
+

AUTOMATED
TESTING
FOR JAVAFX

14
JUNIT’S MOST
UNDERUSED
FEATURES

20
BUILDING
A SELENIUM
TEST GRID

26

KOTLIN 46 | FUNCTIONAL JAVA 50 | CDI 59 | CAREERS 77

SEPTEMBER/OCTOBER 2015

ORACLE.COM/JAVAMAGAZINE

HUNTING DOWN HARD-TO-FIND ERRORS

Testing

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=Cover&exitLink=http%3A%2F%2FORACLE.COM%2FJAVAMAGAZINE

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

01

//table of contents /

COVER ART BY I-HUA CHEN

03
From the Editor
One of the most effective tools for
defect detection is rarely used due to
old prejudices, except by companies
who can’t afford bugs. They all use it.

06
Letters to the Editor
Corrections, questions, and kudos

07
Events
Calendar of upcoming Java
conferences and events

10
Java Books
Reviews of books on JavaFX
and Java EE 7

46
JVM Languages
Kotlin: A Low-Ceremony,
High-Integration Language
By Hadi Hariri
Work with a statically typed, low-
ceremony language that provides
first-class functions, nullability
protections, and complete integration
with existing Java libraries.

50
Functional Programming
Functional Programming
in Java: Using Collections
By Venkat Subramaniam
Part 2 of our coverage of functional
programming explains the code smells
that can arise from lambda-based
functional routines.

59
Java EE
Contexts and Dependency
Injection: The New Java EE
Toolbox
By Antonio Goncalves
More loose coupling with observers,
interceptors, and decorators

70
Architecture
A First Look at Microservices
By Arun Gupta
The latest trend in enterprise computing
is microservices. What exactly are they?

75
Fix This
Our latest code challenges from
the Oracle certification exams

77
Career
More Ideas to Boost
Your Developer Career
By Bruno Souza and Edson Yanaga
Skills to develop, activities to explore

25
Java Proposals of Interest
JEP 259: Stack-Walking API

45
User Groups
The Virtual JUG

80
Contact Us
Have a comment? Suggestion?
Want to submit an article proposal?
Here’s how to do it.

14
TEST JAVAFX APPS
WITH TESTFX
By Bennet Schulz

Simple JUnit-style testing of JavaFX UIs

20
EIGHT GREATLY
UNDERUSED
FEATURES OF JUNIT
By Mert Çalişkan

Make your testing a whole
lot easier with little-used
JUnit capabilities.

26
BUILDING AND
AUTOMATING
A FUNCTIONAL
TEST GRID
By Neil Manvar

How to assemble a grid
for Selenium testing

32
STRESS TESTING
JAVA EE
APPLICATIONS
By Adam Bien

Identify application server
configuration problems,
potential bottlenecks,
synchronization bugs,
and memory leaks in
Java EE code.

42
THINK LIKE
A TESTER AND
GET RID OF QA
By Mark Hrynczak

Atlassian represents the
bleeding edge in testing:
its developers are required
to formulate tests before
they code and after. QA is
there to help—but not test.
Here’s how it’s working.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=1&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=1&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=1&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=1&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

02

EDITORIAL
Editor in Chief
Andrew Binstock
Managing Editor
Claire Breen
Copy Editor
Karen Perkins
Section Development
Michelle Kovac
Technical Reviewers
Stephen Chin, Reza Rahman, Simon Ritter

DESIGN
Senior Creative Director
Francisco G Delgadillo
Design Director
Richard Merchán
Senior Designer
Arianna Pucherelli
Designer
Jaime Ferrand
Senior Production Manager
Sheila Brennan
Production Designer
Kathy Cygnarowicz

PUBLISHING
Publisher
Jennifer Hamilton +1.650.506.3794
Associate Publisher and Audience
Development Director
Karin Kinnear +1.650.506.1985
Audience Development Manager
Jennifer Kurtz

ADVERTISING SALES
Josie Damian +1.626.396.9400 x 200
Advertising Sales Assistant
Cindy Elhaj +1.626.396.9400 x 201
Mailing-List Rentals
Contact your sales representative.

RESOURCES
Oracle Products
+1.800.367.8674 (US/Canada)
Oracle Services
+1.888.283.0591 (US)

ARTICLE SUBMISSION
If you are interested in submitting an article, please e-mail the editors.

SUBSCRIPTION INFORMATION
Subscriptions are complimentary for qualified individuals who complete the
subscription form.

MAGAZINE CUSTOMER SERVICE
java@halldata.com Phone +1.847.763.9635

PRIVACY
Oracle Publishing allows sharing of its mailing list with selected third parties. If you prefer
that your mailing address or e-mail address not be included in this program, contact
Customer Service.

Copyright © 2015, Oracle and/or its affiliates. All Rights Reserved. No part of this publication may be reprinted or otherwise
reproduced without permission from the editors. JAVA MAGAZINE IS PROVIDED ON AN “AS IS” BASIS. ORACLE EXPRESSLY
DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS OR IMPLIED. IN NO EVENT SHALL ORACLE BE LIABLE FOR ANY
DAMAGES OF ANY KIND ARISING FROM YOUR USE OF OR RELIANCE ON ANY INFORMATION PROVIDED HEREIN. The
information is intended to outline our general product direction. It is intended for information purposes only, and may not be
incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied
upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s
products remains at the sole discretion of Oracle. Oracle and Java are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

Java Magazine is published bimonthly at no cost to qualified subscribers by
Oracle, 500 Oracle Parkway, MS OPL-3A, Redwood City, CA 94065-1600.

Digital Publishing by GTxcel

#1 Development Platform

20 Years of
Innovation

Since 1998

Since 2008Since 1996

Since 2012

Since 2002 Since 1999

Since 1996

Since 1999

Since 1998

Since 1995

Since 1996

Since 2001 Since 1996

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=2&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=2&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=2&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=2&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=2&exitLink=mailto%3Ajennifer.hamilton%2540oracle.com%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=2&exitLink=mailto%3Akarin.kinnear%2540oracle.com%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=2&exitLink=mailto%3Ajennifer.s.kurtz%2540oracle.com%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=2&exitLink=mailto%3Ajosie.damian%2540sprocketmedia.com%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=2&exitLink=mailto%3Acindy%2540sprocketmedia.com%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=2&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=2&exitLink=http%3A%2F%2Foracle-sub.halldata.com%2Fsite%2FORA000263JFnew%2Finit.do%3F%26PK%3DNAFORJ
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=2&exitLink=mailto%3Ajava%2540halldata.com%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=2&exitLink=mailto%3Ajava%2540halldata.com%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=2&exitLink=http%3A%2F%2Fwww.gtxcel.com%2F
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=2&exitLink=https%3A%2F%2Fwww.oracle.com%2Fjava%2Findex.html

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

03

//from the editor /

There is perhaps no greater peculiarity in the
profession of software development than the

lack of interest in software engineering. This field,
which is the empirical, quantitative analysis of
software-development techniques, should be the
cornerstone of the trade. And yet for most devel-
opment organizations, it remains a closed domain
into which they never venture. Even the emerg-
ing emphasis on metrics and dashboards has not
led to curiosity about what thousands of projects
tell us about those very numbers. The disregard
extends even to the parlance we use: In most
locales, a “software engineer” is a seasoned pro-
grammer. There is no implication of familiarity
with software engineering.

Part of this neglect is the view that practitioners
are mostly academics. Although those same aca-

PHOTOGRAPH BY BOB ADLER/GETTY IMAGES

The Unreasonable Effectiveness
of Static Analysis
It’s easy to run, provably effective, and greatly underused. Why?

BIO

demics study real-life projects, both open source
and inside companies, the perception that they are
disconnected from reality endures. Their utility,
however, shows up when a project with unusual
requirements confronts an organization. Suppose
after several years of leading various teams at your
company and delivering projects roughly on time
and of the desired quality, you’re charged with
a green-field project that requires a much lower
level of defects than your organization is accus-
tomed to. How will you amp up the quality?

This is where software engineering becomes a
crucial resource: You can see which techniques
deliver lower defect rates and what their impact
on productivity has been historically. Informed
with this data, you’ll be able to plan how to go
about reaching the new goals for this project. (In

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=3&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=3&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=3&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=3&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=3&exitLink=http%3A%2F%2Fwww.oracle.com%2Fjava
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=3&exitLink=javascript%3AopenPopup%28%27Java_SO15_Binstock_BIO_p03_1443107812823%27%29

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

04

//from the editor /
real life, of course, most organi-
zations just call in consultants.)

Were you to perform this
inquiry, it might lead to con-
sideration of what practices you
could add to existing projects to
raise their overall quality with-
out sacrificing productivity. In
many—likely in most—cases,
that additional practice would be
static analysis of code. Relying
on the work of Capers Jones, one
of the most widely experienced
analysts of software-engineering
data, static analysis reduces
defects in projects by 44 percent
(from an average of 5.0 defects
per unit of functionality to 2.8
defects). Among standard quality
assurance techniques, only formal
inspections have a higher effec-
tiveness (60 percent). By com-
parison, test-driven development
(TDD) comes in at 37 percent.
These numbers are not additive,
of course. Inspections plus static
analysis don’t deliver 100 percent
defect-free code. By the same
token, static analysis reveals
problems that inspections and
TDD cannot find. Let me explain.

Static-analysis tools today fall
into roughly two tiers. There are
the open source tools, which in
Java are particularly good. These
include FindBugs, PMD, walkmod,

and to a lesser extent Checkstyle.
Commercial tools—such as those
from Coverity, Parasoft, Rogue
Wave Software, and other ven-
dors—are significantly more
advanced. They can do magical
things such as data-motion anal-
ysis, which reveals defects that
are hard to see via other means.
For example, this analysis can
show that a given data item can
never be null because all paths
that touch it first pass through
another module far afield that
guarantees nonnullness. Or it can
find the opposite, that a method
that counts on being passed only
prescreened objects can in fact
be passed a null. Some of these
tools excel at finding other very
difficult bugs, such as unwanted
interactions between two
threads, or the rare case that a
data item can be read incorrectly
due to the design of the Java
memory model. These are subtle
items that can be hard to locate
and costly to fix—and they’re
typically not revealed by formal
inspections or unit testing.

The resistance to static analy-
sis, I believe, stems from a repu-
tation built up in its early days of
delivering false positives—that
is, claiming to find a defect where
in fact none exists. Per Jones,

false positives a decade ago aver-
aged 10 percent but now are well
below 3 percent. In commercial
products, the rate is even lower.
The other perceived drawback
is that the tools are slow. This
remains true. You typically run
the high-end tools once a day for
the whole project, but always on
code about to be checked in. The
tools can analyze new code by
cross-checking with the database
of artifacts from the most recent
whole-project scan.

Static analysis has an addi-
tional upside: It’s not disruptive
to existing site practices. You
can add it to a testing pipeline
with ease. This aspect and its
remarkable effectiveness make
it one of the simplest, but unde-
servedly underused, ways to
improve quality.

Andrew Binstock, Editor in Chief
javamag_us@oracle.com

@platypusguy

PS: Update on our evolution:
In this issue, you’ll see that we
updated our fonts to improve
legibility and we’ve begun
what will be a long-running
series of articles on JVM lan-
guages. Let me know if you have
any suggestions.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=4&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=4&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=4&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=4&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=4&exitLink=http%3A%2F%2Fwww.informit.com%2Fstore%2Feconomics-of-software-quality-9780132582209
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=4&exitLink=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCapers_Jones
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=4&exitLink=http%3A%2F%2Ffindbugs.sourceforge.net%2F
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=4&exitLink=http%3A%2F%2Fpmd.github.io%2F
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=4&exitLink=http%3A%2F%2Fwalkmod.com%2F
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=4&exitLink=http%3A%2F%2Fwww.oracle.com%2Fjava
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=4&exitLink=http%3A%2F%2Fcheckstyle.sourceforge.net%2F
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=4&exitLink=https%3A%2F%2Ftwitter.com%2Fplatypusguy
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=4&exitLink=mailto%3Ajavamag_us%2540oracle.com%3Fsubject%3D

O
riginally developed by Jeremy Allaire
and JJ Allaire in 1995 to make it easier
for developers to connect simple HTML
pages to a database, ColdFusion has

been around almost as long as the web itself and
predates many popular web development languages.
A full scripting language—CFML—and an integrated
development environment were added, and
ColdFusion remains popular with coders for being

a rapid web application
development platform
that helps them reduce
development time by an
order of magnitude.

A history of innovation
Over two decades ColdFu-
sion has been at the fore-
front of simplifying all tasks
programmers find tedious
and time consuming, such
as charts and graphs, PDF
generation and manipu-
lation, WebSockets and

many more. Many of the things that seem so obvious
to us now were innovative solutions first offered by
ColdFusion, allowing developers to create robust, scal-
able, high-performing, secure web- and mobile-based
applications with minimal effort.

Each release has built on the previous ones, and
ColdFusion has long since gone beyond its “tag-
based scripting language” past. Today, ColdFusion
can talk to pretty much everything, from legacy COM
and CORBA to .NET assemblies and Java classes.

And it can be used to develop pretty much every
application required to meet dynamic business
needs—which is why it is so prevalent in large
enterprises and government setups.

ColdFusion has a fan following in smaller
organizations, too. “When we started out, as [with] any
startup, the budget was always short. So we needed
a language that allowed us to develop the application
in a short period of time. ColdFusion dramatically cut
down the development cost,” says Sumit Verma, co-
owner at Ten24 Digital Solutions.

“ColdFusion has clearly stood the test of time,”
says Rakshith Naresh, product manager at ColdFusion.
“One of the reasons why customers keep coming back
to ColdFusion is the productivity benefit it offers.”

Continuing to blaze the trail
“There really isn’t a comparison at all between how
Adobe reacts to our needs versus any of the other
software companies that we work with. Basically,
what happens is ColdFusion allows us to change our
market,” quotes Eric Kratz, president at VSR Systems.

Be it overhauling your company’s HR operations,
updating your firm’s global intranet, or powering the
world’s busiest electronic storefronts, you can be sure
this 20-year-old will rise to the occasion.

“ColdFusion continues to do well while staying at
the forefront of technology. The unique integration
with HTML5 along with the end-to-end mobile
development platform and the increased focus

on security in ColdFusion give enterprises the
confidence and edge to easily adopt the latest
technologies as they make their digital transitions.
The future roadmap for improvement in the mobile
development platform and the addition of social
analytics while staying true to the ColdFusion credo
of ‘making hard things easy‘ indicate exciting times
for ColdFusion in the coming years.”

Tridib Roy Chowdhury, General Manager and Senior

Director of Products, Adobe

Adobe ColdFusion Celebrates 20 Years of Making
Complex Coding Tasks Easy

SPONSORED CONTENT

For more information, visit adobe.com/coldfusion

Adobe ColdFusion Summit 2015
(November 9–10, Las Vegas, Nevada)

brings together the web application

community. Interact with ColdFusion

experts, domain leaders, and peers,

and learn about the latest technologies,

techniques, and strategies to help you

rapidly build and successfully deliver

web applications to market. Explore how

ColdFusion is driving change and how you

can propel this momentum.

Adobe ColdFusion Summit is the largest
summit for ColdFusion developers and has
had three successful annual installments.

Tridib Roy Chowdhury, General Manager and
Senior Director of Products, Adobe

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=5&exitLink=http%3A%2F%2Fadobe.com%2Fcoldfusion

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

06

//letters to the editor /

Casting for long?
In the article “What’s New in JPA”
in the May/June 2015 issue, I saw
in Listing 17 that the author uses
a cast to long. But in fact, if the
code were

return em.createQuery(
 ..., Long.class)
 .getSingleResult();

it would remove the need for the
cast.

—Josh Toepfer

Author Josh Juneau responds: “You
are correct that we can get rid of the
cast by passing Long.class as the
second argument to createQuery()
on line 6 of the listing. Thanks for
pointing this out.”

IoT Coverage
Now that we’re in an IoT-based
world, I wish to see articles
covering the ecosystem of embed-
ded Java for IoT. This includes the
processor, programming, devel-
opment kits, embedded Java, and
so on.

—Sam Desd

Editor Andrew Binstock responds:
“We had a long article on using Java
for IoT on the Raspberry Pi in the

MAY/JUNE 2015

May/June issue. We will have many
more similar articles in the future.”

Inside the CPU
Thank you so much for driving
the magazine in a more techni-
cal direction. The article “Inside
the CPU: The Unexpected Effects
of Instruction Execution” (in
the March/April and July/August
issues) is absolutely awesome!

—Yury Pitsichin

A Paper Version of Java
Magazine?
I was wondering if there is a
possibility of getting a printed
edition of the magazine, at least
through a third-party provider?
After a complete day of work in
front of the computer, it’s good
to have a print magazine for a
change of environment.

—Raj Thondepu

Publisher Jennifer Hamilton
responds: “I totally understand
wanting to disconnect and enjoy a
printed publication. However, Java
Magazine is being published only in
digital format. When I want to read
a hard-copy version of an article,
I download the PDF and print the
pages in landscape mode using the
Fit option in Adobe Acrobat Reader.”

How About a Kindle Version?
The magazine needs to be avail-
able in the Kindle format. I don’t
get why people would download
a PDF, or read the same on their
phones. It’s too cumbersome.

Having a Kindle version will get
you 10x the readers.

—Jude Pereira

Editor Andrew Binstock responds:
“In Silicon Valley, at least, most
people in tech read magazines on
tablets (which, in my opinion, are
better for reading articles with code).
For users of tablets, we offer both
iOS and Android apps. For all others,
we offer PDF. We are actively looking
at expanding our list of distribution
targets, and the Kindle is at the top of
that list. However, we don’t expect to
be able to provide that upgrade before
the end of the year or early next year.”

Contact Us
We welcome comments, sugges-
tions, grumbles, kudos, article
proposals, and chocolate chip
cookies. All but the last two might
be edited for publication. If your
note is private, please indicate
this in your message. Please write
to us at javamag_us@oracle.com.
For other ways to reach us, please
see the last page of this issue.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=6&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=6&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=6&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=6&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=6&exitLink=mailto%3Ajavamag_us%2540oracle.com%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=6&exitLink=http%3A%2F%2Fwww.oraclejavamagazine-digital.com%2Fjavamagazine%2Fmay_june_2015%3Fpg%3D1%23pg1

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

07

//events /

PHOTOGRAPH BY WESTEND61/GETTY IMAGES

JavaOne 2015 OCTOBER 25–29
SAN FRANCISCO, CALIFORNIA
Join the single largest gathering of Java
developers. From sessions, workshops,
labs, and exhibits to keynotes and Birds-
of-a-Feather sessions, learn about the
latest language changes to improve cod-
ing efficiency. You’ll also learn how to
build modern enterprise and server-
based applications, create rich and
immersive client-side solutions, build
next-generation apps targeting smart
devices, and compose sophisticated Java
web services and cloud solutions.

JavaDay Kharkiv
OCTOBER 1
KHARKIV, UKRAINE
Enjoy and learn in a full day
of world-class talks. Topics
include core JVM platform and
Java SE (Java 8), JVM languages
and new programming para-
digms, web development, and
Java enterprise technologies.

Silicon Valley Code Camp
OCTOBER 3–4
SAN JOSE, CALIFORNIA
Last year, 4,500 people

attended this free commu-
nity event where developers
learn from fellow developers.
In addition to technical topics,
speakers present on software
branding and legal issues.

JAX London
OCTOBER 12–14
LONDON, ENGLAND
JAX London brings Java, JVM,
and enterprise professionals
together for a technology- and
methodology-packed event.
Participants get full access to
Big Data Con London, which
features modern datastores,
big data architectures based
on Hadoop, and advanced data
processing techniques.

JDD
OCTOBER 13–14
KRAKOW, POLAND
JDD is a two-day confer-
ence for all Java enthusiasts,
who can participate in more
than 30 lectures, workshops,
interactive trainings, and net-
working opportunities. JDD
attracts speakers from all over
the world and offers lectures
in English.

GeeCON
OCTOBER 23–24
PRAGUE, CZECH REPUBLIC
Join more than 2,000 par-
ticipants at GeeCON, which is
focused on JVM-based tech-
nologies with special attention
to dynamic languages such
as Groovy and Ruby. GeeCON
participants share experi-
ences about development
methodologies and craftsman-
ship, enterprise architectures,
design patterns, distributed
computing, and more.

W-JAX 15
NOVEMBER 2–6
MUNICH, GERMANY
The W-JAX conference cov-
ers current and future aspects
of technologies such as Java,
Scala, and Android. Also
addressed are web applications
techniques, agile development
models, and DevOps.

J-Fall 2015
NOVEMBER 5
EDE, NETHERLANDS
The annual Java conference
organized by the Dutch Java
User Group (NLJUG) typically
sells out and has outgrown its
usual venue. This year, J-Fall

San Francisco, California

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=7&exitLink=http%3A%2F%2Fwww.oracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=7&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=7&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=7&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=7&exitLink=https%3A%2F%2Fwww.oracle.com%2Fjavaone%2F
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=7&exitLink=http%3A%2F%2Fjavaday.org.ua%2Fkharkiv%2F
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=7&exitLink=https%3A%2F%2Fwww.siliconvalley-codecamp.com%2F
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=7&exitLink=https%3A%2F%2Fjaxlondon.com%2F2015%2F
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=7&exitLink=http%3A%2F%2F14.jdd.org.pl%2F
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=7&exitLink=http%3A%2F%2F2014.geecon.cz%2F
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=7&exitLink=https%3A%2F%2Fjax.de%2Fwjax2015%2F
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=7&exitLink=http%3A%2F%2Fwww.nljug.org%2Fjfall%2F2015%2F

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

08

//events /

will take place in the CineMec
in Ede.

Devoxx Belgium
NOVEMBER 9–13
ANTWERP, BELGIUM
By developers for developers,
this event has 200 speakers and
3,500 attendees from 40 coun-
tries. Tracks this year include Java
SE, JVM languages, and server-
side Java, as well as cloud and big
data, mobile, and architecture and
security, among others.

Devoxx Morocco
NOVEMBER 16–18
CASABLANCA, MOROCCO
Formerly the JMaghreb confer-

ence, this event is a university
day of training, workshops, and
labs followed by conference days
of sessions on software devel-
opment, web, mobile, gaming,
security, methodology, Internet of
Things, and cloud. The Decision
Makers evening includes discus-
sion of issues related to the IT
industry in Morocco.

QCon San Francisco 2015
NOVEMBER 16–20
SAN FRANCISCO, CALIFORNIA
A practitioner-driven software
development conference, QCon is
designed for technical team leads,
architects, engineering directors,
and project managers who influ-
ence innovation in their teams.
Tracks this year include Taking
Java to the Next Level and The
Dark Side of Security. The last two
days are devoted to workshops.

Codemotion Milan
NOVEMBER 18–21
MILAN, ITALY
This conference is open to users
of all languages and platforms. It
offers full-day workshops on the
first two days, followed by key-
notes and conference sessions.

Codemotion Spain
NOVEMBER 27–28
MADRID, SPAIN
This two-day event draws nearly
2,000 attendees, represents more
than 30 communities, and features
coding lectures and workshops.
Activities for startups, recruiting,
and networking are included.

Clojure eXchange 2015
DECEMBER 3–4
LONDON, ENGLAND
Meet with the world’s leading
experts, learn how to use Clojure
with your team, and discuss war
stories with your peers. Both days
will feature a mixture of talks
covering various aspects of Clojure
development: from libraries to
music, from ClojureScript to data.

Groovy and Grails eXchange 2015
DECEMBER 14–15
LONDON, ENGLAND
Stay ahead of the curve and hear
the 2016 roadmap for Groovy
and Grails from core commit-
ters and Groovy authorities
Guillaume Laforge and Graeme
Rocher. Engage with other lead-
ing experts and fellow enthusiasts
and learn the latest innovations
and practices.

Apache Hadoop Innovation Summit
FEBRUARY 11–12
SAN DIEGO, CALIFORNIA
With presentations from more
than 25 hands-on industry speak-
ers, topics covered will include
MapReduce and Spark, building
privacy-protected data systems,
scalable data curation, best prac-
tices, and architectural consider-
ations for Hadoop applications.

