
NOVEMBER/DECEMBER 2015

ORACLE.COM/JAVAMAGAZINE

FINDING THE RIGHT ONE
Libraries

HOW THE JVM
FINDS AND LOADS
LIBRARIES

30JSOUP: ELEGANT
HTML PARSING24BYTE BUDDY:

BYTECODE
GENERATION

19JCOMMANDER:
COMMAND-LINE
PARSING

13

CDI 34 | JYTHON 42 | DOCKER PRIMER 51 | WEBSOCKETS 58

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=Cover&exitLink=http%3A%2F%2FORACLE.COM%2FJAVAMAGAZINE

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

01

//table of contents /

COVER ART BY I-HUA CHEN

04
From the Editor
Open source licenses are a mess of over-
lapping, unclear provisions and conflicting
requirements. It doesn’t have to be that
way. A simpler system is used in other
licensing areas. Open source needs to do
the same.

07
Letters to the Editor
Comments, corrections, questions,
and kudos

08
Events
Calendar of upcoming Java
conferences and events

10
Java Books
Review of a programming guide to the
Internet of Things

34
Java EE
Contexts and Dependency
Injection: The New Java EE
Toolbox
By Antonio Goncalves
Integrating CDI with Java EE

42
JVM Languages
Jython 2.7: Integrating
Python and Java
By Jim Baker and Josh Juneau
A Python clone that makes it
easy to create projects with
libraries from Python and Java

51
Containers
Using Docker in Java Applications
By Arun Gupta
The “Getting Started” guide
to using Docker containers

58
Web Apps
Building Apps Using WebSockets
By Danny Coward
A simple API for long-lived
web connections

66
Fix This
Our latest code challenges from
the Oracle certification exams

41
JavaOne Recap
What happened at Java’s big conference
and where you can see it for yourself

57
User Groups
Pune Java User Group

68
Contact Us
Have a comment? Suggestion?
Want to submit an article proposal?
Here’s how to do it.

13
JCOMMANDER:
A BETTER WAY
TO PARSE
COMMAND LINES
By Cédric Beust

An easy-to-use library for parsing
the most-complex command lines

19
RUNTIME CODE
GENERATION
WITH BYTE BUDDY
By Fabian Lange

Let’s play with bytecodes
and create agents, run
tools before main() loads,
and modify classes on
the fly.

24
JSOUP HTML
PARSING LIBRARY
By Mert Çalışkan

Parse HTML simply,
extract specified elements,
validate structure, and
sanitize content.

30
HOW THE JVM
LOCATES, LOADS,
AND RUNS
LIBRARIES
By Oleg Šelajev

The complex magic
by which class loaders
locate and load libraries

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=1&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=1&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=1&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=1&exitLink=http%3A%2F%2FORACLE.COM%2FJAVAMAGAZINE

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

02

EDITORIAL
Editor in Chief
Andrew Binstock
Managing Editor
Claire Breen
Copy Editor
Karen Perkins
Section Development
Michelle Kovac
Technical Reviewers
Stephen Chin, Reza Rahman

DESIGN
Senior Creative Director
Francisco G Delgadillo
Design Director
Richard Merchán
Senior Designer
Arianna Pucherelli
Designer
Jaime Ferrand
Senior Production Manager
Sheila Brennan
Production Designer
Kathy Cygnarowicz

PUBLISHING
Publisher
Jennifer Hamilton +1.650.506.3794
Associate Publisher and Audience
Development Director
Karin Kinnear +1.650.506.1985
Audience Development Manager
Jennifer Kurtz

ADVERTISING SALES
Josie Damian +1.626.396.9400 x 200
Advertising Sales Assistant
Cindy Elhaj +1.626.396.9400 x 201
Mailing-List Rentals
Contact your sales representative.

RESOURCES
Oracle Products
+1.800.367.8674 (US/Canada)
Oracle Services
+1.888.283.0591 (US)

ARTICLE SUBMISSION
If you are interested in submitting an article, please e-mail the editors.

SUBSCRIPTION INFORMATION
Subscriptions are complimentary for qualified individuals who complete the
subscription form.

MAGAZINE CUSTOMER SERVICE
java@halldata.com Phone +1.847.763.9635

PRIVACY
Oracle Publishing allows sharing of its mailing list with selected third parties. If you prefer
that your mailing address or e-mail address not be included in this program, contact
Customer Service.

Copyright © 2015, Oracle and/or its affiliates. All Rights Reserved. No part of this publication may be reprinted or otherwise
reproduced without permission from the editors. JAVA MAGAZINE IS PROVIDED ON AN “AS IS” BASIS. ORACLE EXPRESSLY
DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS OR IMPLIED. IN NO EVENT SHALL ORACLE BE LIABLE FOR ANY
DAMAGES OF ANY KIND ARISING FROM YOUR USE OF OR RELIANCE ON ANY INFORMATION PROVIDED HEREIN. The
information is intended to outline our general product direction. It is intended for information purposes only, and may not be
incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied
upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s
products remains at the sole discretion of Oracle. Oracle and Java are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

Java Magazine is published bimonthly at no cost to qualified subscribers by
Oracle, 500 Oracle Parkway, MS OPL-3A, Redwood City, CA 94065-1600.

Digital Publishing by GTxcel

#1 Development Platform

20 Years of
Innovation

Since 2003

Since 2008Since 1996

Since 1999

Since 1996

Since 1996

2014 Event Sponsor Logo
Hitachi Ltd

Full Color

1 Color

Reversed

Since 2012Since 1998 Since 2001 Since 1996

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=2&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=2&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=2&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=2&exitLink=mailto%3Ajennifer.hamilton%2540oracle.com%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=2&exitLink=mailto%3Akarin.kinnear%2540oracle.com%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=2&exitLink=mailto%3Ajennifer.s.kurtz%2540oracle.com%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=2&exitLink=mailto%3Ajosie.damian%2540sprocketmedia.com%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=2&exitLink=mailto%3Acindy%2540sprocketmedia.com%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=2&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=2&exitLink=http%3A%2F%2Foracle-sub.halldata.com%2Fsite%2FORA000263JFnew%2Finit.do%3F%26PK%3DNAFORJ
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=2&exitLink=mailto%3Ajava%2540halldata.com%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=2&exitLink=http%3A%2F%2Fwww.gtxcel.com%2F
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=2&exitLink=http%3A%2F%2Foracle.com%2Fjava
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=2&exitLink=http%3A%2F%2FORACLE.COM%2FJAVAMAGAZINE
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=2&exitLink=mailto%3Ajava%40halldata.com

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=3&exitLink=https%3A%2F%2Fzeroturnaround.com%2Fsoftware%2Fxrebel%2Ftrial%2Ftshirt%2F%3Futm_source%3Djavamag%26utm_medium%3Dfullpage%26utm_campaign%3Dxrebeltshirtpromo

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

04

//from the editor /

In talking with developers and visiting the
various forums we hang out in, I am constantly

struck by how little is known about widely
used open source licenses. While publishing code
as open source in free, public repositories (a
rapidly shrinking group of sites led by GitHub,
Bitbucket, and SourceForge) continues to be a
common way of sharing, the knowledge of what
license to choose seems not to have moved for-
ward. For many developers, the area of licens-
ing is a large, ill-defined domain with weird
terminology (copyleft, BSD 2-clause, and so on)
that requires a lawyer to clarify. To save devel-
opers not interested in digging into the details
in order to make their code available, certain
mainstream licenses such as Apache, GPL, and
MIT are generally recommended, with little
useful explanation.

PHOTOGRAPH BY BOB ADLER/GETTY IMAGES

Reforming Open Source Licensing
The complexity of open source licenses needs a remedy:
the Creative Commons model.

BIO

It might seem peculiar that intelligent individ-
uals who delight in the smallest details of argu-
ments on leaky abstractions will spend virtually
no time understanding the basics of how open
source software (OSS) licensing works. But to
me, this view is backward: Why should a devel-
oper whose interests are precisely the details of
the abstract constructs needed in his work be
forced to understand the arcana of lawyer-
written provisions in order to give his work to
the larger community?

And the answer is that open source licenses
are a rat’s nest of overlapping and conflict-
ing (and frequently complex) provisions born
of historical accident. The licenses were never
intended to make it easy for developers to
understand. In part, this is due to omission by
the group that oversees open source licenses,

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=4&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=4&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=4&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=4&exitLink=http%3A%2F%2Fwww.oracle.com%2Fjava
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=4&exitLink=http%3A%2F%2FORACLE.COM%2FJAVAMAGAZINE
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=4&exitLink=javascript%3AopenPopup%28%27Java_ND15_EdNote_BIO_p04_1447719407371%27%29

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

05

//from the editor /
the Open Source Initiative (OSI).
The group was formed for vari-
ous political purposes in the
early days of open source and
successfully did what was most
needed at the time: end the pro-
liferation of OSS licenses. Before
the OSI, every company that
released code would write its
own license. While this was cer-
tainly in keeping with the idea
of open source, it created the
inevitable problem that it was
very difficult to tell what exactly
you could and could not do
without reading through pages
of legalese. By certifying certain
licenses as “open source,” the
OSI helped stop the proliferation.
And by encouraging the use of a
subset of the approved licenses,
it shrank the pool of licenses
even further. (Note: However,
you do not need the OSI’s bless-
ing to call your license or your
code open source. In fact, sev-
eral major projects today that we
view as open source—for exam-
ple, SQLite and TeX—are not
issued under an OSI license.)

However, the pool of widely
used OSI-approved licenses
bulges with numerous provisions,
many of which require an attor-
ney to understand. Several OSS
license analysts keep databases

of the provisions. They count
more than 500 different require-
ments in this pool of licenses.
That number is daunting enough
that it discourages developers
from wading into them to under-
stand the terms. As a result, the
choice of license has become a
nearly meaningless statement.
But it shouldn’t be.

Unless you recall the history
of free software or have spent
time studying terms of use,
you might not know about the
principal dividing line in these
licenses, which maps to the key
division between free software
and open source. Generally, the
former has a copyleft provision,
which requires that any software
that uses the licensed code be
offered under the same license
terms. (The Lesser General Public
License, or LGPL, is the notable
exception.) In counterpoint, OSS
has no such requirement. So,
choosing between GPL (free) and
Apache License (OSS) is a mean-
ingful action. Not meaningful,
however, is BSD (3-clause) vs.
BSD (2-clause). No one ever
released code under one BSD
license and later lamented that
they hadn’t chosen the other.

But without wasting time on
websites, in forums, and with

colleagues learning the intrica-
cies, most developers would not
know this. I strongly believe this
problem can be solved by aban-
doning the use of licenses based
on historical documents and
moving to the model embraced
by the Creative Commons, which
is the OSI equivalent organization
for artistic works.

The Creative Commons uses
a series of graded licenses that
start from public domain and
allow for the addition of specific,
defined requirements. These are
few in number: acknowledgment
of the creator, commercial use
allowed or not, derivative works
allowed or not, and requirements
that derivatives be allowed only
under the same license. With this
system, an artist can tell right
away which license to use with-
out long study and analysis: she
can mix and match the provi-
sions and accurately choose the
appropriate license.

In software, this needs to be
implemented—just a simple, sane
system devoid of complex, com-
peting, historical artifacts.

Andrew Binstock, Editor in Chief
javamag_us@oracle.com

@platypusguy

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=5&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=5&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=5&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=5&exitLink=https%3A%2F%2Ftwitter.com%2Fplatypusguy
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=5&exitLink=http%3A%2F%2Fwww.oracle.com%2Fjava
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=5&exitLink=http%3A%2F%2FORACLE.COM%2FJAVAMAGAZINE
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=5&exitLink=mailto%3Ajavamag_us%40oracle.com

S
ince the early years of Java’s two-
decade history, production-grade JVMs
relied on just-in-time (JIT) compilation
for performance. A JIT compiler kicks in

at application runtime and compiles the “hot”
methods detected by the bytecode interpreter
to native code.

The problem is that upon termination the
JVM discards all code produced by the JIT com-
piler, which means it has to start over next time.
The overhead of the interpret-profi le-compile

process, known as the “warm-up cycle,” makes
Java applications start more slowly, with slower
initial response times compared to functionally
equivalent native applications. This leads to the
idea of ahead-of-time (AOT) compilation.

An AOT compiler precompiles some or all
application classes to native code before the
application is run. That usually happens on the

developer’s system, although Android ART per-
forms native compilation directly on the target
device at application install time.

AOT compilation eliminates the warm-up
cycle, enabling a large Java application to start
2 to 3 times faster and run at full speed from the
start. It can also deliver an overall performance
boost, especially in constrained environments
with no spare computational resources or
battery power for an advanced JIT compiler,
such as embedded devices.

However, while faster startup and lower la-
tency are valuable benefi ts, neither is the main
motivation for using an AOT compiler when
developing Java applications for desktop and
server platforms.

The unique advantage of compiling the entire
Java application to native code before deploy-
ing it in production or shipping to end users is
actually protection against Java decompilers.

Class fi les emitted by the standard javac
compiler are extremely easy to revert back to
source—just search for “download java decom-
piler” and you will get your source code back in
fi ve minutes. Methods exist for making decom-
piler output less comprehensible, but they have
serious limitations and may negatively affect
application robustness and performance. Name
obfuscation can only be applied to application
classes that are not accessed via refl ection or
JNI, whereas references to the standard library
classes remain visible. Excessive control fl ow

obfuscation substantially hinders JIT compiler
optimizations, penalizing application perfor-
mance. Finally, software encryption does not
protect your Java classes at all—they must be
decrypted prior to execution, and dumping
classes to disk as the JVM loads them is fairly
trivial.

In contrast, a native binary produced by an
optimizing AOT compiler carries no perfor-
mance tax and is about as diffi cult to reverse-
engineer as if you had coded the original pro-
gram in C++. And you can still take additional
measures to protect your intellectual property
or enhance the security of your application if
you wish: obfuscate names, encrypt strings and
resources, and further protect the native code
executable using platform-specifi c tools.

Excelsior JET 11 is the only certifi ed Java SE
8 implementation capable of precompiling
Java applications to optimized native code
executables. It currently supports Windows,
OS X, and Linux on Intel hardware.

Why Compile Java Applications
to Native Code Executables?

SPONSORED CONTENT

For more information,
visit www.ExcelsiorJET.com

Excelsior JET Control Panel

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=6&exitLink=http%3A%2F%2Fwww.excelsiorjet.com%2F%3Futm_source%3Djavamagazine%26utm_medium%3Dadvertorial%26utm_campaign%3Dwhyaot%26utm_content%3Dwhyaot

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

07

//letters to the editor /
Quizzical Quiz Questions
I enjoyed the July/August issue.
However, I disagree with the
answer to question 2 in Fix This.
The article said the answer is B,
but the answer is A. When the
code executes, a single object is
created on line 4, and at the end of
the execution of the main method
it is eligible for garbage collection
because the created object is only
ever referenced by local variables
e and e1.

—Nathan Hawk (similarly
Hans Yperman)

In Fix This for the July/August
issue, question 3 contains an error.
It refers to a code snippet in a file
called Shop.java, which declares a
class entitled OnlineCart. This is
not legal in Java.

—Alexei Bolyrev (similarly
Mushfiq Mammadov)

Editor Andrew Binstock responds:
As mentioned in the introduction to
this quiz, the questions were pro-
vided by the team that supports the
Java certification exam publishing.
After discussion with them, it came to
light that the quiz questions had not
been through the required techni-
cal review. The process has now been
modified to ensure that only thor-
oughly reviewed quiz questions are

used. Should that review not reach
our standards of completely accu-
rate content, we will switch to other
sources to provide quiz questions.
My apologies to all readers misled by
these mistakes.

Java in the Real World
I read your review of Paul and Gail
Anderson’s book about JavaFX
and the NetBeans Platform in the
September/October issue. In com-
mending the publishers for print-
ing a book for “so narrow a topic,”
you ask, “How many such readers
could there be?”

Are you asking how many
applications are being created on
the Java desktop? Or are you say-
ing that JavaFX or the NetBeans
Platform is a strange thing to use?

—Walter Nyland

Reviewer Andrew Binstock responds:
I believe the community of develop-
ers who use NetBeans as a platform
for their applications is small. Only
a fraction of desktop applications
need its capabilities, and those using
JavaFX are a subset. So to see a
nearly 900-page book aimed at them
was, I felt, unusual and noteworthy.

Kindle Format
I noticed in the September/
October issue that one of your

subscribers was wishing he could
read Java Magazine on his Kindle.
That’s very easy to do. This link
shows how to do it.

—Brian Everett

Paper, Paper!
Concerning Jennifer Hamilton’s
reply in the September/October
issue to Raj Thondepu, who
inquired about a paper edition of
Java Magazine: has Oracle actually
researched this before concluding
that a printed magazine wouldn’t
be sustainable?

—Martins O. Adegoke

Editor Andrew Binstock responds:
Oracle publishes two magazines in
hard copy, so it knows the numbers.
It has just shifted one magazine to
electronic-only and plans to eventu-
ally move the other. Paper is a very
expensive medium that is suitable
only for consumer magazines or
for publications with high subscrip-
tion prices.

Contact Us
We welcome comments, grum-
bles, and kudos at javamag_us@
oracle.com. These might be edited
for publication. If your note is
private, please so indicate. For
other ways to reach us, see the
last page of this issue.

JULY/AUGUST 2015

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=7&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=7&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=7&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=7&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=7&exitLink=http%3A%2F%2Fwww.pcworld.com%2Farticle%2F2044412
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=7&exitLink=mailto%3Ajavamag_us%2540oracle.com%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=7&exitLink=mailto%3Ajavamag_us%2540oracle.com%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=7&exitLink=http%3A%2F%2Fwww.oraclejavamagazine-digital.com%2Fjavamagazine%2Fjuly_august_2015%3Fpg%3D1%23pg1

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

08

//events /

PHOTOGRAPH BY BOBI/GETTY IMAGES

Devoxx Belgium NOVEMBER 9–13
ANTWERP, BELGIUM
By developers for developers, this event
has 200 speakers and 3,500 attend-
ees from 40 countries. Tracks this year
include Java SE, JVM languages, and
server-side Java, as well as cloud and big
data, mobile, and architecture and secu-
rity, among others.

W-JAX 15
NOVEMBER 2–6
MUNICH, GERMANY
The W-JAX conference covers
current and future-oriented
technologies from Java, Scala,
Android, and web technologies
to agile development models
and DevOps.

J-Fall 2015
NOVEMBER 5
EDE, NETHERLANDS

The annual Java conference
organized by the Dutch Java
User Group (NLJUG) typically
sells out and has outgrown its
usual venue. This year, J-Fall
will take place in the CineMec
in Ede.

Devoxx Morocco
NOVEMBER 16–18
CASABLANCA, MOROCCO
Formerly the JMaghreb confer-
ence, this event is a university
day of training, workshops, and
labs followed by conference
days of sessions on software
development, web, mobile,
gaming, security, methodol-
ogy, Internet of Things, and
cloud. The Decision Makers
evening includes discussion of
issues related to the IT industry
in Morocco.

QCon San Francisco 2015
NOVEMBER 16–20
SAN FRANCISCO, CALIFORNIA
A practitioner-driven software
development conference, QCon
is designed for technical team
leads, architects, engineering
directors, and project manag-
ers who influence innovation
in their teams. Tracks this year
include Taking Java to the Next

Level and The Dark Side of
Security. The last two days are
devoted to workshops.

Codemotion Milan
NOVEMBER 18–21
MILAN, ITALY
This conference is open to
users of all languages and
platforms. It offers full-day
workshops on the first two
days, followed by keynotes
and conference sessions.

Codemotion Spain
NOVEMBER 27–28
MADRID, SPAIN
This two-day event draws
2,000 attendees, represents
more than 30 communities,
and features coding lectures
and workshops. Activities for
startups, recruiting, and net-
working are included.

Clojure eXchange 2015
DECEMBER 3–4
LONDON, ENGLAND
Meet with the world’s lead-
ing experts, learn how to use
Clojure with your team, and
discuss war stories with your
peers. Both days will feature a
mixture of talks covering vari-
ous aspects of Clojure devel-

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=8&exitLink=http%3A%2F%2Fwww.oracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=8&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=8&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=8&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=8&exitLink=http%3A%2F%2Fwww.devoxx.com%2F
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=8&exitLink=https%3A%2F%2Fjax.de%2Fwjax2015%2F
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=8&exitLink=http%3A%2F%2Fwww.nljug.org%2Fjfall%2F2015%2F
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=8&exitLink=http%3A%2F%2Fwww.devoxx.com%2F
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=8&exitLink=http%3A%2F%2Fwww.qconsf.com
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=8&exitLink=http%3A%2F%2Fmilan2015.codemotionworld.com
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=8&exitLink=http%3A%2F%2F2015.codemotion.es
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=8&exitLink=https%3A%2F%2Fskillsmatter.com%2Fconferences%2F6861-clojure-exchange-2015

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

09

//events /

opment: from libraries to music,
from ClojureScript to data.

Groovy and Grails eXchange 2015
DECEMBER 14–15
LONDON, ENGLAND
Stay ahead of the curve and hear
the 2016 roadmap for Groovy
and Grails from core commit-
ters and Groovy authorities
Guillaume Laforge and Graeme
Rocher. Engage with other lead-
ing experts and fellow enthusiasts
and learn the latest innovations
and practices.

Jfokus
FEBRUARY 8–10, 2016
STOCKHOLM, SWEDEN
Jfokus has run for eight years

and is the largest annual Java
developer conference in Sweden.
Conference topics include Java SE
and Java EE, front end and web,
mobile, continuous delivery and
DevOps, Internet of Things, cloud
and big data, future and trends,
alternative JVM languages, and
agile development.

