match, and the distance was accumulated until the optimal
aligment reached the last frame of the spoken query. A number
of non-matching frames were skipped before and after the best
match. The output score for a match was computed as 1 minus
the length-normalized accumulated distance. Length and dis-
tance normalizations, along with speech/non-speech detection
(not described here for lack of space), were key for detection
performance.

4. Results
Table 1 shows the performance achieved by the 8 single systems
considered in this work, 4 by GTTS (B3, CZ, HU and RU) and 4
by L2F (BR, EN, ES and PT), on the development (dev queries
and dev audio files) and evaluation (eval queries and eval audio
files) datasets of the MediaEval 2012 SWS task. Query normal-
ization has been applied to all sub-systems and it is also applied
in the remaining experiments, since it consistently led to im-
proved performance in all cases. Regarding these results, the
MTWV on the evaluation dataset ranged from 0.296 for the EN
system to 0.505 for the B3 system, whereas the ATWV ranged
from 0.295 to 0.495 for the same systems, showing that the op-
timal threshold found heuristically on the development dataset
matched almost perfectly the evaluation dataset.

4.1. Majority Voting vs. Discriminative Fusion

The baseline fusion approach (MV), based on majority vot-
ing and score averaging, was applied to three sets of systems:
GTTS, L2F and GTTS+L2F. As shown in Table 2, performance
improved in all cases, specially when the fusion involved het-
erogeneous systems (byheterogeneouswe mean systems apply-
ing different methodologies to search for spoken queries). Tak-
ing the best single system of each set as reference, ATWV im-
provements on the evaluation dataset were of around 4.9% for
GTTS, 8.6% for L2F and 26.0% for GTTS+L2F. Once again,



Table 1: MTWV/ATWV performance for single STD systems.
ATWV is shown for the optimal heuristic threshold in dev-dev.

System
dev-dev eval-eval

MTWV ATWV MTWV ATWV

B3 0.478 0.478 0.505 0.495
BR 0.405 0.405 0.409 0.408
CZ 0.357 0.357 0.393 0.374
EN 0.275 0.275 0.296 0.295
ES 0.348 0.348 0.395 0.391
HU 0.323 0.323 0.352 0.329
PT 0.439 0.439 0.471 0.469
RU 0.403 0.403 0.390 0.389

Table 2: MTWV/ATWV performance for the fusion of three
sets of STD systems under the baseline MV approach. ATWV
is shown for the optimal heuristic threshold in dev-dev.

System
dev-dev eval-eval

MTWV ATWV MTWV ATWV

GTTS 0.493 0.493 0.526 0.520
L2F 0.535 0.535 0.521 0.510
GTTS-L2F 0.598 0.598 0.628 0.624

the optimal threshold on development proved to be also ade-
quate for evaluation.

The proposed fusion approach (DF) was applied to the
same sets of systems (GTTS, L2F and GTTS+L2F), using two
different methods to hypothesize the missing scores (QMin and
GMin, corresponding to the per-query minimum score and the
global minimum score, respectively). As shown in Table 3, DF
outperformed MV-based fusions and provided well-calibrated
scores in most cases. Note that in this case the Bayes optimal
threshold (automatically derived from application costs and pri-
ors) was applied to compute ATWV on the evaluation dataset.
When usingQMin, ATWV improvements over the MV-based
fusion were of around 2.6% for GTTS, 4.1% for L2F and 4.3%
for GTTs+L2F. When usingGMin, the L2F system was poorly
calibrated (an open issue we are currently investigating). How-
ever, the MTWV was remarkably high for GTTS+L2F, yielding
a 7% improvement over the MV-based fusion and revealing the
potential ofGMin provided that calibration issues are solved.

4.2. Taking the best of both: Integrated approach

An integrated fusion approach (MV+DF) was applied to the
GTTS+L2F set of systems, using the two hypothesizing meth-
ods described above. The integrated approach consists of a
first MV filtering to remove some candidate detections fol-
lowed by discriminative fusion. MTWV and ATWV perfor-
mance on the evaluation dataset of MediaEval 2012 SWS is
shown in Figure 2, and compared to MV-based fusion for dif-
ferent values ofm: the number of systems required to detect
a candidate. Note that the baseline MV fusion corresponds
to m = 4 and the discriminative fusion as applied in Sec-
tion 4.1 corresponds tom = 1. Once again, discriminative
fusion outperforms MV in all cases, but the most remarkable
result is that MV filtering helps to improve the performance of
discriminative fusion. The best figure is attained for DFGMin
with m = 3 (ATWV=0.678), providing a 4.1% additional im-
provement over the best discriminative fusion with no filtering
of candidate detections (ATWV=0.651, for m = 1 andQMin).

Table 3: MTWV/ATWV performance for the fusion of three
sets of STD systems under the proposed discriminative fusion
approach, using two different methods to hypothesize the miss-
ing scores. ATWV is shown for the Bayes optimal threshold.
Fusion
mode

System
dev-dev eval-eval

MTWV ATWV MTWV ATWV

Qmin
GTTS 0.505 0.500 0.538 0.533
L2F 0.540 0.531 0.549 0.531
GTTS-L2F 0.644 0.640 0.654 0.651

Gmin
GTTS 0.505 0.500 0.536 0.533
L2F 0.539 0.533 0.518 0.439
GTTS-L2F 0.659 0.646 0.672 0.624

MV baseline

MV+DF (QMin)

MV+DF (GMin)

Figure 2: ATWV (color) and MTWV (black) performance for
the fusion of GTTS+L2F systems using MV and two variations
of the integrated fusion approach, for different number of sys-
tems required to detect a candidate.

Note that Bayes thresholds were applied for the DF-based meth-
ods (blue and light-green bars) resulting in particularly good
calibration for theQmin case (blue bar). Finally, DF was less
sensitive tom, providing significantly better results than the
baseline MV method for lowerm values.

5. Conclusions
In this paper, a discriminative fusion approach commonly ap-
plied in verification tasks has been investigated and introduced
for the first time to Spoken Term Detection. Results on the
MediaEval 2012 SWS task confirm that the proposed approach
outperforms a baseline Majority Voting fusion. Besides, it pro-
vides calibrated scores for which a theoretical optimum Bayes
threshold can be used for making hard decisions. An integrated
approach that comprised MV filtering, hypothesizing of miss-
ing scores and discriminative fusion yielded even better results.
Current work involves solving calibration issues observed for
some configurations and finding new ways of hypothesizing the
missing scores.
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