Embedded World 2016
FEBRUARY 23–25
NUREMBERG, GERMANY
The 14th annual gathering of
embedded system developers
will explore the latest develop-
ments, define trends, and once
again present the key areas of
focus for future developments.
This is where hardware, software,
and system development engi-
neers come together to turn the
next milestones of the Internet of
Things into reality.

Have an upcoming confer-
ence you’d like to add to our
listing? Send us a link and a
description of your event at
least four months in advance at
javamag_us@oracle.com. We’ll
include as many as space permits.

PHOTOGRAPH BY HENRYK SADURA/GETTY IMAGES

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=8&exitLink=http%3A%2F%2Fwww.oracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=8&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=8&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=8&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=8&exitLink=http%3A%2F%2Fwww.devoxx.com%2F
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=8&exitLink=http%3A%2F%2Fwww.devoxx.com%2F
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=8&exitLink=http%3A%2F%2Fwww.qconsf.com
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=8&exitLink=http%3A%2F%2Fmilan2015.codemotionworld.com
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=8&exitLink=http%3A%2F%2F2015.codemotion.es
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=8&exitLink=https%3A%2F%2Fskillsmatter.com%2Fconferences%2F6861-clojure-exchange-2015
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=8&exitLink=https%3A%2F%2Fskillsmatter.com%2Fconferences%2F6863-groovy-grails-exchange-2015
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=8&exitLink=https%3A%2F%2Ftheinnovationenterprise.com%2Fsummits%2Fapache-hadoop-innovation-summit-san-diego-2016
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=8&exitLink=https%3A%2F%2Fwww.embedded-world.de%2Fen%2F
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=8&exitLink=mailto%3Ajavamag_us%2540oracle.com%3Fsubject%3D

Excelsior JET 11 will support Java SE 8 and JavaFX 8 on all desktop platforms.

LICENSEE

LICENSEE

AOT Compilation
Is Coming to Java 8

Get Your Early Access Copy Now
Registration-Free Download

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=9&exitLink=http%3A%2F%2Fwww.excelsiorjet.com%2Fjava8aot%3Futm_source%3Djavamagazine%26utm_medium%3Dfullpage%26utm_campaign%3Djava8aot%26utm_content%3Dnightlanding

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

10

For Java SE developers, Java EE
has long appeared to be a large
tangle of technologies, primarily
of interest to enterprise develop-
ers. Even though the Enterprise
Edition has vastly improved since
the days of J2EE, it continues to
be trailed by its early reputation.
In part, this is because there is
a sense that any development
on Java EE requires familiarity
with many different services that
need to be integrated just-so to
create a proper app. These skills
are in addition to the language
skills, which are assumed. For
many developers, this seeming
complexity has been solved by
just using a standard container
(Tomcat, for instance) and JDBC
on the back end for database
needs. Such an approach works
well enough until the require-
ments expand, at which point
continuing to organically grow
the app with other unintegrated
technologies becomes a path of
declining returns.

Using Java EE from the start
can facilitate the addition of
features, scalability, and even
security for many projects.
The trouble is how to go from
Java SE to Java EE without get-
ting overwhelmed by the seem-
ing labyrinth of technologies?
That question is precisely what
this book addresses. It provides
an overview of Java EE 7, sys-
tematically explaining the core
technologies—how they work
and how they fit together.

The author, a principal archi-
tect of Java EE, presents the
material in the context of a
hypothetical application that
would use the core technologies:

a web front end, a logic layer,
and a persistence layer. He then
amplifies this content by bring-
ing in additional technologies,
including WebSocket, dependency
injection, security, and so forth.

The explanations start at a
high level but quickly descend
to code. This code is both clear
and extensive. This book aims
squarely at developers, rather
than architects or executives, and
the programmer reader will find
a clear, very well written text.

My only reservation about the
book is that it does not cover
secondary Java EE technologies,
such as Java Message Service or
JavaMail. But these consider-

//java books /

When we began doing critical book reviews in the May/June issue,
we stated that due to possible conflicts of interest, we would not review
books from Oracle Press. However, after securing approval for indepen-
dent reviews from both Oracle and McGraw-Hill (the publishers of Oracle
Press books), we begin in this issue to examine two recent titles from that
imprint: one we liked a lot and one we did not. —Ed.

JAVA EE 7: THE BIG PICTURE
By Danny Coward
Oracle Press (McGraw-Hill)

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=10&exitLink=http%3A%2F%2Fwww.oracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=10&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=10&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=10&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=10&exitLink=http%3A%2F%2Fwww.mhprofessional.com%2Fproduct.php%3Fisbn%3D0071837345%26cat%3D112

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

11

//java books /
ations aside, this is an excellent
programming introduction to
Java EE 7. —Andrew Binstock

JAVAFX RICH CLIENT PROGRAMMING
ON THE NETBEANS PLATFORM
Gail and Paul Anderson
Addison-Wesley

Of all the words in this book’s
title, platform most indicates its
true content. This book is not a
tutorial on JavaFX using NetBeans.
Rather, it’s a book about using
JavaFX in conjunction with
NetBeans as a software platform
for developing desktop applica-
tions. In this sense, NetBeans as
platform corresponds roughly to
the Eclipse Rich Client Platform.

That is, it provides the software
platform on which rich desktop
apps can be built. NetBeans pro-
vides its own internal module

system (not Eclipse’s OSGI) and
exposes an extensive UI meta-
phor—which includes a windows
manager with multiwindow sup-
port, search capabilities, a wizard
builder, and so forth.

Under this presentation good-
ness is a lot of technology that
delivers useful services: for exam-
ple, an entire file-management
layer, which includes goodies such
as a file-status monitor that issues
a message whenever a watched set
of files is modified; RESTful web
services; application update ser-
vices; and so on.

The explanations of the best
ways to exploit the NetBeans
platform are clear, approach-
able, and illustrated with useful
examples. The integration with
JavaFX, however, feels somewhat
rougher. Even though JavaFX is
presented from scratch (presum-
ably aimed at someone new to the
technology), a beginner would be
unlikely to be capable of following
along without getting lost. The
ideal reader is proficient with Java
and has familiarity with writing
UIs either in Swing or JavaFX. For
such a reader, the JavaFX chap-
ters will serve as a review and an
update that enables safe passage
to the discussion of NetBeans fea-
tures. Fortunately, almost anyone

undertaking a project using the
NetBeans platform will have that
kind of background. For those
readers, this book is a godsend.

The question I’m led to ask is,
how many such readers could
there be? I expect it’s a small set,
which makes me admire both
the authors and the publisher for
releasing a nearly 1,000-page vol-
ume on so narrow a topic. But for
anyone in that group, this volume
is the guide to have. —AB

INTRODUCING JAVAFX 8
PROGRAMMING
By Herbert Schildt
Oracle Press (McGraw-Hill)

As fun as JavaFX programming
is, it is a world unto itself that
requires a good guidebook to
understand its ins and outs.
But instead, this book is a most

incomplete introduction to the
technology.

First, let me touch on what
it doesn’t cover, because these
are crucial gaps: FXML and CSS
styling. These two technolo-
gies, essential elements of any
serious introduction, are dis-
missed via this glib line: “[All
the examples in this book] are in
Java. Therefore, no understand-
ing of CSS or FXML is needed.”
The use of FXML and CSS precisely
to avoid coding details in Java is
apparently lost on the author.

Many other items are not cov-
ered. The author mentions JavaFX
technologies that he tells readers
to learn by themselves. However,
if you turn to the section entitled
“For Further Study” to do this, you
find only a list of books all writ-
ten by this same author not one of
which is about JavaFX.

As to the actual content, the
author is unhelpful. He covers the
easy things in great detail, and
the hard things are glossed over.
There is precious little here that
cannot be found in freely available
tutorials. For serious developers,
Hendrik Ebbers’ Mastering JavaFX
8 Controls provides a far better
introduction to JavaFX; it covers
both CSS and FXML and does not
skirt difficult material. —AB

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fwww.oracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=11&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=11&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=11&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fwww.informit.com%2Fstore%2Fjavafx-rich-client-programming-on-the-netbeans-platform-9780321927712
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fwww.amazon.com%2Fdp%2F0071833773
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=11&exitLink=http%3A%2F%2Fwww.amazon.com%2Fdp%2F0071833773

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=12&exitLink=https%3A%2F%2Fwww.jetbrains.com%2Fidea%2Fspecials%2Fidea%2Fidea.jsp%3Futm_source%3Djavamagazine%26utm_medium%3Dbanner%26utm_content%3Dideage%26utm_campaign%3Didea
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=12&exitLink=http%3A%2F%2Fwww.jetbrains.com%2Fidea

Between the pre- and post-agile generations
of developers, there is perhaps no greater
difference than the role of developers in
testing their code. The concept of developers

writing tests as they pushed out code was a radical
idea that took root and became an essential part of
the coding process. Today some companies, such as
Atlassian (page 42), are radicalizing this notion even
further by moving all the responsibilities for QA to
developers and training newly hired programmers
from their first day in QA principles and techniques.

While agile values set the course in this new direc-
tion, it was undoubtedly the advent of JUnit—a fast
test framework with intuitive mechanics—that made
developer testing a universal reality. Despite JUnit’s
ubiquity, most of us, I fear, use only a familiar sub-
set of its features and re-create capabilities already
available. Our article on useful but underused fea-
tures of JUnit (page 20) should help.

User interfaces are not as amenable to JUnit and
so require specialized tools. For JavaFX, that tool is
increasingly TestFX (page 14). For web-based inter-
faces, unfortunately, it is clusters of virtual machines
exercising hundreds of combinations of browser
releases and operating systems (page 26). Whatever
your project’s test tools, it is clear that we will not
soon return to the days when coding and testing were
segregated activities performed by different teams.
I’m good with that. —Andrew Binstock

Testing:
WE’RE ALL IN THIS TOGETHER

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

13ART BY I-HUA CHEN

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=13&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=13&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=13&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=13&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

14

//testing /

TestFX is an API for testing user interfaces written in
JavaFX. It automates tests for JavaFX applications by

simulating user interactions such as button clicks, typ-
ing text into a field, and many other interactions done in
JavaFX applications.

This article starts with a short background on the TestFX
framework, so you can get an understanding of what it is
based on and what its goals are. After that, the article shows
how to get started with TestFX in Maven projects and how to
write tests for a sample application. I also discuss limitations
of TestFX that you should know about before using it.

Version 4.0.x of TestFX is currently in alpha state. Therefore,
this article covers the latest stable version, 3.1.2. I presume
that you’ve used JavaFX and have a good understanding of how
it works, including having a familiarity with FXML.

Background
TestFX is based on the well-known unit testing framework
JUnit. Like JUnit, it is very simple to learn and easy to use. In
TestFX, tests can be written in a similar way to JUnit tests.
There are just a few complements developers need to add. For
example, TestFX uses Hamcrest matchers on top of JUnit for
test assertions.

The benefit of Hamcrest matchers when compared with
standard JUnit assertions is that you can use natural assertions
and get more-helpful error messages when an assertion fails.
This increases the code quality of tests, and it also reduces the
complexity of assertions by offering additional options.

Test JavaFX Apps with TestFX
Simple JUnit-style testing of JavaFX UIs

BENNET SCHULZ
BIO

Getting Started with Maven
Adding TestFX to a Maven build is as simple as adding the
JUnit dependency. You need to add only the following snippet
to your pom.xml file:

<dependency>
 <groupId>org.loadui</groupId>
 <artifactId>testFx</artifactId>
 <version>3.1.2</version>
</dependency>

Initializing a Sample Test Class
If you want to write a TestFX test, your test class needs to
extend org.loadui.testfx.GuiTest. After that, you have to
override the getRootNode method. This method has to return
the view that is to be tested. In the following snippet, the
method returns an FXML view, but it is also possible to return
a programmatically created Swing-style class as the view.

public class SampleTest extends GuiTest {

 @Override
 protected Parent getRootNode() {
 Parent parent = null;
 try {
 parent = FXMLLoader.load(getClass()
 .getResource("sample.fxml"));
 return parent;
 } catch (IOException ex) {
 // ...

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=14&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=14&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=14&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=14&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=14&exitLink=https%3A%2F%2Fgithub.com%2FTestFX%2FTestFX
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=14&exitLink=https%3A%2F%2Fgithub.com%2FTestFX%2FTestFX
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=14&exitLink=javascript%3AopenPopup%28%27Java_SO15_Schulz_BIO_p14_1443108997881%27%29

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

15

//testing /

 }
 return parent;
 }
 // ...
}

By extending GuiTest, you also get additional UI test
methods that simulate user interactions. For example, you
have access to methods for finding UI elements, such as but-
tons or fields, and methods for clicking buttons, scrolling
scrollbars, and so forth.

The Sample Application
The sample application is a calculator based on the GNOME
gcalctool (see Figure 1). It looks like gcalctool and behaves like
gcalctool, but it is written in JavaFX (instead of gcalctool’s
original language, Vala).

In contrast to other implementations, this calculator shows
all user input in a field, and when the equals (=) button is
clicked, the result is calculated. Other calculators show only
the last numeric input and after the = button is clicked, they
show the result without showing intermediate steps.

The view of this application is an FXML file created with
Gluon Scene Builder 8.0.0, and the buttons are styled with
CSS using a linear gradient. The more interesting part is
the corresponding controller. It contains three methods:
handleButtonAction, handleRemoveButtonAction, and
handleCalculationAction. The first two methods are
simple. The last one is the method that calculates the result
after the = button is clicked. I’ll focus on testing it.

Listing 1 shows the method for calculating the result
depending on the user’s input.

Listing 1.
@FXML
private void
 handleCalculationAction(ActionEvent e) {
 String displayText = display.getText();
 int textLength = displayText.length();
 String result = "";
 if (displayText.contains("+")) {
 int plusIndex = displayText.indexOf("+");
 Double a = Double.valueOf(
 displayText.substring(0, plusIndex));
 Double b = Double.valueOf(
 displayText.substring(plusIndex + 1,
 textLength));
 result = String.valueOf((a + b));
 } else if (displayText.contains("x")) {
 int multiplyIndex =
 displayText.indexOf("x");
 Double a = Double.valueOf(
 displayText.substring(
 0, multiplyIndex));
 Double b = Double.valueOf(Figure 1. The view of the sample application

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=15&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=15&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=15&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=15&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

16

//testing /

 displayText.substring(
 multiplyIndex + 1, textLength));
 result = String.valueOf((a * b));
 display.setText(result);
 }

This method multiplies, divides, adds, and so on. At the end
of this method, the calculated result will be set as the text for
the field that is shown at the top of the UI. In the next sec-
tion, this method is used to introduce how to write tests for
this application using TestFX.

Some features (such as subtraction, square, curly brackets,
floating points, and so on) were left out for simplicity’s sake
in this tutorial. If you want to have a version of this calculator
that has all its features, it is available in the download area
for this issue of Java Magazine.

Writing Tests for the Sample Application
Let’s write a test that simulates a user who wants to calculate
the sum of 1 + 2. The user does this by clicking 1, +, and 2.
After the user clicks =, the calculator should display the result
of 3 in the field at the top of the UI.

To test this scenario with automated tests, first we add the
Maven dependency, as described earlier, and initialize the
test class (see Listing 2).

Listing 2.
public class CalculatorControllerTest
 extends GuiTest {

 @Override
 protected Parent getRootNode() {
 Parent p = null;
 try {
 p = FXMLLoader.load(getClass()
 .getResource("gcalctoolFX.fxml"));
 } catch (IOException ex) {

 Logger.getLogger(
 CalculatorControllerTest
 .class.getName())
 .log(Level.SEVERE, null, ex);
 }
 return parent;
 }

The next step is about initializing the gcalctoolFX.fxml
view (see Listing 2) that we want to test with this test class.
This can be done by loading the respective view and returning
it as the result of the getRootNode method of the test class.

After that initialization step, we can start writing tests for
this test scenario. A TestFX test must follow standard JUnit 4
conventions, including using the @Test annotation, a public
access modifier, and a return type of void. A sample TestFX
test is shown in Listing 3.

Listing 3.
@Test
 public void testAddition() {
 Button one = find("#one");
 Button plus = find("#plus");
 Button two = find("#two");
 Button equalSign = find("#equal");

 click(one);
 click(plus);
 click(two);

 verifyThat("#display", hasText("1+2"));
 click(equalSign);
 verifyThat("#display", hasText("3.0"));
 }

As you can see in Listing 3, the test is as simple as a plain
JUnit test. Before the test is run, the view will be constructed
by the getRootNode method in Listing 2. You need only to

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=16&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=16&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=16&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=16&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

17

//testing /

find the button you want to click
via a literal by using the find
method, which is provided by
extending the GuiTest class. In
case of an FXML view, the lit-
eral is the identifier (fx:id) of a
UI element. This identifier has
to be set to use the UI element
in a controller class for bindings
and event handling. This can be
done either by setting it in Scene
Builder or editing the FXML file
itself. When using programmati-
cally created views, this identi-
fier has to be set with a setId()
method call on the UI elements
that are used in test classes.

After getting the buttons with
find()calls, the buttons need
to be clicked in this order: 1, +, 2,
=. This can be done by using the
click() method. Before clicking the = button, the calcula-
tor should display “1+2” in the field. After clicking the = but-
ton, the display should change and show “3.0” to indicate the
result of the addition. The display text can be verified with
verifyThat(), and the expected text should be an argument
of the hasText() method call.

Note that TestFX is compatible with the open source JaCoCo
coverage tool and likely with other tools. It recognizes the
lines of code that are covered by your TestFX tests, and you
can track the code coverage as you can do with JUnit tests.

Tests That Fail
Another important part of unit tests is information about
the ones that fail, especially when you are testing user inter-
faces. Failing tests should be interpretable, understand-

able, and easy to reconstruct. Therefore, it’s important that
the assertions be clear so it’s evident what’s wrong with the
code when a failure occurs. In TestFX, Hamcrest matchers
are helpful, because they provide more-readable assertions.
Listing 4 shows the simplicity of TestFX tests and the usage of
Hamcrest matchers for verification.

Listing 4.
@Test
public void testMultiplication() {
 Button two = find("#two");
 Button times = find("#times");
 Button three = find("#three");
 Button equalSign = find("#equal");

 click(two);
 click(times);
 click(three);

 verifyThat("#display", hasText("2x3"));
 click(equalSign);
 verifyThat("#display", hasText("6.0"));
}

The test in Listing 4 expects a value of 6. A bug is simulated
by changing the multiply operation of the controller so that
it multiplies two operands and spuriously adds “+1” at the
end of the multiplication. This bug is introduced to show how
TestFX deals with errors. Because of this bug, the test fails,
and the corresponding stack trace looks like the following:

testMultiplication(...CalculatorControllerTest)
 Time elapsed: 2.434 sec <<< FAILURE!
java.lang.AssertionError:
Expected: Node should have label "6.0"
 but: Label was "7.0" Screenshot saved as
 /home/…/screenshot1436949687849.png
 at ...testfx.Assertions

TestFX is a great
framework for
testing JavaFX
applications. It is
simple and intuitive,
and beginners can
learn it quickly. In
addition, it offers a
clear API that results
in understandable
tests, which facilitates
diagnosing the errors
that cause test failures.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=17&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=17&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=17&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=17&exitLink=http%3A%2F%2Fwww.eclemma.org%2F
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=17&exitLink=http%3A%2F%2FORACLE.COM%2FJAVAMAGAZINE

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

18

//testing /

 .verifyThat(Assertions.java:38)
 at ...testfx.Assertions
 .verifyThat(Assertions.java:26)
 at . . .
 ...
Caused by: java.lang.AssertionError:
Expected: Node should have label "6.0"
 but: Label was "7.0"
 at org.hamcrest.MatcherAssert
 .assertThat(MatcherAssert.java:20)
 at org.loadui.testfx.Assertions
 .verifyThat(Assertions.java:33)
 ... 35 more

This (abbreviated) stack trace tells us in a very clear way
which test failed, in which line, and with which condi-
tion, and it also tells us where the corresponding screenshot
was saved.

Limitations
While TestFX is a very helpful project for testing JavaFX apps,
it has some limitations you should be aware of.

One of the major limitations of TestFX is that debugging
tests written in TestFX is not necessarily easy. TestFX doesn’t
allow mouse movements while running tests. If you are run-
ning tests in debug mode and you want to check the values
of variables in the NetBeans view, for example, TestFX won’t
react on break points, and the test will also abort because of
the mouse movement.

There is another major limitation when styling components
with CSS, as I did with the calculator buttons for the sample
calculator application. The styled component has two IDs:
the controller ID and one in CSS. In this version of TestFX,
the framework searches for the occurrence of id instead of
fx:id and, therefore, it will use the CSS ID instead of the
controller ID. This results in an error, because TestFX won’t
be able to find the respective button. The workaround for

this issue is to use different CSS IDs for every object, which
means that the same gradient will need to be applied to each
button separately.

Another limitation is that screenshots are taken as full-
screen screenshots. Instead of showing the UI window only,
TestFX grabs the complete screen with all the other opened
windows in the background. In most cases, the opened win-
dows in the background are unimportant for the re-creation
of failed tests. They offer too much information and could
show private information about testers or developers, for
example. In addition to that, there is currently no enable
and disable mode for taking screenshots. Screenshots
will be taken for every test that fails. Sometimes this
is undesirable.

Also, there has been less development activity for TestFX
lately. TestFX 4.0 has been in prerelease development since
2014. To ensure that there are future releases of this very
useful software, it would be helpful if there were additional
active developers.

Conclusion
TestFX is a great framework for testing JavaFX applications.
It is simple and intuitive, and beginners can learn it quickly.
In addition, it offers a clear API that results in understand-
able tests, which facilitates diagnosing the errors that cause
test failures. Nevertheless, there are a few limitations, which
you should keep in mind when using the current release of
TestFX. </article>

LEARN MORE
• Download the calculator

• Video lecture on TestFX, with additional usage details

• Gluon Scene Builder 8.0.0

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=18&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=18&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=18&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=18&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=18&exitLink=https%3A%2F%2Fjava.net%2Fprojects%2Fjava-magazine%2Fdownloads%2Fdirectory%2F2015-09
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=18&exitLink=http%3A%2F%2Fwww.guigarage.com%2F2015%2F02%2Ftest-driven-development-youtube%2F
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=18&exitLink=http%3A%2F%2Fgluonhq.com%2Fopen-source%2Fscene-builder%2F

The Lightweight Java Profilerwith

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=19&exitLink=http%3A%2F%2Fzeroturnaround.com%2Fsoftware%2Fxrebel%2Ftrial%2F%3Futm_source%3Djavamag%26utm_medium%3Dfullpage_sept%26utm_campaign%3Dxr_issues

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

20

//testing /

When it comes to unit testing, we can safely say that
JUnit is the most popular test framework among

Java developers. Despite the headline on the official JUnit
website stating that it’s a simple framework, there is a
good deal of extensive functionality bundled within it.
Unfortunately, most of us use a familiar set of features, and
so we duplicate available goodies by reinventing them. With
this article, I dig into nine convenient but underused features
of JUnit that should ease writing test code—including cre-
ating and automatically cleaning up temporary directories,
running all assertions despite one failing, killing wayward
tests, and the like.

All the examples in this article are based on JUnit ver-
sion 4.12, which is the latest available version at the time of
this writing. However, unless otherwise noted, all the fea-
tures mentioned here have been available since JUnit 4.7.
The complete source code for the article is available at the
Java Magazine download site.

First Things First: @Rule
I will make use of JUnit’s @Rule annotation, which offers a
generic way to add extended features on a per-test-method
basis. By employing rules, the various activities I want to
enable can be stated in one place, and I won’t need to define
them over and over again for each test method.

The @Rule annotation applies to a public field of a test

Eight Greatly Underused Features
of JUnit
Make your testing a whole lot easier.

MERT ÇALIŞKAN
BIO class, which should be an implementation of either the

TestRule or MethodRule interface. Both interfaces con-
tain the method signature: Statement apply(…).
Implementation of this apply() method can be executed
before, after, or instead of a test method. This approach adds
flexibility for applying new behaviors for each test method,
à la interceptors.