DevNexus 2016
FEBRUARY 15–17, 2016
ATLANTA, GEORGIA
DevNexus is a conference draw-
ing 1,700 developers, with 6 work-
shops, 12 tracks, and 120 presen-
tations. Featured tracks include
HTML5 and JavaScript, Java SE/
Java EE/Spring, and data and
integration.

ConFoo 2016
FEBRUARY 22–26, 2016
MONTREAL, QUEBEC, CANADA
ConFoo is a multitechnology con-
ference for web developers, fea-
turing about 150 presentations
by popular international speak-
ers. Past sessions have included
Testing Java EE Applications Using
Arquillian by Reza Rahman and
Hybrid Mobile Development with
Apache Cordova and Java EE 7 by
Ryan Cuprak.

Embedded World 2016
FEBRUARY 23–25, 2016
NUREMBERG, GERMANY
The 14th annual gathering of
embedded system developers
will explore the latest develop-
ments, define trends, and once
again present the key areas of
focus for future developments.
This is where hardware, software,
and system development engi-
neers come together to turn the
next milestones of the Internet of
Things into reality.

Apache Hadoop Innovation Summit
FEBRUARY 25–26, 2016
SAN DIEGO, CALIFORNIA
With presentations from more
than 25 hands-on industry speak-

ers, topics covered will include
MapReduce and Spark, building
privacy-protected data systems,
scalable data curation, best prac-
tices, and architectural consider-
ations for Hadoop applications.

Riga Dev Day
MARCH 2–4, 2016
RIGA, LATVIA
This event is a joint project by
Google Developer Group Riga, Java
User Group Latvia, and Oracle User
Group Latvia. By and for software
developers, Riga Dev Day focuses
on 25 of the most-relevant topics
and technologies for that audi-
ence. Tracks include JVM and web
development, databases, DevOps,
and case studies.

Have an upcoming confer-
ence you’d like to add to our
listing? Send us a link and a
description of your event at
least four months in advance at
javamag_us@oracle.com. We’ll
include as many as space permits.

PHOTOGRAPH BY TANGMAN PHOTOGRAPHY/GETTY IMAGES

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=9&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=9&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=9&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=9&exitLink=https%3A%2F%2Fskillsmatter.com%2Fconferences%2F6863-groovy-grails-exchange-2015
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=9&exitLink=http%3A%2F%2Fwww.jfokus.se%2Fjfokus%2F
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=9&exitLink=http%3A%2F%2Fwww.devnexus.com
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=9&exitLink=http%3A%2F%2Fconfoo.ca
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=9&exitLink=https%3A%2F%2Fwww.embedded-world.de%2Fen%2F
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=9&exitLink=https%3A%2F%2Ftheinnovationenterprise.com%2Fsummits%2Fapache-hadoop-innovation-summit-san-diego-2016
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=9&exitLink=http%3A%2F%2Frigadevday.lv
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=9&exitLink=mailto%3Ajavamag_us%2540oracle.com%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=9&exitLink=http%3A%2F%2FORACLE.COM%2FJAVAMAGAZINE

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

10

Few can doubt that Java is an
important language for the
Internet of Things (IoT)—not
only on the back-end serv-
ers that aggregate data from
thousands of devices, but on
the devices themselves. The
Raspberry Pi, one of the most
popular hardware platforms
for developing IoT projects, has
been able to run Java SE since
2013 (previously it could run
OpenJDK). Since then Java SE has
been bundled with the Raspbian
image, which is the bootable OS
image for the device.

Most projects built today on
the Raspberry Pi are undertaken
by hobbyists, in part because
of its remarkable ease of use:
only a modicum of knowledge is
required to get up and running.
The hardware is comparatively
straightforward, and the key
obstacles consist principally of
understanding the interactions
between the software and the
hardware. This book is an intro-

duction to this world for pro-
grammers who are already com-
petent in Java programming but
know little about the Raspberry
Pi, much less how to program it.

The authors have written for
Java Magazine in the past, and
they take an informal, hands-
on approach.

The first of the nine chapters
takes you through the device
itself and explains how it works.
The second chapter is a detailed
explanation of how to set up
a Java programming environ-
ment using NetBeans. It then
starts in with a simple, but not
trivial, project: interacting with
a scale and a thermocouple to
make a perfect cup of coffee by
measuring the beans and moni-
toring the water temperature.
(This project was written up by
the lead author in the May/June
issue, which shows the conge-
nial, informative style he uses.)

There follow projects that edu-
cate the reader on the basic use

of the general-purpose input/
output (GPIO) capabilities and
other functions. These projects,
like those that follow, contain
notes for different versions of
the Raspberry Pi and provide
frequent links to external sites
for obtaining software pack-
ages and hardware extensions.
In many ways, they’re a guide
to the Raspberry Pi’s ecosystem.
Then, the authors get into proj-
ects that include interacting with
RFID chips and building a robot,
a drone control center, and a
game console with Nintendo
emulation.

My only complaint is that this
book lacks an appendix contain-
ing reference information, so if
you want to refer back to some
hardware details, you need to
remember in which project it
was first presented. Other than
this minor detail, this book is
by far the best introduction I’ve
seen to Java programming on the
Raspberry Pi. —Andrew Binstock

//java books /
RASPBERRY PI WITH JAVA: PROGRAMMING THE INTERNET OF THINGS (IOT)
By Stephen Chin and James Weaver
Oracle Press

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=10&exitLink=http%3A%2F%2Fwww.oracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=10&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=10&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=10&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=10&exitLink=http%3A%2F%2Fwww.oraclejavamagazine-digital.com%2Fjavamagazine_open%2F20150506%3Fpg%3D32%23pg32
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=10&exitLink=http%3A%2F%2Fwww.oraclejavamagazine-digital.com%2Fjavamagazine_open%2F20150506%3Fpg%3D32%23pg32
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=10&exitLink=http%3A%2F%2Fwww.amazon.com%2FRaspberry-Pi-Java-Programming-Internet%2Fdp%2F0071842012%2F

Written by leading Java experts, Oracle Press books offer the most defi nitive,
complete, and up-to-date coverage of Java available.

www.OraclePressBooks.com • @OraclePressAvailable in print and as eBooks

Your Destination for Java Expertise

Raspberry Pi with Java:
Programming the

Internet of Things (IoT)
Stephen Chin, James Weaver

Use Raspberry Pi with Java to create
innovative devices that power the

internet of things.

Introducing JavaFX 8
Programming
Herbert Schildt

Learn how to develop dynamic JavaFX
GUI applications quickly and easily.

Java: The Complete Reference,
Ninth Edition
Herbert Schildt

Fully updated for Java SE 8, this
definitive guide explains how to

develop, compile, debug, and run
Java programs.

OCA Java SE 8 Programmer I
Study Guide (Exam 1Z0-808)
Edward Finegan, Robert Liguori

Get complete coverage of all
objectives for Exam 1Z0-808.

Electronic practice exam questions
are included.

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fwww.OraclePressBooks.com
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fwww.twitter.com%2Foraclepress

Developers who recall the time
when Java first came to promi-
nence will remember that a key
quest in those days was the con-

cept of reusability. Object orientation had
only recently come to the fore and there
was considerable hope that objects might
provide small, atomic components that
could be stored in some sort of accessible
repository for developers to share. The
goal was to avoid having developers con-
stantly write their own implementations
of the common data structures, algo-
rithms, and boilerplate. Programmers
using C, with its minuscule standard
library, surely recollect the pain point
that reusability sought to address: getting
out of writing yet another implementa-
tion of linked lists.

This original vision was fulfilled using
a slightly less granular unit: the library.

And today, a robust set of libraries is the
hallmark of widely used languages such
as C++, C#, Python, and others—including
Java. In fact, Java has arguably the largest
ecosystem of libraries to choose from.

This issue of Java Magazine focuses
on several little-known libraries that
emphasize ease of use for the developer:
JCommander for handling the command
line simply, despite supporting a wealth
of complex options (page 13); Byte Buddy
for generating or modifying bytecodes
without requiring deep knowledge of
bytecode syntax (page 19); and jsoup, a
smartly designed Java library for pars-
ing HTML (page 24). To round things out,
we’ve included some rich nerd stimula-
tion with a detailed article on how the
JVM locates and loads libraries (page 30).

Did we miss a library we should have
covered? Let us know. —Andrew Binstock

Libraries:
FINDING NEW GEMS

12ART BY I-HUA CHEN

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=12&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=12&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=12&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=12&exitLink=http%3A%2F%2FORACLE.COM%2FJAVAMAGAZINE

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

13

//libraries /

A few years ago, I found myself needing to write an appli-
cation that would be used mostly from the command

line. It was a fairly ambitious project that would require com-
plex command-line parameter parsing. So, naturally, my first
instinct was to look for a library that would allow me to spec-
ify the command-line syntax of my application easily while
remaining flexible. While I did find a few libraries for that
purpose, they all struck me as being quite antiquated, using
ideas and practices that even predate Java. In addition, they all
failed to take advantage of Java’s latest features.

So I started playing with a few ideas and next thing I knew,
I had completely abandoned my initial idea and instead, I cre-
ated JCommander: a modern, open source library designed to
make it easy to parse command-line arguments while cover-
ing as many styles of argument syntax as possible. The argu-
ments are not limited to strings, numbers, and commands,
but can also include lists, arbitrary Java objects, passwords,
and so forth. Let’s have a look.

Quick Overview
The first realization I had when designing JCommander
was that at the end of the day, once all the options on the
command line have been parsed, the results end up in a
Java object. Typically, it’s a very simple object, referred to
as a POJO (Plain Old Java Object), and it is often just a con-

JCommander: A Better Way to
Parse Command Lines
An easy-to-use library that exploits annotations to parse the most-complex command lines

CÉDRIC BEUST
BIO

tainer with no logic methods in it—just fields with getters
and setters.

Let’s write a quick “hello world” program that allows us to
parse the following line:

tool --name Cedric --verbose

We can capture the parsed information in the following
class:

class Args {
 boolean verbose;
 String name;
}

To do this, we use annotations to tell JCommander how to
initialize the class.

class Args {
 @Parameter(names = "--verbose")
 boolean verbose;

 @Parameter(names = "--name")
 String name;
}

Now, all we need to do is initialize JCommander with an

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=13&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=13&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=13&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=13&exitLink=http%3A%2F%2Fjcommander.org
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=13&exitLink=http%3A%2F%2FORACLE.COM%2FJAVAMAGAZINE
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=13&exitLink=javascript%3AopenPopup%28%27Java_ND15_Beust_BIO_p13_1447719129338%27%29

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

14

//libraries /

instance of this class, pass it the command-line parameters
and, once the parsing is done, the instance will contain all the
right values, all properly assigned to the correct fields:

public static void main(String[] argv) {
 Args args = new Args();
 new JCommander(args).parse(argv);

 System.out.println("Hello " + args.name
 + ", verbose is: " + args.verbose)
}

Annotations are a very good match for this kind of
approach for several reasons: the syntax is very cleanly laid
out in the argument class, and just reading the source shows
what the program accepts. There are also several other
advantages that I will explain shortly.

The Power of Annotations
The most salient aspect of JCommander’s approach is the use
of annotations. I’ve always been a fan of Java’s annotations,
but I’m probably a bit biased because I was a member of the
committee that designed them.
Still, even now, ten years later,
I continue to think they enable
a style of programming in Java
that’s exceptionally expressive.

The important thing you need
to remember about annotations
is that they are a perfect match
when you are trying to attach
additional meaning to Java ele-
ments such as classes, fields, or
methods. Any information that is
not specifically tied to a Java
element—such as package infor-
mation, host names, or port

names—should be specified externally. With this simple rule
in mind, it’s pretty clear that annotations are the right choice
for JCommander.

In addition, annotations can have multiple attributes,
which allows you to refine the metadata you are attaching to
the Java elements. I showed only one attribute in the previous
code, names, but here are a few others:

@Parameter(names = "{ --output, "-o" },
 required = true,
 description = "The output file")
String file;

Because I specified the required attribute, JCommander
throws an exception if this parameter is omitted:

Exception in thread "main" com.beust.jcommander.Pa-
rameterException: The following option is required:
--output

Note that names is plural: you can specify multiple names
for the attribute. This means the following two command
lines are equivalent:

tool --out file
tool -o file

This capability addresses the common problem of users
having different preferred styles for specifying command-
line options.

Usage Explanation
I mentioned the attribute description previously because
JCommander gives it special treatment: whenever a param-
eter has this attribute, it will automatically be collected and
used to present a full description of the accepted syntax. If
you ever want to display such a help message to users (for

The most
salient aspect of
JCommander’s
approach is the
use of annotations.
They enable a style of
programming in Java
that’s exceptionally
expressive.

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=14&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=14&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=14&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=14&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

15

//libraries /

example, after they entered an invalid syntax), all you need to
do is call usage() on your JCommander object and something
like this will be displayed:

Usage: <main class> [options]
 Options:
 --debug Debug mode (default: false)
 * --groups Group names to be run
 --log, -verbose Level of verbosity (default: 1)
 --long A long number (default: 0)

This description includes as much information about the
syntax as JCommander can gather based on your annotations
of the options: their names, whether they are required (the
asterisk denotes that), their default values and, of course,
their descriptions.

This feature expresses another important principle in pro-
gramming: don’t repeat yourself. If you specified the syntax
once in your argument class, you should not have to duplicate
that effort if you want to display a help banner. JCommander
takes care of this for you automatically.

Types
JCommander understands a lot of types by default, and all
these types lead to the concept of arity. Arity defines how
many values a parameter requires, for example:
■■ A boolean parameter needs no values: its value is true if it is

present and false if it’s omitted.
■■ A scalar (int, long, string, and so on) needs one value, for

example, --logLevel 3.
■■ A list needs multiple values.

JCommander automatically infers these arities based on the
type of your parameters. Additionally, if you are not satisfied
with the default arities, you can define your own. This allows
other kinds of syntax. For example, you can specify that a
boolean has an arity of 1. This option would support syntax
such as:

tool --verbose true

JCommander even supports variable
arities, which are parameters that can
take any number of values, such as:
--files file1 file2 file3.

These default types are sometimes
not sufficient and your application
might require even more-complex
options to be specified. For example,
we specified earlier an output file in
the form of a string. Wouldn’t it be
convenient if instead, JCommander
could deliver a real java.io.File object
instead of a string? This is where type
converters come in handy.

Let’s modify our previous example to specify a real Java file
instead of a string:

@Parameter(names = "-file",
 converter = FileConverter.class)
File file;

Note the additional converter attribute, which we need to
implement:

public class FileConverter
 implements IStringConverter<File> {
 @Override
 public File convert(String value) {
 return new File(value);
 }
}

You can specify any number of type converters and
JCommander will automatically use them based on the type
of the field. It is that simple.

JCommander
can support the
most-complex
codebases and
syntax styles, so
there are several
features that help
you organize your
code cleanly.

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=15&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=15&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=15&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=15&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

16

//libraries /

Syntax Flexibility
To support as many syntax styles as possible, JCommander
allows you to specify separators other than spaces. For exam-
ple, instead of java Main -log 3 you might want to use
java Main -log=3 or java Main -log:3, which can all be
specified with the separators attribute:

@Parameters(separators = "=")
public class SeparatorEqual {
 @Parameter(names = "-level")
 private Integer level = 2;
}

Validation
As your command grows complex, it will become tricky to
decide whether a given command line is valid, because mul-
tiple options can interact with each other in various ways.
JCommander can provide some assistance here by making it
easy to validate your parameters. The syntax is very similar
to the one we just covered with type converters:

@Parameter(names = "-age",
 validateWith = PositiveInteger.class)
private Integer age;

And here is the implementation of this validator:

public class PositiveInteger
 implements IParameterValidator {
 public void validate(String name, String value)
 throws ParameterException {
 int n = Integer.parseInt(value);
 if (n < 0) {
 throw new ParameterException(
 "Parameter " + name + " should be positive"
 + (found " + value +")");
 }
 }

}

Complex Commands
You might be familiar with a few tools that use subcommands
to express sophisticated invocation syntax. For example, git
offers this kind of syntax when multiple subcommands have
their own syntax: if you call git commit, then you can spec-
ify parameters such as --author or –amend, while git add
accepts -i. It’s easy to implement this kind of syntax with
JCommander.

First of all, you define your commands in their own classes.
Here is commit:

@Parameters(separators = "=",
 commandDescription = "Record changes")
private class CommandCommit {

 @Parameter(description = "The list of files")
 private List<String> files;

 @Parameter(names = "--amend", description =
 "Amend")
 private Boolean amend = false;

 @Parameter(names = "--author")
 private String author;
}

And here is add:

@Parameters(commandDescription =
 "Add file to the index")
public class CommandAdd {

 @Parameter(description =
 "File patterns for the index")
 private List<String> patterns;

 @Parameter(names = "-i")

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=16&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=16&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=16&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=16&exitLink=http%3A%2F%2FORACLE.COM%2FJAVAMAGAZINE

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

17

//libraries /

 private Boolean interactive = false;
}

Then, you add these commands to JCommander. In the
following code, I have added a few assertions at the end to
demonstrate what happens:

JCommander jc = new JCommander();

CommandAdd add = new CommandAdd();
jc.addCommand("add", add);
CommandCommit commit = new CommandCommit();
jc.addCommand("commit", commit);

jc.parse("-v", "commit", "--amend",
 "--author=cbeust", "A.java", "B.java");

Assert.assertTrue(cm.verbose);
Assert.assertEquals(jc.getParsedCommand(),
 "commit");
Assert.assertTrue(commit.amend);
Assert.assertEquals(commit.author, "cbeust");
Assert.assertEquals(commit.files,
 Arrays.asList("A.java", "B.java"));

As you can see from the assertions, the code has parsed
the command line correctly and placed the arguments in the
expected variables.

Architecture
JCommander can support the most-complex codebases and
syntax styles, so there are several other features that help
you organize your code cleanly.
Multiple argument objects. As your syntax grows, you might
find yourself having one gigantic argument class that
becomes a bit difficult to maintain. JCommander lets you
break this class into multiple classes so that you can organize
the options in a more intuitive way:

CommandRead argRead = new CommandRead();
CommandWrite argWrite = new CommandWrite()
JCommander jc = new JCommander(argRead, argWrite);
jc.parse(argv);

// argRead and argWrite are now both initialized

Parameter delegates. As you write multiple programs, you
might find yourself wanting to reuse existing arg classes,
which is something you can do with parameter delegates. In
short, parameter delegates are pointers to other arg classes.
In the previous example, I decided to create two different
arg classes and declare these directly in JCommander; but
instead, I might want to delegate to them. This is done with
the @ParameterDelegate annotation:

class MainParams {
 @Parameter(names = "-v")
 private boolean verbose;

 @ParametersDelegate
 private ArgRead argRead = new ArgRead();

 @ParametersDelegate
 private ArgWrite argWrite = new ArgWrite();
}

After this declaration, I need to declare one argument
parameter, MainParams, and it will contain the aggregation
of both ArgRead and ArgWrite.

Polyglotism
Thanks to the JVM’s ability to support multiple languages,
JCommander is trivial to use from any JVM language. I’m cur-
rently using it on a Kotlin project:

class Args {
 @Parameter(names = arrayOf("--buildFile"))

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=17&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=17&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=17&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=17&exitLink=http%3A%2F%2FORACLE.COM%2FJAVAMAGAZINE

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

18

//libraries /

 var buildFile: String? = null

 @Parameter(names = arrayOf("--tasks"))
 var tasks: Boolean = false
}

fun main(argv: Array<String>) {
 val args = Args()
 JCommander(args).parse(*argv)
 println("Args: ${args}"")
}

Here is an example in Groovy:

import com.beust.jcommander.*

class Args {
 @Parameter(names = ["-f", "--file"],
 description = "File to load.")
 List<String> file
}

new Args().with {
 new JCommander(it, args)
 file.each {
 println "file: ${new File(it).name}"
 }
}

And here is the same example in Scala:

import java.io.File
import com.beust.jcommander.JCommander
import com.beust.jcommander.Parameter
import collection.JavaConversions._

object Main {
 object Args {
 @Parameter(
 names = Array("-f", "--file"),

 description = "File to load.")
 var file: java.util.List[String] = null
 }

 def main(args: Array[String]): Unit = {
 new JCommander(Args, args.toArray: _*)
 for (filename <- Args.file) {
 val f = new File(filename)
 printf("file: %s\n", f.getName)
 }
 }
}

Conclusion
JCommander has many other features, including the
following:
■■ Internationalization, so your description texts can be

properly localized
■■ Parameter hiding
■■ Allowing abbreviated options
■■ Optional case insensitivity
■■ Default values and default value factories
■■ Dynamic parameters (parsing parameters that are not

known at compile time)
In sum, JCommander is a flexible library for parsing

command-line parameters that also assists you in mak-
ing your parsing and interpreting easy to maintain and
evolve. </article>

LEARN MORE
• JCommander on GitHub

• JCommander discussion group

• JCommander example file

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=18&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=18&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=18&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=18&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=18&exitLink=http%3A%2F%2Fgithub.com%2Fcbeust%2Fjcommander
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=18&exitLink=https%3A%2F%2Fgroups.google.com%2Fforum%2F%23%21forum%2Fjcommander
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=18&exitLink=https%3A%2F%2Fgithub.com%2Fcbeust%2Ftestng%2Fblob%2Fmaster%2Fsrc%2Fmain%2Fjava%2Forg%2Ftestng%2FCommandLineArgs.java

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

19

//libraries /

An often overlooked feature of the Java platform is the abil-
ity to modify a program’s bytecode before it is executed

by the JVM’s interpreter or just-in-time (JIT) compiler. While
this capability is used by tools, such as profilers and libraries
that do object-relational mapping, it is rarely used by applica-
tion developers. This represents untapped potential, because
generating code at runtime allows for easy implementation of
cross-cutting concerns such as logging or security, changing
the behavior of third-party libraries—sometimes in the form
of mocking—or writing performance data collection agents.