JUnit 4.9 introduced the @ClassRule annotation that
extends the test method rule approach to the class level so
that it can be invoked before or after all test methods of that
class. It’s efficient to use this capability, if, for example, a
server needs to be started before running all the test meth-
ods so that it won’t be started and shut down for each test
method inside a test class.

Creating Temporary Files and Folders Using @Rule
From time to time, you might need to create certain files and
folders in your application, but how would you test that with
code to see whether the files are created as expected? You can
do all the work in a temporary folder with some extra cod-
ing, but most solutions present portability conflicts if the test
environment is moved. In addition, any handmade solution
can get messy if cleanup is not done carefully.

Since version 4.7, JUnit has offered the TemporaryFolder
test rule, which provides a convenient way to create and
manage a temporary directory. It guarantees that the new

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=20&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=20&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=20&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=20&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=20&exitLink=http%3A%2F%2Fjunit.org%2F
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=20&exitLink=http%3A%2F%2Fjunit.org%2F
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=20&exitLink=https%3A%2F%2Fjava.net%2Fprojects%2Fjava-magazine%2Fdownloads%2Fdirectory%2F2015-09
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=20&exitLink=javascript%3AopenPopup%28%27Java_SO15_Caliskan_BIO_p20_1443108180951%27%29

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

21

//testing /

directory’s name does not conflict with existing files or directories. It
also guarantees that content will be deleted after the test method fin-
ishes, whether the execution result is successful or not.

Listing 1 creates a file named sample.txt in a temporary folder that
JUnit creates and then writes “JUnit Rocks!” The test then reads the first
line of the newly created file and compares the text value that was writ-
ten. For testing purposes, the Apache Commons IO framework is used
for the simplicity that it provides in handling files.

Listing 1.
public class TemporaryFolderTests {

 @Rule
 public TemporaryFolder tempFolder =
 new TemporaryFolder();

 @Test
 public void fileCreatedAndWrittenSuccessfully()
 throws IOException {
 File file = tempFolder.newFile("sample.txt");
 FileUtils.writeStringToFile(
 file, "JUnit Rocks!");

 String line = FileUtils.readFileToString(file);
 assertThat(line, is("JUnit Rocks!"));
 }
}

JUnit deletes the file and the directory once the test is completed
(regardless of whether the test passes or fails).

Getting the Name of the Currently Executing Test
If you’d like to get the name of a test while it’s executing, simply instan-
tiate a TestName rule as a field and annotate it with the @Rule annota-
tion, as shown in Listing 2.

Listing 2.
public class TestNameTests {

 @Rule
 public TestName name = new TestName();

 @Test
 public void methodNameShouldBePrinted() {
 System.out.println("Test method name: " +
 name.getMethodName());
 }
}

The name of the test method can be accessed via getMethodName().
The output of the test method will be

Test method name: methodNameShouldBePrinted

Collecting Errors When Multiple Assertions in One Test Fail
With the ErrorCollector class, JUnit offers a way to handle multiple
test failures of a single test case. So, you can enable a test not to stop on
an error by doing all assertions and listing the failed ones at the end.
Listing 3 shows a test method with three statements that are checked
with the ErrorCollector.

Listing 3.
public class ErrorCollectorTests {

 @Rule
 public ErrorCollector collector =
 new ErrorCollector();

 @Test
 public void statementsCollectedSuccessfully() {
 String s = null;
 collector.checkThat
 ("Value should not be null", null, is(s));

 s = "";
 collector.checkThat(
 "Value should have the length of 1",
 s.length(), is(1));

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=21&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=21&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=21&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=21&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=21&exitLink=https%3A%2F%2Fcommons.apache.org%2Fproper%2Fcommons-io%2F

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

22

//testing /

 s = "Junit!";
 collector.checkThat(
 "Value should have the length of 10",
 s.length(), is(10));
 }
}

Note the use of the ErrorCollector instance in the tests themselves.
If the first statement passes but the next two fail, the output is as fol-
lows (condensed here by removing the stack trace detail):

java.lang.AssertionError: Value should have the length of 1
Expected: is <1>
 but: was <0>
 at org.hamcrest.MatcherAssert...

java.lang.AssertionError: Value should have the length of 10
Expected: is <10>
 but: was <6>
 at org.hamcrest.MatcherAssert...

Running One Test Multiple Times with Different Parameters
It is fairly common to need to run the same method with varying inputs
to see that the executed results are asserted successfully. Since version
4.0, JUnit provides the flexibility to do this with the @Parameters anno-
tation, which enables you to run one test method again and again pro-
viding different input values each time.

To demonstrate the parameterized usage, I will test a method that
calculates a Fibonacci number according to a given index value of it in
the sequence. To get the @Parameters annotation picked up, I need to
state that the test class should be handled with a custom runner, which
is Parameterized.class, rather than with the default runner that
JUnit uses.

To provide input values for the Fibonacci series, a public static method
with a list of objects should be defined, and it should be marked with the
@Parameterized.Parameters annotation. Each element of that list
will be provided as a parameter to the constructor of the test class. Thus,

the number of parameters passed to the constructor must match the
item count of each element of the list. Listing 4 shows how this is done.

Listing 4.
@RunWith(Parameterized.class)
public class FibonacciNumbersTests {

 @Parameterized.Parameters
 public static List data() {
 return Arrays.asList(new Object[][]{
 {0, 0}, {1, 1}, {2, 1},
 {3, 2}, {4, 3}, {5, 5},
 {6, 8}});
 }

 private int value;
 private int expected;

 public FibonacciNumbersTests(
 int input, int expected) {
 value = input;
 this.expected = expected;
 }

 @Test
 public void fibonacciNumberCalc () {
 assertEquals(expected, fib(value));
 }

 public static int fib(int n) {
 if (n < 2) {
 return n;
 } else {
 return fib(n - 1) + fib(n - 2);
 }
 }
}

Note the first line with the @RunWith annotation, which tells JUnit to
use a specialized runner.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=22&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=22&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=22&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=22&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

23

//testing /

Here, with each item, we are providing the input value first and then
the expected value to make the assertion. For purposes of illustration, I
have included the fib() method that we are testing as a static method
within the test class. Also note that the test class can have only one con-
structor defined. Multiple constructor declarations will lead to an illegal
argument exception.

Adding a Timeout for Execution
It is frequently useful to be able to kill a test that is taking too long to
execute. Unexpected stalls, for example, can turn quick runs of unit
tests into long-lasting affairs. The @Test annotation offers the timeout
attribute, which specifies a time that, if exceeded, causes a test method
to fail. The timeout attribute uses milliseconds. A time limit applied to
all tests in a test class is a common need, and JUnit offers the Timeout
rule class to handle this. It can use units of seconds or milliseconds.
Listing 5 defines a global timeout rule with five seconds and a test
method that never finishes.

Listing 5.
public class LongRunningTests {

 @Rule
 public Timeout globalTimeout = Timeout.seconds(5);

 @Test
 public void whatWeDoInATestMethodEchoesInEternity() {
 while(true);
 }
}

An excerpt of the output of this test after five seconds of execution will
be as follows:

org.junit.runners.model.TestTimedOutException:
 test timed out after 5 seconds
 at tr.com.t2.labs.tdd.sample5.LongRunningTests…

Grouping Your Tests with @Category
In a sophisticated build process, it’s frequently useful to group and run
the fast-running tests first to get quick feedback from them. To achieve
this, JUnit 4.8 first offered the @Category annotation to group tests
with a marker interface or a class. Listing 6 illustrates two test methods,
one annotated with @Category.

Listing 6.
public class CategorizedTests {

 @Test
 @Category(SlowTests.class)
 public void thisTestRunsSlowly() {
 System.out.println("Slow test running");
 }

 @Test
 public void thisTestRunsFast() {
 System.out.println("Fast test running");
 }
}

SlowTests.class is just a marker interface that is used to determine
the test methods that will run more slowly than normal:

public interface SlowTests {
}

One approach to run the categorized tests is to implement a test suite
class. Listing 7 gives an example of this by employing a custom runner,
which is Categories.class. Without the custom runner, @Category
annotations cannot be interpreted. In order to state which categories
should run within this test suite, the @IncludeCategory annotation
with the value of the SlowTests marker interface is used. All sub-
classes of the SlowTests interface will also be picked up with this cat-
egory inclusion.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=23&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=23&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=23&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=23&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

24

//testing /

Listing 7.
@RunWith(Categories.class)
@Categories.IncludeCategory(SlowTests.class)
@Suite.SuiteClasses(CategorizedTests.class)
public class SlowTestsTestSuite {
}

Besides the test suite approach, JUnit categories are supported by
popular build tools—such as Maven, Gradle, and SBT—to run specific
groups of tests. You can exclude a category with the @ExcludeCategory
annotation, which operates precisely as you would expect.

Creating Your Own Rules
Implementing your own rules is as simple as implementing the
TestRule interface. This interface has only one method, apply().
You should implement the apply() method and return an instance of
Statement, which is an abstract class that provides an evaluate()
method. An outcome will be evaluated from that method when a rule is
applied with the invocation of the apply() method. Listing 8 gives an
example implementation of a custom rule.

Listing 8.
public class MyCustomRule implements TestRule {

 private String label;

 public MyCustomRule(String label) {
 this.label = label;
 }

 @Override
 public Statement apply(
 final Statement base,
 Description description){
 return new Statement() {
 @Override
 public void evaluate() throws Throwable
 {

 System.out.println(label + " before");
 base.evaluate();
 System.out.println(label + " after");
 }
 }
 }
}

Using our custom rule is done in the same way as using the built-in
rules provided by JUnit. Listing 9 shows the usage.

Listing 9.
public class CustomRuleTests {

 @Rule
 public MyCustomRule myCustomRule =
 new MyCustomRule("custom");

 @Test
 public void myAwesomeMethodInvokedSuccessfully() {
 System.out.println("Test worked OK");
 }
}

The following is the execution output:

custom before
Test worked OK
custom after

Chaining Rules
Once you start working with rules, especially when writing your own,
you might want to chain them so that they run in a specific order. With
the RuleChain rule, it’s possible to order multiple rules according to
your needs. This feature, which has been available only as of JUnit 4.10, is
effective if you need to do configuration in a specified order, such as con-
figure your web server with one rule and then start it with another rule.

The outerRule() method defines the first rule to execute and the

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=24&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=24&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=24&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=24&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=24&exitLink=http%3A%2F%2Fjunit.org%2Fapidocs%2Forg%2Fjunit%2Frules%2FTestRule.html

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

25

//testing /

around() method defines the subsequent rules. Listing 10 gives an
example implementation that employs my previously created custom
rule definition, the MyCustomRule class from Listing 9.

Listing 10.
public class RuleChainTests {

 @Rule
 public RuleChain chain = RuleChain.outerRule(
 new MyCustomRule("outer"))
 .around(new MyCustomRule("inner"));

 @Test
 public void ruleChainWorkedOK() {
 System.out.println("Test worked OK");
 }
}

This is the execution output of the test class:

outer before
inner before
Test worked OK
inner after
outer after

Conclusion
JUnit contains many options that facilitate testing. JUnit’s developers
know that the framework is used for far more than unit testing. They’ve
provided numerous capabilities for running large test suites in various
ways, for customizing test runs, and for handling many of the minor
“busy” tasks that testing requires. Pay attention to new releases of JUnit
for small additions that make automated testing easier. </article>

LEARN MORE
• A good tutorial on JUnit

• JUnit Anti-Patterns

[JDK Enhancement Proposals (JEPs) are proposals that
allow OpenJDK committers and other participants to come
together on a project that might eventually evolve into a
full-blown JSR. Having covered many JSRs in past issues of
Java Magazine, we’ll be looking at some of the more interest-
ing JEPs. —Ed.]

JEP 259: Stack-Walking API proposes an API for walking the
stack. The goal is that at any moment (although almost cer-
tainly during debugging), the API will enable a developer to
walk up or down the entire calling stack. As currently pro-
posed, the API, which is intended to have only three principal
methods, can locate a specific stack frame (based on filter
parameters) and locate a caller’s stack frame. A possible addi-
tional method that would return a stream of stack frames has
been proposed, although it’s not currently part of the JEP. It
should be noted that the entire stack trace can be accessed via
existing APIs, such as getStackTrace() in Throwable. This
JEP simply refines the access to specific stack frames. More
information on the JEP can be found here.

JEP 259: Stack-Walking API
FEATURED JDK ENHANCEMENT PROPOSAL

//java proposals of interest /

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=25&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=25&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=25&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=25&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=25&exitLink=http%3A%2F%2Fwww.vogella.com%2Ftutorials%2FJUnit%2Farticle.html
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=25&exitLink=http%3A%2F%2Fwww.exubero.com%2Fjunit%2Fantipatterns.html
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=25&exitLink=http%3A%2F%2Fopenjdk.java.net%2Fjeps%2F259
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=25&exitLink=https%3A%2F%2Fbugs.openjdk.java.net%2Fbrowse%2FJDK-8043814

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

26

//testing /

On July 9, 2015, Apple released Mac OS X El Capitan beta,
which offered significant new functionality. In this

release, Apple introduced the mandate that all applications
use SSL with a certificate that exceeds 1024-bit encryption.
Google Chrome has also launched an update that now flags all
SSL certificates that are from authorities not on the whitelist
(that is, those that do not have public records) and certificates
that use the (insecure) SHA-1 hash function.

What does all this have to do with functional testing?
These seemingly innocuous changes will make users of
Safari and the latest update of Chrome question security, and
they could possibly raise some uncomfortable questions. The
only way for IT organizations to spot these issues is by using
a strong and current functional testing grid. In this article,
I discuss how to set up your own testing grid for browser-
based apps using Selenium, the widely
used open source testing tool.

The Grid
The idea of running manual tests on a
browser of a particular type and ver-
sion is straightforward. But applications
in the wild do not run on just one type
or version of a browser. No matter what
browser your customers use, they expect
a quality experience.

Building and Automating
a Functional Test Grid
How to assemble a grid for Selenium testing

NEIL MANVAR
BIO You soon find that the matrix of browser types and versions

gets complicated quickly. Add the OS versions and configura-
tions, Selenium versions, and individual browsers’ web driv-
ers, and you suddenly have an unmanageably complex test
environment. This calls for automation. Without automation,
a testing grid provides only modest help to an organization.

The Balance
When it comes to testing grids, the entire test suite should
be run against the top 80 percent of browsers used. This rule
is important, because testing on less common browsers has
an effort cost that is greater than the impact of the poten-
tial issues that are found. The remaining browsers should be
available for testing when specific issues arise, usually from
some support request. The idea is to create a system where
those browsers could be available for testing on demand.

According to the online course site W3Schools, its traf-
fic shows that 97 percent of browser usage is shared among
Chrome, Firefox, Internet Explorer, and Safari, in that order.
Sites with a more business-oriented audience see a greater
ratio of Internet Explorer, especially older versions of the
browser. This shows that it is hard to predict what combi-
nations of browser, version number, and operating system
releases a given application must be tested for

The caveat to the 80-percent rule is effort cost. Most shops
find that they don’t even have the ability to test the top 50

A testing
grid without
automation
provides only
modest help to
an organization.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=26&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=26&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=26&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=26&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=26&exitLink=http%3A%2F%2Fwww.seleniumhq.org%2F
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=26&exitLink=javascript%3AopenPopup%28%27Java_SO15_Manvar_BIO_p26_1443108818252%27%29

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

27

//testing /

percent of browsers. The reason: Even the top 50 percent
include a lot of variation when you add operating systems.
(Most of the time, it ends up that only Chrome and Firefox are
no more than two versions back.)

You can safely say that to have a testing grid with approxi-
mately 80 percent testing coverage, you would need to have
instances of Chrome C42 through C45, Firefox 37 through
Firefox 40, Internet Explorer 9 through 11, and Safari S7
and S8 on Mac OS X 10.8 through 10.10, Microsoft Windows
7 through 8.1 and XP, Debian, Ubuntu, CentOS, Red Hat,
Gentoo, Fedora, and SUSE—for a total of 226 combinations.
This really is not possible without a cloud-based solution.
An on-premises combination is usually Chrome C43 through
C45, Firefox 38 through Firefox 40, Internet Explorer 9
through 11, and Safari S7 and S8 running on Mac OS X 10.9,
Windows 7 and 8, and Debian.

When considering your grid, the team needs to keep cur-
rent on the ecosystem. There are periodically some large
changes in the ecosystem. For example, some notable recent
and upcoming events are the launch of Mac OS X 10.11 and

Microsoft’s Edge browser in Windows 10, and
the end of Chrome support for Windows XP at
the close of 2015.

When teams set up testing in the cloud,
they can test even more-obscure browser
versions and types on demand.

The lowest common denominator of what
is possible is based on your organization’s
infrastructure capabilities, and your QA
team’s ability to use them. It is not one size
fits all.

The Needed Infrastructure
Installing browsers on local machines pro-
hibits flexible functional testing, and in the
world of automation, it is not a sustainable

approach. To implement your testing environment, you will
need a virtual machine hypervisor or container. (From here
on, I will refer to all types of containers and virtual machines
as “VMs.”) To be most effective, the QA team needs access to
VMs and the ability to control the provisioning of VMs.

Before you start installing your browsers, you need to con-
sider some very important questions, such as
■■ Should you put browser installations on the same VM?
■■ Should you use a new VM for each?
■■ Should you use a new VM per group of browsers?

As an example, putting all browsers on the same VM offers
the benefit of bringing everything together in one place,
thus making it easier to deploy and run automated scripts.
However, it does not allow you to test against different ver-
sions of the same browser type in parallel, and it increases
the risk of environmental variables that could affect func-
tionality, especially over time when reused.

Automation helps with infrastructure as well. Automation
helps not only to run tests but also to provision the ideal
environment’s infrastructure. Usually, developers and QA
engineers are hands-off when it comes to automation. This
approach is not always beneficial. It encourages an immu-
table infrastructure that is reused and contaminated, and it
ultimately limits the test grid variation mix and throttles
the number of tests that can be run at any given moment in
time. With cloud solutions, automation infrastructure does
not matter, because provisioning is the job of the QA-tailored
testing solution.

There are three quality levels for environments: workable,
good, and best. And it is not always possible to implement the
ideal environment.
Workable environments. In these environments, you provision
a hub VM once. It then acts as the Selenium Hub (formerly,
the Selenium Remote Control), which can distribute tests
across your test nodes. Test nodes are also VMs that have
been provisioned once, and they house the actual browser

The best
environment
is where every
automated test
automatically
provisions a new
VM, runs the test,
and shares the
results with the
QA team.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=27&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=27&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=27&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=27&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

28

//testing /

configurations. On the nodes, the client libraries run the tests
provided by the hub. Repeated tests are done automatically
by rerunning the test suite from the hub. The system is only
as strong as the weakest node, which means that because you
are repeatedly using the same infrastructure over time, the
risk of something breaking increases.

Here is how you start the hub:

java -jar selenium-server-standalone-2.44.0.jar
 -role hub

Then start the node(s) connected to the hub:

java -jar selenium-server-standalone-2.44.0.jar
 -role node
 -hub http://localhost:4444/grid/register

If you are creating a Selenium grid with many nodes, then
for each node, you have to specify the hub:

java -jar selenium-server-standalone-2.44.0.jar
 -role node
 -hub http://<IP_ADDR_OF_HUB>/grid/register

Good environments. These environments take workable one
step further and go from immutable testing of VMs that
are rarely reprovisioned to using a new VM with every
major automated test run. In order to do this, you need to
leverage orchestration tools such as Puppet, Vagrant, Chef,
and others.
Best environment. The best environment could also be called
continuous integration, where every automated test auto-
matically provisions a new VM, runs the test, and collects
and shares the results with the QA team. It also does this on
a select number of commits or even on every commit by the
developers, allowing the team, without any manual effort, to
identify bugs very early in the development process.

Test Automation
Using automation tools such as Selenium breaks teams free
from the risk and limitations associated with manual testing.
Automation is far more scalable, can be run anytime without
human intervention, and allows the expansion of test cases.

But automation requires infrastructure and setup. The first
step is to decide what you will test on—that is, the combina-
tion of operating systems and browsers. Then you need to
create a baseline infrastructure that the browsers will run on.
And, finally, you need to wire up the automation processes
with tools or direct API calls.

Setup of Browser Grids
I recommend the following steps:

1. Select your host operating system(s). Most of the time,
the operating system does not have a large impact on
browser functionality. The notable changes will be in
performance, because operating systems optimize the
running of processes—as well as security—with new
releases, as seen with the operating system releases
mentioned earlier. These releases typically don’t have a
large impact on functional testing, but they could affect
application performance or the browser experience. At
a minimum, if you are testing on a common Windows,
Linux, or Mac OS X platform that is no older than two
versions back, you have covered a substantial portion of
your host operating systems.

2. Next, create a gold master VM for each of the test nodes,
and create one gold master for the Selenium Hub. The
gold master for the test nodes contains the OS con-
figuration, the browsers already installed, and their
associated web drivers. Once you have decided what
browser mix will go on your VM, it is best to create a
base instance of each VM with the browser mix that
will make up your entire grid, and have a snapshot of
the VMs for real-time provisioning based on test runs.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=28&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=28&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=28&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=28&exitLink=http%3A%2F%2FORACLE.COM%2FJAVAMAGAZINE

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

29

//testing /

Updates to browsers and configurations will happen,
and when they are completed, a new snapshot should
be taken, creating an ever-expanding library of browser
versions and types.

3. You now run the Selenium Hub and connect it to all the
running test nodes. You can initiate a test directly from
the Selenium Hub.

Always provision on a clean VM to avoid contamination and
to create a history of snapshots, both of which are essential
for the versioning of your grid. The snapshots will allow you
to go back to previous browser versions, if necessary, for sup-
port reasons.

Wiring up Test Automation
Once you have the infrastructure, you need to wire up the
automation capability. Selenium is used to drive the tests.
Listing 1 shows a basic example that will navigate the browser
to a Google page and submit a query. A simple test might look
like this.

Listing 1.
import org.openqa.selenium.By;
import org.openqa.selenium.Platform;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.remote.*;
import java.net.URL;

public class SampleSeleniumTest {
 public static final String USERNAME =
 System.getenv("USERNAME");
 public static final String ACCESS_KEY =
 System.getenv("ACCESS_KEY");
 public static final String URL =
 "http://<ADDR_OF_SELENIUM_HUB>:4444/wd/hub";

 // if localhost, then:

 // public static final String URL =
 // "http://localhost:4444/wd/hub";

 public static void main(String[] args)
 throws Exception {

 DesiredCapabilities caps =
 new DesiredCapabilities();
 caps.setCapability(
 CapabilityType.BROWSER_NAME, "firefox");
 caps.setCapability(
 CapabilityType.VERSION, "37");
 caps.setCapability(
 CapabilityType.PLATFORM, "Windows 7");

 WebDriver driver =
 new RemoteWebDriver(new URL(URL), caps);
 driver.get("http://www.amazon.com");
 WebElement element =
 driver.findElement(
 By.name("field-keywords"));

 element.sendKeys("Sauce Labs");
 element.submit();

 System.out.println(driver.getTitle());
 driver.quit();

 }
 }

The script is run on the same machine on which the
browser resides. Selenium has a large set of functions for
finding and executing web applications. However, running
the test without results is useless. You also need to track data
on how the test ran.

Test Results
The basic outcomes of any test are PASS, FAIL, or SKIP. If you

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=29&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=29&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=29&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=29&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

30

//testing /

are creating the reporting element of your testing environ-
ment, you will need to programmatically collect this data and
report it to an output of your choosing—commonly XML via
JUnit, HTML, or CSV with Microsoft Excel. However, there are
tools that help with the depth of test reporting, with custom
web-based dashboards built for reporting. This approach is
ideal, due to faster visuals, and it makes sharing data with the
team easier.

Below is a sample JUnit output generated by TestNG that
includes a failed test:

But PASS, FAIL, and SKIP do not tell you a great deal about
how and when a test failed. That is why it is best to report
other metadata such as timestamps, page elements, test case
names, and even stack traces—anything that will support
faster identification of the location of the error and assign-
ment of a ticket item to a developer.

In addition to the various data elements you can collect, you
should consider taking a screenshot of every exception and
failure, as shown in Listing 2. For extra credit, you can capture
video as well. This requires integration with video recording,
which demands a lot of effort, but some cloud providers have
this functionality built in.

Listing 2.
catch(Exception e)
{
 Assert.fail(); //To fail test in case of any
 //element identification failure
}

and

public void takeScreenShotOnFailure(
 ITestResult testResult) throws IOException
{
 if (testResult.getStatus() ==
 ITestResult.FAILURE)
 {
 System.out.println(
 testResult.getStatus());
 File scrFile =
 ((TakesScreenshot)driver)
 .getScreenshotAs(OutputType.FILE);
 FileUtils.copyFile(scrFile,
 new File("D:\\testScreenShot.jpg"));
 }
}

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=30&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=30&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=30&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=30&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=30&exitLink=http%3A%2F%2Ftestng.org%2Fdoc%2Fselenium.html

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

31

//testing /

By storing the screenshots in a location that is associated
with a build, application version, test run ID, and so on, you
can quickly focus only on the exceptions. It is also useful to
tie these back to the elements being acted on at the time, so
that you can quickly reference your Selenium script and know
what test was being run.

Best Practices
Once you set up your test grid and begin using it, you’ll
quickly find that certain basic best practices will go a long
way to giving you the results you need. These practices
include the following:
■■ Avoid contamination. System-level bugs are the hardest

to track down. And the likelihood of having system-level
issues when reusing VMs is incrementally higher with each
test run. (It cannot be overstated that you should use a new
VM for each test run.)

■■ Establish consistent naming conventions. As the number of
test cases increases, the management of the entire library
becomes more complex. Using a consistent naming con-
vention for tests (for example, tying them to the appli-
cation name and release) will help substantially when it
comes time to cull unneeded tests or rerun old tests for
issues that resurface.

■■ Ensure test results are not stored on VMs directly. Reporting
is key. In order to build in autonomy and support testing on
a new VM with each test run, make sure all the processes
store test results and screenshots
in a centralized location.

■■ Build a workflow for exceptions.
Beyond video and screenshots,
building an entire workflow for
exceptions is recommended. Some
teams take automation too far and
have all exceptions go directly
into tickets. But the false positives

waste a lot of time. Don’t let the tools create the workflow
for you.

What to Be Aware Of
Bear in mind the following concerns:
■■ On-premises testing. Choosing to maintain the testing

infrastructure in-house is naturally limiting. For small,
manual testing, it works fine. But when automation picks
up, it is usually necessary to turn to cloud infrastructure
and automated tools, ranging from provisioning to running
tests on new instances.

■■ Testing on the Mac OS. Testing on the Mac OS is not simple.
The primary reason is licensing. In order to comply with
Mac OS X licensing, you need to test on a physical Mac. You
can virtualize, but when you do, the VM also has to be on a
physical Mac.

■■ Mobile testing. Mobile testing and mobile applications
are coming into play rapidly—faster than the estab-
lished methods for testing. It can feel like the Wild West.
However, many tools are already available, such as Appium,
which will allow Selenium-style automated testing on
emulators. (A lot of the elements are the same as with web
application testing, but the testing grid size is multiplied
nearly by four.)

Conclusion
If you are not doing automated testing on a functional test
grid today, you will be soon—so it is important to think about
how you will set up the process. On-demand setup of a test-
ing grid most often results in something that is not sustain-
able and doesn’t leverage all the possibilities of automation.
Today, however, you do not always need to worry about infra-
structure. QA teams can actually take over the infrastruc-
ture. Teams can elect to use cloud-based testing, and then
spend most of their time writing test cases and building
test strategies. </article>

If you are not doing
automated testing
on a functional test
grid today, you will
be soon.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=31&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=31&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=31&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=31&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=31&exitLink=http%3A%2F%2Fappium.io%2F

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

32

//from the vault /

Unit and integration tests are helpful for the identifica-
tion of business logic bugs, but in the context of Java EE 6

and later, they are meaningless. Both integration and unit
tests access your application in a single-threaded way. After
the deployment, however, your code will always be executed
concurrently.

Stop Talking, Start Stressing
It is impossible to predict all nontrivial bottlenecks, dead-
locks, and potential memory leaks by having theoretical dis-
cussions. It is also impossible to find memory leaks with unit
and integration tests. Bottlenecks are caused by locks and I/O
problems that are hard to identify in a single-threaded sce-
nario. With lots of luck and patience, memory leaks can be
identified with an integration test, but they can be far more
easily spotted under massive load. The heavier the load, the
greater is the probability of spotting potential concurrency
and robustness problems. Cache behavior, the frequency of
Java Persistence API (JPA) OptimisticLockException, and
the amount of memory needed in production can also be
evaluated easily with stress tests.

Even in the unlikely case of a perfect application without
defects, your application server will typically be unable to
handle the load using default factory settings. Stress tests are
a perfect tool to learn the behavior of your application under
load in the first iterations without any stress. Stress-test-
driven development is a good choice for Java EE.

Stress Testing Java EE Applications
Identify application server configuration problems, potential bottlenecks, synchronization bugs, and
memory leaks in Java EE code.

ADAM BIEN
BIO

Instead of applying optimizations prematurely, you should
concentrate on implementing pure business logic and
verifying the expected behavior with automated tests and
hard numbers.

Don’t Be Realistic
Load tests are configured by taking into account the expected
number of concurrent users and realistic user behavior. To
meet the requirements, “think times” need to be kept real-
istic, which in turn reduces the amount of concurrency in
the system. The heavier the load, the easier it is to find prob-
lems. Realistic load tests are usually performed too late in
the development cycle and are useful only for ensuring that
nonfunctional requirements are met. They are less valuable
in verifying system correctness.

Instead of relying on realistic but lax load tests defined
by domain experts, we should utilize as much load as pos-
sible using developer-driven stress tests. The goal is not to
verify expected scalability or performance. Instead, it is to
find defects, of course, and to learn about the behavior of the
system under load.

Stressing the Oracle
My “oracle” application records predictions and returns them
as a JavaScript Object Notation (JSON) string. (For more infor-
mation on the “oracle” application, see “Unit Testing for
Java EE”.)

PHOTOGRAPH BY
THOMAS EINBERGER/
GETTY IMAGES

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=32&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=32&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=32&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=32&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=32&exitLink=javascript%3AopenPopup%28%27Java_SO15_Bien_BIO_p32_1443111035729%27%29

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

33

//from the vault /

Sending a GET request to the URI http://localhost:8080/
oracle/resources/predictions returns a Prediction entity
serialized as:

{"prediction":
 {"result": "JAVA_IS_DEAD",
 "predictionDate":
 "1970-01-01T19:57:39+01:00",
 "success":"false"}
}.

Services provided by Java API for RESTful Web Services
(JAX-RS) are easily stress-testable; you need only execute
several HTTP requests concurrently.

The open source load-testing tool Apache JMeter comes
with built-in HTTP support. After creating the ThreadGroup
and setting the number of threads (and, thus, concurrent
users), an HTTP request has to be configured to execute the
GET requests (right-click, select Sampler, and then select
HTTP Request). See Figure 1.

While the results can be visualized in various ways, the
JMeter Summary Report is a good start (see Figure 2). It turns
out that the sample application is able to handle 1,700 trans-
actions per second for five concurrent users “out of the box.”

Every request is a true transaction and is processed by an
Enterprise JavaBeans 3.1 (EJB 3.1) JAX-RS Prediction
ArchiveResource, delegated to the PredictionAudit
EJB 3.1 bean, which in turn accesses the database through
EntityManager (with exactly one record).

At this point, we have learned only that with EJB 3.1, JPA 2,
and JAX-RS, we can achieve 1,700 transactions per second
without any optimization. But we still have no idea what is
happening under the hood.

VisualVM Turns Night to Day
GlassFish Server Open Source Edition 3.1.x and Java DB (the
open source version of Apache Derby) are Java processes that
can be easily monitored with VisualVM. Although VisualVM is

Figure 1. HTTP request configuration in JMeter

Figure 2. JMeter Summary Report

Figure 3. VisualVM CPU and memory monitoring overview

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=33&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=33&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=33&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=33&exitLink=http%3A%2F%2Fjmeter.apache.org%2F
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=33&exitLink=http%3A%2F%2FORACLE.COM%2FJAVAMAGAZINE
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=33&exitLink=http%3A%2F%2Flocalhost%3A8080%2Foracle%2Fresources%2Fpredictions
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=33&exitLink=http%3A%2F%2Flocalhost%3A8080%2Foracle%2Fresources%2Fpredictions

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

34

//from the vault /

shipped with the current JDK, you should check the VisualVM
Website for updates.

VisualVM is able to connect locally or remotely to a Java
process and monitor it. VisualVM provides an overview
showing CPU load, memory consumption, number of loaded
classes, and number of threads, as shown in Figure 3.

The overview is great for estimating resource consump-
tion and monitoring the overall stability of the system. We
learn from Figure 3 that for 1,700 transactions per second,
GlassFish Server Open Source Edition 3.1 needs 58 MB for the
heap, 67 threads, and about 50 percent of the CPU. The other
50 percent was consumed by the load generator (JMeter).

Although this colocation is adequate for the purposes of
this article, it blurs the results. The load generator should
run on a dedicated machine or at least in an isolated (virtual)
environment. Sometimes, you even have to run distributed
JMeter load tests to generate enough load to stress the server.
For internet applications, it might be necessary to deploy the

load generators to the cloud.
In a stress-test scenario, the plain numbers are interesting

but unimportant. Stress tests do not generate a realistic load
but, rather, they try to break the system. To ensure stability,
you should monitor the VisualVM Overview average values.
All the lines should be, on average, flat.

An increasing number of loaded classes might indi-
cate problems with class loading and can lead to an
OutOfMemoryError due to a shortage of PermGen space. An
increasing number of threads indicates slow, asynchronous
methods. A ThreadPool configured with an unbounded
number of threads will also lead to an OutOfMemoryError.
And a steady increase in memory consumption can eventually
lead to an OutOfMemoryError caused by memory leaks.

VisualVM comes with an interesting profiling tool called
Sampler. You can attach and detach to a running Java process
with a little overhead and measure the most expensive invo-
cations or the size of objects (see Figure 4).

The sampling overhead is about 20 percent, so with an
active sampler, you can still achieve 1400 transactions per
second. As expected, the application spends the largest
amount of time communicating with the database.

How Expensive Is System.out.println?
A single System.out.println can lead to significant per-
formance degradation. To measure the overhead, every
invocation of the method allPredictions is logged with a
System.out.println invocation, as shown in Listing 1.

Listing 1.
public List<Prediction> allPredictions(){
 System.out.println("-- returning predictions");
 return this.em
 .createNamedQuery(Prediction.findAll)
 .getResultList();
}

Figure 4. CPU monitoring with Sampler

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=34&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=34&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=34&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=34&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=34&exitLink=http%3A%2F%2Fvisualvm.java.net
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=34&exitLink=http%3A%2F%2Fvisualvm.java.net
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=34&exitLink=http%3A%2F%2Fjmeter.apache.org%2Fusermanual%2Fremote-test.html
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=34&exitLink=http%3A%2F%2Fjmeter.apache.org%2Fusermanual%2Fremote-test.html

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

35

//from the vault /

Instead of 1,700 transactions per second, the insertion of
this simple print command has reduced our performance to
about 800 transactions per second, as shown in Figure 5.

Let’s take a look at the VisualVM Sampler output shown in
Figure 6. More time is spent in ThreadPrintStream
.println() than in the most expensive database operation.

The actual EJB 3.1 overhead is negligible. The call to
$Proxy285.allPredictions() is in the very last posi-
tion and orders of magnitude faster than a single
System.out.println.

Having a reference measurement makes identification of
potential bottlenecks easy. You should perform stress tests
as often as possible and compare the results. Performing
nightly stress tests from the very first iteration is desirable.
You will get fresh results each morning so you can start fix-
ing potential bottlenecks.

Causing More Trouble
Misconfigured application servers are a common cause of
bottlenecks. GlassFish Server Open Source Edition 3.1 comes
with reasonable settings, so we can reduce the maximum
number of connections from the Derby pool to two connec-
tions to simulate a bottleneck. With five concurrent threads
(users) and only two database connections, there should be
some contention (see Figure 7).

The performance is still surprisingly good. We get 1.400
transactions per second with two connections. The max
response time went up to 60 seconds, which correlates sur-
prisingly well with the “Max Wait Time: 60000 ms” connec-
tion pool setting in GlassFish Server Open Source Edition 3.1.
A hint in the log files also points to the problem, as shown in
Listing 2.

Listing 2.
WARNING: RAR5117 : Failed to obtain/create connec-
tion from connection pool [SamplePool]. Reason :

Figure 5. Performance degradation of 50 percent

Figure 6. CPU Sampler with System.out.println

Figure 7. Performance after reducing the pool size

Figure 8. Sampler output with two connections in the pool

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=35&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=35&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=35&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=35&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

36

//from the vault /

com.sun.appserv.connectors.internal.api.Pooling-
Exception: In-use connections equal max-pool-size
and expired max-wait-time. Cannot allocate more
connections.

WARNING: RAR5114 : Error allocating connection :
[Error in allocating a connection. Cause: In-use
connections equal max-pool-size and expired max-
wait-time. Cannot allocate more connections.]

Also interesting is the Sampler view in VisualVM (see
Figure 8).

The method JNDIConnector.connect() became the
most expensive method. It even displaced the Reply.fill()
method from its first rank.

The package org.eclipse.persistence is the JPA pro-
vider for GlassFish Server Open Source Edition 3.1, so it
should give us a hint about the bottleneck’s location. There is
nothing wrong with the persistence layer; it only has to wait
for a free connection. This contention is caused by the arti-
ficial limitation of having only two connections available for
five virtual users.

A look at the JNDIConnector.connect method con-
firms our suspicion (see Listing 3). In the method
JNDIConnect.connect, a connection is acquired from a
DataSource. In the case of an empty pool, the method will
block until either an in-use connection becomes free or
the Max Wait Time is reached. The method can block up to
60 seconds with the GlassFish Server Open Source Edition
default settings. This rarely happens with the default set-
tings, because the server ships with a Maximum Pool Size of
32 database connections.

Listing 3.
public Connection connect(Properties properties)
 throws DatabaseException, ValidationException {
 String user = properties.getProperty("user");

 DataSource dataSource = getDataSource();
 try{
 ...
 return dataSource.
 getConnection(user, password);
 } catch (SQLException exception) {
 throw DatabaseException.sqlException(
 exception, true);
 }
}

How to Get the Interesting Stuff
The combination of JMeter and VisualVM is useful for ad hoc
measurements. In real-world projects, stress tests should be
not only repeatable but also comparable. A history of results
with visualization makes the resultant comparison and iden-
tification of hotspots easier.

VisualVM provides a good overview, but the really interest-
ing monitoring information can be obtained only from an
application server in a proprietary way. All major application
servers provide extensive monitoring information via Java

Management Extensions (JMX).
GlassFish Server Open Source
Edition 3.1 exposes its monitoring
and management data through an
easily accessible REST interface.

To activate the monitoring, open
the GlassFish Admin Console by
specifying the Admin Console
URL (http://localhost:4848). Then
select Server, select Monitor, and
then select Configure Monitoring.
Then select the HIGH level for all
components. Alternatively, you can
activate monitoring by using the
asadmin command from the com-

You can easily
persist monitoring
data with a
simple Java EE 6
application. JPA 2,
EJB 3.1, Contexts
and Dependency
Injection, and JAX-RS
reduce the task to
only three classes.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=36&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=36&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=36&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=36&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

37

//from the vault /

mand line or by using the REST management interface.
Now, all the monitoring information is accessible from the

following root URI: http://localhost:4848/monitoring/domain/
server. The interface is self-explanatory. You can navigate
through the components from a browser or from the com-
mand line.

The command curl -H "Accept: application/json"
http://localhost:4848/monitoring/domain/server/
jvm/memory/usedheapsize-count returns the current
heap size formatted as a JSON object (see Listing 4).

Listing 4.
{"message":"",
 "command":"Monitoring Data",
 "exit_code":"SUCCESS",
 "extraProperties":{
 "entity":{
 "usedheapsize-count":{
 "count":217666480,
 "lastsampletime":1308569037982,
 "description":
 "Amount of used memory in bytes",
 "unit":"bytes",
 "name":"UsedHeapSize",
 "starttime":1308504654922}
 },
 "childResources":{}}
}.

The most interesting key is usedheapsize-count. It con-
tains the amount of used memory in bytes, as described by
the description tag. The good news is that the entire moni-
toring API relies on the same structure and can be accessed in
a generic way.

Monitoring Java EE 6 with Java EE 6
Executing HTTP GET requests from the command line still
does not solve the challenge. In order to be comparable,

the data has to be persistently stored. A periodic snapshot
between 1 and 30 seconds is good enough for smoke tests and
stress tests.

It turns out that you can easily persist monitoring data with
a simple Java EE 6 application. JPA 2, EJB 3.1, Contexts and
Dependency Injection (CDI), and JAX-RS reduce the task to
only three classes. The JPA 2 entity Snapshot holds the rel-
evant monitoring data (see Listing 5).

Listing 5.
@XmlAccessorType(XmlAccessType.FIELD)
@XmlRootElement
@Entity
public class Snapshot {
 @Id
 @GeneratedValue
 private long id;
 @Temporal(TemporalType.TIME)
 private Date monitoringTime;
 //...field declarations omitted

 public Snapshot(long usedHeapSize,
 int threadCount, int totalErrors,
 int currentThreadBusy, int committedTX,
 int rolledBackTX, int queuedConnections) {
 this();
 this.usedHeapSize = usedHeapSize;
 //...
}

 public Snapshot() {
 this.monitoringTime = new Date();
 }
}

The entity Snapshot represents the interesting data, such
as the number of busy threads, queuedConnections, errors,
committed and rolled-back transactions, heap size, and the
time stamp. You can extract such information from any other

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=37&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=37&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=37&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=37&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

38

//from the vault /

application server through different channels and APIs.
Listing 6 shows how to access REST services with Jersey. The

managed bean DataProvider uses the Jersey client to access
the GlassFish Server Open Source Edition’s REST interface and
convert the JSON result into Java primitives. The fetchData
method is the core functionality of DataProvider, and it
returns the populated Snapshot entity.

Listing 6.
public class DataProvider {
 public static final String BASE_URL =
 "http://localhost:4848" +
 "/monitoring/domain/server/";
 public static final String HEAP_SIZE =
 "jvm/memory/usedheapsize-count";
 private Client client;

 public Snapshot fetchData(){
 try {
 long usedHeapSize = usedHeapSize();
 //… other assignments omitted
 return new Snapshot(
 usedHeapSize, threadCount,
 totalErrors, currentThreadBusy,
 committedTX, rolledBackTX,
 queuedConnections);
 } catch (JSONException e) {
 throw new IllegalStateException(
 "Cannot fetch monitoring" +
 "data because of: " + e);
 }
 }

 long usedHeapSize() throws JSONException{
 final String uri = BASE_URL + HEAP_SIZE;
 return getLong(uri,"usedheapsize-count");
 }

 //other accessors omitted

 long getLong(String uri,String name)
 throws JSONException{
 ClientResponse result =
 client.resource(uri)
 .accept(MediaType.APPLICATION_JSON)
 .get(ClientResponse.class);
 return getJSONObject(result,name)
 .getLong("count");
 }

 //accessors omitted

 JSONObject getJSONObject(
 ClientResponse result,String name)
 throws JSONException {
 JSONObject response =
 result.getEntity(JSONObject.class);
 return response.getJSONObject(
 "extraProperties")
 .getJSONObject("entity")
 .getJSONObject(name);
 }
}

Every five seconds, the MonitoringController
@Singleton EJB 3.1 bean shown in Listing 7 asks the
DataProvider for a Snapshot and persists it. In addition,
the persisted data is exposed through REST. You can access
all snapshots using http://localhost:8080/stm/resources/
snapshots, and you will get Snapshot instances as a JSON
object (see Listing 8).

Listing 7.
@Singleton
@Path("snapshots")
@Produces(MediaType.APPLICATION_JSON)
public class MonitoringController {

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=38&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=38&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=38&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=38&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

39

//from the vault /

 @Inject
 DataProvider dataProvider;
 @PersistenceContext
 EntityManager em;
 @Schedule(minute="*",second="*/5",hour="*")
 public void gatherAndPersist(){
 Snapshot current =
 dataProvider.fetchData();
 em.persist(current);
 }
 @GET
 public List<Snapshot> all(){
 CriteriaBuilder cb =
 this.em.getCriteriaBuilder();
 CriteriaQuery q =
 cb.createQuery();
 CriteriaQuery<Snapshot> select =
 q.select(q.from(Snapshot.class));
 return this.em.createQuery(select)
 .getResultList();
 }
}

Interestingly, a Java EE 6 solution is significantly leaner
than a comparable Plain Old Java Object (POJO) implementation.
Periodic timer execution, transactions, and EntityManager
bookkeeping are provided out of the box in Java EE 6 but must
be implemented in Java SE.

Listing 8.
{"snapshot":
 [{"id":"1",
 "monitoringTime":"1970-01-01T10:50:30+01:00",
 "usedHeapSize":"158408536",
 "threadCount":"131",
 "totalErrors":"4",
 "currentThreadBusy":"-1",
 "committedTX":"23",
 "rolledBackTX":"2-",

 "queuedConnections":"0"},
 {"id":"2",
 "monitoringTime":"1970-01-01T10:50:35+01:00",
 "usedHeapSize":"160421672",
 "threadCount":"131",
 "totalErrors":"4",
 "currentThreadBusy":"-1",
 "committedTX":"23",
 "rolledBackTX":"2",
 "queuedConnections":"0"
 }]
}.

Automating the Stress Test
Using the StressTestMonitoring (STM) application, we can
collect application server monitoring data systematically and
persistently, and we can analyze and compare the stress test
results after each run. This approach is not perfect, though,
because both the stress test and the load generator must be

started and stopped manually.
A continuous integration (CI) tool,

such as Jenkins or Hudson, is capable
of automating the whole lifecycle
and can easily deploy STM and start
the load generator automatically.

Hudson and Jenkins support a
periodic build execution (for exam-
ple, with a single configuration tag:
@midnight). With both products,
setting up nightly executed stress
tests takes only minutes. You need
to deploy the STM application first
and launch the stress test genera-
tor afterward. For a GlassFish Server
Open Source Edition deployment,
this requires just a single line:

Java EE 6+
applications are
always executed
concurrently.
Even with
unrealistic stress
tests, you will
learn a lot about
system behavior
and identify some
bottlenecks or
concurrency bugs.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=39&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=39&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=39&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=39&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=39&exitLink=http%3A%2F%2Fkenai.com%2Fprojects%2Fjavaee-patterns%2Fsources%2Fhg%2Fshow%2FStressTestMonitor%3Frev%3D238
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=39&exitLink=http%3A%2F%2Fjenkins-ci.org%2F
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=39&exitLink=http%3A%2F%2Fhudson-ci.org%2F

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

40

//from the vault /

asadmin deploy --force […]/StressTestMonitor.war.

JMeter can also be started without the GUI in head-
less mode. It requires another line: jmeter -n -t
predictions.jmx -l predictions.jtl. The parameter
-n prevents the GUI from appearing, the parameter -t speci-
fies the configuration file (created with JMeter in GUI mode),
and -l specifies the log file, which can be analyzed with
JMeter after the test.

A Hudson or Jenkins “Free Style
Software Project” build with two
build steps (Execute Windows Shell
Command or Execute Shell) does
the job: Deploy STM and Execute
Stress Tests. You don’t need to
create a shell script or a batch file.
The commands can be executed
directly by Hudson or Jenkins.

VisualVM can still be used to
monitor the application in real
time or identify the hot spots.
All the relevant monitoring data
is persisted in a database table
and can be analyzed easily after
the test.

Nice-to-Haves
The solution described so far is good enough for getting
started. The interesting parameters, such as JVM and appli-
cation server monitoring data, are gathered and persisted
automatically during a nightly job. Because of JSR 77 (the
management and monitoring API), all application servers also
provide access to the statistics of all deployed Java EE com-
ponents. Application-specific EJB beans (usually the facade
to your business logic) can be monitored using exactly the
same mechanism.