Unfortunately, generating bytecode at runtime has been
difficult until recently. There are presently three major
libraries for generating bytecode:
■■ ASM
■■ cglib
■■ Javassist

These libraries were all designed to write and modify spe-
cific bytecode instructions from Java code. But to be able
to use them, you need to understand how bytecode works,
which is quite different than understanding Java source
code. In addition, these libraries are harder to use and test
than Java code, because the Java compiler cannot verify
whether, for example, the argument order of a method call
matches its signature or whether it violates the Java Language
Specification. Lastly, due to their age, these libraries do not

Runtime Code Generation
with Byte Buddy
Create agents, run tools before main() loads, and modify classes on the fly.

FABIAN LANGE
BIO

all support the new Java features, such as annotations, gener-
ics, default methods, and lambdas.

The following example illustrates how you would imple-
ment a method that calls another static method with a single
string parameter using the ASM library:

methodVisitor.visitVarInsn(Opcodes.ALOAD, 0);
methodVisitor.visitMethodInsn(
 Opcodes.INVOKESTATIC
 "com/instana/agent/Agent"
 "record"
 "(Ljava/lang/String;)V"
)

cglib and Javassist are not much different. They all require
usage of bytecode and String representation of signatures,
which as you can see looks more like assembly language,
rather than Java.

Byte Buddy is a new library that takes a different approach
to solving this problem. Byte Buddy’s mission is to make
runtime code generation accessible to developers who have
little to no knowledge of Java instructions. The library also
aims to support all Java features, and is not limited to gen-
erating dynamic implementations for interfaces, which is the
approach used in the JDK’s built-in proxy utilities. The Byte
Buddy API abstracts away all bytecode operators behind plain

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=19&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=19&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=19&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=19&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=19&exitLink=http%3A%2F%2Fasm.ow2.org
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=19&exitLink=https%3A%2F%2Fgithub.com%2Fcglib%2Fcglib
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=19&exitLink=http%3A%2F%2Fjboss-javassist.github.io%2Fjavassist
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=19&exitLink=http%3A%2F%2Fbytebuddy.net%2F
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=19&exitLink=http%3A%2F%2Fdocs.oracle.com%2Fjavase%2F8%2Fdocs%2Fapi%2Fjava%2Flang%2Freflect%2FProxy.html
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=19&exitLink=javascript%3AopenPopup%28%27Java_ND15_Lange_BIO_p19_1447719840879%27%29

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

20

//libraries /

old Java method calls. However, it retains a backdoor to the
ASM library, on top of which Byte Buddy is implemented.

Note: All the examples in this article are using the 0.6 API
of Byte Buddy.

Hello World, Byte Buddy
The following HelloWorld example from the Byte Buddy
documentation (see Listing 1) presents everything you need
to create a new class at runtime in a concise way.

Listing 1.
Class<? extends Object> clazz = new ByteBuddy()
 .subclass(Object.class)
 .method(ElementMatchers.named("toString"))
 .intercept(FixedValue.value("Hello World!"))
 .make()
 .load(getClass().getClassLoader(),
 ClassLoadingStrategy.Default.WRAPPER)
 .getLoaded();
assertThat(clazz.newInstance().toString(),
 is("Hello World!"));

All of Byte Buddy’s APIs are builder-style fluent APIs sup-
porting the functional style. You start off by telling Byte
Buddy which class you want to subclass. While in this
example you simply subclass Object, you could subclass any
non-final class, and Byte Buddy will ensure that the generic
return type will be Class<? extends SuperClass>. Now
that you have a builder for your subclass, you can tell Byte
Buddy to intercept calls to a method that is named toString
and return a fixed value instead of calling the method that is
already defined by java.lang.Object.

You might wonder about the term intercept here. Usually
when you subclass something, you typically use the term
override when you change the implementation of a superclass
method in a subclass. Intercept is a term from aspect-oriented
programming (AOP), which describes a more powerful con-

cept of “what to do” when a method is called.
After you finish declaring how the subclass behaves, you

invoke make to get a so-called Unloaded representation of
your class. This representation behaves like a .class file and,
in fact, it even supports functions to store the class file.

Finally, as shown in Listing 1, you load the class using a class
loader and get a reference to the loaded class. When getting
started with Byte Buddy, the ClassLoadingStrategy used to
do this does not usually matter. However, there are situations
in which you need a specific class loader to load the new class
for visibility purposes or for enforcing a specific loading order.

Note that a class generated by Byte Buddy is indistinguish-
able from regular classes. Unlike other libraries or proxies,
there are no traces left behind. The generated code fully
resembles the code that a Java compiler would create for imple-
menting such a subclass.

ElementMatchers and Implementations
When you use Byte Buddy to add or change behavior of
classes, the most common task is to look up fields, construc-
tors, and methods. To ease these tasks Byte Buddy comes
with plenty of useful predefined ElementMatchers, such as
hasParameter() and isAnnotatedWith(), which check
the method signature. It also has convenience aliases such
as isEquals() and isSetter(), which use common Java
naming patterns to match the method name. Using the
predefined matchers allows for a concise description of the
methods to intercept, which would otherwise be quite ver-
bose to write. Additionally, it is possible to implement a cus-
tom ElementMatcher to cover any more complex use case.

Additionally, there exist many predefined replacement
Implementations to be used in intercept(). Two exam-
ples are MethodCall, which can invoke a different method
using parameters, and Forwarding, which uses the identical
parameters to call the same method on another object.

An even more powerful interception mechanism is repre-

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=20&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=20&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=20&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=20&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

21

//libraries /

sented by MethodDelegation: When delegating to a method,
you can first execute your custom code, and then delegate the
call to the original implementation. Additionally, you can also
dynamically access the information of the original call site
using the @Origin annotation, as shown in Listing 2. When
delegating to other methods, you can also dynamically access
the information of the original call site, as shown next.

Listing 2.
public static class Agent {
 public static String record(@Origin Method m) {
 System.out.println(m + " called");
 }
}

Class<?> clazz = new ByteBuddy()
 .subclass(Object.class)
 .method(ElementMatchers.isConstructor())
 .intercept(MethodDelegation
 .to(Agent.class)
 .andThen(SuperMethodCall.INSTANCE))
 // & make instance;

MethodDelegation automatically looks up the best
match of method signatures in case multiple interception
targets are available. While the lookup is powerful and can
be customized, I recommend keeping the lookup simple
and understandable. After the method has been invoked,
the original call continues, thanks to andThen(Super
MethodCall.INSTANCE).

The target method can take a couple of annotated param-
eters. To access the arguments of the originating method,
you can use @Argument(position) or @AllParameters.
To obtain information about the originating method itself,
you can use @Origin. The type of that parameter can be
java.lang.reflect.Method, java.lang.Class, or even
java.lang.invoke.MethodHandle (the latter, if used with

Java 7 or later). These arguments provide information about
where the method has been called from, which could be use-
ful for debugging, or even about taking different code paths,
in the event that the same method is an interception target
for multiple methods.

To call the originating method or its super method from
the target method, Byte Buddy provides @DefaultCall and
@SuperCall parameters.

Mocking
Sometimes you want to write a unit test for a scenario that
can happen at runtime, but you cannot provoke that scenario
reliably for the purpose of the test, if at all. For instance, in
Listing 3, the random number generator needs to produce a
specific result for you to test the control flow.

Listing 3.
public class Lottery {
 public boolean win() {
 return random.nextInt(100) == 0;
 }
}

Random mockRandom = new ByteBuddy()
 .subclass(Random.class)
 .method(named("nextInt"))
 .intercept(value(0))
 // & make instance;

Lottery lottery = new Lottery(mockRandom);
assertTrue(lottery.win());

Byte Buddy provides various kinds of interceptors, so writing
mocks, or spies, is easy. However, for more than a few mocks,
I would recommend switching to a dedicated mocking library.
In fact, version 2 of the popular mocking library Mockito is
currently being rewritten to be based on Byte Buddy.

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=21&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=21&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=21&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=21&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=21&exitLink=http%3A%2F%2Fmockito.org

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

22

//libraries /

So far, I have used subclass() to create what is essentially
a subclass on steroids. Byte Buddy has two other modes of
operation: rebase and redefine. Both options change the
implementation of the specified class; while rebase main-
tains existing code, redefine overwrites it. However, these
modifications come with a limitation: to change already
loaded classes, Byte Buddy needs to work as a Java agent
(more on that shortly).

For usage in unit testing or other special cases in which you
can ensure that Byte Buddy loads a class for the first time,
you can change the implementation during load. For that,
Byte Buddy supports a concept called TypeDescription,
which represents Java classes in an unloaded state. You can
populate a pool of them from the (not yet loaded) classpath
and modify classes before loading them. For example, I can
modify the Lottery class in Listing 3, as shown in Listing 4.

Listing 4.
TypePool pool = TypePool.Default.ofClassPath();
new ByteBuddy()
 .redefine(pool.describe("Lottery").resolve(),
 ClassFileLocator.ForClassLoader.ofClassPath())
 .method(ElementMatchers.named("win"))
 .intercept(FixedValue.value(true))
 // & make and load;

assertTrue(new Lottery().win());

Note: You cannot use Lottery.class for the call to
describe here, because this would load the class before Byte
Buddy can rewrite it. Once a Java class is loaded, it is not nor-
mally possible to unload that class.

AOP Agent with Byte Buddy
In the following example, I create a performance monitor-
ing and logging agent. It will intercept calls to JAX-WS end-
points and print how long the call took. Such an agent needs

to follow conventions explained in the Javadoc for java.lang
.instrument. It is launched using the -javaagent command-
line argument and executed before the actual main method
(hence, the name premain). Usually agents install a hook for
themselves, which is triggered before the regular program
loads classes. This bypasses the limitation of not being able to
change loaded classes. Agents are stackable, and you can use
as many as you like. Listing 5 shows the code for an agent.

Listing 5.
public class Agent {
 public static void premain(String args,
 Instrumentation inst) {
 new AgentBuilder.Default()
 .rebase(isAnnotatedWith(Path.class))
 .transform((b, td) ->
 b.method(
 isAnnotatedWith(GET.class)
 .or(isAnnotatedWith(POST.class)))
 .intercept(to(Agent.class)))
 .installOn(inst);
 }

 @RuntimeType
 public static Object profile(@Origin Method m,
 @SuperCall Callable<?> c)
 throws Exception {
 long start = System.nanoTime();
 try {
 return c.call();
 } finally {
 long end = System.nanoTime();
 System.out.println("Call to " + m + " took "
 + (end - start) +" ns");
 }
 }
}

After obtaining a default AgentBuilder, I tell it which

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=22&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=22&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=22&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=22&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=22&exitLink=http%3A%2F%2Fdocs.oracle.com%2Fjavase%2F8%2Fdocs%2Fapi%2Fjava%2Flang%2Finstrument%2Fpackage-summary.html

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

23

//libraries /

classes it should rebase. This example will modify only
classes having the javax.ws.rs.Path annotation. Next,
I tell the builder how to transform those classes. In this
example, the agent will intercept calls to either GET or POST
annotated methods and delegate to the profile method.
For this to work, the agent needs to be hooked into the
Instrumentation using installOn().

The profile method itself uses three annotations:
RuntimeType, to tell Byte Buddy that the return type
Object needs to be adjusted to the real return type used by
the method it intercepts; Origin, to obtain a reference to the
actual method intercepted, which is used to print its name;
and SuperCall, to actually perform the original method call.
In contrast to the previous example, I need to perform the
super call myself, because I want to be able to have my code
executed before and after the method call—so that I can per-
form the timing.

Comparing the way Byte Buddy implements method inter-
ception to the default Java InvocationHandler, you can see
that the Byte Buddy method is much more optimized due to
the fact that the interception will pass in only the required
arguments, while InvocationHandler must fulfill the fol-
lowing interface:

Object invoke(Object proxy,
 Method method, Object[] args)

This benefit is especially noticeable for primitive argu-
ments or return types, which need to be autoboxed. The addi-
tional RuntimeType annotation causes Byte Buddy to reduce
any boxing to a minimum. Even though the JVM mostly opti-
mizes away simple boxings, this is not always true for com-
plex interfaces such as that of the InvocationHandler.

Using an Agent Without -javaagent
Using an agent to generate and modify code at runtime is a

powerful technique; however, forcing the -javaagent argu-
ment to make it work is sometimes inconvenient. Byte Buddy
comes with a handy convenience feature that uses the Java
Attach API, which originally was designed to load diagnostic
tooling at runtime. It attaches the agent to the currently run-
ning JVM. You need the additional byte-buddy-agent.jar file,
which contains the utility class ByteBuddyAgent. With that,
you invoke ByteBuddyAgent.installOnOpenJDK(), which
does the same thing that starting the JVM with -javaagent
did. The only other difference with this approach is that
you do not invoke installOn(inst), but rather you invoke
installOnByteBuddyAgent().

Conclusion
Despite the existence of dynamic proxies in the JDK and
three popular, third-party, bytecode-manipulation libraries,
Byte Buddy fills an important gap. Its fluent API uses gener-
ics, so you do not lose track of the actual type you are modi-
fying, which can easily happen using other approaches. Byte
Buddy also comes with a rich set of matchers, transformers,
and implementations, and it enables their use via lambdas,
which results in relatively concise and readable code.

As a result, Byte Buddy is fully understandable by develop-
ers who are not accustomed to reading bytecodes and working
at low levels. With the upcoming version 0.7, Byte Buddy will
support all the infrastructure around generic types. This way,
Byte Buddy allows for easy interaction with generic types and
type annotations even at runtime. As someone who writes
a lot of bytecode-handling code, I both recommend and use
this library. [Byte Buddy received a Duke’s Choice Award at
this year’s JavaOne conference. —Ed.] </article>

LEARN MORE
• JVM Specification for Java 8

• Byte Buddy on Stack Overflow

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=23&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=23&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=23&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=23&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=23&exitLink=http%3A%2F%2Fdocs.oracle.com%2Fjavase%2F8%2Fdocs%2Fjdk%2Fapi%2Fattach%2Fspec%2Findex.html
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=23&exitLink=http%3A%2F%2Fdocs.oracle.com%2Fjavase%2Fspecs%2Fjvms%2Fse8%2Fhtml%2Findex.html
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=23&exitLink=http%3A%2F%2Fstackoverflow.com%2Fquestions%2Ftagged%2Fbyte-buddy

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

24

//libraries /

Today, enterprise Java web application developers use
HTML in every aspect of a project. This work is made

difficult at times because parsing HTML content is a tedious
task. Doing so without a parser framework is a most unde-
sirable task. Fortunately, there are a handful of Java-based
HTML parsers publicly available. In this article, I will focus
on one of my favorites, jsoup, which was first released as
open source in January 2010. It has been under active devel-
opment since then by Jonathan Hedley, and the code uses the
liberal MIT license.

jsoup HTML Parsing Library
Easily parse HTML, extract specified elements, validate structure, and sanitize content.

What It Is
jsoup can parse HTML files, input streams, URLs, or even
strings. It eases data extraction from HTML by offering doc-
ument object model (DOM) traversal methods and CSS and
jQuery-like selectors.

It can manipulate the content: the HTML element itself, its
attributes, or its text. It also updates older content based on
HTML 4.x to HTML5 or XHTML by converting deprecated
tags to new versions. It can also do cleanup based on white-
lists, tidy HTML output, and complete unbalanced tags

automagically. I will demon-
strate these features with some
working examples shortly.

All the examples in this article
are based on jsoup version 1.8.3,
which is the latest available ver-
sion at the time of this writing.
The complete source code for the
article is available on GitHub.

The DOM and jsoup Essentials
DOM is the language-indepen-
dent representation of the HTML
documents, which defines the
structure and the styling of the
document. Figure 1 shows the
class diagram of jsoup frame-
work classes. Later, I’ll show you

MERT ÇALIŞKAN
BIO

Figure 1: jsoup class diagram

Element DataNode
tag : Tag

Node
parentNode : Node

childNodes : List<Node>
attributes : Attributes

baseUri : String
siblingIndex : int

Attributes
attributes :

LinkedHashMap<String, Attribute>

Document
Location : String

FormElement
element : Elements

TextNode Comment XmlDeclaration
text : String

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=24&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=24&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=24&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=24&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=24&exitLink=http%3A%2F%2Fjsoup.org%2F
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=24&exitLink=http%3A%2F%2Fgithub.com%2Fjhy%2Fjsoup
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=24&exitLink=http%3A%2F%2Fgithub.com%2Fmulderbaba%2Fjsoup-examples
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=24&exitLink=javascript%3AopenPopup%28%27page24bio%27%29

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

25

//libraries /

how they map to the DOM elements.
The org.jsoup.nodes.Node abstract class is the main

element of jsoup. It represents a node in the DOM tree, which
could either be the document itself, a text node, a comment,
or an element, that is, form elements, within the document.
The Node class refers to its parent node and knows all the
parent’s child nodes.

The Element class represents an HTML element, which
consists of a tag name, attributes, and child nodes. The
Attributes class is a container for the attributes of the
HTML elements and is composed within the Node class.

Getting Started
You can obtain the latest version of jsoup from Maven’s Cen­
tral Repository with the following dependency definition.
Version 1.8.3 requires at least Java 5.

<dependency>
 <groupId>org.jsoup</groupId>
 <artifactId>jsoup</artifactId>
 <version>1.8.3</version>
</dependency>

Gradle users can retrieve the artifact with

org.jsoup:jsoup:1.8.3

The main access point class, org.jsoup.Jsoup, is the
principal way to use the functionality of jsoup. It provides
base methods that can parse either an HTML document
passed to it as a file or an input stream, a string, or an HTML
document provided through a URL. The example in Listing 1
parses HTML text and outputs first the node name of the
element and then the text owned by the HTML element, as
shown immediately below the code.

Listing 1.
public class Example1Main {

 static String htmlText = "<!DOCTYPE html>" +
 " <html>" +
 " <head>" +
 " <title>Java Magazine</title>" +
 " </head>" +
 " <body>" +
 " <h1>Hello World!</h1>" +
 " </body>" +
 "</html>";

 public static void main(String... args) {
 Document document = Jsoup.parse(htmlText);
 Elements allElements =
 document.getAllElements();
 for (Element element : allElements) {
 System.out.println(element.nodeName()
 + " " + element.ownText());
 }
 }
}

The output is

#document
html
head
title Java Magazine
body
h1 Hello World!

Ways to select DOM elements. jsoup
provides several ways to iterate
through the parsed HTML elements
and find the requested ones. You
can use either the DOM-specific
getElementBy* methods or CSS

CSS and jQuery-
like selectors
are powerful
compared with
DOM-specific
methods. They
can be combined
together to refine
selection.

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=25&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=25&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=25&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=25&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

26

//libraries /

and jQuery-like selectors. I will
demonstrate both approaches by
parsing a web page and extract-
ing all links that have HTML
<a> tags. The code in Listing 2
parses the Java Champions bio
page and extracts the link
names for all the Java
Champions marked as “New!”
(see Figure 2).

The marking was done by
adding a tag with text
New! right next to the link. So, I
will be checking for the content
of the next-sibling element of
each link.

Listing 2.
public class Example2Main {

 public static void main(String... args)
 throws IOException {
 Document document = Jsoup.connect(
 "https://java.net/website/" +
 "java-champions/bios.html")
 .timeout(0).get();

 Elements allElements =
 document.getElementsByTag("a");
 for (Element element : allElements) {
 if ("New!".equals(
 element.nextElementSibling()!=null
 ? element.nextElementSibling()
 .ownText()
 : "")) {
 System.out.println(
 element.ownText());
 }

 }
 }
}

The same extraction of the links can also be done with
selectors, as shown in Listing 3. It extracts the links that start
with href value #.

Listing 3.
public class Example3Main {

 public static void main(String... args)
 throws IOException {
 Document document = Jsoup.connect
 ("https://java.net" +
 " /website/java-champions/bios.html")
 .timeout(0).get();
 Elements allElements = document.select
 ("a[href*=#]");
 for (Element element : allElements) {
 if ("New!".equals(element
 .nextElementSibling() != null
 ? element.nextElementSibling
 ().ownText() : "")) {
 System.out.println(element
 .ownText());
 }
 }
 }
}

Selectors are powerful compared with DOM-specific meth-
ods. They can be combined together to refine selection. In the
previous code examples, we are doing the “New!” text check
by ourselves, which is trivial. The example in Listing 4 selects
the tag that contains the “New!” text, which resides
after a link that has an href starting with the value #. This
really shows the power of selectors.

Figure 2: Part of the HTML
page to be parsed

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=26&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=26&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=26&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=26&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

27

//libraries /

Listing 4.
public class Example4Main {

 public static void main(String... args)
 throws IOException {
 Document document = Jsoup.connect
 ("https://java.net" +
 ".website/java-champions/bios.html")
 .timeout(0).get();
 Elements allElements = document.select
 ("a[href*=#] ~ font:containsOwn" +
 "(New!)");
 for (Element element : allElements) {
 System.out.println(element
 .previousElementSibling()
 .ownText());
 }
 }
}

Here, the selectors locate the tag as an element.
I then call the previousElementSibling() method on it,
so as to step one element back to the link. This select()
method is available in the Document, Element, and

Elements classes. Currently, jsoup
does not support XPath queries on
selectors. More information about
selectors is available at the jsoup site.
Traversing nodes. jsoup provides
the org.jsoup.select
.NodeVisitor interface, which
contains two methods: head() and
tail(). By implementing an anony-
mous class from that interface and
passing it as a parameter to the
document.traverse() method, it is
possible to have a callback when the
node is first and last visited. The code

in Listing 5 uses this technique to traverse a simple HTML text
and outputs all node details.