You will get the number of concurrent requests, the cur-
rent number of active instances (and, thus, the number
of concurrent transactions accessing the bean), and busi-
ness method runtime statistics, such as slowest and average
execution times.

For example, PredictionAudit EJB bean pool data is
accessible under http://localhost:4848/monitoring/
domain/server/applications/com.abien_TestingEJBAndCDI
.war_1.0-SNAPSHOT/PredictionAudit/bean-pool.

All the monitoring data is stored in a single table, which
makes the data available to tools such as JasperReports and
Eclipse BIRT. Charts and reports are only a few clicks away.
The Snapshot entity is exposed through JSON, which makes
it “consumable” by all JavaScript and JavaFX applications
as well.

Furthermore, the Snapshot entity is a Java class and can
contain additional validation or processing logic. It is trivial
to escalate “suspicious” Snapshot instances with CDI events,
as shown in Listing 9.

Listing 9.
@Inject
Event<Snapshot> escalationSink;
@Schedule(minute="*",second="*/5",hour="*")
public void gatherAndPersist(){
 Snapshot current = dataProvider.fetchData();
 em.persist(current);
 if(current.isSuspicious())
 escalationSink.fire(current);
}

A suspicious Snapshot listener will only have to implement
a method with an annotated parameter to receive the event
public void onSuspiciousEvent(@Observes
Snapshot snapshot){}.

All suspicious events can be analyzed in real time, sent
using e-mail, or just aggregated and exposed with JMX.

Because of JSR 77
(the management
and monitoring API),
all application
servers also
provide access to
the statistics of all
deployed Java EE
components.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=40&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=40&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=40&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=40&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=40&exitLink=http%3A%2F%2Fjakarta.apache.org%2Fjmeter%2Fusermanual%2Fget-started.html%23non_gui
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=40&exitLink=http%3A%2F%2Fjakarta.apache.org%2Fjmeter%2Fusermanual%2Fget-started.html%23non_gui
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=40&exitLink=http%3A%2F%2Fwww.jaspersoft.com%2Fjasperreports
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=40&exitLink=http%3A%2F%2Fwww.eclipse.org%2Fbirt%2Fphoenix

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

41

//from the vault /

Conclusion: No Excuses
Java EE 6+ applications are always executed concurrently.
Even with unrealistic stress tests, you will learn a lot about
system behavior and identify some bottlenecks or concur-
rency bugs.

The earlier and more frequently stress tests are executed,
the more you will learn about the application’s runtime
behavior. Application server configuration problems, poten-
tial bottlenecks, synchronization bugs, and memory leaks can
be also identified during stress tests. </article>

[This article first appeared in this magazine in the November/
December 2011 issue and has since been updated. —Ed.]

LEARN MORE
• Real World Java EE Night Hacks: Dissecting the Business Tier

• Sample Java EE testing code on Project Kenai web page

• StressTestMonitoring application

• “Unit Testing for Java EE”

• JSR 77

Prove Your
Tech Creds
Get Java Certified

 Get noticed by hiring managers

 Learn from Java experts

 Join online or in the classroom

 96% of participants recommend it

 100% report promotions, raises, and more

Save up to 20%

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=41&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=41&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=41&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=41&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=41&exitLink=http%3A%2F%2Fpress.adam-bien.com%2Freal-world-java-ee-night-hacks-dissecting-the-business-tier.htm
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=41&exitLink=http%3A%2F%2Fkenai.com%2Fprojects%2Fjavaee-patterns%2Fsources%2Fhg%2Fshow%2FTestingEJBAndCDI%3Frev%3D238
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=41&exitLink=http%3A%2F%2Fkenai.com%2Fprojects%2Fjavaee-patterns%2Fsources%2Fhg%2Fshow%2FStressTestMonitor%3Frev%3D238
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=41&exitLink=http%3A%2F%2Fwww.oracle.com%2Ftechnetwork%2Farticles%2Fjava%2Funittesting-455385.html
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=41&exitLink=http%3A%2F%2Fjcp.org%2Fen%2Fjsr%2Fdetail%3Fid%3D77
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=41&exitLink=http%3A%2F%2Feducation.oracle.com%2Fpls%2Fweb_prod-plq-dad%2Fdb_pages.getpage%3Fpage_id%3D655%26sc%3DWWOU15043959MPP001C002

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

42

//testing /

One of the best practices of modern software develop-
ment is to actively involve developers in software testing.

This practice mirrors the trend driven by DevOps of involving
developers intimately with operations. However, some orga-
nizations, such as the one I work in, are making developers
take on almost all the testing—a move that has proven suc-
cessful and redefined the role of QA. I work at Atlassian, and
here QA stands for quality assistance rather than quality assur-
ance. The QA team is not able to test everything and does not
aim to. Testing activities are mainly carried out by developers,
while QA engineers focus on teaching developers the skills to
effectively and efficiently test software.

In this article, I discuss the techniques we use to train
developers, and how you can start thinking like a tester, too.

Testing from Day 1
New developers joining our company are put through “boot
camp”—a series of classes that get them up to speed as
quickly as possible. Members of the QA team run a class
entitled “Exploratory Testing Workshop for Developers.”
The content is aimed at new hires, who might not have been
expected to perform their own testing previously. More-
experienced developers are always welcome to use the class
as a refresher. The goal is to teach developers how to use
manual testing effectively and deliver high-quality features.

Think Like a Tester and
Get Rid of QA
Atlassian’s developers are required to formulate tests before they code and after.
QA is there to help—but not test.MARK HRYNCZAK

BIO

We start the workshop by explaining that the whole team is
responsible for quality. For developers, owning quality means
that they should think about error cases, security vulnerabili-
ties, and nonstandard user scenarios before they start coding.
We explain why good automation is important but insuffi-
cient, and promote exploratory testing as a technique to find
problems efficiently.

Some developers have a preconception that exploratory
testing means manual scripted testing, which is tedious,
low-value, and as a rule should never be done by a human
(because it can be automated).

We also steer developers away from what we call “ad hoc
testing”—that is, mindlessly clicking around the UI in the
hope that bugs will just appear. The approach we recommend
is anything but mindless. Exploratory testing involves think-
ing critically about the feature you are testing, and finding
problems by identifying specific valid risks.

The second half of the workshop invites attendees to give
exploratory testing a try on a real feature, with QA guidance
to avoid the mindless-clicking-around trap. Generally, we
need to give hints like these:
■■ Don’t test the “happy path.” Instead, think about what

might not work and what should not work (such as users with
and without expected permissions, or conflicting concur-
rent actions on a multiuser system).

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=42&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=42&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=42&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=42&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=42&exitLink=javascript%3AopenPopup%28%27Java_SO15_Hyrnczak_BIO_p42_1443108746767%27%29

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

43

//testing /

■■ Use challenging data input, and avoid relying on provided
defaults and demo content (such as overly long text, char-
acters from non-English alphabets, or XSS strings).

■■ Think about the implementation choices that were made,
and the risks they imply (such as inefficient queries on
massive data sets, or Ajax requests on an expired session).

■■ Imagine ways users might ask the feature to do something
unexpected (such as spoofing other users, or using REST
API endpoints to access content they should not access).

■■ Remember that a UI isn’t necessary for exploratory testing
(you can find problems by theorizing without touching your
computer—even before code has been written).
Initially, developers often do a poor job of testing due to

inexperience. But as exploratory testing becomes part of their
routine, they learn to think from a new perspective and iden-
tifying risks becomes second nature.

Story-Level Testing
Known internally as Developer on Test (DoT), we set up the
team’s workflow so that when one developer finishes imple-
menting a story, another developer, the DoT, verifies that it
meets the team’s quality requirements. The DoT is the gate-
keeper for that story—once the gatekeeper is satisfied, the
code goes into production.

When starting off with a new
team, the process of DoT validation
is a good way to introduce develop-
ers to the idea that they can—and
must—be able to test. We might start
them on simple stories, leaving the
more-complex ones to QA engineers.
Or we might provide QA pairing
sessions to get them up to speed. In
both cases, the long-term goal is to
get the team to a level where both
skill and confidence in testing can

enable the original developers to reliably test their own work.
Use of a DoT is an interim step toward this end goal, because
having two people performing testing on a single story is
ultimately inefficient.

When developers take on a DoT role for the first time, they
need to shift away from a code-centric view of a story and
take on an end-user mindset. So we give them some tips:
Feature exploration.
■■ Set a time limit to explore most of the functionality rel-

evant to the story.
■■ Focus on exploration and familiarization.

Quick attacks.
■■ Use known problematic input wherever data input is

required or data is displayed.
■■ Check the well-known problematic cases whenever there

are commonly used elements such as lists, trees, sessions,
or permissions.

■■ Establish a time limit for the activity to make sure you have
enough time left for more-diligent attempts to test the
feature.

20 percent use case.
■■ Think about what could go wrong and affect the feature’s

functionality.
■■ Consider user, product, and environment.
■■ Avoid the happy path.

Heuristics.
■■ Do some modeling and analysis to generate ideas that

are not immediately obvious for what and how to test.
Heuristics will help you.

■■ Identify any values that can change in a feature and the
interaction between them.
QA can provide resources to help a DoT with the above by

providing a catalog of known problematic input or a list of
proven valuable heuristics, for example. But we are careful
not to simply produce checklists that can be mindlessly fol-
lowed. The aim is to get the developers to think like testers,

We are careful not
to simply produce
checklists that
can be mindlessly
followed. The
aim is to get the
developers to
think like testers.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=43&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=43&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=43&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=43&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

44

//testing /

after all. This can be presented as
a challenge: Assume that problems
exist, and keep searching until you
find them.

We measure the effectiveness of
the team’s quality process by two
important metrics: the ratio of
successful stories (those that did
not result in a shipped bug) and
the ratio of rejected stories (those
where the DoT found an issue
before shipping) to total stories.

Obviously, we want the first metric to be trending toward
100 percent. If we are shipping problems to production, then
the DoT has not done a good job. QA’s focus is on improving
that with more workshops, more pairing, and so on.

Once the team is reaching the quality bar on nearly all sto-
ries, the second metric is of particular interest. The DoT adds
value by rejecting stories that aren’t up to par, but rejections
are an inefficiency in the process. We want the rejection rate
to trend toward zero. Ultimately, we want to remove the DoT
step and have the original developer deliver high quality on
the first go, not after someone else has pointed out problems.

Precoding Test Thinking
As the team matures, we focus more on prevention rather
than detection. This means removing the DoT step—often
against the wishes of the team, who come to see it as a safety
net. We replace the postcoding DoT step by a precoding step
we call a QA kickoff: the developers talk a QA engineer through
the story, explaining what they plan to implement. Together
the developer and QA engineer brainstorm test ideas, possible
risks, and anything else related to the story.

Typically, the QA engineer asks lots of questions, such as,
“What happens when you do X? What if we move Y to Z and
then back again?” This discussion adds huge value. When

developers are aware of edge cases and potential problems,
they can code and test to mitigate them rather than rework-
ing to fix them.

The outcome of the kickoff is a set of testing notes, which
developers can use to determine when the story is done. Once
they are confident, the story can be shipped. Voilà! We have
removed the need for an additional testing step.

The format of kickoffs and testing notes varies according to
the context, but here are some common elements:

Specific risks. What are the critical areas that must work?
Which are the parts most likely not to work? What needs to be
tested thoroughly?

Test ideas. What user scenarios should be covered? What
should be automated? What level of automation is appropri-
ate? What needs to be checked manually?

Notes. A kickoff often raises a lot of questions and details
that do not form coherent test ideas but still are good to jot
down at this point—for example, in-product analytics, fea-
ture discoverability and accessibility, and so on.

Again, we use metrics to validate that the kickoff process is
achieving the quality goals of the team. As the team matures,
developers can take on both roles in a QA kickoff—they no
longer depend on the QA engineer being available for every
discussion on every story.

The Big Picture
As a team succeeds with the processes described previously,
the developers take on more of the testing activities, while
the QA engineer takes on less. You might wonder what QA
can do with all that free time. A high-performing team of
developers means that QA can focus on big-picture quality
improvements. Here are some examples:

Scale. We can increase the number of developers for whom
a single QA engineer can provide value. At Atlassian, for
example, the ratio is often between 1:10 and 1:20.

Knowledge. We can look ahead to see how the team can

As the team matures,
developers no longer
depend on the QA
engineer being
available for
every discussion.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=44&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=44&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=44&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=44&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

45

//testing /

LEARN MORE
• Further details on the Atlassian process (by the same

author)

• “ The Day the QA Died” (another view of the same
transition)

meet customer needs better, and teach that to the whole team
through the kickoffs.

Innovation. We can experiment with process changes and
measure their impact.

Tools. We can identify ways to make testing easier for
developers. For example, the Atlassian QA team built an
Amazon EC2 service that provides quick and easy access
to any supported browser for testing and troubleshooting.

Results
We’ve had great results with these techniques. They have
enabled the QA function to scale effectively with a rapidly
growing development team; individual QA engineers have
successfully innovated and multiplied their value; and we
have rendered obsolete much of the tedious busy work that is
accepted as a necessary evil of the traditional QA role.

But perhaps most importantly, the team of (often skepti-
cal) developers has enthusiastically accepted these changes.
We’ve given them confidence that they can test their own
work, deliver it to a measurable high standard, and make
efficiency savings that increase the team’s velocity without
sacrificing quality. Internal surveys about the process and the
team consistently show this.

If you are a developer who currently relies on a traditional
testing phase to catch the bugs that you produce, you should
question whether this is a satisfactory state of affairs. Which
statement matches your mindset? “I’m a good developer; I
don’t need to test” or “Developers are not good developers
unless they can also test.” </article>

THE VIRTUAL JUG
The Virtual JUG (vJUG) is an online-only Java user group with
a global audience in more than 100 countries. It is now 18
months old and already has more than 3,500 members. To date,

it has hosted 39 online ses-
sions and runs at least two
sessions every month, as
well as a monthly podcast.

The most popular live
sessions have included
one by Java creator
James Gosling on his
new Wave Glider proj-
ect, and a deep tech ses-
sion on the Java memory

model with Oracle’s Aleksey Shipilë ёv. The most watched
session in the vJUG’s short history is a look at 55 new fea-
tures in Java 8 by Simon Ritter, who heads Java Technology
Evangelism at Oracle. Sessions can be watched live or in
replay at http://virtualjug.com. All of our speakers are
interviewed after their sessions to talk about what makes
them tick and to answer many probing and sometimes
uncomfortable questions.

The vJUG has created a couple of new initiatives in 2015,
including a new podcast called the Java Council. Its goal is to
fill the gap left by the Java Posse, which ended in 2014.

Another new initiative this year is the vJUG book club,
which coordinates the worldwide reading of a chosen book, a
review, and a discussion over several vJUG sessions. The sub-
ject of the book could be anything from a deep look at tech-
nology to time management. The first book will be Effective
Java, Second Edition by Joshua Bloch. Which book will be next?
The great thing is the community will decide! If you want to
be part of a unique online JUG, visit us.

//testing / //user groups /

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=45&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=45&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=45&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=45&exitLink=https%3A%2F%2Fwww.atlassian.com%2Finside-atlassian%2Fquality-assurance-vs-quality-assistance
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=45&exitLink=http%3A%2F%2Fwww.developer.com%2Ftech%2Fthe-day-the-qa-died.html
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=45&exitLink=http%3A%2F%2Fmeetup.com%2Fvirtualjug
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=45&exitLink=http%3A%2F%2Fshipilev.net%2F
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=45&exitLink=http%3A%2F%2Fvirtualjug.com
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=45&exitLink=http%3A%2F%2Fwww.javaposse.com%2F
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=45&exitLink=http%3A%2F%2Fwww.informit.com%2Fstore%2Feffective-java-9780321356680
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=45&exitLink=http%3A%2F%2Fwww.informit.com%2Fstore%2Feffective-java-9780321356680
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=45&exitLink=http%3A%2F%2Fmeetup.com%2Fvirtualjug
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=45&exitLink=http%3A%2F%2FORACLE.COM%2FJAVAMAGAZINE

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

46

//jvm languages /

It has been more than five years since Project Kotlin, an
open source language targeting the JVM, was announced by

JetBrains. Since then, much progress has been made, some
language designs have changed, a new platform—namely
JavaScript—is now supported, and even the project name has
changed. It’s now simply known as Kotlin. But if there’s one
thing that still remains, it is the initial goals and intent for
why Kotlin was developed.

At JetBrains, we have been developing IDEs for many pro-
gramming languages, and yet despite this, much of our code
continues to be written in Java. In 2009, we were looking for
an alternative to Java, something that could reduce the size
of our codebase by being more concise and, at the same time,
offer features that we felt could provide important benefits.
We needed a language that
was also syntactically similar
enough to Java that ramp-up
time would not be substan-
tial. The main contender at the
time was Scala, but the com-
piler performance wasn’t that
great and providing tooling for
Scala was (and continues to be)
quite challenging. Tooling and
performance were important

Kotlin: A Low-Ceremony,
High-Integration Language
Work with a statically typed, low-ceremony language that provides first-class functions, nullability
protections, and complete integration with existing Java libraries.HADI HARIRI

BIO

aspects in our decision, so we opted not to go with Scala. Thus
was born Project Kotlin.

Shortly afterward, news about the JVM language Ceylon
was announced; and at one point we considered joining
efforts. However, at the time, Ceylon’s focus on interoper-
ability was somewhat of a low priority. Given that we have a
large codebase in Java, being able to use and extend it was of
considerable importance to us. Thus, we decided to continue
down our own path with Kotlin.

Removing the Pain
Five years later and close to reaching the 1.0 milestone,
Kotlin remains true to its initial goals of being concise, safe,
interoperable, “toolable,” and performant. Many, if not all, of
these goals are for a single purpose: removing some of the
pain and the errors we encounter when writing code.

The IntelliJ platform is an extremely large codebase on
which all our IDEs, including IntelliJ IDEA, are built. The
open source Community Edition alone, which is hosted on
GitHub, has millions of lines of code. While there is a lot of
functionality, much of the code is often boilerplate code that
is necessary because, well, because it’s Java. One of Kotlin’s
goals has been to reduce the amount of somewhat pointless
code yet maintain readability and functionality. For instance,
a typical Java bean with property getters, setters, toString,

One of Kotlin’s goals
is to reduce the
amount of somewhat
pointless code yet
maintain readability and
functionality.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=46&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=46&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=46&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=46&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=46&exitLink=http%3A%2F%2Fwww.scala-lang.org%2F
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=46&exitLink=http%3A%2F%2Fceylon-lang.org%2F
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=46&exitLink=https%3A%2F%2Fgithub.com%2FJetBrains%2Fintellij-community
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=46&exitLink=javascript%3AopenPopup%28%27Java_SO15_Hariri_BIO_p46_1443108683078%27%29

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

47

//jvm languages /

and equality in Kotlin can be reduced to the following:

data class Customer(
 var name: String, var email: String)

Things such as smart-casting remove the need for verbos-
ity by delegating the work to the compiler. For example, when
checking an immutable value for a specific type, it’s no longer
necessary to cast to that type when operating on it:

fun convert(obj: Shape) {
 if (obj is Circle) {
 val radius = obj.radius()
 ...
 }
}

Kotlin also has support for named objects, which, in essence,
means a singleton would simply be written as follows:

val MySingleton = object {
 val numberOfDays = 10
}

Another pain point Kotlin addresses is the need to use
functional constructs—such as lambda expressions and
higher-order functions—and to treat functions as first-class
citizens. While Java 8 addresses some of these concerns,
our goal was and continues to be to provide this functional-
ity when using Java 6, 7, or 8—thus, even allowing support
for these features on the Android platform. This is one rea-
son that Kotlin has enjoyed considerable popularity in the
Android development community.

Functions can be top-level in Kotlin, much like they are in
JavaScript, meaning there’s no need to attach a function to an
object. As such, we could simply declare a function in a file
like this:

fun toSentenceCase(input: String) {
 . . .
}

Much like C#, Kotlin also allows extension functions,
meaning a type (either of Java or Kotlin) can be extended
with new functionality simply by suffixing the type. Taking
the previous example, if I want the String type to have
toSentenceCase(), I can simply write the following:

fun String.toSentenceCase() {
 ... // 'this' would hold an
 // instance of the object
}

To work efficiently with functions as primitives, there
needs to be support for higher-order functions—that is,
functions that take functions as parameters or return func-
tions. With Kotlin, this is possible, for example:

fun operate(x: Int, y: Int,
 operation: (Int, Int) -> Int) {
 ...
}

This code declares a function that takes three parameters:
two integers and a third parameter that is a function that, in
turn, takes two integers and returns an integer. We can then
invoke functions as follows:

fun sum(x: Int, y: Int) {
 . . .
}

operate(2, 3, ::sum)

This code shows a function, sum, being defined and passed
as a parameter to operate. It shows that Kotlin supports ref-

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=47&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=47&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=47&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=47&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

48

//jvm languages /

erencing functions by name. Of course, a lambda expression
can be passed in as well:

operate(2, 3, { x, y -> x +y })

These capabilities deliver an elegant way of doing function
pipelining:

val numbers = 1..100

numbers.filter { it % 2 == 0 }
 .map { it + 5 }
 .forEach {
 println(it)
 }

One more issue we attack with Kotlin is null pointer excep-
tions. In Kotlin, by default, things cannot be null, meaning
that potentially the only way we’d get a null reference excep-
tion would be if we explicitly force it.

var city = "London"

In the code above, city could never be assigned a null
value. If we want it to be null, we need to go out of our way to
be explicit:

var city : String? = null

where ? indicates that a type can be nullable. When interop-
erating with Java, we provide certain mechanisms to warn of
possible null references, as well as providing some operators
to make the code more concise, such as the safe call operator:

var file = File("...")
file?.length()

Because of the ?., this code would invoke length() on

file only if file were not null. The standard library, a small
runtime that ships with Kotlin, also provides additional func-
tions in this area, such as the let function, which when
combined with the safe call operator allows for succinct code,
such as the following:

obj?.let {
 ... // execute code here
}

This results in the code
block executing if the object is
not null.

One last thing worth men-
tioning about Kotlin is its abil-
ity to easily enable the creation
of DSLs—without the overhead
that necessarily comes with
maintaining them or the lan-
guage knowledge required to
implement them. Top-level
functions, higher-order func-
tions, extension functions, and
a few conventions, such as not
having to use brackets when
the last parameter to a function is another function—these
features allow for creating rich DSLs that are strongly typed.
The quintessential example is that of type-safe Groovy-
style builders. The following function generates the expected
HTML output:

html {
 head {
 title {+"XML encoding with Kotlin"}
 }
 body {
 h1 {+"XML encoding with Kotlin"}

Kotlin has the ability
to easily create
DSLs—without the
overhead that necessarily
comes with maintaining
them or the language
knowledge required to
implement them.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=48&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=48&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=48&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=48&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

49

//jvm languages /

 p {+"this is an alternative markup to XML"}
 }
}

Growth and the Road Ahead
The previous code snippets are just a few examples of what
Kotlin provides. It wouldn’t be possible to cover all the little
details and conveniences Kotlin offers in a single article.

Over the past year, and despite not having released ver-
sion 1.0, we’ve noticed a substantial growth and interest in
Kotlin. There has been an increase in downloads and visits to
the Kotlin site, as well as an increase in technical questions in
both our forums and public venues such as StackOverflow.

While a lot of this interest is due to the Android com-
munity and our contributions in terms of additional tool-
ing and frameworks for this space, there’s also interest in
other more generic areas such as web development, both
client-side (given Kotlin’s ability to compile to JavaScript) and
server-side.

We’re close to reaching the first major release, and we’ve
made significant steps toward that. Over the past few mile-
stone releases, we’ve been removing and adjusting some
things in the language to make sure that once we release,

we’ll be fairly certain that what we
ship is there to stay. As any language
designer or developer knows, what-
ever goes in a language stays as bag-
gage pretty much forever.

As a company that provides tool-
ing for developers, we’ve tried to
make language release transitions
as smooth as possible. To this end,
a new release usually comes with a
compiler warning about a potential
upcoming change or deprecation. The
IDE also provides a quick fix to eas-

ily migrate code to newer syntax. We believe that this way,
we create a smooth experience for developers that are already
using Kotlin in production.

Beyond these quick fixes, we’re also focusing on improving
other aspects of tooling. For Kotlin to be successful, the entry
barrier should be low in all aspects. That is why we not only
provide tooling for IntelliJ IDEA, in both Ultimate and the
open source Community Edition, but also for build tools such
as Gradle, Ant, and Maven, as well as a simple command-line
compiler. We’ve also released a preliminary version of Kotlin
for Eclipse, and we’re hoping that much like there are contri-
butions to Kotlin in other areas, the community will contrib-
ute to Eclipse support as well.

Conclusion
In conclusion, we developed Kotlin for our own use primar-
ily and are heavily invested in it. For us, it’s a tool that we’re
using to drive our own business, which is developer tools. We
already have several internal and public-facing web applica-
tions written in Kotlin. Some of our newer tools are being
written in Kotlin and our existing tools, such as IntelliJ IDEA
and YouTrack, are adopting Kotlin. </article>

[This article is the inaugural installment of a new series on
JVM languages that will appear in Java Magazine. We will
examine the full range of languages, from large commercial
efforts to projects driven by determined groups of hackers. In
the next issue, we’ll cover Jython. —Ed.]

Some of our
newer tools are
being written
in Kotlin and our
existing tools, such
as IntelliJ IDEA
and YouTrack, are
adopting Kotlin.

LEARN MORE
• Kotlin home

• Kotlin on StackOverflow

• Kotlin on Reddit

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=49&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=49&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=49&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=49&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=49&exitLink=http%3A%2F%2Fkotlinlang.org%2F
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=49&exitLink=http%3A%2F%2Fstackoverflow.com%2Fsearch%3Fq%3Dkotlin
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=49&exitLink=https%3A%2F%2Fwww.reddit.com%2Fr%2FKotlin

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

50

//functional programming /

In the first article in this two-part series, I demonstrated
how lambda expressions harness the power of the func-

tional style of programming in Java. Lambdas create more-
expressive and concise code with less mutability and fewer
errors. In this final part, I explore this further and consider
a cautionary warning. As we’ll see, lambda expressions are
deceivingly concise, and it’s easy to carelessly duplicate them
in code. Duplicate code leads to poor-quality code that’s hard
to maintain; if we needed to make a change, we’d have to find
and touch the relevant code in several places.

Avoiding duplication can also help improve performance.
By keeping the code related to a piece of knowledge concen-
trated in one place, we can easily study its performance pro-
file and make changes in one place to get better performance.

Reusing Lambda Expressions
Now, let’s see how easy it is to fall into the duplication trap
when using lambda expressions, and consider ways to avoid
it. Suppose we have a few collections of names: friends,
editors, and comrades:

final List<String> friends =
 Arrays.asList("Brian", "Nate", "Neal",
 "Raju", "Sara", "Scott");

final List<String> editors =

 Arrays.asList("Brian", "Jackie",
 "John", "Mike");

final List<String> comrades =
 Arrays.asList("Kate", "Ken", "Nick",
 "Paula", "Zach");

Suppose we want to filter out names that start with a cer-
tain letter. We will first take a naive approach to this using
the filter() method:

final long countFriendsStartN =
 friends.stream()
 .filter(name -> name.startsWith("N"))
 .count();

final long countEditorsStartN =
 editors.stream()
 .filter(name -> name.startsWith("N"))
 .count();

final long countComradesStartN =
 comrades.stream()
 .filter(name -> name.startsWith("N"))
 .count();

The lambda expressions made the code concise, but it
quietly led to duplicate code. In the previous example, one

Removing code smells from lambda-based functional routines

Part 2

Functional Programming in Java:
Using Collections

VENKAT
SUBRAMANIAM
BIO

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=50&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=50&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=50&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=50&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=50&exitLink=http%3A%2F%2Fwww.oraclejavamagazine-digital.com%2Fjavamagazine_open%2F20150708%23pg41
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=50&exitLink=javascript%3AopenPopup%28%27Java_SO15_Subramaniam_BIO_p50_1443109159415%27%29

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

51

//functional programming /

change to the lambda expression requires changes in more than one
place—that’s a no-no. Fortunately, we can assign lambda expressions
to variables and reuse them, just like with objects.

The filter() method, the receiver of the lambda expression in
the previous example, takes a reference to a java.util.function
.Predicate functional interface. Here, the Java compiler works its
magic to synthesize an implementation of the Predicate’s test()
method from the given lambda expression. Rather than asking Java to
synthesize the method at the argument-definition location, we can be
more explicit. In this example, it’s possible to store the lambda expres-
sion in an explicit reference of type Predicate and then pass it to the
function; this is an easy way to remove the duplication.

Let’s refactor the previous code to make it adhere to the DRY (Don’t
Repeat Yourself) best practice.

final Predicate<String> startsWithN =
 name -> name.startsWith("N");

final long countFriendsStartN =
 friends.stream()
 .filter(startsWithN)
 .count();
final long countEditorsStartN =
 editors.stream()
 .filter(startsWithN)
 .count();
final long countComradesStartN =
 comrades.stream()
 .filter(startsWithN)
 .count();

Rather than duplicate the lambda expression
several times, we created it once and stored
it in a reference named startsWithN of type
Predicate. In the three calls to the filter
method, the Java compiler happily took the
lambda expression stored in the variable under

the guise of the Predicate instance.
The new variable gently removed the duplication that sneaked in.

Unfortunately, it’s about to sneak back in with a vengeance, as we’ll see
next, and we need something a bit more powerful to thwart it.

Using Lexical Scoping and Closures
There’s a misconception among some developers that using lambda
expressions might introduce duplication and lower code quality.
Contrary to that belief, even when the code gets more complicated, we
still don’t need to compromise code quality to enjoy the conciseness that
lambda expressions give, as we’ll see in this section.

We managed to reuse the lambda expression in the previous example;
however, duplication will sneak in quickly when we bring in another let-
ter to match. Let’s explore the problem further and then solve it using
lexical scoping and closures.
Duplication in lambda expressions. Let’s pick the names that start with
N or B from the friends collection of names. Continuing with the
previous example, we might be tempted to write something like the
following:

final Predicate<String> startsWithN =
 name -> name.startsWith("N");
final Predicate<String> startsWithB =
 name -> name.startsWith("B");

final long countFriendsStartN =
 friends.stream()
 .filter(startsWithN)
 .count();
final long countFriendsStartB =
 friends.stream()
 .filter(startsWithB)
 .count();

The first predicate tests whether the name starts with an N and the
second tests for a B. We pass these two instances to the two calls to the
filter() method, respectively. Seems reasonable, but the two predi-

Our examples
illustrate how to
pass functions to
functions, create
functions within
functions, and return
functions from
within functions.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=51&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=51&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=51&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=51&exitLink=http%3A%2F%2Fc2.com%2Fcgi%2Fwiki%3FDontRepeatYourself
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=51&exitLink=http%3A%2F%2Fc2.com%2Fcgi%2Fwiki%3FDontRepeatYourself
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=51&exitLink=http%3A%2F%2FORACLE.COM%2FJAVAMAGAZINE

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

52

//functional programming /

cates are mere duplicates, with only the letter they use being different.
Let’s figure out a way to eliminate this duplication.
Removing duplication using lexical scoping. As a first option, we could
extract the letter as a parameter to a function and pass the function as
an argument to the filter() method. That’s a reasonable idea, but the
filter() method will not accept some arbitrary function. It insists on
receiving a function that accepts one parameter representing the context
element in the collection, and returning a boolean result. It’s expecting
a Predicate.

For comparison purposes, we need a variable that will cache the letter
for later use and hold onto it until the parameter, name in this example,
is received. Let’s create a function for that:

public static Predicate<String>
 checkIfStartsWith(final String letter) {
 return name -> name.startsWith(letter);
}

We defined checkIfStartsWith() as a static function that takes
a letter of type String as a parameter. It then returns a Predicate
that can be passed to the filter() method for later evaluation.
checkIfStartsWith() returns a function as a result.

The Predicate that checkIfStartsWith() returned is different
from the lambda expressions we’ve seen so far. In return name ->
name.startsWith(letter), it’s clear what name is: it’s the param-
eter passed to this lambda expression. But what’s the variable letter
bound to? Because that’s not in the scope of this anonymous function,
Java reaches over to the scope of the definition of this lambda expression
and finds the variable letter in that scope. This is called lexical scoping.
Lexical scoping is a powerful technique that lets us cache values provided
in one context for use later in another context. Since this lambda expres-
sion closes over the scope of its definition, it’s also referred to as a closure.

It’s worth noting here that there are a few restrictions to lexical scop-
ing. For one thing, from within a lambda expression, we can access
only local variables that are final or effectively final in the enclos-
ing scope. A lambda expression may be invoked right away, or it may

be invoked lazily or from multiple threads. To avoid race conditions,
the local variables we access in the enclosing scope are not allowed to
change once they are initialized. Any attempt to change them will result
in a compilation error. Variables marked final directly fit this bill, but
Java does not insist that we mark them as such. Instead, Java looks for
two things. First, the accessed variables have to be initialized within the
enclosing methods before the lambda expression is defined. Second, the
values of these variables don’t change anywhere else—that is, they’re
effectively final although they are not marked as such.

When using lambda expressions that capture local state, we should
also be aware that stateless lambda expressions are runtime constants,
but those that capture local state have an additional evaluation cost.

With these restrictions in mind, let’s see how to use the lambda
expression returned by checkIfStartsWith() in the calls to the
filter() method.

final long countFriendsStartN =
 friends.stream()
 .filter(checkIfStartsWith("N"))
 .count();
final long countFriendsStartB =
 friends.stream()
 .filter(checkIfStartsWith("B"))
 .count();

In the calls to the filter() method, we first invoke the
checkIfStartsWith() method, passing in a desired letter. This call
immediately returns a lambda expression that is then passed on to the
filter() method.

By creating a higher-order function, checkIfStartsWith() in this
example, and by using lexical scoping, we managed to remove the
duplication in code. We did not have to repeat the comparison to check
whether the name starts with different letters.
Refactoring to narrow the scope. In the preceding (smelly) example,
we used a static method, but we don’t want to pollute the class with
static methods to cache each variable in the future. It would be nice
to narrow the function’s scope to where it’s needed. We can accomplish

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=52&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=52&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=52&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=52&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

53

//functional programming /

that by using a Function interface.

final Function<String, Predicate<String>>
 startsWithLetter = (String letter) -> {
 Predicate<String> checkStarts =
 (String name) ->
 name.startsWith(letter);
 return checkStarts;
};

This lambda expression replaces the static method checkIfStarts
With() and can appear within a function, just before it’s needed. The
checkIfStartsWith variable refers to a Function that takes in a
String and returns a Predicate.

This version is verbose compared to the static method we saw ear-
lier, but we’ll refactor that soon to make it concise. For all practical
purposes, this function is equivalent to the static method; it takes
a String and returns a Predicate. Instead of explicitly creating the
instance of the Predicate and returning it, we can replace it with a
lambda expression:

final Function<String, Predicate<String>>
 startsWithLetter =
 (String letter) -> (String name) ->
 name.startsWith(letter);

We reduced clutter, but we can take the conciseness up another notch
by removing the types and letting the Java compiler infer the types
based on the context. Let’s look at the concise version.

final Function<String, Predicate<String>>
 startsWithLetter =
 letter -> name -> name.startsWith(letter);

It takes a bit of effort to get used to this concise syntax. Feel
free to look away for a moment if this makes you cross-eyed.
Now that we’ve refactored that version, we can use it in place of

checkIfStartsWith(), like so:

final long countFriendsStartN =
 friends.stream()
 .filter(startsWithLetter.apply("N"))
 .count();
final long countFriendsStartB =
 friends.stream()
 .filter(startsWithLetter.apply("B"))
 .count();

We’ve come full circle with higher-order functions in this section.
Our examples illustrate how to pass functions to functions, create func-
tions within functions, and return functions from within functions.
They also demonstrate the conciseness and reusability that lambda
expressions facilitate.

We made good use of both Function and Predicate in this section,
but let’s discuss how they’re different. A Predicate<T> takes in one
parameter of type T and returns a boolean result to indicate a deci-
sion for whatever check it represents. We can use it anytime we want to
make a go or no-go decision for a candidate we pass to the predicate.
Methods such as filter() that evaluate candidate elements take in a
Predicate as their parameter.

On the other hand, a Function <T, R> represents a function that
takes a parameter of type T and returns a result of type R. This is more
general than a Predicate that always returns a boolean. We can
employ a Function anywhere we want to transform an input to another
value, so it’s quite logical that the map() method uses Function as
its parameter.

Selecting elements from a collection was easy. Next, we’ll cover how to
pick just one element out of a collection.

Picking an Element
It’s reasonable to expect that picking one element from a collection
would be simpler than picking multiple elements. But there are a few
complications. Let’s look at the complexity introduced by the habitual
approach and then bring in lambda expressions to solve it.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=53&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=53&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=53&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=53&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

54

//functional programming /

Let’s create a method that looks for an element that starts with a given
letter and prints it.

public static void pickName(
 final List<String> names,
 final String startingLetter) {
 String foundName = null;
 for(String name : names) {
 if(name.startsWith(startingLetter)) {
 foundName = name;
 break;
 }
 }
 System.out.print(
 String.format(
 "A name starting with %s: ",
 startingLetter));

 if(foundName != null) {
 System.out.println(foundName);
 } else {
 System.out.println("No name found");
 }
}

This method’s smell can easily compete with passing garbage trucks.
We first created a foundName variable and initialized it to null—that’s
the source of our first bad smell. This will force a null check, and if
we forget to deal with it, the result could be a NullPointerException
or an unpleasant response. We then used an external iterator to loop
through the elements, but had to break out of the loop if we found an
element—here are other sources of rancid smells: primitive obsession,
imperative style, and mutability. Once out of the loop, we had to check
the response and print the appropriate result. That’s quite a bit of code
for a simple task.

Let’s rethink the problem. We simply want to pick the first match-
ing element and safely deal with the absence of such an element. Let’s
rewrite the pickName() method, this time using lambda expressions.

public static void pickName(
 final List<String> names,
 final String startingLetter) {
 final Optional<String> foundName =
 names.stream()
 .filter(name ->
 name.startsWith(startingLetter))
 .findFirst();
 System.out.println(
 String.format(
 "A name starting with %s: %s",
 startingLetter,
 foundName.orElse("No name found")));
}

Some powerful features in the JDK library came together to help
achieve this conciseness. First we used the filter() method to grab
all the elements matching the desired pattern. Then the findFirst()
method of the Stream class helped pick the first value from that collec-
tion. This method returns a special Optional object, which is the state-

appointed null deodorizer in Java.
The Optional class is useful whenever

the result may be absent. It protects us
from getting a NullPointerException
by accident, and makes it quite explicit
to the reader that “no result found”
is a possible outcome. We can inquire
whether an object is present by using the
isPresent() method, and we can obtain
the current value using its get() method.
Alternatively, we could suggest a substi-
tute value for the missing instance, using
the method (with the most threatening
name) orElse(), as in the previous code.

Let’s exercise the pickName() function
with the sample friends collection we’ve
used in the examples so far:

Collections are common
in programming and,
thanks to lambda
expressions, using them
is now easier and simpler
in Java. We can trade
the long-winded old
methods for elegant,
concise code to
perform common
operations on collections.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=54&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=54&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=54&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=54&exitLink=http%3A%2F%2FORACLE.COM%2FJAVAMAGAZINE

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

55

//functional programming /

pickName(friends, "N");
pickName(friends, "Z");

The code picks out the first matching element, if found, and prints an
appropriate message otherwise.

A name starting with N: Nate
A name starting with Z: No name found

The combination of the findFirst() method and the Optional
class reduced our code and its smell quite a bit. We’re not limited to the
preceding options when working with Optional, though. For example,
rather than providing an alternate value for the absent instance, we can
ask Optional to run a block of code or a lambda expression only if a
value is present, like so:

foundName.ifPresent(name ->
 System.out.println("Hello " + name));

When compared to using the imperative version to pick the first
matching name, the nice, flowing functional
style looks better. But are we doing more
work in the fluent version than we did in the
imperative version? The answer is no—these
methods have the smarts to perform only as
much work as necessary.

The search for the first matching element
demonstrated a few more neat capabilities
in the JDK. Next, we’ll look at how lambda
expressions help compute a single result
from a collection.

Reducing a Collection to a Single Value
We’ve gone over quite a few techniques
to manipulate collections so far: picking
matching elements, selecting a particular

element, and transforming a collection. All these operations have one
thing in common: they all worked independently on individual elements
in the collection. None required comparing elements against each other
or carrying over computations from one element to the next. In this
section, we look at how to compare elements and carry over a computa-
tional state across a collection.

Now let’s begin with some basic operations and then build up to
something a bit more sophisticated. As the first example, we are going
to read over the values in the friends collection of names and deter-
mine the total number of characters.

System.out.println(
 "Total number of characters in all names: " +
 friends.stream()
 .mapToInt(name -> name.length())
 .sum());

To find the total of the characters, we need the length of each name.
We can easily compute that using the mapToInt() method. Once we
transform the names to their lengths, the final step is to total them. We
perform this step using the built-in sum() method. Here’s the output
for this operation:

Total number of characters in all names: 26

We leveraged the mapToInt() method, a variation of the map opera-
tion (variations such as mapToInt(), mapToDouble(), and so on create
type-specialized streams such as IntStream and DoubleStream) and
then reduced the resulting length to the sum value.

Instead of using the sum() method, we could use a variety of meth-
ods, such as max() to find the longest length, min() to find the shortest
length, sorted() to sort the lengths, average() to find the average of
the length, and so on.

The hidden charm in the preceding example is the increasingly popu-
lar MapReduce pattern, with the map() method being the spread opera-
tion and the sum() method being the special case of the more general
reduce operation. In fact, the implementation of the sum() method in

We could lose all
the gains we made
from concise and
elegant code if not
for a newly added
join() function. This
simple method is so
useful that it’s poised
to become one of the
most used functions in
the JDK.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=55&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=55&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=55&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=55&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=55&exitLink=http%3A%2F%2Fresearch.google.com%2Farchive%2Fmapreduce.html

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

56

//functional programming /

the JDK uses a reduce() method. Let’s look at the more general form of
the reduce operation.

As an example, let’s read over the given collection of names and dis-
play the longest one. If there is more than one name with the same
longest length, we’ll display the first one we find. One way we could do
that is to figure out the longest length, and then pick the first element of
that length. But that would require going over the list twice, which is not
efficient. This is where a reduce() method comes into play.

We can use the reduce() method to compare two elements against
each other and pass along the result for further comparison with the
remaining elements in the collection. Much like the other higher-order
functions on collections we’ve seen so far, the reduce() method iter-
ates over the collection. In addition, it carries forward the result of the
computation that the lambda expression returns. An example will help
clarify this:

final Optional<String> aLongName =
 friends.stream()
 .reduce((name1, name2) ->
 name1.length() >= name2.length() ?
 name1 : name2);
 aLongName.ifPresent(name ->
 System.out.println(
 String.format("A longest name: %s", name)));

The lambda expression we are passing to the reduce() method takes
two parameters, name1 and name2, and returns one of them based on
the length. The reduce() method has no clue about our specific intent.
That concern is separated from this method into the lambda expression
that we pass to it—this is a lightweight application of the strategy pattern.

This lambda expression conforms to the interface of an apply()
method of a JDK functional interface named BinaryOperator. This is
the type of the parameter the reduce() method receives. Let’s run the
reduce() method and see whether it picks the first of the two longest
names from the friends list.

A longest name: Brian

As the reduce() method iterated through the collection, it called
the lambda expression first, with the first two elements in the list. The
result from the lambda expression is used for the subsequent call. In the
second call, name1 is bound to the result from the previous call to the
lambda expression, and name2 is bound to the third element in the col-
lection. The calls to the lambda expression continue for the rest of the
elements in the collection. The result from the final call is returned as
the result of the reduce() method call.

The result of the reduce() method is an Optional because the list
on which reduce() is called might be empty. In that case, there would
be no longest name. If the list had only one element, reduce() would
return that element and the lambda expression would not be invoked.

From the example, we can infer that the reduce() method’s result is
at most one element from the collection. If we want to set a default or
a base value, we can pass that value as an extra parameter to an over-
loaded variation of the reduce() method. For example, if the short-
est name we want to pick is “Steve,” we can pass that to the reduce()
method, like so:

final String steveOrLonger =
 friends.stream()
 .reduce("Steve", (name1, name2) ->
 name1.length() >= name2.length() ?
 name1 : name2);

If any name is longer than the given base, it is picked up; otherwise,
the function returns the base value, which is “Steve” in this example.
This version of reduce() does not return an Optional because if the
collection is empty, the default will be returned; there’s no concern
about an absent or nonexistent value.

Before I wrap up, let’s visit a fundamental, yet seemingly difficult,
operation on collections: joining elements.

Joining Elements
We’ve explored how to select elements, iterate, and transform collec-
tions. Yet in a trivial operation—concatenating a collection—we could
lose all the gains we made from concise and elegant code if not for a

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=56&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=56&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=56&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=56&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=56&exitLink=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FStrategy_pattern

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

57

//functional programming /

newly added join() function. This simple method is so useful that it’s
poised to become one of the most used functions in the JDK. Let’s see
how to use it to print the values in a comma-separated list.

Let’s work with our friends list. What does it take to print the list of
names, separated by commas, using only the old JDK libraries?

We have to iterate through the list and print each element. Because
the enhanced Java 5 for construct is better than the archaic for loop,
let’s start with that.

for(String name : friends) {
 System.out.print(name + ", ");
}
System.out.println();

That was simple code. It yielded this:

Brian, Nate, Neal, Raju, Sara, Scott,

Darn it! There’s a stinking comma at the end (shall we blame it on
Scott?). How do we tell Java not to place a comma there? Unfortunately,
the loop will run its course and there’s no easy way to tell the last
element apart from the rest. To fix this, we can fall back on the
habitual loop.

for(int i = 0; i < friends.size() - 1; i++) {
 System.out.print(friends.get(i) + ", ");
}

if(friends.size() > 0)
 System.out.println(
 friends.get(friends.size() - 1));

Let’s see if the output of this version was decent.

Brian, Nate, Neal, Raju, Sara, Scott

The result looks good, but the code to produce the output does not.
Beam us up, modern Java.

We no longer have to endure that pain. A StringJoiner class cleans
up all that mess in Java 8, and the String class has an added conve-
nience method, join(), to turn that smelly code into a simple one-liner.
System.out.println(String.join(", ", friends));

Let’s quickly verify that the output is as charming as the code that
produced it.

Brian, Nate, Neal, Raju, Sara, Scott

Under the hood, the String’s join() method calls upon the
StringJoiner to concatenate the values in the second argument, a
varargs, into a larger string separated by the first argument. We’re
not limited to concatenating only with a comma using this feature. We
could, for example, take a bunch of paths and concatenate them to form
a classpath easily, thanks to the new methods and classes.

We saw how to join a list of elements; we can also transform the ele-
ments before joining them. We already know how to transform elements
using the map() method. We can also be selective about which elements
we want to keep by using methods such as filter(). The final step of
joining the elements, separated by commas or something else, is simply
a reduce operation.

We could use the reduce() method to concatenate elements into
a string, but that would require some effort on our part. The JDK has
a convenience method named collect(), which is another form of
reduce that can help us collect values into a target destination.

The collect() method does the reduction but delegates the actual
implementation or target to a collector. We could drop the transformed
elements into an ArrayList, for instance. Or, to continue with the cur-
rent example, we could collect the transformed elements into a string
concatenated with commas.

System.out.println(
 friends.stream()
 .map(String::toUpperCase)
 .collect(joining(", ")));

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=57&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=57&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=57&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=57&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

58

//functional programming /

We invoked the collect() method on the transformed list and pro-
vided it a collector returned by the joining() method, which is a static
method on a Collectors utility class. A collector acts as a sink object to
receive elements passed by the collect() method and stores them in a
desired format: ArrayList, String, and so on.