Listing 5.
public class Example5Main {

 static String htmlText = "<!DOCTYPE html>" +
 "<html>" +
 "<head>" +
 "<title>Java Magazine</title>" +
 "</head>" +
 "<body>" +
 "<h1>Hello World!</h1>" +
 "</body>" +
 "</html>";

 public static void main(String... args)
 throws IOException {
 Document document = Jsoup.parse(htmlText);

 document.traverse(new NodeVisitor() {
 public void head(Node node, int depth){
 System.out.println("Node start: "
 + node.nodeName());
 }

 public void tail(Node node, int depth){
 System.out.println("Node end: " +
 node.nodeName());
 }
 });
 }
}

The output from this traversal is

Node start: #document
Node start: #doctype
Node end: #doctype
Node start: html

Starting with
version 1.6.2,
jsoup supports
parsing of XML
files with a
built-in XML
parser. Note
how easily this is
accomplished.

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=27&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=27&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=27&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=27&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=27&exitLink=http%3A%2F%2Fjsoup.org%2Fapidocs%2Forg%2Fjsoup%2Fselect%2FSelector.html

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

28

//libraries /

Node start: head
Node start: title
Node start: #text
Node end: #text
Node end: title
Node end: head
Node start: body
Node start: h1
Node start: #text
Node end: #text
Node end: h1
Node end: body
Node end: html
Node end: #document

Parsing XML files. Starting with version 1.6.2, jsoup supports
parsing of XML files with a built-in XML parser. The example
in Listing 6 parses an XML text and outputs it with appropriate
formatting. Note once again how easily this is accomplished.

Listing 6.
public class Example6Main {

 static String xml =
 "<?xml version=\"1.0\"" +
 "encoding=\"UTF8\"><entries><entry>" +
 "<key>xxx</key>" +
 "<value>yyy</value></entry>" +
 "<entry><key>xxx</key>" +
 "<value>zzz</value>" +
 "</entry></entries></xml>";

 public static void main(String... args) {
 Document doc =
 Jsoup.parse(xml, "", Parser.xmlParser());
 System.out.println(doc.toString());
 }
}

As you would expect, the output from this is

<?xml version="1.0"encoding="UTF8">
<entries>
 <entry>
 <key>
 xxx
 </key>
 <value>
 yyy
 </value>
 </entry>
 <entry>
 <key>
 xxx
 </key>
 <value>
 zzz
 </value>
 </entry>
</entries>

It’s also possible to use selectors for picking up values
from specified XML tags. The code snippet in Listing 7 selects
<value> tags that reside in <entry> tags.

Listing 7.
Document doc =
 Jsoup.parse(xml, "", Parser.xmlParser());

Elements elements = doc.select("entry value");
Iterator<Element> it = elements.iterator();
while (it.hasNext()) {
 Element element = it.next();
 System.out.println(element.nodeName() +
 " - " + element.ownText());
}

A solution to prevent
malicious HTML input
is to use a WYSIWYG
editor and filter the HTML
output with jsoup’s
whitelist sanitizer.

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=28&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=28&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=28&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=28&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

29

//libraries /

LEARN MORE
• jsoup on Stack Overflow

• jsoup recipes

• Comparison of HTML parsers

Preventing XSS attacks. Many sites
prevent cross-site scripting (XSS)
attacks by prohibiting the user
from submitting HTML content or
by enforcing the use of alternative
markup syntax, such as markdown.
An alternative solution to prevent
malicious HTML input is to use a
WYSIWYG editor and filter the HTML
output with jsoup’s whitelist sani-
tizer. The whitelist sanitizer parses
the HTML, and iterates through it
and removes the unwanted tags,
attributes, or values according to the
whitelist built into the framework.

The example in Listing 8 defines a test method that cleans
up HTML text according to a simple text whitelist. This list,
as you will see in a moment, allows only simple text format-
ting with HTML tags: b, em, i, strong, and u.

Listing 8.
@Test
public void simpleTextCleaningWorksOK() {
 String html = "<div>" +
 "" +
 "Hello + Reader!</div>";
 String cleanHtml = Jsoup.clean(
 html, Whitelist.simpleText());
 assertThat(cleanHtml,
 is("Hello Reader!"));
}

The WhiteList class offers prebuilt lists such as
simpleText(), which limits HTML to the previous ele-
ments. There are other acceptance options, such as none(),
basic(), basicWithImages(), and relaxed().

Listing 9 shows an example of the usage of basic(), which

allows these HTML tags: a, b, blockquote, br, cite, code,
dd, dl, dt, em, i, li, ol, p, pre, q, small, span, strike,
strong, sub, sup, u, ul.

Listing 9.
@Test
public void basicCleaningWorksOK() {
 String html = "<div><p><a " +
 "href='javascript:hackSystem()" +
 "'>Hello</div>";
 String cleanHtml = Jsoup.clean(html,
 Whitelist.basic());
 assertThat(cleanHtml, is("<p><a " +
 "rel=\"nofollow\">Hello</p>"));
}

As seen in the test, the script call is eliminated and the
tags that are not allowed, such as div, are also removed. In
addition, jsoup automatically completes unbalanced tags,
such as the missing </p> in our example.

Conclusion
In this article, I have shown only a subset of what jsoup
can do. It also offers useful features such as tidying HTML,
manipulating HTML tags’ attributes or texts, and blend-
ing the structure or pseudo-structure of CSS selectors. Put
another way, any HTML processing you might need to do is
a likely candidate for using jsoup. </article>

jsoup also
offers useful
features such
as tidying HTML
and blending
the structure or
pseudo-structure
of CSS selectors.

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=29&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=29&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=29&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=29&exitLink=http%3A%2F%2Fstackoverflow.com%2Fsearch%3Fq%3Djsoup
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=29&exitLink=http%3A%2F%2Fjsoup.org%2Fcookbook%2F
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=29&exitLink=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FComparison_of_HTML_parsers
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=29&exitLink=http%3A%2F%2FORACLE.COM%2FJAVAMAGAZINE

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

30

//libraries /

C lasses are the building blocks of Java’s type system, but
they also serve another fundamental purpose: a class

is a compilation unit, the smallest piece of code that can be
individually loaded and run a JVM process. The class-loading
mechanism was set from the beginning of Java time, back in
JDK 1.0, and it immensely affected Java’s popularity as a cross-
platform solution. Compiled Java code—in the form of class
files and packaged JAR files—can be loaded into a running
JVM process on any of many supported operating systems.
It’s this ability that has allowed developers to easily distribute
compiled binaries of libraries. Because it is so much easier to
distribute JAR files than source code or platform-dependent
binaries, this ability has made Java popular, particularly in
open source projects.

In this article, I explain the Java class-loading mechanism
in detail and how it works. I also explain how classes are
found in the classpath and how are they loaded into memory
and initialized for use.

The Mechanics of Loading Classes into the JVM
Imagine you have a simple Java program such as the one
below:

public class A {
 public static void main(String[] args) {

How the JVM Locates, Loads,
and Runs Libraries
Class loaders are the key to understanding how the JVM executes programs.

OLEG ŠELAJEV
BIO

 B b = new B();
 int i = b.inc(0);
 System.out.println(i);
 }
}

When you compile this piece of code and run it, the JVM
correctly determines the entry point into the program and
starts running the main method of class A. However, the JVM
doesn’t load all imported classes or even referred-to classes
eagerly—that is, right away. In particular, this means that
only when the JVM encounters the bytecode instructions for
the new B() statement will it try to locate and load class B.
Besides calling a constructor of a class, there are other ways
to initiate the process of loading a class, such as access-
ing a static member of the class or accessing it through the
Reflection API.

In order to actually load a class, the JVM uses class-
loader objects. Every already loaded class contains a ref-
erence to its class loader, and that class loader is used to
load all the classes referenced from that class. In the pre-
ceding example, this means that loading class B can be
approximately translated into the following Java statement:
A.class.getClassLoader().loadClass("B").

Here comes a paradox: every class loader is itself an object

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=30&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=30&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=30&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=30&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=30&exitLink=javascript%3AopenPopup%28%27Java_ND15_Selajev_BIO_p30_1447719912575%27%29

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

31

//libraries /

of the java.lang.Classloader type that developers
can use to locate and load the classes by name. If
you’re confused by this chicken-and-egg prob-
lem and wonder how the first class loader that
loads all the JDK classes (for example, java.lang
.String) is created, you’re thinking along the right
lines. Indeed, the primordial class loader, called
the bootstrap class loader, comes from the core
of the JVM and is written in native platform-
dependent code. It loads the classes necessary
for the JVM itself, such as those of the java.lang
package, classes for Java primitives, and so forth.
Application classes are loaded using the regular,
user-defined class loaders written in Java—so, if
needed, the developer can influence the process-
ing of these loaders.

The Class-Loader Hierarchy
The class loaders in the JVM are organized into
a tree hierarchy, in which every class loader
has a parent. Prior to trying to locate and load a
class, a good practice for a class loader is to check
whether the class’s parent in the hierarchy can
load—or already has loaded—the required class. This helps
avoid doing double work and loading classes repeatedly. As a
rule, the classes of the parent class loader are visible to the
children but are not visible otherwise. This structure, which
is based on delegation and visibility of the classes, allows for
separation of the responsibilities of the class loaders in the
hierarchy and makes the class loaders responsible for loading
classes from a specific location only.

Let’s look at this hierarchy of class loaders in a Java appli-
cation and explore what classes they typically load. At the
root of the hierarchy, Java is the bootstrap class loader. It
loads the system classes required to run the JVM itself. You
can expect all the classes that were provided with the JDK

distribution to be loaded by this class loader.
(A developer can expand the set of classes that
the bootstrap class loader will be able to load by
using the -Xbootclasspath JVM option.)

Note that even though the library might be
put on the boot classpath, it won’t be automati-
cally loaded and initialized. Classes are loaded
into the JVM only on demand, so even though
classes might be available for the bootstrap class
loader, the application needs to access them to
trigger their actual loading. (A curious aspect of
this loading process is that you can override JDK
classes if your JAR file is prepended to the boot
classpath. While this is almost always a poor
idea, it does open a door to potentially more-
powerful tools.)

A sort of child of the bootstrap class loader is
the extension class loader, which loads the classes
from the extension directories (explained in a
moment). These classes may be used to specify
machine-specific configuration such as locales,
security providers, and such. The locations of
the extension directories are specified via the

java.ext.dirs system property, which on my machine is
set to the following:

/Users/shelajev/Library/Java/Extensions:/Library/
Java/JavaVirtualMachines/jdk1.8.0_40.jdk/Contents/
Home/jre/lib/ext:/Library/Java/Extensions:/Network/
Library/Java/Extensions:/System/Library/Java/
Extensions:/usr/lib/java

By changing the value of this property, you can change
which additional libraries are loaded into the JVM process.

Next comes the system class loader, which loads the
application classes and the classes available on the class-

The class loaders
in the JVM are
organized into a
tree hierarchy, in
which every class
loader has a parent.
Prior to locating and
loading a class, a
good practice for a
class loader is
to check whether
the class’s parent
can load—or already
has loaded—the
required class.

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=31&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=31&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=31&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=31&exitLink=http%3A%2F%2FORACLE.COM%2FJAVAMAGAZINE

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

32

//libraries /

path. Users can specify the classpath using the
-cp property.

Both the extension class loader and the system
class loader are of the URLClassloader type and
behave in the same way: delegating to the par-
ent first, and only then finding and resolving the
required classes themselves, if need dictates.

The class-loader hierarchy of web applica-
tions is a bit more complicated. Because multiple
applications can be deployed simultaneously to an applica-
tion server, they need to be able to distinguish their classes
from each other. So, every web application uses its own class
loader, which is responsible for loading its libraries. Such
isolation ensures that different web applications deployed to
a single server can have different versions of the same library
without conflicts. So the application server automatically
provides every web application with its own class loader,
which is responsible for loading the application’s libraries.
This arrangement works because the web application class
loader will try to locate the classes packaged in the applica-
tion’s WAR file first, rather than first delegating the search to
the parent class loader.

Finding the Right Class
In general, if multiple classes with the same fully qualified
name are available to the JVM, the conflict resolution strat-
egy is simple and straightforward: the first appropriate class
wins. The URLClassloader, which most of the class loaders
extend from, will traverse the directories in the order they
are given on the classpath and load the first class it finds
that has requested the class name.

The same goes for JAR files that share the same name. The
JAR files will be scanned in the order in which they appear in
the classpath, not according to their names. If the first JAR
file contains an entry for the required class, the class will be
loaded. If not, the classpath scan will continue and reach the

second JAR file. Naturally, if the class isn’t
found anywhere on the classpath, the
ClassNotFound exception will be thrown.

Usually, relying on the order of directo-
ries in the classpath is a fragile practice, so
instead the developer can add the classes to
-Xbootclasspath to ensure that they will be
loaded first. There’s nothing in particular wrong
with this approach, but maintaining a proj-

ect that relies on a polluted boot classpath requires work.
Intuition about where the classes are loaded from will be
broken, and everyone will be confused. A better practice is
to resolve the confusion at its root and figure out why there
are multiple classes with the same name on the classpath.
Maybe upgrading some dependency version, cleaning the
caches, or running a clean build will be enough to get rid of
the duplicates.

Resolution, Linking, and Verification
After a class is located and its initial in-memory represen-
tation created in the JVM process, it is verified, prepared,
resolved, and initialized.
■■ Verification makes sure that the class is not corrupted and

is structurally correct: its runtime constant pool is valid,
the types of variables are correct, and the variables are
initialized prior to being accessed. Verification can be
turned off by supplying the -noverify option. If the JVM
process does not run potentially malicious code, strict
verification might not be required. Turning off the verifi-
cation can speed up the startup of the JVM. Another
benefit is that some classes, especially those generated
on the fly by various tools, can be valid and safe for the
JVM but unable to pass the strict verification process. In
order to use such tools, the developer should disable this
verification, which is often acceptable to do in a develop-
ment environment.

Many security
features rely on the
class-loader hierarchy
for permission checks.

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=32&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=32&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=32&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=32&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

33

//libraries /

■■ Preparation of a class involves initializing its static fields to
the default values for their respective types. (After prepa-
ration, fields of type int contain 0, references are null, and
so forth.)

■■ Resolution of a class means checking that the symbolic
references in the runtime constant pool actually point
to valid classes of the required types. The resolution of a
symbolic reference triggers loading of the referenced
class. According to the JVM specification, this resolution
process can be performed lazily, so it is deferred until the
class is used.

■■ Initialization expects a prepared and verified class. It runs
the class’s initializer. During initialization, the static fields
are initialized to whatever values are specified in the code.
The static initializer method that combines the code from
all the static initialization blocks is also run. The initializa-
tion process should be run only once for every loaded class,
so it is synchronized, especially because the initialization
of the class can trigger the initialization of other classes
and should be performed with care to avoid deadlocks.
More detail on how the JVM performs the loading, linking,

and initializing of classes is explained in Chapter 5 of the Java
Virtual Machine Specification.

Other Considerations About Class Loaders
The class-loading model is the central piece of the dynamic
operations of the Java platform. Not only does it allow for
dynamic location and linking of classes at runtime, but
it also provides an interface for various tools to hook into
the application.

In addition, many security features rely on the class-loader
hierarchy for permission checks. For example, the famous
method sun.misc.Unsafe.getUnsafe() successfully
returns an instance of the Unsafe class if it is called from a
class that was loaded by the bootstrap class loader. Because
only system classes are returned by this loader, every library

that uses the Unsafe API must rely on the Reflection API to
read the reference from a private field.

Conclusion
When you’re developing a library or a framework, as a rule,
you don’t have to worry about any issues with class load-
ing. It is a dynamic process that happens at runtime, so you
rarely need to influence it. Also, modifying the class-loading
scheme rarely benefits a typical Java library.

However, if you create a system of modules or plugins that
are intended to be isolated from each other, enhancing the
class-loading scheme might be a good idea. Just remember
that custom class loaders, being a fundamental force influ-
encing all the classes, can introduce hard-to-spot bugs into
literally any part of your application. So take extra care when
designing your own class-loading functionality.

In this article, we looked at how the JVM loads classes into
the runtime, at the hierarchical model of class loaders Java
uses, and the hierarchy model of a typical Java application.

All in all, even if you don’t fight class-loading issues or
create plugin architectures every day, understanding class
loading helps you to understand what is happening in your
application. It also provides insight into how several Java
tools work. And it really demonstrates the benefits of keeping
your classpath clean and up to date. </article>

LEARN MORE
• Information on controlling class loaders

• Class loaders in the JVM Specification

Oleg Šelajev (@shelajev) is an engineer, author, speaker, lecturer,
and developer advocate at ZeroTurnaround. He enjoys spending
time tinkering with Clojure, Git, and MacVim and is pursuing a PhD
in dynamic software updates and code evolution at the University
of Tartu.

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=33&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=33&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=33&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=33&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=33&exitLink=https%3A%2F%2Fdocs.oracle.com%2Fjavase%2Fspecs%2Fjvms%2Fse8%2Fhtml%2Fjvms-5.html
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=33&exitLink=https%3A%2F%2Fdocs.oracle.com%2Fjavase%2Fspecs%2Fjvms%2Fse8%2Fhtml%2Fjvms-5.html
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=33&exitLink=http%3A%2F%2Fzeroturnaround.com%2Frebellabs%2Frebel-labs-tutorial-do-you-really-get-classloaders%2F
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=33&exitLink=https%3A%2F%2Fdocs.oracle.com%2Fjavase%2Fspecs%2Fjvms%2Fse8%2Fhtml%2Fjvms-5.html

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

34

//java ee /

This series has attempted to demystify Contexts and
Dependency Injection (CDI). In the previous articles,

which appeared in the last three issues, I discussed what
strong typing really means in dependency injection, how to
use CDI to integrate third-party frameworks, and how to cre-
ate loose coupling with interceptors, decorators, and events.
This final article covers the integration of CDI with Java EE.

Java EE is an extension of the Java runtime. It provides a
managed environment in which containers provision compo-
nents with a certain number of services. These services can
be lifecycle management, security, validation, persistence,
or, of course, injection. Persistence and transactions are often
bundled together to develop the back end of an application.

On the web tier, Java EE comes with servlets, WebSockets
[See accompanying article. —Ed.], and JavaServer Faces (JSF),
which are related to the user interface. CDI, whose workings
I’ve explained in the last three articles, can bring the web tier
and service tier together to create a homogeneous and inte-
grated application.

Bringing the Web Tier and Service Tier Together
Java EE bundles several technologies that enable us to cre-
ate any kind of architecture, including web application, REST
interfaces, batch processing, asynchronous messaging, per-
sistence, and so on. As shown in Figure 1, all these applica-
tions can be organized in several tiers: presentation, busi-

ness logic, business model, or interoperating
with external services. Depending on our needs,
any kind of architecture is possible from state-
less to stateful, from flat layered to multitiered.
One problem, however, is that the web tier and
service tier each has its own paradigm, its own
language. Because of this, CDI is an important
resource to bring them together.
Java for the service tier. Except for the web cli-
ent (which uses HTML) and the database (which
uses Database Definition Language), most of Java
EE uses Java as its primary language, and, there-
fore, we find Java in most of the application tiers:

Integration with Java EE

Part 4

Contexts and Dependency Injection:
The New Java EE Toolbox

ANTONIO GONCALVES
BIO

Figure 1. Standard tiers of an application

Presentation
Server Side

Interoperability

DatabaseClient

Pa
ge

Ba
cki

ng
Be

an

Business
Logic

Business
Model

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=34&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=34&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=34&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=34&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=34&exitLink=javascript%3AopenPopup%28%27Java_ND15_Goncalves_BIO_p34_1447719554308%27%29

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

35

//java ee /

Java Persistence API entities in the business model or a simple
bean on the business logic tier. We even use Java as part of our
presentation tier: JSF backing beans are written in Java.
EL for the presentation tier. When I say that Java is the pri-
mary language, that’s because JSF pages are written using
Facelets and Expression Language, or EL. EL provides an
important mechanism for enabling the presentation layer to
communicate with the application logic. It is used by both
JavaServer Faces technology and JavaServer Pages. It uses
the # symbol. Figure 2 shows that EL uses simple expressions
to dynamically access data from components—for example,
where the purchase order subtotal is displayed on the page or
the compute method is invoked when a button is clicked.
CDI to bind service and presentation tiers. To bind both Java
and Expression Language, CDI comes to the rescue with
a @Named annotation. As you can see in Figure 2, it basi-
cally gives a name to a CDI bean so the bean can be bound in
EL. So here, where PurchaseOrderBean is annotated with

@Named("po"), it means that
the bean can be bound in EL
with the name po.
CDI to manage state. CDI goes
further by managing the state
of a bean for us using scopes.
Let’s say that on the top right
corner of our web application,
we need to display the login of
the user. We want this informa-
tion to remain until the user’s
session ends. In such a case,
we just annotate the bean with
@SessionScoped and CDI will
manage the state by destroy-
ing the bean when the ses-
sion ends. On the other hand,
computing and displaying the

total of a purchase order should be done each time the page
is refreshed. Because the scope of the PurchaseOrderBean
must be shorter than the session, we can annotate it with
@RequestScoped. CDI will maintain the state of the bean
only on a per-request basis, which means that this bean is
stateless. With just a few annotations, CDI unifies the web
tier and service tier, eliminating glue code and letting the
developer think about the business problem. CDI defines a
uniform model for all our tiers bringing well-defined con-
texts, which is preserved across multiple requests in a user
interaction.