Here are the names, now in uppercase and comma-separated.

BRIAN, NATE, NEAL, RAJU, SARA, SCOTT

The StringJoiner gives a lot more control over the format of concat-
enation; we can specify a prefix, a suffix, and infix character sequences,
if we desire.

Conclusion
As we’ve seen in this two-part series, lambda expressions and the newly
added classes and methods make programming in Java so much easier
and more fun, too.

Collections are common in programming and, thanks to lambda
expressions, using them is now much easier and simpler in Java. We can
trade the long-winded old methods for elegant, concise code to perform
common operations on collections. Internal iterators make it conve-
nient to traverse collections, transform collections without enduring
mutability, and select elements from collections without much effort.
Using these functions means less code to write. That can lead to more
maintainable code, more code that does useful domain- or application-
related logic, and less code to handle the basics of coding. </article>

This article was adapted from Functional Programming in Java:
Harnessing the Power of Java 8 Lambda Expressions with kind
permission from the publisher, The Pragmatic Bookshelf.

LEARN MORE
• Overview of functional programming

• Cay Horstmann’s explanation of using lambdas in Java 8

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=58&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=58&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=58&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=58&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=58&exitLink=http%3A%2F%2Fpragprog.com%2Fbook%2Fvsjava8
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=58&exitLink=http%3A%2F%2Fpragprog.com%2Fbook%2Fvsjava8
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=58&exitLink=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFunctional_programming
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=58&exitLink=http%3A%2F%2Fwww.drdobbs.com%2Fjvm%2Flambda-expressions-in-java-8%2F240166764
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=58&exitLink=http%3A%2F%2Foracle.com%2Fjava

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

59

//java ee /

This series of four articles attempts to demystify Contexts
and Dependency Injection (CDI). In the previous two

articles, I discussed what strong typing really means in
dependency injection and how to use CDI to integrate third-
party frameworks. In this article, I focus on how to get loose
coupling with interceptors, decorators, and events. The final
article will cover the integration of CDI within Java EE.

If you have read the previous articles, you should know
by now that CDI is all about loose coupling. But CDI can go
even further by using interceptors, decorators, and events.

Interceptors are a way
to solve the prob-
lem of cross-cutting
technical concerns by
intercepting method
invocation. Decoration
is similar to intercep-
tion but is applied to
business concerns.
CDI events bring about
even more loose cou-
pling by implement-
ing the observer/
observable pattern in
a very easy way.

What Is Interception?
Let’s start with an explanation of interception, which is
used to interpose on method invocations. It is a program-
ming paradigm that separates cross-cutting concerns from
our business code. Most applications have common code
that is repeated across components—the cross-cutting con-
cerns. These could be technical concerns, such as logging the
entry and exit from each method or logging the duration of a
method invocation. Or they could be business concerns, such
as to perform additional checks if a customer buys more than
US$10,000 of items or send a refill order when the inven-
tory level is too low. Both technical concerns and business
concerns rely on the container to do much of the legwork
of implementation.
The container does the interception. We need to remember
that CDI beans live in a managed environment known as a
container or bean manager. This bean manager provides
many services, one of which is the ability to intercept
method invocation. As can be seen in Figure 1, Bean A and
Bean B are both managed by the CDI container. When we
invoke a method on Bean A or Bean B, we can ask the
container to intercept the calls and process some busi-
ness logic. This can happen before or after the bean method
is invoked, so we can also add business logic when the
invocation returns.

More loose coupling with observers, interceptors, and decoratorsANTONIO GONCALVES
BIO

Part 3

Contexts and Dependency Injection:
The New Java EE Toolbox

Figure 1. Intercepting method calls

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=59&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=59&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=59&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=59&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=59&exitLink=http%3A%2F%2Fwww.oraclejavamagazine-digital.com%2Fjavamagazine%2Fmay_june_2015%23pg39
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=59&exitLink=http%3A%2F%2Fwww.oraclejavamagazine-digital.com%2Fjavamagazine%2Fjuly_august_2015%23pg47
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=59&exitLink=javascript%3AopenPopup%28%27Java_SO15_Goncalves_BIO_p59_1443108437984%27%29

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

60

//java ee /

Interceptors
Interceptors allow adding cross-
cutting technical concerns to our
beans. For technical concerns, think of
transaction management, authentica-
tion, authorization, or even a logging
mechanism that logs every method
invocation. Once we know how to log a
method entry, we isolate the code into
an interceptor, and enable this inter-
ceptor for several beans.

Take the BookService class defined in Listing 1. Let’s say
we want to log an entry each time the createBook method
is invoked. A simple way of doing this is by injecting a logger
and tracing the entry. It appears that this technical concern
can also be used by other methods and other beans. Instead
of copying and pasting code around, we can isolate this code
in an interceptor, give it a name (here, it is @Loggable), and
apply it on whatever method we want. This tells the con-
tainer, “intercept this method, and do whatever you need to
do to log an entry.” This behavior can be extended to other
technical concerns. In Listing 1, we tell the container that
every method of the bean needs to be secured and trans-
actional. @Transactional, @Secured, and @Loggable are
called interceptor binding.

Listing 1.
@Transactional
@Secured
public class BookService {

 @Inject
 private IsbnGenerator generator;

 @Loggable
 public Book createBook(String title,
 Float price) {

 return new Book(
 title, price,
 generator.generateNumber());
 }
 @Loggable
 public Book raisePrice(Book book) {
 book.setPrice(book.getPrice() * 2.5F);
 return book;
 }
}

Interceptor binding. An interceptor binding is just an annota-
tion. You can think of it as a qualifier but for interceptors. We
give it a meaningful name—here, Loggable—and annotate
it with @InterceptorBinding. Now that we have an inter-
ceptor binding, we need to attach it to the interceptor itself,
which will provide the logging mechanism.

@InterceptorBinding
@Retention(RUNTIME)
@Target({METHOD, TYPE})
@Documented
public @interface Loggable {
}

Interceptor implementation. The LoggingInterceptor
(see Listing 2) is a separate class, annotated with our
@Loggable interceptor binding, but it also needs the spe-
cial @javax.interceptor.Interceptor annotation. This
will tell CDI that LoggingInterceptor is the interceptor
called @Loggable. This class uses a logger to log method
entries. Notice here that interceptors are CDI beans and
can take advantage of dependency injection, for example.
Despite being annotated with @AroundInvoke, the intercept
method—which could be called whatever we want, by the
way—must follow certain rules: The method must have an
InvocationContext parameter and must return Object.
But what is an invocation context?

An interceptor
binding is just
an annotation.
You can think of it
as a qualifier but
for interceptors.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=60&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=60&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=60&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=60&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

61

//java ee /

Listing 2.
@Loggable
@Interceptor
public class LoggingInterceptor {

 @Inject
 private Logger logger;

 @AroundInvoke
 private Object intercept(InvocationContext ic)
 throws Exception {
 logger.info("> {}", ic.getMethod());
 try {
 return ic.proceed();
 } finally {
 logger.info("< {}", ic.g13/16ethod());
 }
 }
}

Invocation context. The invocation context allows inter-
ceptors to control the behavior of the invocation chain.
If several interceptors are chained, the same invoca-
tion context is passed to each interceptor. For exam-
ple, when we invoke the method createBook on the
BookService bean (Listing 1), the call is intercepted by the
LoggingInterceptor (Listing 2). As I’ll demonstrate later,
the chain of interceptors can be longer, and the call can actu-
ally be intercepted by interceptor 2, interceptor 3, and so on.
All these interceptors can share the same invocation context.
With the InvocationContext API, each interceptor can get
information about the target class (here, BookService), the
target method, or the method parameters, or it can add con-
textual data to be processed by other interceptors.

In LoggingInterceptor (see Listing 2), we can see that the
intercept method has an InvocationContext parameter
and is then used to get the method of the bean class for which
the interceptor was invoked (createBook or raisePrice).

Notice that the interceptor needs to invoke the proceed
method. Calling InvocationContext.proceed() is impor-
tant, because it tells the container that it should proceed to
the next interceptor or call the bean’s business method. Not
calling proceed would stop the interceptors chain and would
avoid calling the business method.
Intercepting returned invocations. An interceptor can inter-
cept method invocations but also the method returns. Just
add a finally block to the code (see Listing 2). When the
createBook method is called, the container intercepts the
call and first logs a message with the method name. The
interceptor proceeds to call the BookService, invokes the
createBook method, returns, and only then logs a message
after exiting the method.
Enabling interceptors. By default all interceptors are disabled,
so we need to enable them. We can do that using the beans
.xml descriptor (see Listing 3) by specifying the class name of
the interceptor implementation Without this declaration, the
interceptor is not taken into account.

Listing 3.

Dealing with Several Interceptors
Interceptor bindings can be seen as qualifiers for intercep-
tors. So, like qualifiers, interceptor bindings can have some
advanced usage. For now we have a LoggingInterceptor
that logs each method invocation. Its interceptor binding is
called @Loggable. But in certain cases we might want to log

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=61&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=61&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=61&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=61&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

62

//java ee /

more debug information and use another interceptor—let’s
say LoggingDebugInterceptor (see Listing 4, which I’ll
explain shortly). How would we call its interceptor bind-
ing—@LoggableWithDebug? And if we have other logging
interceptors, we would have as many interceptor bindings.
Like qualifiers, we could create as many different interceptor
bindings as we have implementations, or we could add mem-
bers to our interceptor bindings, or we could aggregate them.

Listing 4.
@Loggable(debug = true)
@Interceptor
public class LoggingDebugInterceptor {

 @Inject
 private Logger logger;

 @AroundInvoke
 private Object intercept(InvocationContext ic)
 throws Exception {
 logger.info("> {}", ic.getMethod());
 logger.info("> Parameters : {}",
 ic.getParameters());
 final Class<? extends Object> runtimeClass =
 ic.getTarget().getClass();
 logger.info("> Runtime class : {}",
 runtimeClass.getName());
 logger.info("> Extended classes : {}",
 new Object[]{runtimeClass.getClasses()});
 logger.info("> Implemented interfaces: {}",
 new Object[]{runtimeClass
 .getInterfaces()});
 logger.info("> Annotations ({}) : {}",
 runtimeClass.getAnnotations().length,
 runtimeClass.getAnnotations());
 final Class<?> declaringClass =
 ic.getMethod().getDeclaringClass();
 logger.info("> Declaring class : {}",
 declaringClass);

 logger.info("> Extended classes : {}",
 new Object[]{declaringClass
 .getClasses()});
 logger.info("> Annotations ({}) : {}",
 declaringClass.getAnnotations().length,
 declaringClass.getAnnotations());
 try {
 return ic.proceed();
 } finally {
 logger.info("< {}", ic.getMethod());
 }
 }
}

Interceptor binding with members. An interceptor binding is
an annotation, so it can have as many members of any type
as needed. Here, to differentiate between logging and debug
logging, we could use a Boolean. Any other members of any
data type are, of course, allowed.

@InterceptorBinding
@Retention(RUNTIME)
@Target({METHOD, TYPE})
@Documented
public @interface Loggable {
 boolean debug();
}

So now we have two interceptor
implementations: Logging
Interceptor (see Listing 5) for
normal logging and Logging
DebugInterceptor (see Listing 4) for
extra debug logging. To differentiate
them, we use our interceptor bind-
ing and set different values on the
Boolean member: debug = false for
LoggingInterceptor and debug

CDI events
implement
the observer/
observable
design pattern
and are perfect
for decoupling
components that
have no compile
time dependency.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=62&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=62&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=62&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=62&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

63

//java ee /

= true for LoggingDebugInterceptor. Each interceptor
implementation is now uniquely defined.

Listing 5.
@Loggable(debug = false)
@Interceptor
public class LoggingInterceptor {

 @Inject
 private Logger logger;

 @AroundInvoke
 private Object intercept(InvocationContext ic)
 throws Exception {
 logger.info("> {}", ic.getMethod());
 try {
 return ic.proceed();
 } finally {
 logger.info("< {}", ic.getMethod());
 }
 }
}

The way we use interceptor bindings with members on our
beans is the same as qualifiers. In Listing 6, the createBook
method will be intercepted and will trace a log, while the
raisePrice method will log debug information.

Listing 6.
public class BookService {

 @Loggable(debug = true)
 public Book createBook(
 String title, Float price) {
 // ...
 }

 @Loggable(debug = false)

 public Book raisePrice(Book book) {
 // ...
 }
}

Aggregating interceptor bindings. Another way of qualifying an
interceptor and a bean is to specify multiple interceptor bind-
ings. Like qualifiers, interceptor bindings can be aggregated.
So we could keep @Loggable for the createBook method,
and add a @Debug interceptor binding (see Listing 7).

Listing 7.
public class BookService {

 @Loggable @Debug
 public Book createBook(
 String title, Float price) {
 // ...
 }

 @Loggable
 public Book raisePrice(Book book) {
 // ...
 }
}

Ordering Interceptors
Interceptors are very handy, and it’s quite common to have
several of them intercepting methods. As an example, when
we invoke the createBook method, we might want an inter-
ceptor to log the call, another one to see how many millisec-
onds the call takes, and an additional one to track the thread.
The order in which interceptors are called is very important.
Do we want @Loggable to execute first? Would it make sense
to track the thread at the very end of the chain or at the
beginning? It depends on what we want to do, but ordering
can definitely make a difference.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=63&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=63&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=63&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=63&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

64

//java ee /

Multiple interceptors. The BookService in Listing 8
shows how to pack a list of interceptor bindings on top
of the createBook method. The Java language doesn’t
take annotations ordering into account. It’s not because
@ThreadTrackable is at the bottom, in the middle, or at the
top that the ordering will change. Ordering comes in two
flavors: with the beans.xml deployment descriptor, or with
the @Priority annotation.

Listing 8.
public class BookService {

 @Inject
 private IsbnGenerator generator;

 @Loggable
 @Auditable
 @ThreadTrackable
 public Book createBook(
 String title, Float price) {
 return new Book(
 title, price,
 generator.generateNumber());
 }
}

Sequencing interceptors with beans.xml. Remember that
interceptors are disabled by default, and they need to be
enabled in the beans.xml file. The order in which they are
listed in the file will be the order in which they will be
executed. For example, in Listing 9, LoggingInterceptor
will be executed first, AuditInterceptor second, and
ThreadTrackerInterceptor last. If I change the order, the
invocation chain will change. However, this activation and
ordering applies only to the beans in that archive, not to the
beans in the entire application. Since CDI 1.1, interceptors can
be enabled and ordered for the whole application using the
@Priority annotation.

Listing 9.

Sequencing interceptors with @Priority. @Priority takes an
integer that can have any value. The rule is that intercep-
tors with smaller priority values are called first. While any
value can be used, keep in mind that Java EE 7 defines several
platform-level priorities and so interceptors can be called
before or after a specific action. PLATFORM_BEFORE has the
value of zero, which is the starting value for early intercep-
tors. LIBRARY_BEFORE equals 1000; it is for early intercep-
tors defined by extension libraries. APPLICATION equals
2000 and is for interceptors defined by applications; this is
usually when our interceptors will be executed. Then comes
LIBRARY_AFTER for late interceptors defined by extension
libraries and PLATFORM_AFTER for late interceptors. So if we
want our interceptor to be executed before any application
interceptor but after any early platform interceptor, we can
use the value LIBRARY_BEFORE + 10.
Ordering interceptors with @Priority. Instead of ordering with
beans.xml we can order our interceptors with the @Priority
annotation (see Listing 10). AuditInterceptor will be exe-
cuted first because it has the lowest priority value, 2010 (or
APPLICATION + 10); then LoggingInterceptor, 2020; and
last, ThreadTrackerInterceptor. If we change the num-
bers, the ordering will change as well. Coming back to the

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=64&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=64&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=64&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=64&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

65

//java ee /

interceptors of the createBook method defined in Listing 8,
@Auditable will be executed first, then @Loggable, and
finally @ThreadTrackable.

Listing 10.
@Auditable
@Interceptor
@Priority(APPLICATION + 10)
public class AuditInterceptor {
 // ...
}
@Loggable
@Interceptor
@Priority(APPLICATION + 20)
public class LoggingInterceptor {
 // ...
}
@ThreadTrackable
@Interceptor
@Priority(APPLICATION + 30)
public class ThreadTrackerInterceptor {
 // ...
}

Decorators
Interceptors perform cross-cutting tasks and are perfect
for solving technical concerns. By their nature, intercep-
tors are unaware of the actual semantics of the actions they
intercept, and therefore are not appropriate for separating
business-related concerns. The reverse is true for decora-
tors. Decorators are a common design pattern, initially
described by the the Gang of Four. The idea is to take a class
and wrap another class around it. This way, when you call
a decorated class you always pass through the surround-
ing decorator before you reach the target class, also known
as the @Delegate. Decorators are meant to facilitate adding
additional logic to a business method. Interceptors and deco-
rators, though similar in many ways, are complementary. Just

remember that interceptors are called before decorators when
applied to the same method.

Figure 2 illustrates decoration. Here, the CDI bean
PurchaseOrderService has one compute method that com-
putes the total amount for a purchase order. An interceptor
could intercept the
call to this method
and perform some
cross-cutting
technical logic.
The decorator is
slightly different
because it is aware
of the target’s
logic. For example,
we could need a
decorator that
adds a discount to
the purchase order
for Christmas.
When we
invoke the busi-
ness method compute, a ChristmasDiscountDecorator
intercepts the call, gets the total amount of the purchase
order, and then applies a certain discount percentage.
The PurchaseOrderService is called the target, and the
ChristmasDiscountDecorator is the decorator.
Implementing the target. Now let’s illustrate this business case
with code. For decorators to be aware of the target’s business
logic, both the target and the decorator need to implement
the same interface. In our example, we use the Computable
interface (see Listing 11), which has a compute method that
takes a list of items (let’s say books), computes the price, and
returns a purchase order.

Figure 2. Inside a decorator

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=65&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=65&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=65&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=65&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=65&exitLink=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDesign_Patterns

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

66

//java ee /

Listing 11.
public interface Computable {

 PurchaseOrder compute(List<Item> items);
}

The PurchaseOrderService (in Listing 12) is the concrete
class responsible for computing the value of a purchase order,
so it implements the Computable interface, and therefore,
the compute method. This method loops through the items,
sums up the price, does not apply any discount, and returns a
PurchaseOrder object.

Listing 12.
public class PurchaseOrderService
 implements Computable {

 @Inject
 @Vat
 private Float vatRate;

 @Override
 public PurchaseOrder compute(List<Item> items) {
 PurchaseOrder po = new PurchaseOrder();
 Float subtotal = 0f;

 // Sum up the quantities
 for (Item cartItem : items) {
 subtotal += (cartItem.getSubTotal());
 }

 Float vat = subtotal * (vatRate / 100);
 Float total = subtotal + vat;

 po.setSubtotal(subtotal);
 po.setTotal(total);
 po.setTotalAfterDiscount(total);

 return po;
 }
}

Implementing the decorator. The ChristmasDiscount
Decorator in Listing 13 is supposed to apply a dis-
count to a purchase order that has been computed.
Like the previous PurchaseOrderService, the
ChristmasDiscountDecorator needs to implement the
same Computable interface. This is because the decorator
conforms to the interface of the component it decorates so
that its presence is transparent to the clients. The class also
needs to be annotated with @Decorator. Then, the decorator
implements the methods of the decorated type that it wants
to intercept. In our case, we implement only compute. But
we could have implemented other methods, or declared the
decorator abstract so that it does not have to implement all
the business methods of the interface. The compute method
invokes the target bean, adds some business logic, and
returns the purchase order. The question is, what do we need
to inject to get the PurchaseOrderService?

Decorators have a special injection point, called the delegate
injection point, with the same type as the beans they deco-
rate—here, the Computable interface and the annotation
@Delegate. In this code, the decorator forwards the request
to the target class PurchaseOrderService and performs
additional actions. A delegate injection point may specify any
number of qualifiers if needed. And because a decorator is a
CDI bean, it can inject any needed object—in this case, the
discountRate, which has been produced somewhere else.

Listing 13.
@Decorator
public abstract class ChristmasDiscountDecorator
 implements Computable {

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=66&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=66&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=66&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=66&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

67

//java ee /

 @Inject
 @Discount
 private Float discountRate;

 @Inject
 @Delegate
 private Computable purchaseOrderService;

 @Override
 public PurchaseOrder compute(List<Item> items){
 PurchaseOrder po =
 purchaseOrderService.compute(items);

 po.setTotalAfterDiscount(po.getTotal() –
 po.getTotal() * discountRate);

 return po;
 }
}

Enabling decorators. By default, all decorators are disabled
like alternatives and interceptors, so we need to enable them
using the beans.xml descriptor just by specifying the class
name of the decorator implementation (see Listing 14). If we
have multiple decorators, we can order them. And like inter-
ceptors, decorators can alternatively be enabled and ordered
using the @Priority annotation.

Listing 14.

Events
Dependency injection,
alternatives, inter-
ceptors, and deco-
rators enable loose
coupling by allowing
additional behavior to
vary, either at deploy-
ment time or at run-
time. Events go one
step further, allow-
ing beans to interact
with no compile time
dependency at all.
One bean can fire an
event, and another bean can observe the event. The beans
can be in separate packages and even in separate tiers of the
application. This basic schema follows the observer/observ-
able design pattern from the Gang of Four. Event notifications
decouple event producers (the ones firing events) from event
consumers (the ones consuming the events).

To illustrate event management, let’s look at an example. In
Figure 3, we have a PurchaseOrderService with a create
method. When we invoke the create method, it creates
a purchase order and then calls the InventoryService
to update the item stock. As we’ve seen, CDI is the per-
fect framework to deal with dependencies. So here,
PurchaseOrderService depends on InventoryService,
and we could easily use @Inject. Then we realize that we
need the ShippingService to ship items to the right loca-
tion. Again, another @Inject could do. And what if we
need to update some statistics of items sold, or invoke
other services? Do we need to change the code of the
PurchaseOrderService each time? Dependency injec-
tion enables loose coupling by allowing the implementa-
tion of the injected bean type to vary, either at deployment

Figure 3. Loose coupling CDI-style

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=67&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=67&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=67&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=67&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

68

//java ee /

time or runtime, but with a compile
time dependency.

In our case, we want to decouple the
dependencies, so we can have as many
services as needed, without chang-
ing the PurchaseOrderService.
Events go one step further, allow-
ing beans to interact with no com-
pile time dependency at all. Instead
of depending on all these services,
PurchaseOrderService fires an
event to inform potential observ-
ers that a purchase order has been
created. PurchaseOrderService is
the event producer and is not aware
of what will observe this event.
Somewhere in the application, the
InventoryService decides to
observe this event and performs some
business logic. ShippingService
and StatisticService can also observe the same event
and perform their own business logic. All this happens in
a very loosely coupled way, because no service is aware of
any other. Event producers fire events that are delivered to
event observers by the container. Not only are event produc-
ers decoupled from observers, but observers are completely
decoupled from producers.
Event producer. Let’s have a look at the event produce. The
PurchaseOrderService is defined in Listing 15. The create
method takes a list of items, does some business logic, and
returns a PurchaseOrder object. Now, to fire an event is
quite easy in terms of code. Event producers fire events
using an instance of the Event interface. An instance of this
interface is obtained by injection and is typed the same as
the producer’s object. In our example, we want to fire the
PurchaseOrder, so Event is typed with PurchaseOrder.

Next, the producer fires the event by calling the fire
method of the Event interface, passing the PurchaseOrder
object. The PurchaseOrder object will be carried from the
producer to the consumers. As we can see, this code doesn’t
have any reference to any other service. Producers and
observers are totally decoupled.