Binding
Binding is the basic service for bringing together the web
tier and the service tier. If we want to reference a bean in
non-Java code that supports EL, such as a JSF page, we must
assign the bean an EL name. The EL name is specified using
the @Named built-in qualifier. Then we can easily use the
bean in any JSF page through an EL expression. EL was orig-

Figure 2. Using Expression Language

CDI takes the
concept of state
management much
further, applying it
to the entire appli-
cation, not just to the
HTTP layer. Plus, CDI
does this in a declarative
way: by using a single
annotation, the state of
the bean is managed by
the container.

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=35&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=35&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=35&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=35&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

36

//java ee /

inally inspired by both ECMAScript and the XPath expres-
sion languages. It was introduced in Java EE to make it easy
for web page developers to access and manipulate Java in the
back end without having to use JavaScript.
Expression Language. EL has a very simple syntax. It uses the
hash symbol and curly brackets to identify an expression that
needs to be evaluated. These expressions can be more or less
complex (see Listing 1) and use arithmetic operators, lambda
expressions, and so forth.

Listing 1.
// Value Expressions
#{purchaseOrderBean.subtotal}
#{purchaseOrderBean.customer.name}

// Array Expressions
#{purchaseOrderBean.orders[2]}

// Method Expressions
#{purchaseOrderBean.compute}

// Parameterized Method Calls
#{purchaseOrderBean.compute('5')}

Value expressions are the most common because they
can read and write data. Here, our page would access the
subtotal attribute or the customer name attribute of the
PurchaseOrderBean. The syntax also allows access to items
in an array or list, using the square bracket notation and
specifying an index. As here, the expression returns the sec-
ond purchase order of the bean. Another useful feature of EL
is its support of method expressions. A method expression is
used to invoke a public method of a bean, which can return
a result. Here, the expression invokes the compute method
of the PurchaseOrderBean. Parameterized method calls can
use parameters. Here, the number 5 is passed as the com-
pute value.

JSF pages. Coming back to our presentation tier, EL is pres-
ent in JSF pages in different forms. In Listing 2, for example,
value expressions are used to display the subtotal or value-
added tax (VAT) rate of a purchase order. This binding is bidi-
rectional, meaning that these expressions can also change
the value of these attributes once the page is posted to the
server. Method expressions are handy when we need to per-
form an action when a button is clicked, such as comput-
ing the amount of the purchase order. In this case, clicking
the compute button will invoke the compute method of the
PurchaseOrderBean.

Listing 2.
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
<h:body>
 <h:form>
 <h:outputLabel value="Subtotal:"/>
 <h:inputText
 value="#{purchaseOrderBean.subtotal}"/>
 <h:outputLabel value="VAT rate:"/>
 <h:inputText
 value="#{purchaseOrderBean.vatRate}"/>
 <h:commandLink value="Compute"
 action='#{purchaseOrderBean.compute}'/>
 </h:form>
</h:body>
</html>

CDI beans. The PurchaseOrderBean in Listing 3 has
subtotal and vatRate attributes, with getters and setters.
It also has a compute method that is in charge of computing
the total amount of the purchase order given a certain VAT
rate. There is nothing special except the @Named annotation
—without it, the bean would not have an EL name and,
therefore, could not be bound to the page.

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=36&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=36&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=36&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=36&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

37

//java ee /

Listing 3.
@Named
public class PurchaseOrderBean {

 private Float subtotal = 0F;
 private Float vatRate = 5.5F;
 // …

 public String compute() {
 Float vat = subtotal * (vatRate / 100);
 Float discount =
 subtotal * (discountRate / 100);
 total = subtotal + vat – discount;
 return null;
 }
 // ...
}

@Named. The @Named annotation makes it possible to ref-
erence the bean from EL and, therefore, its attributes and
methods. We can let CDI choose a name for us by not speci-
fying an argument to the @Named annotation. The name
defaults to the unqualified class name, decapitalized—in this
case, purchaseOrderBean with a lowercase p. But we can
specify an argument to the @Named annotation to use a non-
default name. With @Named("order"), the expression needs
to be renamed accordingly.

Binding with Producers and Alternatives
As we’ve just seen, the @Named annotation allows the binding
between an expression and a bean. Coupled with a producer,
anything can then be referenced in EL. For example, we pro-
duce an integer, we name it, and it can then be referenced
in an expression. Alternatives can also be used to switch the
implementation not only in Java, but also in EL.
Naming a producer. To illustrate named producers and alter-
natives, let’s take a NumberProducer class, the role of

which is to produce numbers (see Listing 4). It has vatRate
and discountRate attributes, both of type Float. The
idea is to produce these attributes so they can be man-
aged by CDI and injected somewhere else. As you know by
now, this code could be ambiguous because both attributes
have the same data type, Float. To differentiate them, we
use a @VAT qualifier on one, and a @Discount qualifier on
the other. Now, if we want to access the VAT rate directly
on a JSF page, we just annotate the produced attribute with
@Named. By default the EL name is vatRate, so the JSF page
just references the vatRate directly, without having to pre-
fix the name of the class: NumberProducer (<h:inputText
value="#{vatRate}"/>). Remember that @Named uses a
default name that we can override. For example, instead of
vatRate we can change the name to vat and reference it in
this expression: (<h:inputText value="#{vat}"/>).

Listing 4.
public class NumberProducer {

 @Produces
 @VAT
 @Named("vat")
 private Float vatRate = 5.5F;

 @Produces
 @Discount
 @Named("discount")
 private Float discountRate = 2.25f;
}

Alternative producer. Now, let’s say we have a different use
case. VAT rate and discount rate need to change depending
on external configuration. For example, the VAT rate is 5.5
percent in certain countries and 19.6 percent in others, or the
discount rate is usually 2.25 percent, but for Christmas it is
set to 4.75 percent. This is the typical use case where alterna-

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=37&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=37&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=37&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=37&exitLink=http%3A%2F%2FORACLE.COM%2FJAVAMAGAZINE

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

38

//java ee /

tives can be used. First, we still need to produce, qualify, and
name both the VAT and discount rate attributes (see Listing 5).
Then we add an @Alternative annotation. As you can see,
CDI is very expressive. Each annotation has its own meaning,
and we can read the code very easily. Then it’s just a matter of
enabling or disabling the alternatives in beans.xml.

Listing 5.
public class NumberProducer {

 @Produces @VAT @Named("vat")
 private Float vatRate = 5.5F;

 @Produces
 @VAT @Named("vat") @Alternative
 private Float vatRateAlt = 19.6F;

 @Produces @Discount @Named("discount")
 private Float discountRate = 2.25f;

 @Produces
 @Discount @Named("discount") @Alternative
 private Float discountRateAlt = 4.75f;
}

State Management
We’re all used to the concept of an HTTP session and an
HTTP request. These are two examples of the broader prob-
lem of managing state that is associated with a particular
context, while ensuring that all needed cleanup occurs when
the context ends—for example, when the HTTP session
ends, it needs to be cleaned up. Traditionally, this state man-
agement has been implemented manually, by getting and
setting servlet session and request attributes. CDI takes the
concept of state management much further, applying it to
the entire application, not just to the HTTP layer. Plus, CDI
does this in a declarative way: by using a single annotation,
the state of the bean is managed by the container. No more

memory leaks when the application fails to clean up ses-
sion attributes; the CDI container does it automatically.
CDI extends the context model defined by the Servlet
specification—application, session, request—to another
context: a conversation. It then applies the context to the
entire business logic, not just to the web tier.
Built-in scope. Before looking at some code, let’s first exam-
ine the four built-in CDI scopes shown in Figure 3. Let’s say
we have an application that has a lifespan of several months.
We boot the server and leave it up and running for a few
months before we shut it down. In this case, the application
scope lasts for a very long time. One user logs in and remains
logged in for a few minutes. The session scope spans from
the moment he logs in until the moment he logs out. A sec-
ond user logs in but her session stays active for a bit longer.
Each session is independent and belongs to a single user, and
the lifespan can be totally different. In the meantime, both
users click at their own pace. Each click creates a request
that is handled on the server. The last scope is the conversa-
tion and is slightly different because it can span for as long
as needed. It’s just a matter of beginning a conversation,
which can span several requests, and ending it. Each user
will have his or her own conversation. Each of these scopes

Request

Conversation

Session

Conversation

Session

Application

Request Request Request Request Request Request Request

Figure 3. The four built-in CDI scopes

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=38&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=38&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=38&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=38&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

39

//java ee /

is represented by an annotation.
Application scope. For example, let’s say the application needs
a global cache—a simple one, with just a map of key-value
objects and a few methods to add data to the cache, get a
value depending on the key, and remove a cache entry. We
want this cache to be shared across all users’ interactions
within the application. For that, we just annotate the bean
with @ApplicationScoped (see Listing 6). This cache will be
automatically created by the CDI container when it is needed,
and automatically destroyed when the context in which it
was created ends. That is when the server is shut down. If we
want this cache to be referenced directly from a JSF page, just
add a @Named annotation.

Listing 6.
@Named
@ApplicationScoped
public class Cache implements Serializable {

 private Map<Object,Object> cache =
 new HashMap<>();

 public void addToCache(
 Object key, Object value) {
 // ...
 }
 public Object getFromCache (Object key) {
 // ...
 }
 public void removeFromCache (Object key) {
 // ...
 }
}

Session scope. Application-scope beans live during the appli-
cation and are shared to all users. Session-scoped beans live
during the time of the HTTP session and belong only to the
current user. This scope is useful, for example, for model-

ing a shopping cart (see Listing 7). Each user has his own list
of items and, while he’s logged in, he can add items to the
shopping cart and check out at the end. This instance of the
shopping cart will be automatically created for the first time
when the session is created and automatically destroyed
when the session ends. The instance is bound to the user
session and is shared by all requests that execute in the con-
text of that session. Again, use @Named if invocation from EL
is needed.

Listing 7.
@Named
@SessionScoped
public class ShoppingCart
 implements Serializable {

 private List<Item> cartItems =
 new ArrayList<>();

 public String addItemToCart() {
 // ...
 }
 public String checkout() {
 // ...
 }
}

Request scope. Until now, all the scopes we’ve covered handle
state. For stateless applications, we can use the HTTP request
and request scope beans. These beans usually model services
(see Listing 8), or controllers, that have no state—for exam-
ple, creating a book, retrieving all the book cover images, or
getting a list of books depending on a category. Usually they
have an @Named annotation because they are invoked when a
button or a link on a page is clicked. An object that is defined
as @RequestScoped is created once for every request and
does not have to be serializable.

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=39&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=39&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=39&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=39&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

40

//java ee /

Listing 8.
@Named
@RequestScoped
public class BookService {

 public Book persist(Book book) {
 // ...
 }
 public List<String> findAllImages() {
 // ...
 }
 public List<Book> findByCategory(
 long categoryId) {
 // ...
 }
}

Conversation scope. The last built-in scope is the conversation
scope. The conversation scope is a bit like the session scope
in that it holds the state associated with a user and spans
multiple requests to the server. However, unlike the ses-
sion scope, the conversation scope is demarcated explicitly
by the application. Let’s say we have several web pages that
form a wizard, to allow a customer to create a profile (see
Listing 9). For controlling the lifecycle of a conversation, CDI
gives us a Conversation API that may be obtained by injec-
tion. So, when a user starts to create a profile, a conversation
is started by calling the begin method. The user can then go
from page to page, go back to the previous page, go to the
next page, and so on, until the conversation ends. As you can
see, the conversation scope is the only one that needs explicit
demarcation. All the other scoped beans are cleaned up by
the CDI container; conversations need to be explicitly started
and ended or they time out.

Listing 9.
@Named
@ConversationScoped

public class CustomerWizard implements
 Serializable {

 @Inject
 private Conversation conversation;

 private Customer customer =
 new Customer();

 public void initProfile () {
 conversation.begin();
 // ...
 }
 public void endProfile () {
 // ...
 conversation.end();
 }
}

Dependent scope. All the scopes we’ve just seen are con-
textual scopes. This means their lifecycle is managed by
the container, and any injected references to the beans are
also contextually aware. The CDI container ensures that
the objects are created and injected at the correct time, as
determined by the scope that is specified for these objects.
The dependent scope is not a contextual scope and is actu-
ally called a pseudo-scope. Dependent scope is the default
CDI bean scope. If a bean does not declare a specific scope,
it will be injected as a dependent-scoped bean. This means
that it will have the same scope as the bean where it’s being
injected. For example in Listing 10, if a request-scoped ser-
vice (BookService) injects a dependent IsbnGenerator,
then the injected IsbnGenerator will be request scoped.
An instance of a dependent bean is strictly dependent on
some other object. IsbnGenerator is instantiated when
BookService is created and destroyed when BookService
is destroyed. We can always use the @Dependent annotation,
but we don’t have to, because it is the default scope.

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=40&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=40&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=40&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=40&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

41

//java ee /

Listing 10.
@Dependent
public class IsbnGenerator {
 public String generateNumber() {
 return "13-84356-" +
 Math.abs(new Random().nextInt());
 }
}

@RequestScoped
public class BookService {

 @Inject
 private IsbnGenerator generator;
 // ...
}

Conclusion
In this article, we’ve examined how to bring the web tier
and service tier together thanks to binding with the @Named
annotation and state management with scopes. When using
CDI, there is no distinction between presentation tier com-
ponents and business logic components. Both can be scoped,
injected, or referenced in EL. We can layer our application
according to whatever architecture we need rather than being
forced to bend our application logic into a technical layering.
And if the architecture layering is too flat, nothing stops us
from creating an equivalent layered architecture using CDI. It
is possible to write Java EE applications where everything is a
CDI bean. </article>

LEARN MORE
• CDI specification

• Beginning Java EE 7

• PluralSight course on CDI 1.1

• Weld CDI reference implementation

JavaOne, the annual monster shindig for Java developers, was held this
year in San Francisco, California, in late October. This year, more than
9,000 developers participated in almost 500 sessions, with the average
attendee participating in 14 sessions.

The overarching themes at this year’s conference were Java’s 20th
anniversary and its expanding presence in two areas: the cloud and
the Internet of Things (IoT).

Notable among new cloud services unveiled at the show was a new
one from Oracle named Java SE Cloud Service, which incorporates Java
and a suite of development tools including Git, Maven, and Hudson—
all aimed at moving programming to the cloud.

Java’s ability to scale down to small devices was the focus of the
IoT track. This theme was repeated in the Java Lounge in the vendor
exhibit area, where attendees could use soldering irons and other tools
to build devices using the Raspberry Pi, a small, hobbyist-oriented
technology that has become wildly popular in the last few years. The
Saturday before the show, JavaOne4Kids, a technical convention for
children, hosted 450 attendees who learned how to program robots
using Java.

An annual fixture of JavaOne is the Duke’s Choice Awards, which
recognize particularly meritorious Java projects or community mem-
bers. The winners this year included AsciidocFX (a document creation
tool), Byte Buddy (a library for generating and manipulating bytecodes,
discussed in detail on page 19), OmniFaces (a library for web applica-
tions), and KumuluzEE (a microservices-enabling technology).

Oracle videotaped most of the sessions and made them available
online at no cost. This carefully curated and categorized list provides
an excellent way to see videos of the sessions you might have missed.

The next JavaOne conference will be held September 18–22, 2016, in
San Francisco. For a listing of other conferences and events, see the
Events section in this issue.

Wrap-up and Review
JAVAONE 2015:

//javaone recap /

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=41&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=41&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=41&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=41&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=41&exitLink=http%3A%2F%2Fcdi-spec.org%2F
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=41&exitLink=http%3A%2F%2Fwww.amazon.com%2Fgp%2Fproduct%2F143024626X%2F
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=41&exitLink=http%3A%2F%2Fwww.pluralsight.com%2Fauthor%2Fantonio-goncalves%3Futm_medium%3Daffiliate%26utm_source%3D1013700
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=41&exitLink=http%3A%2F%2Fweld.cdi-spec.org%2F
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=41&exitLink=https%3A%2F%2Fcloud.oracle.com%2Fjavase
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=41&exitLink=https%3A%2F%2Fwww.oracle.com%2Fcorporate%2Fpressrelease%2Fdukes-award-102815.html
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=41&exitLink=https%3A%2F%2Fjavaone-2015.zeef.com%2Fanghel.leonard

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

42

//jvm languages /

With an extensive community, a strong ecosystem, and a
robust language, Python developers have long enjoyed

high productivity. Jython is an implementation of the Python
language that runs on the JVM. Reasons for choosing Jython
vary widely. You might choose to use it because you want to
use Java packages in your Python code; explore the Java eco-
system through Jython’s interactive console; deploy a Python
project that uses Django into a servlet container; or bundle
your Java project with a scripting language (as found in popu-
lar tools such as Sikuli, The Grinder, and IBM WebSphere).

The first release of Jython—version 2.0—supported ver-
sion 2.0 of the Python language and first saw the light of
day in 2001. (There were also earlier releases under the name
“JPython.”) Jython has since grown to become one of the
most mature and stable alternative languages for the Java
platform. The most recent release, Jython 2.7, which shipped
in May 2015, builds on this track record by supporting
version 2.7 of the Python language, enhanced integration
with Java, and extended support of the Python ecosystem,
especially Python packaging.

This article gives a detailed tour of Jython 2.7 features,
including an easy-to-follow example of working with spread-
sheets using Apache POI. After reading this article, you will
understand Jython’s features enough that you can download
the most recent release and get going on your own project.

Jython 2.7: Integrating Python
and Java
A language that makes it easy to create projects with libraries from Python and Java

A Short Primer—It’s Just Python!
Jython is simply Python for the Java platform. However, if you
are not familiar with the Python language, you might want a
short primer.

We will use the Jython console to look at the language’s
features. The Jython console is powered by the popular
JLine 2 project to implement a classic example of a read-
evaluate-print loop (REPL). The console reads statements
and expressions from the user; the statements are evaluated;
and the results are printed. This process (the loop) continues
until the user exits the console. Similar consoles—also
powered by JLine 2—are implemented with other popular
JVM languages, including Clojure, Groovy, JRuby, and Scala.

Running the Jython program without any other arguments
starts up the console; we will use the most recently released
version as of the writing of this article (2.7.0), as shown in
Listing 1. (Note: In this article, we assume that you are using
a UNIX-like system, with $ being the command-line prompt
from a shell such as bash. Jython 2.7 also works well with
Windows.)

Listing 1.
$ jython
Jython 2.7.0 (default:. . ., Apr 29 2015, 02:25:11)
[Java HotSpot(TM) 64-Bit Server VM (Oracle Corp.)]

JIM BAKER AND
JOSH JUNEAU
BIO

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=42&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=42&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=42&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=42&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=42&exitLink=https%3A%2F%2Fgithub.com%2Fjline%2Fjline2
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=42&exitLink=javascript%3AopenPopup%28%27Java_ND15_BakerJuneau_BIO_p42_1447719092823%27%29

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

43

//jvm languages /

Type "help", "copyright", "credits" or "license"
for more information.
>>>

The console prompts you with >>> for the first line of
each input. Let’s start by using the dict type, which is a
dictionary—that is, it’s a mutable mapping of keys to values.
Both keys and values can be of any object: Python or Java
objects, as you will see shortly. Because of their versatil-
ity, dictionaries are heavily used in most Python programs.
Listing 2 demonstrates a few examples of working with
dictionaries.

Listing 2.
>>> d1 = {'one':1, 'two':2, 'three': 3}
>>> d1['three']
3
>>> # Equivalent construction by using keywords
>>> # Note that '#' introduces a comment, including
 in the console
>>> d2 = dict(one=1, two=2, three=3)
>>> d2['one']
1
>>> d1 == d2
True
>>> len(d1) # length of d1
3
>>> # Note that there is no construction equivalent
 using keywords,
>>> # because keywords are limited to strings that
 would also be
>>> # valid Python identifiers.
>>> inverted = {1: 'one', 2: 'two', 3: 'three'}

Python 2.7 also adds support for dictionary comprehensions.
Comprehensions are no more than usages of special syntax
for building specific types of collections given a generating
formula. Mapping from values to keys for all the items in the

original dictionary, we get the following comprehension:

>>> inverted_d1 =
... { v: k for k, v in d1.iteritems() }

(The three dots indicate that the text should be entered all
on one line.) Variants of this compact comprehension syntax
are also supported for making lists and sets.

This functionality in computing an inverted mapping is
useful enough that we might want to do it again. So let’s
define a function to encapsulate it. While we can define func-
tions in the console in Python, this is also a good chance for
us to explore how to use the console in other ways.

Create a file named basics.py, with the following text as
its initial content:

def inverted(d):
... return { v: k for k,v in d.iteritems() }

(The three dots indicate that the text should be entered
on one line.) Let’s look at this code fragment in some detail.
First, notice that functions such as inverted are defined by
using the def keyword. Notice that Python uses significant
whitespace, instead of braces or other syntax, to describe the
program’s hierarchical structure. (The braces here are for the
dictionary comprehension—braces mean we are constructing
a dict or a set collection. Also, we will use two spaces for
indentation levels in the Python code, so it fits better within
the constraints of this article, although using four spaces is
more typical.) Python’s philosophy is simple: given that we
are already indenting code so that it corresponds to its struc-
ture, it’s redundant to put in braces or other syntax. But like
so many formatting details, it might take a little while for
you to get comfortable with Python’s approach.

Let’s start the Jython console again, but this time we will
start the console with jython27 –i basics.py, which

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=43&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=43&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=43&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=43&exitLink=http%3A%2F%2FORACLE.COM%2FJAVAMAGAZINE

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

44

//jvm languages /

loads our file. We get the stan-
dard prompt of >>>. Let’s also call
the dir function to find out what
is available; when the function is
called with no arguments, it applies
to the current module:

$ jython27 -i basics.py
>>> dir()
['__builtins__', '__doc__',
 '__file__',
 '__name__', '__package__',
 'inverted']
>>> inverted({1: 'one', 2: 'two'})
{'one': 1, 'two': 2}

The -i option means we are running the console in the
scope of the basics module itself; we have a variety of
defined names, as well as the inverted function we just
defined. Using the REPL in this way is very useful for explor-
atory programming: start the console with the module in
progress; try out an idea in the console; edit the module using
some extract of this console work; repeat. Such exploratory
programming is a hallmark of Python development.

You can also use more-traditional ways of working with
your code. So IDEs such as PyDev (built on Eclipse) and
PyCharm (built on IntelliJ) support GUI debugging of Python
code, including breakpoints, watches, and introspecting vari-
ables. This all works because Jython supports Python’s stan-
dard debugging and tracing mechanisms.

Python 2.7 introduced more functionality when working
with the set type, which Jython 2.7 supports:

>>> {2,4,6,8,10}
set([2, 4, 6, 8, 10])
>>> # Create Empty Set
>>> set()

set([])
>>> s = {2,4,6,8,10}
>>> 3 not in s
True

Given that Jython supports the set type, it also supports
all of the helpful Python set functionality:

>>> s.pop()
2
>>> s
set([4, 6, 8, 10])
>>> x.add(3)
>>> x.add(5)
>>> s.symmetric_difference(x)
set([3, 4, 5, 6, 8, 10])

Let’s now look at Java integration. Jython is not the only
way to integrate Python with Java. Other integration options
include JPype (embedding CPython via JNI) and Py4J (using a
remote socket connection). However, Jython is unique in how
it supports working with Java objects as if they are Python
objects, and vice versa.

The Python language lacks an ordered set as part of its
standard library. But Jython makes it easy to use Java’s avail-
able implementations of ordered sets, including java.util
.LinkedHashSet, which maintains insertion ordering, and
java.util.TreeSet, which maintains natural ordering. Listing 3
demonstrates how this works.

Listing 3. (second line wraps)
>>> from java.util import TreeSet
>>> clangs = TreeSet(["c", "python",
 "ruby", "perl", "javascript"])

One nuance compared with Java is that Python does not
use a new keyword to construct objects. Instead, the class
itself is directly used as a factory, as shown in Listing 4.

Jython supports
Python’s standard
debugging and
tracing mechanisms.

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=44&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=44&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=44&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=44&exitLink=http%3A%2F%2FORACLE.COM%2FJAVAMAGAZINE

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

45

//jvm languages /

Listing 4.
>>> jvmlangs = TreeSet(["java", "python",
"groovy", "scala", "ruby", "javascript"])

>>> clangs | jvmlangs # set union
[c, groovy, java, javascript, perl,
python, ruby, scala]

>>> clangs & jvmlangs # set intersection
[javascript, python, ruby]

Let’s now try working with other Java packages. The
developers of Jython are fans of the collections support in
the Google Guava library, using it extensively—especially
MapMaker, the library’s concurrent map.

First, we need to download the Google Guava JAR file and
put it in our CLASSPATH. (In this example, we’re using Guava
release 18.0.) Restart the Jython console with the CLASSPATH
change.

Now is a good time to try out the tab completion support
newly available in Jython 2.7. Sometimes, working with the
Java ecosystem is a bit unwieldy: the package names are deep
and often spelled out. With tab-completion support, at any
point as you’re typing in the console, you can press the TAB
key to get a list of possible completions (if there are multi-
ple possibilities) or the completion itself (if there is just
one possibility).

So first import:

>>> import com.google

Then you can type, followed by pressing the TAB key:

>>> d = com.google.c

And you will get the following:

>>> d = com.google.common

You can eventually complete it like this:

>>> d = com.google.common.collect.HashBiMap.create(
... dict(one=1, two=2, three=3))

The advantage of this bidirectional mapping is that it is
maintained over any updates, as we see here:

>>> d.inverse()
{3: three, 2: two, 1: one}
>>> d.inverse()[4] = "four"
>>> d
{three: 3, four: 4, two: 2, one: 1}

Project: Working with Spreadsheets
We are now going to explore an in-depth example to demon-
strate Jython’s deep support for Java integration.

Our premise is that of automating an existing business
process that relies on consolidating spreadsheets to report on
the state of the business. Although this spreadsheet-based
process has proven its flexibility, it is also manual and error-
prone. Currently this process relies on e-mail, shared drives,
macros, and some proprietary tools. Sound familiar?

As software developers, we know that there are many ways
this business process could be automated. We could rewrite
it to remove the use of spreadsheets altogether. But we want
to preserve the advantages of spreadsheets—including their
wide adoption, flexibility, and ease of use. So let’s try a differ-
ent approach: we will continue to work with spreadsheets, but
provide better tooling for managing them. We will use and
integrate the following:
■■ Apache POI, to programmatically work with spreadsheet

workbooks (Java library).
■■ GitHub, to version workbooks; we especially want to take

advantage of its extensive REST API to store and retrieve
workbooks (REST service). GitHub is, therefore, represen-
tative of general REST services we might use to manage

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=45&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=45&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=45&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=45&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=45&exitLink=https%3A%2F%2Fgithub.com%2Fgoogle%2Fguava%2Fwiki%2FRelease18
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=45&exitLink=https%3A%2F%2Fgithub.com%2Fgoogle%2Fguava%2Fwiki%2FRelease18
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=45&exitLink=https%3A%2F%2Fpoi.apache.org%2F

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

46

//jvm languages /

workbooks, including ones we
might build ourselves.

■■ Requests, to simplify using HTTP
and especially RESTful services to
use GitHub’s support of a REST API
to resolve artifacts (Python library).

■■ Nosetests, to support unit testing
(Python library).

■■ Custom Python code to glue
together all of the above, including
auditing and formula computation.
First, download Apache POI. As of

the writing of this article, the latest
version is 3.12. You will need to add
JAR files from the POI distribution
that support poi, poi-ooxml, poi-ooxml-schemas, and xml-
beans to your CLASSPATH.

Next, you need to install the required Python packages.
Installation support is a highlight of the Jython 2.7 release. In
the past, for Python developers, one of the aggravating things
about earlier releases of Jython was that they never contained
full support for the Python ecosystem. Now with version 2.7,
you can readily take advantage of the Python ecosystem, spe-
cifically the large number of Python packages that are avail-
able on PyPI (Python Package Index). Doing so is quite easy in
Jython 2.7, because the popular pip tool is bundled with the
release. This support for tooling makes it easy to incorpo-
rate the libraries and APIs of the Python ecosystem into an
application.

The following command will install Nosetests and Requests
modules by using the pip module. The -m MODULE means
run the desired Python module as if it were a command-line
program, passing the remaining arguments to it:

$ jython27 -m pip install nose requests

With both Java and Python dependencies now taken care
of, where should we start? What makes the Python language
so nice is that we can incrementally explore in a console both
the problem space and possible solutions.

Assume that we have a simple spreadsheet named hours
.xslx located at the top level of the GitHub repo, https://
github.com/jimbaker/poi. We can retrieve this spread-
sheet as https://github.com/jimbaker/poi/raw/master/hours
.xlsx. Let’s try this from the console, where url is set to the
desired spreadsheet:

>>> import requests
>>> response = requests.get
...(url, stream=True)

Let’s write the response to a binary file (so the file mode
is "wb"); we will do so iteratively in 512-byte chunks so
that memory consumption is minimized. The writelines
method takes an iterator:

>>> f = open("hours.xlsx", "wb")
>>> f.writelines(respone.iter_content(512))
>>> f.close()

Now let’s read the saved spreadsheet with POI; note that
Jython implicitly bridges Python file objects as FileInput
Stream or FileOutputStream to use Java methods or con-
structors, as needed:

>>> from org.apache.poi.xssf.usermodel
... import XSSFWorkbook
>>> workbook = XSSFWorkbook(
...open("hours.xlsx", "rb"))

What can we do with this open workbook? Let’s explore:

>>> dir(workbook)

What makes
the Python
language so
nice is that we
can incrementally
explore in a
console both the
problem space and
possible solutions.

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=46&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=46&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=46&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=46&exitLink=https%3A%2F%2Fnose.readthedocs.org%2Fen%2Flatest%2F
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=46&exitLink=http%3A%2F%2FORACLE.COM%2FJAVAMAGAZINE

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

47

//jvm languages /

Eventually after some exploration in the console and the
POI API documentation, we might arrive at code like Listing 5
to process a workbook.

Listing 5.
traverses cells in a workbook,
calling a callback function on each cell

from contexlib import closing

def process_workbook(path, callback=None):
 if callback is None:
 def callback(cell):
 print cell,

 with open(path, "rb") as file:
 with closing(XSSFWorkbook(file)) as workbook:
 for sheet in workbook:
 for row in sheet:
 for cell in row:
 callback(cell)

The process_workbook function takes two parameters,
path and callback. Note that callback is an optional
parameter, because we give it a default value of None.
However, there is no statically specified type as we would
see in Java or would possibly be inferred in Scala. When we
talk about static analysis of a program (or lexical analysis), it
means that by only examining the program text, not running
it, we—or a compiler or an IDE or some other tool—can deter-
mine certain properties of the program. What is the scope
of the variables? What are the types of variables? Are types
used in a consistent fashion—in other words, does the code
type check? Is a chunk of code unreachable (or dead) and,
therefore, can be eliminated? Can we use constant folding or
inlining? And so forth. Of the items mentioned here, Jython
supports only determining variable scope statically. (CPython
does some amount of constant folding and dead code elimi-

nation, and Python 3.5 will have stan-
dard static type annotations as part of
its support for gradual typing, a type
system that mixes both dynamic and
static type approaches.)

We also define a function if
callback is not defined, which we
call, perhaps confusingly at first,
callback. This function is inside
the scope of the process_workbook
function. But not only is it lexically
scoped—and is, in fact, a closure—the callback function
is conditionally defined. So that’s really quite different from
what we would do in Java. Once again, Python is showing
that it is certainly a dynamic language; any static analysis
of process_workbook could conclude only that callback
might be this function. Or it might not be. However, do note
that Jython has already compiled the source code to Java
bytecode. So what we are seeing here is whether the name
callback will be set to the corresponding compiled func-
tion body. Consequently the overhead of this conditional
definition is actually no more than the overhead for some
variable assignments. This shows how Jython enables you to
move back and forth between the Java and Python ways of
doing things.

We then iterate over the spreadsheets in each workbook,
the rows in each spreadsheet, and the cells in each row.
The workbook, spreadsheet, and row objects all imple-
ment java.lang.Iterable, which Jython can iterate over.
Perhaps not surprisingly, Jython’s integration ensures that
Java code can also use for-each loops to iterate over Python
iterables (and iterators).

When callback is called against cell with callback
(cell), the Jython runtime does dynamic type checking: is
the callback object a callable? Python has a simple rule:
all callable objects implement a specific method, __call__.

Jython enables
you to move
back and forth
between the Java
and Python ways
of doing things.

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=47&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=47&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=47&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=47&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

48

//jvm languages /

All functions implement this special method, but so can
arbitrary classes. Python summarizes this typing approach as
duck typing, which is so named because if it looks like a duck,
swims like a duck, and quacks like a duck, it probably is a
duck. Python assumes that you know what you are doing, and
lets you make the call.

Otherwise, if the __call__ special method is not avail-
able on that specific object when the program is run, then
the Python exception of TypeError is raised. And, of
course, it’s quite possible that __call__ itself could raise
an exception.

Let’s now define a callback that has the ability to audit our
spreadsheets for hardcoded formulas, much like an Excel
formula might do. If a cell has a formula, then its formula
string can be retrieved with the getCellFormula() method.
Note that formulas in POI differ from those in Excel because
they are not prefixed with an = sign.

Because Python supports properties in addition to methods,
Jython further enhances how you can work with Java objects:
you can treat getters and setters as if they were proper-
ties, omitting get and set, respectively. So we can write the
auditing callback like so:

def print_if_hardcoded(cell):
 try:
 float(cell.cellFormula)
 ref = CellReference(cell)
 print ref.formatAsString(), cell
 except:
 pass

Here we see a common usage pattern in dynamic lan-
guages, and certainly in Python: we attempt to do something,
and then catch any exceptions. (This pattern is dubbed, “it is
easier to ask forgiveness than permission.”) We are chaining
together two accessors—retrieving the formula string (if it is
not available, IllegalStateException is raised by POI) and

then attempting to make a float value from the string (other-
wise, a Python ValueError exception is raised). If the chain
fails, we do not have a hardcoded formula after all. (These are
not the formulas you’re looking for.)

Assuming that the code is saved in poi.py, we can inter-
actively use jython -i poi.py, as shown in Listing 6.

Listing 6.
>>> process_workbook(
 "example.xlsx", print_if_hardcoded)
A1 42
A2 47

We can readily create a script that will download workbooks
with the Requests, apply this auditing, and store the results,
possibly as a REST API.

Consolidate Workbooks
Let’s look at a more involved example with POI. We need to
consolidate all the spreadsheets from several workbooks into
a single workbook. We could further extend this to build out
consolidation formulas, provide formatting, and so forth,
but that can be very complex due to what Excel spreadsheets
can support.

The code in Listing 7 (available in the download area) dem-
onstrates one way to perform this procedure. It takes advan-
tage of the argparse library, new in Python 2.7, to open up an
arbitrary number of input workbooks, and then write out the
consolidation to an output workbook. Defining a main func-
tion like this is idiomatic for Python code.

Functions such as the process_workbook function work
well when we would like to do the same thing to all the cells
in a workbook. In other cases, we would want to work with a
subset of cells. Let’s define a new function, get_cells, that
works on ranges of cells that are defined by reference ranges,
such as A1:G8, or unions of references, such as A1,B1,C1,D1.

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=48&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=48&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=48&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=48&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=48&exitLink=https%3A%2F%2Fjava.net%2Fprojects%2Fjava-magazine%2Fdownloads%2Fdirectory%2F2015-11

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

49

//jvm languages /

def get_cells(sheet, ref):
 for row_idx, col_idx in referred(ref):
 row = sheet.getRow(row_idx)
 if row is not None:
 cell = row.getCell(col_idx)
 if cell is not None:
 yield cell

The get_cells function is a generator function: calling
this function returns an iterator that successively yields val-
ues on each iteration (as marked by the yield keyword). So
this is a very convenient way of constructing the equivalent
of java.lang.Iterator, but without having to explicitly
capture state between each invocation of the next method.
Using generators is commonly seen in idiomatic Python code,
especially because doing so simplifies incrementally working
with data—particularly large data sets. Listing 8 (available in
the download area) demonstrates using generators.

With get_cells, we can quickly compute answers to a
number of queries. Let’s try it out. What is the sum of the
range of A1:G8? In other words, what is equivalent to =SUM
(A1:G8) in the spreadsheet?

Define the following helper function get_nums and use the
built-in function sum:

NUMERIC_CELLS = {
 Cell.CELL_TYPE_FORMULA,
 Cell.CELL_TYPE_NUMERIC }

def get_nums(cells):
 for cell in cells:
 if cell.cellType in NUMERIC_CELLS:
 yield cell.numericCellValue

Using the built-in function sum, the answer becomes simply
sum(get_nums(get_cells(spreadsheet, "A1:G8"))).

Are any cells in the range A1:G8 using hardcoded formulas?
Define a variant of the hardcoded audit function we had

earlier and use the built-in function any:

def hardcoded_cells(cells):
 for cell in cells:
 try:
 float(cell.cellFormula)
 yield True
 except:
 yield False

The answer is any(hardcoded_cells(get_cells
(spreadsheet, "A1:G8"))).

What we have done here is define the beginning of a high-
level Python API for working with workbooks that resembles,
in part, the functions that we might use in the spreadsheet
itself. However, we also retain all the low-level Java POI
library functionality as well.

This leads us to the last topic: are we able to ensure that our
spreadsheets pass a set of compliance tests? This is a bit more
involved, but let’s say we set up a continuous integration
service such as Jenkins to run tests on spreadsheets, perhaps
as part of a GitHub pull request. How do we define and run
our tests? The Python ecosystem has several good choices for
testing frameworks, including in the standard library itself
and unittest, which is an implementation of the xUnit style
of testing. But the Nose testing framework, which builds on
unittest, is justifiably popular because it is easy to use.

For example, we might want to ensure the correctness
of our cross-tabulations: the sum of subtotals along a row
should equal the sum of subtotals along a column, taking
into account numerical precision issues, as shown in Listing 9.

Listing 9.
from nose.tools import assert_almost_equals
def assert_crosstab(spreadsheet, range1, range2):
 assert_almost_equals(
 sum(get_nums(spreadsheet, range1)),
 sum(get_nums(spreadsheet, range1)))

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=49&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=49&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=49&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=49&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=49&exitLink=https%3A%2F%2Fjava.net%2Fprojects%2Fjava-magazine%2Fdownloads%2Fdirectory%2F2015-11

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

50

//jvm languages /

Once this is defined, you can write a simple test script like
Listing 10.

Listing 10.
finance_wb = XSSFWorkbook("financials.xlsx")
main_sheet = finance_wb.sheetAt(0)

def test_financials():
 assert_crosstab(main_sheet, "A5:G5", "H1:H5")

Then you can run Nose to discover and run your tests. Nose
follows a convention-over-configuration approach, which
means it is easy to get going. The result is:

$jython -m nose
.

Ran 1 test in 0.033s

OK

Each dot on the second line corresponds to a test in all of
the collected test files. Simply add more tests.

Don’t Look Back!
Predictably, as time marches on, technologies and language
features evolve. As such, there have been some important
deprecations in Jython 2.7. Perhaps the most notable is that
Jython 2.7 requires a minimum of Java 7. Another impor-
tant note is that the installer no longer supports the use of
an alternative JRE when generating Jython launchers. Use
JAVA_HOME instead.

Jython 3.5
The Python language undergoes continued active develop-
ment, along with its reference implementation. By the time
you read this article, CPython 3.5 will be released. At some

future point, a release of Jython 3.5 is planned, parallel-
ing the CPython 3.5 release. It is worth pointing out that
Jython 2.7 basically has the same internal runtime sup-
port and stdlib as Python 3.2. But substantial work will be
required to get to Jython 3.5. One eagerly anticipated feature
in Python 3.5 is optional static typing, which will enable
even better Java integration in Jython.

But not so fast. Jython 2.7.x will be around for quite some
time. The Jython team plans to work on 2.7.x as long as
Python 2.7 is in wide use. The migration to and adoption of
Python 3 has been fairly slow, partly due to the significant
changes between versions 2.7 and 3.0. Because Python 2.7 is
still in wide use, the Jython team plans to make time-based
releases of the Jython 2.7.x line. The future releases of Jython
2.7.x will focus on performance, integration, and more. The
release of Java 9 will likely improve performance with more
optimization for dynamic languages.

Although there is no rush to get to Jython 3.5, it is on the
docket. In fact, there is a branch of development already
devoted to Jython 3.5, although it is in the early stages.
Currently the target for a Jython 3.5 release is in the next
two years.

Conclusion
Jython 2.7 provides a wealth of tools, enabling developers to
combine two of the most popular ecosystems, Python and
Java, in the same codebase. In this article, we took a look
at some of the top new features of Jython 2.7, but there are
plenty of other great features to explore. Download it from
jython.org and watch for updates, which are planned for
every six months. </article>

[This article is part of an ongoing series exploring JVM lan-
guages. In the last issue, we covered Kotlin. In the next issue,
we examine Gosu, a JVM language used in industry for both
front ends and back-end systems. —Ed.]

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=50&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=50&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=50&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=50&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

51

//containers /

Software containers are enabling developers to package
their applications, and underlying dependencies, in new

ways that are portable and work consistently everywhere—on
their machine, in production, in your data center, and in the
cloud. Among portable containers, Docker has become the
most widely used.

This first article in a two-part series explains the key con-
cepts of Docker and how it works. In it, I demonstrate how
to get started with Docker using Toolbox and how to verify
the installation using a simple “Hello World” app.
The concepts of a Docker image and how it is con-
structed will be explained. Packaging Java appli-
cations as a Docker image and running them as a
container will help you to understand the basics.
Some basic commands to inspect images and con-
tainers are also discussed. Finally, I show how to
deploy a Java EE (WildFly) application using con-
tainers. The second part of this article will show
how to create applications that require multiple Docker con-
tainers, including clusters, and I’ll examine integration of
Docker with some other tools.

What Is Docker?
An application typically requires a specific version of the
operating system, JDK, application server, database server,
and a few other infrastructure components. In order to pro-
vide an optimal experience, it might need binding to specific

Using Docker in Java Applications
The lightweight virtualization container is fast becoming the preferred way to package and
deploy Java web apps.

ARUN GUPTA
BIO

ports, a specific amount of memory, and varying configura-
tion settings for different components. Together, the appli-
cation, infrastructure components, and configuration are an
application operating system.

An installation script that sets up an application operat-
ing system typically performs the download, installation,
and configuration of the required pieces. Docker simpli-
fies this process by creating an image that contains all of
these components, managed as one unit. These images are

then used to create runtime containers that run
on a virtualization platform provided by Docker.
These containers can be viewed as lightweight
virtual machines (VMs). They’re lightweight in
the sense that they do not contain copies of the
entire operating system; that is provided by the
virtualization platform.

Docker containers offer advantages such as iso-
lation, sandboxing, reproducibility, constraint of

resources, and snapshotting, as well as several other advan-
tages. The containers can run without the need of a hyper-
visor and, because they’re lightweight, they can be run at a
much higher density than standard VMs.

Docker has three main components:
■■ Images: the build component of Docker, which consists of a

read-only template of the application operating system. For
example, an image could be the Fedora operating system
with WildFly and your Java EE application installed. You can

Docker Toolbox
is the easiest
way to get started
with Docker.

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=51&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=51&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=51&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=51&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=51&exitLink=https%3A%2F%2Fwww.docker.com
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=51&exitLink=javascript%3AopenPopup%28%27Java_ND15_Gupta_BIO_p51_1447719777183%27%29

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

52

//containers /

easily create new images or update existing ones.
■■ Containers: a runtime representation created from images.

Containers are the run component of Docker. They can be
run, started, stopped, moved, and deleted. Each container
is an isolated and secure application platform.

■■ Registry: the distribution component of Docker, where
images are uploaded and downloaded. A registry can be
public, such as Docker’s own registry. A private registry
inside your firewall can be set up as well.

How Does Docker Work?
Docker uses a client/server architecture. The Docker daemon
is the server and runs on a host machine, where it does the
heavy lifting of running Docker containers. The Docker cli-
ent, a binary that can be installed on your machine, com-
municates with the Docker daemon and sends administrative
commands such as a command to retrieve an image or run
a container. The Docker registry is where all the images are
stored. Figure 1 shows this typical layout.

The Docker host may be colocated with the Docker client in
early development stages. But it’s generally moved to a sepa-
rate machine for scalability reasons.

A typical workflow entails the following:
■■ The Docker client asks the Docker daemon to run the con-

tainer for a given image.

■■ The Docker daemon checks whether the image already
exists on the host. If it does, then the daemon runs the
container. If not, then it downloads the image from the
Docker registry and runs the container. Multiple containers
that use the same image can be run easily.

The Docker client has commands for building and updat-
ing images; downloading and uploading images to a registry;
running, querying, watching, and killing the running con-
tainers; and much more. It communicates with the Docker
daemon using a socket or REST API. The Docker daemon
talks to the Docker registry, if required, to perform the
needed operation.

As a developer, you build the image for your application,
run containers using that image, and then upload that image
to the Docker registry for others to try it.

Getting Started with Docker
Linux machines natively support Docker, and it’s easily
installed using the default package manager. If you’re using a
Windows or Mac system, Docker Toolbox provides the differ-
ent tools required to get started with Docker. It contains
■■ The Docker client (docker binary). This is the same cli-

ent component previously discussed. It’s used to manipu-
late images and containers by communicating with the
Docker daemon.

■■ Docker Machine (docker-machine binary). Docker
Machine lets you create Docker hosts on VMs that reside on
your computer, with cloud providers, and inside your own
data center. The Docker daemon is then installed inside
this VM, after which a client can be configured to talk to
this host.

Docker Machine creates a VM using drivers. A driver is an
overloaded term that here means a virtual environment. For
example, the Oracle VM VirtualBox driver is used on a local
Mac or Windows system. AWS, Microsoft Azure, and other
drivers are available to create a host in the cloud.

docker build

Docker
Client

Docker Host
Docker Daemon

Containers
WildFly

WildFly

WildFly

WildFly

MySQL
MySQL

MySQL

Apache

Images

Registry

docker pull <image>
docker run <image>
docker ...

Node.js

Figure 1. A typical Docker setup

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=52&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=52&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=52&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Fhub.docker.com
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=52&exitLink=https%3A%2F%2Fwww.docker.com%2Ftoolbox
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=52&exitLink=http%3A%2F%2FORACLE.COM%2FJAVAMAGAZINE

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

53

//containers /

■■ Docker Compose (docker-
compose binary). Often your appli-
cation will consist of multiple
containers—for example, WildFly,
MySQL, and the Apache web
server. Docker Compose enables
you to define and run multi­
container applications using a
single configuration file.

■■ Kitematic, a powerful GUI for
managing containers. It provides a
seamless experience between the
command-line interface and the
GUI screens, as well as providing
integration with Docker Hub.

■■ Docker Quickstart Terminal, a
terminal application that creates a
default Docker Machine and configures the Docker client to
communicate with the default Docker host that is created
by the Toolbox installation.

■■ Oracle VM VirtualBox 5.0.0, the virtualization provider for
creating Docker hosts on local machines.

Each of these components can be downloaded individually,
but Docker Toolbox packages them nicely into a single down-
load, and using Docker Toolbox is the easiest way to get
started with Docker.

To get started, download Docker Toolbox and install it on
your machine. Run Docker Quickstart Terminal to create the
default Docker host and configure the Docker client to talk to
this Docker host, which should generate this output:

Creating Machine default...
Creating VirtualBox VM...
Creating SSH key...
Starting VirtualBox VM...
Starting VM...

To see how to connect Docker to this machine,
 run: docker-machine env default
Starting machine default...
Setting environment variables for machine default..

This output shows that the Docker host has been created
in a VirtualBox VM, the SSH keys have been created, the
VM has been started, and the Docker client has been con-
figured to talk to this Docker host. The client is config-
ured using environment variables such as DOCKER_HOST
and DOCKER_CERT_PATH. These are configured using the
docker-machine env default command, as shown above.
The machine name is default.

The eval $(docker-machine env default) command
can be used to configure any shell to communicate with this
host. Finally, it shows the following output:

docker is configured to use the default machine
 with IP 192.168.99.100

The docker-machine ip default command shows the
IP address assigned to this host. It’s a good idea to configure
this IP address for name mapping in your /etc/hosts file or the
equivalent file for your operating system. For example, you
can add the following line:

192.168.99.100 dockerhost

Then run ping dockerhost to confirm that your Docker
host mapping is correct. Now, the Docker client is ready to
talk with the Docker host.

Docker Hello World
Before we actually run our Hello World sample using Docker,
let’s look at some basic commands.
docker images shows the list of images available on

the host.

A Docker image
is built by reading
the instructions
from a text file,
which is usually
called Dockerfile.
This file contains
all the commands
needed to build
the image.

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=53&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=53&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=53&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=53&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

54

//containers /

docker ps shows the list of running containers. Presently,
the list of containers is empty because no containers have
been started. If you also want to include previously termi-
nated containers, then the -a option needs to be specified as
an option. The output of this command is best seen with a
width of 128 columns.

Note that docker --help shows the complete list of
commands. Similarly, docker ps --help shows all the
options available for a command. Feel free to check out dif-
ferent commands to see how you can modify them to meet
your needs.

Now, let’s run the prebuilt “Hello World” Docker image,
which is found on Docker Hub. This is done using the
following command:

docker run hello-world

The command shows the following output (some more
verbiage is shown before and after this text in the output):

Hello from Docker.

The output verifies that
■■ The Docker client and daemon are installed correctly.
■■ The hello-world image is not available on the Docker

daemon, but Docker was able to download the image from
Docker Hub.

■■ The container runs from the downloaded image and
streams the output to the Docker client.

As you can see, you can run your first container without
much fuss.

Build Your First Docker Image Using Java
Docker images are read-only templates that launch Docker
containers, and each image consists of a series of layers.
Docker makes use of a union file system to combine these

layers into a single image. Union file systems enable files and
directories of separate file systems to be transparently over-
laid, forming a single, coherent file system.

This layering makes Docker extremely lightweight. Any
change to a Docker image—for example, updating an appli-
cation to a new version or changing the JDBC driver—
requires only that the affected layer be rebuilt. Thus, rather
than replacing the whole image or entirely rebuilding, as you
do with a VM, only one layer is added or updated. This also
makes distribution faster and simpler.

Every image starts from a base operating system image.
For example, fedora is a base Fedora image. Multiple layers
are then added. For example, jboss/wildfly is built using
multiple images, as shown in Figure 2.

A Docker image is built by reading the instructions from
a text file, which is usually called Dockerfile. This file
contains all the commands needed to build the image. For
example, it specifies the base operating system, the JDK, the
application server, and any other dependencies. The JDK and
application server are downloaded and installed in the image
using typical shell-like commands, such as GET, COPY, and
RUN. The COPY instruction can be used to copy files from the
local file system into the container as well. Optionally, you
might consider using a base image that already contains the
JDK or WildFly and build upon that. Docker Hub has a base

Container

Image

Image

Base Image

Bootfs/Kernel

jboss/wildfly

jboss/base-jdk:8

jboss/base

centos:7

Figure 2. Building a Docker image for Java EE

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=54&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=54&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=54&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=54&exitLink=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FUnionFS
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=54&exitLink=http%3A%2F%2FORACLE.COM%2FJAVAMAGAZINE

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

55

//containers /

image of pretty much anything you need.
Each Dockerfile can have a single CMD instruction that pro-

vides the executable used for starting the container. If multi-
ple CMD instructions are specified, then only the last CMD will
take effect.

A complete reference of syntax is available online, as is a
set of best practices.

A simple Dockerfile that shows only the JDK version looks
like this:

FROM java:8
CMD ["java", "-version"]

Copy the content into a file and name it Dockerfile. Then,
build the image:

docker build java-version .

The build command builds the Docker image using the
name java-version. The . indicates that the file with the
instructions to build the image is in the current directory.

Once the image has been built, it can be seen (the following
shows some but not all the fields available in the output):

> docker images
REPOSITORY TAG IMAGE ID VIRTUAL SIZE
java-sample latest 53bd2cdf4aa2 425.4 MB

Run the container using docker run java-sample to see
the following output:

openjdk version "1.8.0_66-internal"

Using docker ps alone will not show the container in
the output, because the container is not running. However,
the exited container can be seen using the docker ps
–a command.

If you want to run a JAR file as part of this container, you
can copy the file from your local file system using COPY or you
can download the JAR file using GET. Then you can include
the JAR file as part of the CMD command line. Any configura-
tion settings to the JVM can be applied here as well.

Deploy a Java EE Application Using Docker
Now that we have run a very basic example, let’s see how to
deploy a Java EE application to a WildFly container. Here is
the Dockerfile:

FROM jboss/wildfly
CMD ["/opt/jboss/wildfly/bin/standalone.sh", "-c",
"standalone-full.xml", "-b", "0.0.0.0"]
RUN curl -L https://github.com/javaee-samples/
javaee7-hol/raw/master/solution/movieplex7-
1.0-SNAPSHOT.war –o /opt/jboss/wildfly/standalone/
deployments/movieplex7-1.0-SNAPSHOT.war

[Note the line wrapping in the last two commands. —Ed.]
This file uses the base image of jboss/wildfly where
WildFly is preinstalled in the /opt/jboss/wildfly direc-
tory. This directory is used to start a WildFly container,
and the network interface is bound to all publicly available
IP addresses using -b. A WAR file is downloaded from the
repository and copied into the directory that is watched by
WildFly for deployments.

Build this image using the following command:

docker build –t javaee-sample .

Now, let’s run this image.
By default, a Docker container runs in the foreground and

does not allow interaction with the terminal. The -i option
allows interaction with stdin, and -t attaches a TTY (a con-
sole) to the process. Options can be combined, so -i and -t
together can be specified as -it.

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=55&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=55&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=55&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=55&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=55&exitLink=https%3A%2F%2Fdocs.docker.com%2Freference%2Fbuilder%2F
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=55&exitLink=https%3A%2F%2Fdocs.docker.com%2Farticles%2Fdockerfile_best-practices%2F

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

56

//containers /

Run the container:

docker run -it -p 8080:8080 javaee-sample

8080 is the port that is exposed by the WildFly image.
This port needs to be explicitly mapped on our host using
the -p option. In this case, the first “8080” is the port
mapped on the host and the second “8080” is the port inside
the container.

A container started this way will enable the Java EE appli-
cation deployed on WildFly to be accessible on your local
machine at dockerhost:8080/movieplex7. Note that
Docker host-to-IP-address mapping was shown earlier.
Figure 3 shows the result of going to this URL.

Once the container is running in interactive mode, it can
be stopped by pressing Ctrl+C. Verification that the container
stopped can be seen in the following output:

docker ps –a

CONTAINER ID IMAGE COMMAND
1efa5d6f618d jboss/wildfly "/opt/jboss/wildfly/b"

CREATED STATUS PORTS
About a minute ago Exited (130) About a minute ago

NAMES
compassionate_mestorf

[The output appears as a single pair of lines on a large
enough screen. –Ed.] Each column in this output conveys
meaningful information about the container:
■■ A unique ID assigned to each container and shown in the

first column
■■ The image name used to start the container
■■ The command used to start the container
■■ When the container was created

■■ Any ports exposed from the container (In this case, the
container was already terminated, so this cell is empty.)

■■ The current status
■■ A random name that is assigned to the container, unless

you specify a name using the --name option
The container ID is obtained on Linux/UNIX-based systems
by running the following command:

docker ps | grep jboss/wildfly | awk '{ print $1 }'

The container can then be stopped using
docker stop <CONTAINER_ID> and removed using
docker rm <CONTAINER_ID> or stopped and removed
in one step using docker rm -f <CONTAINER_ID>.
You can also restart the container using
docker start <CONTAINER_ID>.

Alternatively, you can run the container in a detached
(background) mode by changing -it to -d.
docker inspect is another important command that

shows more details about the running container. For exam-
ple, the list of network ports inside our container can be seen
easily via the following command:

Figure 3. The sample app at port 8080

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=56&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=56&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=56&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=56&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

57

//containers /

docker inspect --format '{{ .Config.ExposedPorts }}'
<CONTAINER_ID>

Furthermore, the -P option can be used to map the con-
tainer port to a high port (that typically is in the range of
23768 to 61000) on the local host. Then, container port–to–
host port mapping can be seen:

docker port <CONTAINER_ID>
8080/tcp -> 0.0.0.0:32768

In this case, the application will be accessible at
dockerhost:32768/movieplex7.

Conclusion
This article explained the key concepts of Docker and how to
package your Java applications using it. Docker enables the
Package Once Deploy Anywhere (PODA) paradigm, and it is
changing how applications are built, deployed, and scaled.
Docker reduces the impedance mismatch between develop-
ment, testing, and production environments.

Ready or not, Docker is here and likely to be with us for a
long time as a lightweight container technology. In the next
article in this series, I’ll discuss multicontainer apps and
running containers in clusters. </article>

LEARN MORE
• Getting started with Docker

• Overview of containers

• Kubernetes: Docker orchestration tool

PUNE JAVA USER GROUP
Pune, with more than
three million residents, is
the ninth most populous
city in India. It is also the
second-highest software
exporting city in India.
Pune has been a center
of learning and academia
over many centuries and
boasts several prestigious
educational institutions.

The Pune Java User Group is one of the oldest in India. It
was founded in the late 1990s and has been active ever since.
The Java user group (JUG) leadership has changed several
times over the years, but the focus has always been on learn-
ing new Java technologies and encouraging discussions
among Java enthusiasts.

The Java language and Java EE are the usual topics of discus-
sion. However, the group also welcomes discussions of other
languages that run on the Java platform. For example, a recent
talk at the JUG featured Java Champion Andres Almiray dis-
cussing the Groovy language and the build tool Gradle.

The JUG meetings are held at educational institutions and
software companies in Pune. The group has more than 1,400
members and is active via multiple social media channels,
such as Twitter (@JavaPune) and Google Groups. The launch
events for new versions of Java have had hundreds of enthu-
siasts in attendance.

Pune has a buzzing startup ecosystem, and the JUG has
served as a platform for interactions among tech start-
ups. The JUG has also assisted in building tech com-
munities in the city around many other niche as well as
mainstream technologies.

//user groups /

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=57&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=57&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=57&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=57&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=57&exitLink=http%3A%2F%2Fdocs.docker.com%2Fwindows%2Fstarted%2F
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=57&exitLink=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FOperating-system-level_virtualization
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=57&exitLink=http%3A%2F%2Fkubernetes.io%2F
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=57&exitLink=http%3A%2F%2Fwww.meetup.com%2FPuneJUG%2F
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=57&exitLink=http%3A%2F%2Fwww.twitter.com%2Fjavapune
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=57&exitLink=https%3A%2F%2Fgroups.google.com%2Fforum%2F%23%21forum%2Fjavapune

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

58

//web apps /

Java WebSockets are unlike other Java EE web compo-
nents because they can push data out to web clients with-

out clients having to ask for it. In this article, I discuss the
WebSocket protocol, how WebSockets work, and how to use
them in a simple project. To follow along, you need only a
very basic understanding of web apps and how they operate
on Java EE.

Java WebSockets are a departure from the HTTP-based
interaction model, providing a way for Java EE applications
to update browser and nonbrowser clients asynchronously.
The interaction model for websites has long been the HTTP
request/response interaction model, which is rich and allows
for many sophisticated browser-based applications. Each
interaction, however, always
starts from the browser with
some action on the part of the
user: loading a page, refreshing
a page, clicking a button, fol-
lowing a link, and so on.

For many kinds of web appli-
cations, having the user always
in the driver’s seat is not desir-
able. From financial applica-
tions with live market data,
to auction applications where
people around the world bid
on items, to the lowly chat and
presence applications, web

applications have long sought means by which the server
side can push data out to the client. A mix of ad hoc mecha-
nisms arose out of this need that were either based around
keeping long-lived HTTP connections or some form of cli-
ent polling; none proved a complete solution to the problem.
The need for a new approach led to the development of the
WebSocket protocol.

Introduction to the WebSocket Protocol
The WebSocket protocol is a TCP-based protocol that pro-
vides a full duplex communication channel over a single con-
nection. In simple terms, this means that it uses the same
underlying network protocol as does HTTP and that over a
single WebSocket connection both parties can send mes-
sages to the other at the same time. The WebSocket proto-
col defines a simple connection lifecycle and a data-framing
mechanism that supports binary and text-based messages.
Unlike HTTP, the connections are long lived. This means
that because the connection need not continually be re-
established for each message transmission, as the anti-
symmetric HTTP protocol does, every data message in the
WebSocket protocol does not need to carry all the metainfor-
mation about the connection, as HTTP does. In other words,
once the connection is established, the message transmission
is much lighter weight than in the HTTP protocol.

However, this is not the primary reason WebSocket is bet-
ter suited to the task of servers pushing information than
are polling frameworks layered on top of the HTTP proto-

The easy-to-use API for long-lived connections

 Part 1

Building Apps Using WebSockets
DANNY COWARD
BIO

The Java WebSocket
API provides a set of
Java API classes and
Java annotations
that make it relatively
straightforward to create
WebSocket endpoints
that reside in the Java EE
web container.

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=58&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=58&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=58&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=58&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=58&exitLink=javascript%3AopenPopup%28%27Java_ND15_Coward_BIO_p58_1447719338009%27%29

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

59

//web apps /

col. Having a dedicated TCP connection to its clients makes
WebSockets an inherently more efficient way for a server to
update clients because data is sent only when it is needed.

To see why, imagine an online auction where 10 people are
bidding on an item over a period of 12 hours. Suppose that
each bidder makes an average of two successful bids on the
item, so the item price changes 20 times over the period
of the auction. Suppose now that the clients have to poll
to see the latest bidding information. Because you cannot
know when the bidders will make a bid or how up to date the
amount of the current bid is, the web application supporting
the auction needs to make sure that each client is refreshed at
least every minute and probably more! This means that each
of the clients needs to poll 60 times an hour, giving a total
of 60 × 10 × 12 = 7,200 updates to make. In other words, 7,200
update messages get generated.

If, however, the server can push the data out to the cli-
ent only when the data has actually changed—such as with
WebSockets—only 20 messages need to be sent to each client,
giving 20 × 10 = 200 messages in total.

You can probably see how the relative numbers get even
more divergent as, over the lifetime of an application, either
the number of clients increases or the amount of time when
server data could change but doesn’t increases. The server
push model offered by WebSockets is inherently more effi-
cient than any polling mechanism could ever be.

The WebSocket Lifecycle
In the WebSocket protocol, a client and a server have mostly
equal roles. The only antisymmetry in the protocol is in the
initial phase of the connection being established, where it
matters who initiated the connection. It is somewhat like
a phone call. To make the phone call happen, someone has
to dial the number and someone has to answer. But once
the phone call has been connected, it doesn’t matter who
initiated it.

For WebSockets in the Java EE platform, a WebSocket cli-
ent is almost always a browser or a rich client running on a
laptop, smartphone, or desktop computer, and the WebSocket
server is a Java EE web application running on a Java EE
application server.

Let’s look now at a typical lifecycle of a WebSocket con-
nection. First, the client initiates a connection request. This
occurs when the client sends a specially formulated HTTP
request to the web server. You do not need to understand
every detail of the handshake request. What identifies this
as a WebSocket opening handshake request rather than any
common or garden-variety HTTP request is the use of the
Connection: Upgrade and Upgrade: websocket headers,
and the most important information is the request URI,
/mychat, as shown in this handshake request:

GET /mychat HTTP/1.1
Host: server.example.com
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: x3JJHMbDL1EzLkh9GBhXDw==
Sec-WebSocket-Protocol: megachat, chat
Sec-WebSocket-Extensions : compress, mux
Sec—WebSocket-Version: 13
Origin: http://example.com

The web server decides whether it supports WebSockets at
all (which all Java EE web containers do) and, if so, whether
there is an endpoint at the request URI of the handshake
request that meets the requirements of the request. If all
is well, the WebSocket-enabled web server responds with
an equally specially formulated HTTP response called a
WebSocket opening handshake response:

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=59&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=59&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=59&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=59&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

60

//web apps /

Sec-WebSocket-Accept: HSmrc0sM1YUkAGmm5OPpG2HaGWk=
Sec-WebSocket-Protocol: chat
Sec-WebSocket-Extensions: compress, mux

This response confirms that the server will accept the in-
coming TCP connection request from the client and may
impose restrictions on how the connection may be used.
Once the client has processed the response and is happy to
accept any such restrictions, the TCP connection is created,
as shown in Figure 1, and each end of the connection may
proceed to send messages to the other.

Once the connection is established, several things can occur:
■■ Either end of the connection may send a message to the

other. This may occur at any time that the connection is
open. Messages in the WebSocket protocol have two flavors:
text and binary.

■■ An error may be generated on the connection. In this case,
assuming the error did not cause the connection to break,
both ends of the connection are informed. Such nontermi-
nal errors may occur, for example, if one party in the con-
versation sends a badly formed message.

■■ The connection is voluntarily closed. This means that either
end of the connection decides that the conversation is over
and so closes the connection. Before the connection is
closed, the other end of the connection is informed of this.

Overview of the Java WebSocket API
The Java WebSocket API provides a set of Java API classes
and Java annotations that make it relatively straightforward
to create WebSocket endpoints that reside in the Java EE web
container. The general idea is to take a Java class in which
you want to implement the logic of the server endpoint and
annotate it at the class level with the special Java WebSocket
API annotation @ServerEndpoint. Next, you annotate
its method with one of the lifecycle annotations, such as
@OnMessage, which imbues the method in question with the
special power of being called every time a WebSocket client
sends a message to the endpoint. You then package it in the
WEB-INF/classes directory of the WAR file. Listing 1 is an
example of this.

Listing 1. The EchoServer sample
import javax.websocket.OnMessage;
import javax.websocket.server.ServerEndpoint;

@ServerEndpoint{"/echo")
public class EchoServer {

 @OnMessage
 public String echo (String incomingMessage){
 return "I got this (" +
 incomingMessage + ")" +
 " so I am sending it back !";
 }
}

This WebSocket endpoint is mapped to /echo in the URI
space of the web application. Each time a WebSocket client
sends it a message, it responds back immediately with a mes-
sage derived from the one it received.

The Java WebSocket API contains the means to intercept
all the WebSocket lifecycle events and provides the means
to send messages in both synchronous and asynchronous

Figure 1. Establishing a WebSocket connection

Client
Endpoint

Handshake Request

Handshake Response

Connected!

Server
Endpoint

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=60&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=60&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=60&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=60&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

61

//web apps /

modes. It allows you to translate WebSocket messages to and
from arbitrary Java classes using decoder and encoder classes.

The Java WebSocket API also provides the means to create
WebSocket client endpoints. The only time that the WebSocket
protocol is asymmetric concerns who initiates the connection.
The client support in the Java WebSocket API allows a client
to connect to the server, and so is suitable for Java clients to
connect to WebSocket endpoints running in the Java EE web
container or, in fact, any WebSocket server endpoint.

Before we look at a real example of a Java WebSocket, let’s
take a tour of the annotations and main classes in the Java
WebSocket API. Don’t worry about spending too long before
we get to working code: the Java WebSocket API is one of the
smaller APIs of the Java EE platform.

WebSocket Annotations
The Java WebSocket annotations have two main purposes.
First, they allow you to declare that you want an ordinary

Java class to become a WebSocket endpoint, and second, they
allow you to annotate methods on that class so that they
intercept the lifecycle events of the WebSocket endpoint.
First, we will take a look at the class-level annotations.
@ServerEndpoint. This is the workhorse annotation of the
API, and if you create many WebSocket endpoints, you will be
seeing a lot of it. The only mandatory attribute of this class-
level annotation is the value attribute (see Table 1), which
specifies the URI path to which you want this endpoint to be
registered in the URI space of the web application.
@ClientEndpoint. The @ClientEndpoint annotation is used
at the class level on a Java class that you wish to turn into a
client endpoint that initiates connections to server endpoints.
This is often used in rich client applications that connect to
the Java EE web container. It has no mandatory attributes.
@ServerEndpoint and @ClientEndpoint optional attributes. As
shown in Table 2, these class-level annotations have several
other attributes in common that define other configuration

options that apply to the WebSocket end-
point they decorate.

Now let us turn to the lifecycle
annotations.
@OnOpen. This method-level annota-
tion declares that the Java EE web
container must call the method it anno-
tates on a WebSocket endpoint whenever
a new party connects to it. The method
may have either no arguments or an
optional Session parameter, where
the class javax.websocket
.Session is an API object that repre-
sents the WebSocket connection that
has just opened; and/or an optional
Endpoint config parameter, where
javax.websocket.EndpointConfig
is an API object representing the con-

Table 1. The attribute of @ServerEndpoint

AT T RIB U T E F UNC T ION M A NDAT ORY

VALUE DEFINES URI PATH UNDER WHICH THE ENDPOINT IS REGISTERED YES

Table 2. Attributes of class-level annotations

@S ER V ERENDP OIN T A ND
@C L IEN T ENDP OIN T AT T RIB U T E S F UNC T ION M A NDAT ORY

CONFIGURATOR THE CL ASS NAME OF A SPECIAL CL ASS THE DEVELOPER MAY PROVIDE
TO DYNAMICALLY CONFIGURE THE ENDPOINT

NO

DECODERS LIST OF CL ASSES USED TO CONVERT INCOMING WEBSOCKET
MESSAGES INTO JAVA CL ASSES THAT REPRESENT THEM

NO

ENCODERS LIST OF CL ASSES USED TO CONVERT JAVA CL ASSES INTO
OUTGOING WEBSOCKET MESSAGES

NO

SUBPROTOCOLS LIST OF STRING NAMES DENOTING ANY SPECIAL SUBPROTOCOLS,
SUCH AS “CHAT,” THAT THE ENDPOINT SUPPORTS

NO

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=61&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=61&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=61&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=61&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

62

//web apps /

figuration information for this endpoint; and an optional
WebSocket path parameter, which we will soon discuss.
@OnMessage. This method-level annotation declares that the
Java EE web container must call the method it decorates when-
ever a new message arrives on the connection. The method
must have a certain type of parameter list, but luckily, there
are a number of options. The parameter list must include a
variable that can hold the incoming message, can include the
Session, and can include path parameters. A range of options
exists for what kind of variables can hold the incoming mes-
sage, with the most commonly used options being String for
text messages and ByteBuffer for binary messages.

The method may have a specified return type or be of void
return type. If there is a return type, the Java EE web con-
tainer interprets the return as a message to send back imme-
diately to the client.
@OnError. This method-level annotation declares that
the Java EE web container must call the method it deco-
rates whenever an error occurs on the connection. The
method must have a Throwable parameter in its param-
eter list, and may have an optional Session parameter and
path parameters.
@OnClose. For the final event in any WebSocket lifecycle,
this method-level annotation declares that the Java EE web
container must call the method it decorates whenever a
WebSocket connection to this endpoint is about to close. The
method is allowed to have a Session parameter and path
parameters in its parameter list if it wants them to be passed
in, as well as a javax.websocket.CloseReason parameter,
which contains some explanation as to why the connection
is closing.

The Java WebSocket API Classes
The most important API classes that the developer of Java
WebSockets will encounter are the Session, Remote, and
WebSocketContainer interfaces.

Session. The Session object is a high-level representation of
an active WebSocket connection to an endpoint. It is avail-
able to any of the WebSocket lifecycle methods. It contains
information about how the connection was established, for
example, the request URI that the other party in the connec-
tion used to establish it, and the amount of time after which
the connection will time out, if it’s left idle. It contains the
means to close the connection programmatically. It holds a
map that applications may use to hold application data that
they wish to associate with the connection, perhaps a tran-
script of the entire message that an endpoint received from a
given peer. Although different from the HttpSession object,
it is analogous in that it represents a sequence of interactions
from a particular peer of the endpoint that has access to the
Session object instance. Additionally, it holds access to the
RemoteEndpoint interface for the endpoint.
RemoteEndpoint. The RemoteEndpoint interface is available
from the Session object and represents the endpoint at the
other end of the connection. In practical terms, it is the object
you call when you want to send a message to the other end of
the connection. There are two subtypes of RemoteEndpoint.
One, RemoteEndpoint.Basic, holds all the methods for
sending WebSocket messages synchronously. The other,
RemoteEndpoint.Async, holds all the methods for sending
WebSocket messages asynchronously. Many applications only
send WebSocket messages synchronously because many appli-
cations have only small messages to send, so the difference
between synchronous and asynchronous sending is small.
Many applications send only simple text and binary messages,
so knowing that the RemoteEndpoint.Basic interface has
the following two methods will get you a long way:

public void sendText (String text) throws IOException;

public void sendBinary(ByteBuffer bb) throws
 IOException

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=62&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=62&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=62&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=62&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

63

//web apps /

WebSocketContainer. As the ServletContext is to Java serv-
lets, so is the WebSocketContainer to Java WebSockets. It
represents the Java EE web container to the WebSocket end-
points it contains. It holds a number of configuration proper-
ties of the WebSocket functionality, such as message buffer
sizes and asynchronous send timeouts.

Let’s Build Something: A WebSocket Clock
We have completed our tour of the Java WebSocket API, and
having done so, we know more than enough to look at our
first WebSocket application. The Clock application is a simple
web application. When you run the application, you see the
index.html web page, as shown in Figure 2.

When you click the Start button, the clock starts with
the current time, as shown in Figure 3. The time updates
every second.

Figure 5. Clock architecture

Figure 2. WebSocket Clock off

Figure 4. WebSocket Clock stopped

Figure 3. WebSocket Clock on

Connect

Time update messages

Stop message

Browser

/index.html
JavaScript

code
ClockServer

Java
endpoint

Server

When you click the Stop button, the clock stops until you
restart it, as shown in Figure 4.

The application is made up of a single web page, index
.html, and a single Java WebSocket endpoint, called
ClockServer. When Start is pressed, index.html uses
JavaScript code to establish a WebSocket connection with
the ClockServer endpoint. It sends time update messages
every second back to the browser client. The JavaScript code
handles the incoming message and renders it on the page.
Clicking Stop causes the JavaScript code in the index.html
page to send a stop message to the ClockServer, which
consequently stops sending the time updates. This architec-
ture is shown in Figure 5.

Let’s look at the code, first for the client. [The complete
listing is available for download at this issue’s download area.
—Ed.] Here is the WebSocket client code from Listing 2.

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=63&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=63&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=63&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=63&exitLink=https%3A%2F%2Fjava.net%2Fprojects%2Fjava-magazine%2Fdownloads%2Fdirectory%2F2015-11
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=63&exitLink=http%3A%2F%2FORACLE.COM%2FJAVAMAGAZINE

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

64

//web apps /

Listing 2. WebSocket client code (JavaScript)
. . .
function start_clock() {
 var wsUri =
 "ws://localhost:8080/clock-app/clock";
 websocket = new webSocket(wsUri);
 websocket.onmessage = function (evt) {
 last_time = evt.data;
 writeToScreen(
 "" +
 last_time + "");
 };

 websocket.onerror = function (evt) {
 writeToScreen (
 ' ' +
 'ERROR: ' + evt.data);
 websocket.close();
 };
}

function stop_c1ock() {
 websocket.send("stop");
}

The HTML for this page is relatively straightforward.
Notice that the JavaScript API for WebSockets uses the full
URI to the WebSocket endpoint where clock-app is the con-
text path of the web application: ws://localhost:8080/
clock-app/clock.

The start_clock() method does all the work of making
the WebSocket connection and adding the event handlers,
JavaScript style, particularly for handling messages that it
receives from the server. The stop_clock() method simply
sends the stop string to the server.

Now let’s turn to the ClockServer endpoint, as shown in
Listing 3. [Again, the complete listing is available for down-
load at this issue’s download area. —Ed.]

Listing 3. The server endpoint
...imports...

@ServerEndpoint ("/clock")
public class ClockServer {
 Thread updateThread;
 boolean running = false;

 @OnOpen
 public void startClock(Session session) {
 final Session mySession = session;
 this.running = true;
 final SimpleDateFormat sdf =
 new SimpleDateFormat("h:mm:ss a");
 this.updateThread = new Thread() {
 public void run() {
 while (running) {
 String dateString =
 sdf.format(new Date());
 try {
 mySession.getBasicRemote().
 sendText(dateString);
 sleep(1000);
 } catch (IOException |
 InterruptedException ie) {
 running = false;
 }
 }
 }
 };
 this.updateThread.start();
 }

 @OnMessage
 public String handleMessage(
 String incomingMessage) {
 if ("stop".equals(incomingMessage)) {
 this.stopClock();
 return "clock stopped";
 } else {

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=64&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=64&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=64&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=64&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=64&exitLink=https%3A%2F%2Fjava.net%2Fprojects%2Fjava-magazine%2Fdownloads%2Fdirectory%2F2015-11

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

65

//web apps /

 return "unknown message: " +
 incomingMessage;
 }
 }

 @OnError
 public void clockError(Throwable t) {
 this.stopClock() ;
 }

 @OnClose
 public void stopClock() {
 this.running = false;
 this.updateThread = null;
 }
}

Notice that the ClockServer uses the @ServerEndpoint
annotation to declare itself as a WebSocket endpoint,
mapped to the URI/clock, relative to the context root of the
web application in which it is contained. Notice that the
startClock() method, called when a new client connects
thanks to its @OnOpen annotation, does most of the work.
It creates a thread that uses the Session object to obtain a
reference to the RemoteEndpoint instance representing the
client and sends it the current time, formatted into a string.
If the endpoint receives a message, it is passed into the
handleMessage() method, which you can identify because
this method is annotated with @OnMessage. The String
parameter of this method informs you that the endpoint is
electing to receive its text messages in the simplest form of
a Java string. This method returns a string, which is turned
into a WebSocket message by the Java EE container and sent
back to the client immediately.

How Many WebSocket Instances?
One question that arises even in this simple example is: how
many instances will occur for a WebSocket endpoint class

such as the ClockServer? The answer is that there will be
one instance of the WebSocket endpoint class for each cli-
ent that connects to it. Each client gets a unique endpoint
instance. Further, the Java EE web container guarantees that
no two WebSockets are sent to the same endpoint instance at
once. So, in contrast to the Java servlet model, you can pro-
gram your WebSocket endpoints knowing that there will only
ever be one thread calling at a time.

Conclusion
The base WebSocket protocol gives us two native formats to
work with: text and binary. This works well for very simple
applications that exchange only simple information between
client and server. For example, in our Clock application, the
only data that is exchanged during the WebSocket messaging
interaction is the formatted time string broadcast from the
server endpoint and the stop string sent by the client to end
the updates. But as soon as an application has anything more
complicated to send or receive over a WebSocket connection, it
will find itself seeking a structure into which to put the infor-
mation. As Java developers, we are used to dealing with appli-
cation data in the form of objects: either from classes from the
standard Java APIs, or from Java classes that we create our-
selves. This means that if you stick with the lowest-level mes-
saging facilities of the Java WebSocket API and want to pro-
gram using objects that are not strings or byte arrays for your
messages, you need to write code that converts your objects
into either strings or byte arrays and vice versa. I’ll discuss this
topic in the second installment of this article. </article>

This article was adapted from the book Java EE 7: The Big Picture
with kind permission from the publisher, Oracle Press. The book
was reviewed on page 10 of the September/October issue.

LEARN MORE
• Oracle’s Java WebSockets tutorial

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=65&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=65&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=65&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=65&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=65&exitLink=http%3A%2F%2Fwww.mhprofessional.com%2Fproduct.php%3Fisbn%3D0071837345%26cat%3D112
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=65&exitLink=http%3A%2F%2Fwww.oracle.com%2Fwebfolder%2Ftechnetwork%2Ftutorials%2Fobe%2Fjava%2FHomeWebsocket%2FWebsocketHome.html

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

66

//fix this /

The questions in this quiz section are taken from certifi-
cation test 1Z0-808: Oracle Certified Associate, Java SE 8

Programmer, Oracle Certified Java Programmer. More than
last issue’s questions, these little questions have unexpected
traps that can snag even the attentive coder. Many times you
can avoid snags by coding predictably down the middle of the
language. But as we see here, even then not everything works
out exactly as we expect—more so, because here we dip into a
few streams, which have traps all their own. (Answers appear
in the “Answers” section immediately after the questions.)

Question 1. Given these code fragments:
class ProductNotFoundException extends Exception{}

class SalesPerson {
 String name;
 List<String> products = new ArrayList<>();
 public List<String> getProducts() throws
 ProductNotFoundException {
 products.add("SoundCard");
 return products;
 }
}

and

class SalesApp {
 public static void main(String[] args) {

Quiz Yourself
Easy questions are hard for the wise man. And hard questions are easy. But what is the
place for wisdom in quizzes? Let’s see.

 SalesPerson sp = new SalesPerson();
 List<String> products = sp.getProducts();
 System.out.println(products.get(0));
 }
}

What is the result?
a. SoundCard
b. A ProductNotFoundException is thrown at runtime.
c. 0
d. A compilation error occurs.

Question 2. Given this code fragment:
String wishMsg = "Happy day!";
wishMsg.concat(" Tom");
String msg = (wishMsg.length() > 10) ?
 "Too long" : "Sent";
System.out.println(msg+": "+wishMsg);

What is the result?
a. Sent: Happy day!
b. Too long: Happy day!
c. Too long: Happy day! Tom
d. A compilation error occurs.

Question 3. Given the content of the AClass.java, BClass.java,
and IFace.java files:
public abstract class AClass {
 public void aMethod() {

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=66&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=66&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=66&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=66&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=66&exitLink=http%3A%2F%2Feducation.oracle.com%2Fpls%2Fweb_prod-plq-dad%2Fdb_pages.getpage%3Fpage_id%3D5001%26get_params%3Dp_exam_id%3A1Z0-808

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

67

//fix this /

 System.out.println("Method");
 }
 public abstract void bMethod();
}

public interface IFace {
 public void cMethod();
}

public abstract class BClass
 extends AClass implements IFace {}

Which statement is true?
a. Only the AClass.java file compiles.
b. Only the IFace.java file compiles.
c. Only the BClass.java file compiles.
d. All three files compile successfully.

Question 4. Now, let’s dance along the Streams, shall we?
Given this code fragment (with line numbers):
10. Stream<Integer> stm =
 Stream.of(10, 30, 20, 40);
11. int n1 = stm.findFirst().get();
12. boolean divByTen =
 stm.allMatch(n -> n%10 == 0);
13. System.out.println(n1 + ":" + divByTen);

What is the result?
a. 10:true
b. 0:false
c. A compilation error occurs.
d. An exception is thrown at runtime.

Question 1. Option D is correct. The program results in a com-
pilation error. The getProducts() method declares that it
throws ProductNotFoundException. getProducts() is
invoked in the main() method. The main() method must han-
dle ProductNotFoundException or must declare that it throws
ProductNotFoundException.

Question 2. Option A is correct. Strings are immutable. wishMsg is
unchanged and holds the value Happy day! Options B and C are incor-
rect. The result of concatenation is not retained. Option D is incorrect.
The code compiles successfully.

Question 3. Option D is correct. Option A is incorrect because AClass
compiles successfully. A class that contains a method without defini-
tion must be declared abstract. An abstract class may contain con-
crete methods. Option B is incorrect because the methods declared in an
interface are abstract by default. Option C is incorrect because BClass
does not override the abstract methods, cMethod() and bMethod(),
and hence it is declared abstract.

Question 4. Option D is correct. A stream implementation may throw
java.lang.IllegalStateException if it detects that the stream is
being reused. At line 11, the stm stream is consumed to get the first
element and it is automatically closed. At line 12, the program tried to
access the elements of the closed stm stream to check whether the
elements are divisible by 10. Therefore, the java.lang.Illegal
StateException is thrown. If you need to traverse the same data
source again, you must create a new stream. Options A and B are incor-
rect. A java.lang.IllegalStateException is thrown at runtime.
Option C is incorrect. The code compiles successfully.

Answers

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=67&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=67&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=67&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=67&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2015

68

//contact us /

Comments
We welcome your comments, correc­
tions, opinions on topics we’ve covered,
and any other thoughts you feel impor­
tant to share with us or our readers.
Unless you specifically tell us that your
correspondence is private, we reserve the
right to publish it in our Letters to the
Editor section.

Article Proposals
We welcome article proposals on all
topics regarding Java and other JVM
languages, as well as the JVM itself.
We also are interested in proposals for
articles on Java utilities (either open

source or those bundled with the JDK).
Finally, algorithms, unusual but useful
programming techniques, and most other
topics that hard­core Java programmers
would enjoy are of great interest to us,
too. Please contact us with your ideas at
javamag_us@oracle.com and we’ll give
you our thoughts on the topic and send
you our nifty writer guidelines, which will
give you more information on preparing
an article.

Customer Service
If you’re having trouble with your
subscription, please contact the
folks at java@halldata.com (phone

+1.847.763.9635), who will do whatever
they can to help.

Where?
Comments and article proposals should
be sent to me, Andrew Binstock, at
javamag_us@oracle.com.

While it will have no influence on
our decision whether to publish your
article or letter, cookies and edible treats
will be gratefully accepted by our staff
at Java Magazine, Oracle Corporation,
500 Oracle Parkway, MS OPL 3A,
Redwood Shores, CA 94065, USA.

http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=68&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=68&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=68&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=68&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=68&exitLink=mailto%3Ajavamag_us%2540oracle.com%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=68&exitLink=mailto%3Ajava%2540halldata.com%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015/TrackLink.action?pageName=68&exitLink=mailto%3Ajavamag_us%2540oracle.com%3Fsubject%3D

	Table of Contents
	From the Editor
	Letters to the Editor
	Events
	Java Books
	Libraries: Finding New Gems
	JCOMMANDER: A BETTER WAY TO PARSE COMMAND LINES
	RUNTIME CODE GENERATION WITH BYTE BUDDY
	JSOUP HTML PARSING LIBRARY
	HOW THE JVM LOCATES, LOADS, AND RUNS LIBRARIES

	Java EE
	Contexts and Dependency Injection: The New Java EE Toolbox

	JVM Languages
	Jython 2.7: Integrating Python and Java

	Containers
	Using Docker in Java Applications

	Web Apps
	Building Apps Using WebSockets

	Fix This
	JavaOne Recap
	User Groups
	Contact Us