Listing 15.
public class PurchaseOrderService {

 @Inject
 private Event<PurchaseOrder>
 purchaseOrderEvent;

 public PurchaseOrder create(
 List<Item> items) {
 PurchaseOrder po = new PurchaseOrder();
 // Sum up the quantities
 // Set total and subtotal

 purchaseOrderEvent.fire(po);
 return po;
 }
}

Event observer. Now the InventoryService in Listing 16
needs to catch this event and do some processing. For that,
it needs to declare an observer method. This method
takes the PurchaseOrder as a parameter and is annotated
with @Observes. That’s it. The addItems method is noti-
fied of the event by the container and can then keep the
inventory up to date. It is important to understand that
the event mechanism is synchronous. Once the event is
fired from the PurchaseOrderService, the CDI container
pauses the execution and passes the event to any regis-
tered observers. In our case, the addItems method will be
invoked, the inventory will be updated, and the container
will then continue the code execution where it paused in

It is important
to understand
that the event
mechanism is
synchronous.
Once the event is
fired, the container
pauses the code
execution and
passes the event
to any registered
observers.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=68&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=68&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=68&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=68&exitLink=http%3A%2F%2FORACLE.COM%2FJAVAMAGAZINE

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

69

//java ee /

the PurchaseOrderService. Events in CDI are not treated
asynchronously.

Listing 16.
public class InventoryService {

 @Inject
 private Logger logger;

 public void addItems(
 @Observes PurchaseOrder po) {
 logger.info("Purchase Order of ${}",
 po.getTotal());
 }
}

Multiple event observers. Now it’s just a matter of having as
many observers as needed. The ShippingService observes
the same event and, once the event is received, it takes all
the needed information from the PurchaseOrder to ship the

items to a specific destination.
The StatisticService also
observes the event to update
its statistics of items sold, just
by having a method annotated
with Observes and by speci-
fying the type of the event:
PurchaseOrder.

Being synchronous, the
method firing the event has
to wait until the end of all
the observer’s invocations
before executing the instruc-
tions after event firing. If any
observer method throws an
exception, the container stops
calling observer methods,

and the exception is rethrown by the fire method. One thing
to keep in mind with observers is that there is no ordering in
CDI 1.1 and the invocation is synchronous. The @Priority
annotation doesn’t work with observers, so there is no solu-
tion to guarantee the order of the observers’ execution.
Ordering observers, however, is on the roadmap of CDI 2.0.

Conclusion
In this article, we’ve seen that CDI delivers loose coupling
by implementing several design patterns in a very easy way.
Interceptors interpose in method invocations and perform
technical cross-cutting tasks, such as logging or audit-
ing. Decorators intercept invocations for a specified busi-
ness interface, and therefore are aware of all the seman-
tics attached to that interface. Because decorators directly
implement operations with business semantics, they are the
perfect tool for intercepting business concerns. Interceptors
and decorators can be ordered if needed. CDI events imple-
ment the observer/observable design pattern and are per-
fect for decoupling components that have no compile
time dependency. </article>

LEARN MORE
• CDI specification

• Beginning Java EE 7 (book)

• PluralSight course on CDI 1.1

• Weld CDI reference implementation

One thing to keep in
mind with observers
is that there is no
ordering in CDI 1.1
and the invocation is
synchronous. There is
no solution to guarantee
the order of the observers’
execution. Ordering
observers, however, is on
the roadmap of CDI 2.0.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=69&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=69&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=69&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=69&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=69&exitLink=http%3A%2F%2Fcdi-spec.org%2F
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=69&exitLink=http%3A%2F%2Fwww.amazon.com%2Fgp%2Fproduct%2F143024626X%2F%26tag%3Dantgonblo-20
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=69&exitLink=http%3A%2F%2Fwww.pluralsight.com%2Fauthor%2Fantonio-goncalves%3Futm_medium%3Daffiliate%26utm_source%3D1013700
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=69&exitLink=http%3A%2F%2Fweld.cdi-spec.org%2F

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

70

//architecture /

Customers expect a solution to be available on a variety of
devices ranging from mobile clients and wearables to the

Internet of Things. They expect a personalized experience and
more-frequent updates. Businesses are trying to gain advan-
tage over competitors with shortened time to market and a
faster release cadence. Microservices are quickly emerging as
part of the solution of this quest for speed of delivery.

Microservices Defined
Microservices are the product of an architectural approach that
emphasizes the functional decomposition of applications into
single-purpose, loosely coupled services managed by cross-
functional teams for delivering and maintaining complex
software systems quickly.

That’s quite a lot of terms in this definition. Let’s break
them down and understand each one.
Architectural approach. Unlike Java EE, Spring, and .NET,
the microservice architecture is a language-, platform-, and
operating system–agnostic style that provides recommended
guidelines on how applications need to be built.
Functional decomposition. A typical monolithic application
in Java EE, for example, would consist of an EAR or WAR file.
The entire functionality expected from the application is
packaged in that one archive. There are several advantages of
this approach, but the application tends to break down as it
grows. Such an application needs to be decomposed into mul-
tiple WAR files where each WAR consists of a single function.
This is where we get the concept of a microservice.

A First Look at Microservices
The latest trend in enterprise computing is microservices. What exactly are they?

ARUN GUPTA
BIO

Single-purpose. Each decomposed part of an application is
responsible for a single purpose only, and does it well. This
smallness of scope is what the micro in microservices refers to.
Loosely coupled services. Service consumers do not have any
knowledge about implementation of the producer service.
Producers and consumers communicate only through a pre-
defined contract. This makes the service loosely coupled,

which leads to more manageable,
robust, and scalable applications. This
also means that updating producer
services doesn’t require changing
the consumer.

Decomposed applications are loosely
coupled, which leads to more man-
ageable, robust, and scalable appli-
cations. This means that updating
one service doesn’t require changing
another service.
Cross-functional teams. Each
microservice is created by a team that
has a mix of different skills such as
persistence, API design, and UI. This
gives each team the competence to
control the technology stack.
Complex software systems. The ben-
efits of such an architecture style are
evident only when building a nontriv-
ial software system. This is so because

Each service
can be
independently
deployed, and
redeployed
again, without
affecting the
overall system.
This approach
allows a service
to be easily
upgraded, for
example, to add
more features.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=70&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=70&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=70&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=70&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=70&exitLink=javascript%3AopenPopup%28%27Java_SO15_Gupta_BIO_p70_1443108563708%27%29

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

71

//architecture /

building a microservice simplifies
the application code, but pushes the
problem of plumbing to an integra-
tion layer and thus requires signifi-
cant support from the infrastructure.
Return on investment for a simple
application might not be evident to
begin with.

Characteristics
With this basic definition, let’s
examine the key characteristics of a
microservices-based application.
■■ Domain-driven design. Functional

decomposition of an application can
be achieved using the well-defined
principles of domain-driven design
(DDD), by Eric Evans. Decomposition by domain is not the
only way to break down the application but certainly a very
common way. Each team is responsible for building the
entire functionality around that domain or function of the
business. Each team that builds a service includes the full
range of developer skills, thus enabling a full-stack devel-
opment methodology.

■■ Single responsibility. Each microservice should have
responsibility for a single part of the functionality, and it
should do that well.

■■ Explicitly published interface. Each service publishes an
explicitly defined interface and honors that at all times. The
consuming service cares only about that interface and should
not have any runtime dependency on the consumed service.
The services agree upon the domain models, API, payload,
or some other contract; they communicate using only that.
A newer version of the interface may be introduced, but
either the previous versions continue to exist or the newer
services are backward-compatible. Microservices may not

break compatibility by changing contracts.
■■ Independent DURS (Deploy, Upgrade, Replace, Scale). Each

service can be independently deployed, and redeployed
again, without affecting the overall system. This approach
allows a service to be easily upgraded, for example, to add
more features. Each service can also scale independently
using horizontal duplication or sharding. Implementation
of the service, or even the underlying technology stack, can
change as long as the exact same contract is published. This
is possible because of the loose coupling.

■■ Potential heterogeneity. The implementation details of one
service should not affect another service. This enables ser-
vices to be decoupled from each other, and allows the team
building a service to pick the language, persistence store,
tools, and methodology that are most appropriate for them.
A service that needs to store data in a relational database
can choose MySQL, and another service that needs to store
documents can choose MongoDB. Different teams can
choose whatever technology is most efficient for them.

■■ Lightweight communication. Services communicate with
each other using a lightweight communication, such as
REST over HTTP. An alternative mechanism is to use a
publish-subscribe mechanism that supports asynchronous
messaging. Any of the messaging protocols, such as AMQP,
STOMP, MQTT, or WebSocket, that meets the needs can be
used here. Simple messaging implementations, such as
ActiveMQ, that provide a reliable asynchronous fabric are
quite appropriate for such usages. The choice of synchro-
nous and asynchronous messaging is very specific to each
service; even a combination of the two approaches can be
used. Similarly, the choice of protocol is very specific to
each service, but there is enough choice and independence
for each team building a service.

Benefits
What are the benefits of a microservices-based application?

The scope of each
microservice is
much smaller
than a monolith,
and this leads to a
smaller executable.
As a result, the
deployment and
the startup are
much faster.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=71&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=71&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=71&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=71&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=71&exitLink=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDomain-driven_design

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

72

//architecture /

■■ Easy to develop, understand, and maintain. Code in a
microservice is restricted to one function of the business
and is thus easier to understand than a full application
might be.

■■ Starts faster than a monolith. The scope of each microser-
vice is much smaller than a monolith, and this leads to a
smaller executable. As a result, the deployment and the
startup are much faster.

■■ Easy to deploy local change. Each service can be deployed
independently of other services. Developers can easily
make any change local to the service without requiring
coordination with other teams.

■■ Scales independently. Each service can scale indepen-
dently based upon need. In contrast, monolithic applica-
tions might have different requirements and yet must be
deployed and scaled together.

■■ Improves fault isolation. A misbehaving service, such as one
with a memory leak or unclosed database connections, will
affect only itself as opposed to affecting the entire mono-
lithic application. This improves fault isolation.

■■ Eliminates long-term commitment to any stack. Developers
are free to pick the language and the stack that are best
suited for their service. Although the organization may
restrict the choice of technology, you are not penalized
because of past decisions. It also enables you to rewrite the
service using better languages and technologies. This gives
you freedom of choice when selecting the technology, tools,
and frameworks.

What Is the Relationship with SOA?
A common misconception is that there is nothing new about
microservices—that they are similar to service-oriented
architecture (SOA). Some of the common pithy names for
microservices are “fine-grained SOA,” “SOA for hipsters,”
and “SOA done right.” In this sense, microservices do cap-
ture the original essence of SOA, where multiple services

are composed together to achieve business functionality.
Microservices also bear a resemblance to service location
transparency, service discovery, loose coupling, and stateless
services. But there are some fundamental differences.
■■ Services tied to a common platform. SOA has been hijacked

by the enterprise service bus (ESB) vendors. All services
are tied to an SOA product. Vendors pitch their propri-
etary products, with minimal to no common standards for
interoperability across products. This limits the ability to
innovate within each product.

■■ Overly complex SOAP-based web
services. Web-service specifications
are overly complex. All the XML
and SOAP processing makes it time
consuming to generate and con-
sume messages. Implementations
of these specifications require sig-
nificant investment that is primarily
done for Java and .NET only. These
implementations serve a specific
purpose—in some enterprises today,
rather limited—but most of the
recent projects have been adopting
the REST style of communication.

■■ Centralized routing and
transformation. All messages are
routed through a central ESB, which can transform and
route the messages based upon business rules. This is
opposed to the “smart endpoint, dumb pipe” philoso-
phy for microservices, where the connection performs no
transformation and is simply a conduit.

■■ Centralized governance. SOA has a major emphasis on
centralized governance that defines how services will be
defined, developed, and maintained. All services are reg-
istered with a central registry and are invoked by an ESB
to monitor and meter usage. Service registry and discov-

You are free
to choose any
stack of your
choice. No one
framework is ideal
for building your
microservices;
pick the one that
you are most
comfortable with.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=72&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=72&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=72&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=72&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

73

//architecture /

ery in the microservices world
are done using a third-party tool
such as ZooKeeper, Consul, or
etcd. The services invoke each
other directly, as opposed to going
through a central bus.

Refactor Monolith into
Microservices
While this task is worthy of a sepa-
rate article, here’s a quick overview
of what is entailed.

Consider a trivial shopping cart
web application consisting of cata-
log, shopping cart, and shipping
functionality. A typical monolithic
way to package such an application
would be to have all the web pages, classes, and configuration
files, for the entire functionality, together in a single WAR or
EAR file, which is deployed to a Java EE application server.
There is a single database for the entire application, and it is
shared by all the classes.

Functional decomposition of this application would sepa-
rate the web pages, classes, and configuration files for one
domain, such as catalog, in a separate WAR file. One WAR file
is split up into three WAR files, each containing all the arti-
facts required to serve its functionality. The database shared
by the monolithic application is also refactored into three
separate databases. Each WAR file publishes a well-defined
interface, likely using REST. And a WAR file can be deployed
in a separate application server and scaled independently.

Is Java EE Well Suited for Microservices?
Microservices enable heterogeneity and polyglot stacks. This
is possible because the only requirement is a well-defined
interface, and the implementation is a detail left to each team

to accomplish as it sees fit. This gives teams freedom from a
long-term commitment to any particular stack, and it allows
them to innovate. There are some recent technologies in Java
EE that make it particularly well suited to microservices,
especially if team members have experience with server-side
Java. These capabilities include the following:
■■ Java Naming and Directory Interface provides location

transparency and service discovery.
■■ Contexts and Dependency Injection (CDI) gives loose

coupling and strong cohesion.
■■ JAX-RS provides full support for REST.
■■ Java Message Service and CDI events enable the publish-

subscribe model for asynchronous messaging.
■■ Native support is available for JSON data representation.

Transactions within a microservice are easily supported by
Enterprise JavaBeans and @Transactional. Many platform-
as-a-service vendors already offer Java EE support.

■■ A modular application server, such as JBoss Enterprise
Application Platform, allows you to bundle only the
required components, so you can keep the footprint size
minimal.

■■ Each microservice can be deployed as a WAR file.
■■ Extensive tooling simplifies Java EE development, which

lowers the bar for building such applications.
If there is a missing capability, it can be implemented as a

CDI extension.
As mentioned earlier, a team is not limited to Java EE, and

you can choose any stack of your choice. For example, Vert.x
is a simple, polyglot, and JVM-based framework that facili-
tates the creation of lightweight applications and fat JARs
easily. No one framework is ideal for building your microser-
vices; pick the one that you are most comfortable with.

Ready or not, microservices are coming your way. Start
thinking about them for your next project. Start with a pilot
project, benefit from that first tryout, and grow from there.

Happy microservicing! </article>

Ready or not,
microservices
are coming your
way. Start thinking
about them for your
next project. Start
with a pilot project,
benefit from that
first tryout, and then
grow from there.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=73&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=73&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=73&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=73&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=73&exitLink=http%3A%2F%2Fvertx.io%2F

Written by leading Java experts, Oracle Press books offer the most defi nitive,
complete, and up-to-date coverage of Java available.

www.OraclePressBooks.com • @OraclePressAvailable in print and as eBooks

Your Destination for Java Expertise

Raspberry Pi with Java:
Programming the

Internet of Things (IoT)
Stephen Chin, James Weaver

Use Raspberry Pi with Java to create
innovative devices that power the

internet of things.

Introducing JavaFX 8
Programming
Herbert Schildt

Learn how to develop dynamic JavaFX
GUI applications quickly and easily.

Java: The Complete Reference,
Ninth Edition
Herbert Schildt

Fully updated for Java SE 8, this
definitive guide explains how to

develop, compile, debug, and run
Java programs.

OCA Java SE 8 Programmer I
Study Guide (Exam 1Z0-808)
Edward Finegan, Robert Liguori

Get complete coverage of all
objectives for Exam 1Z0-808.

Electronic practice exam questions
are included.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=74&exitLink=http%3A%2F%2Fwww.OraclePressBooks.com
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=74&exitLink=http%3A%2F%2Fwww.twitter.com%2Foraclepress

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

75

//fix this /

The questions in this quiz are taken from certifica-
tion test 1Z0-809: Oracle Certified Associate, Java SE 8

Programmer II, Oracle Certified Java Programmer. The pur-
pose of this certification is to enable beginners to demon-
strate their knowledge of Java 8 concepts, somewhat above
the fundamental level.

Naturally, these questions can have small unexpected traps
that can snag even the attentive coder. But in this way, they
reflect situations that occur in real life in which we won-
der why code that looks right does not behave as expected.
Ready? (Answers appear in the “Answers” section immedi-
ately after the questions.)

Question 1. Given this code fragment:
Map<Integer, Integer> codes = new TreeMap<>();
codes.put(1, 30);
codes.put(3, 20);
codes.put(2, 10);
codes.put(1, 40);
System.out.println(codes);

What is the result?
a. {1=40, 2=10, 3=20}
b. {1=40, 1=30, 2=10, 3=20}
c. {2=10, 3=20, 1=40}
d. {1=40, 3=20, 2=10}

Quiz Yourself
We all write code from within a subset of the full Java language. How well do we know that
subset? Let’s see.

Question 2. Given this code fragment:
public abstract class Product { // line n1
 String name;
 Product(String name) { // line n2
 this.name = name;
 }
 public final void printProduct() { // line n3
 System.out.println(name);
 }
 public void printLabel(); // line n4
}

Which line causes a compile-time error?
a. line n1
b. line n2
c. line n3
d. line n4

Question 3. Let’s have a look at using the Path interface to
operate on file and directory paths. Given this code fragment:
Path path = Paths.get("/home/user/./info.txt");
path.normalize();
System.out.println(path.getNameCount());

What is the result if the /home/users/./info.txt file does not
exist?
a. 3
b. 4

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=75&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=75&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=75&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=75&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=75&exitLink=http%3A%2F%2Feducation.oracle.com%2Fpls%2Fweb_prod-plq-dad%2Fdb_pages.getpage%3Fpage_id%3D5001%26get_params%3Dp_exam_id%3A1Z0-809

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

76

//fix this /

c. 1
d. A NoSuchFileException is thrown at runtime.

Question 4. Now, let’s filter a collection using lambda expressions.
Given this code fragment:
Stream<Integer> nS = Stream.of(5, 6, 8);
// line n1

Which code fragment when inserted at line n1 enables the code to
print 1?
a. List<Integer> oS =

 nS.filter(n -> n%2==1).toList();
 System.out.println(oS.size());

b. Stream<Integer> oS =
 nS.filter(n -> n%2==1);
 System.out.println(oS.count());

c. List<Integer> oS =
 nS.filter(n -> n%2==1).collect();
 System.out.println(oS.size());

d. Stream<Integer> oS =
 nS.allMatch(n -> n%2==1);
 System.out.println(oS.count());

Question 1. Option A is correct. The TreeMap instance is sorted according
to the natural ordering of its keys. The keys are unique in all maps. The
put() method replaces the previous value associated with the given key
in the map and, therefore, 30 is replaced with 40.

Option B is incorrect. The keys are unique in a map object. 30 is
replaced with 40. Option C is incorrect. The values in the TreeMap

Answers

instance are sorted according to the natural order of their keys. Option
D is incorrect. The elements of the codes map are sorted in ascending
order of its keys.

Question 2. Option D is correct: line n4 is invalid. A method
that does not have its definition must be declared with
abstract. To fix the compilation error at line n4, replace it with
public abstract void printLabel();.

Option A is incorrect: line n1 is valid. A class declared with abstract
can contain both abstract methods and concrete methods. Option B
is incorrect: line n2 is valid. An abstract class can have a constructor.
Option C is incorrect: line n3 is valid. An abstract class can have final
methods.

Question 3. Option B is correct. The program prints the number of
elements in the path string.

Options A and C are incorrect. On the second line, the path
is normalized. The Path instance is immutable. Therefore, the
path.getNameCount() method returns the number of elements in the
path string. The program does not print the count of path elements to be
redundant. Option D is incorrect. The Path instance is the string rep-
resentation of the given path. The /home/users/.info.txt file need
not be available in the file system. Only when path.toRealPath()
is used and the file is not available in the file system is a
NoSuchFileException thrown.

Question 4. Option B is correct. The filter() method returns a stream.
Option A is incorrect. The filter() method returns a stream. A
stream can be converted to a List type using the collect() method
with the Collectors.toList() parameter. The toList() method
cannot be used to convert a stream into a list. Option C is incor-
rect. The collect() method performs a mutable reduction opera-
tion on the elements in this stream using a Collector. It requires the
Collectors.toList() parameter to convert the stream into a List
instance. Option D is incorrect. The allMatch() method returns a
boolean based on the provided predicate test.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=76&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=76&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=76&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=76&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

77

//career /

Think about the best developers you know—people you
admire for the work they do. Maybe you follow them

on Twitter, watch their presentations, or read some of their
articles or blog posts. Have some of them made an impact on
your life and career? Why—because they write amazing code?
Chances are that this is not the only thing they do to inspire
you to follow and admire their work. The truth is that a flour-
ishing developer career involves much more than just writing
great code.

This series of articles focuses on three areas that we think
have equal weight in a developer’s career: code, community,
and an open mind. Focusing on one while ignoring the others
is a bad practice that limits personal and professional growth.

The good news is that changing your mindset does not
require a huge effort. It is something you can do no mat-
ter what project you are working on—or what your employer
thinks about it. It doesn’t take a lot of time, and it is really a
lot simpler than most things you deal with in your daily job.
The best way to steer something in the right direction is to
get it moving first. By taking small daily steps in the right
areas, you can continuously push your career forward and
achieve your goals.

Code: Use the Command-Line Interface
We’ve already seen that to code better every day you need
to practice: code, code, and code. And what’s the purpose of

Skills to develop, activities to explore

code? To solve problems and create solutions that can ben-
efit people. Many developers don’t even think about it, but
we have a development environment available literally at our
fingertips: the command-line interface (CLI). The CLI gives
you the ability to control your whole environment. Menus and
icons of tools, the IDEs, and the operating systems give you
easy access only to what is visible. The CLI gives you access
to everything.

Do you think of the CLI as a development environment?
We do. You have to deal with the syntax and know the state-
ments to execute. There is data and state, and you can process
information. You even get unexpected results, and interpreter
errors. That sounds exactly like coding!

The CLI provides a way to code and create automated soft-
ware solutions. We can use it to create even more code: it
boosts our productivity through automation. After all, this is
how software enables our lives.

To be effective, the CLI requires you to learn, experiment,
and remember what is available and how to use it. Get profi-
cient with it. Experiment every day with new things you can
do on the command line. And try to automate actions you
need to perform repeatedly.
ACTION ITEM: Explore how many steps of your daily routine
you can do through the CLI.
ACTION ITEM: Join some of those steps into scripts that auto-
mate parts of your work.

Part 3

More Ideas to Boost Your
Developer Career

BRUNO SOUZA AND
EDSON YANAGA
BIO

BRUNO SOUZA PHOTOGRAPH
BY BOB ADLER/GETTY IMAGES

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=77&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=77&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=77&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=77&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=77&exitLink=javascript%3AopenPopup%28%27Java_SO15_SouzaYanaga_BIO_p77_1443109087920%27%29

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

78

//career /

ACTION ITEM: Play with tools such as sed, awk, and grep to
unleash some of the CLI’s power.
BONUS ITEM: Find a tool you already use that has a good CLI
(such as Jenkins and AWS). Experiment to see how far can you
go in using the CLI.

Community: Speak at an Event
We all learn from content that other developers created—
videos, webinars, blogs, talks. Usually these are the develop-
ers we look up to. The ability to communicate clearly is a
terrific asset for your career, as is the wisdom to focus on
and deliver pertinent and interesting information.

Presenting ideas using slides, video, or text brings immedi-
ate results. You’ll be astonished at how much you learn just
by preparing your presentation. Research shows that teach-
ing something is the most effective way to learn. You’ll need
to study and research your topic to become a confident public
speaker. And by doing so, you become known as an expert on
that particular subject. You’ll have the satisfaction of helping
others, and also the pride of professional accomplishment.

Even with these benefits, presenting a talk is still intimi-
dating. To conquer your fear, remind yourself that presenting
is a big challenge for most people. Even seasoned speakers get
butterflies before walking on stage. Don’t get discouraged.

You can reduce the fear by reducing the challenge. Start
small. Present something you learned last week to your
coworkers during a quick lunchtime meetup. Or, present
something you know well, such as a technology or a specific
tool, to students taking a computer science course. Later,
maybe you’ll decide to submit your talk to your local Java
user group.

A neat trick to remember: When people attend your talk, it
is because they want to learn about your topic. You probably
know more about it than they do; otherwise, they would be
doing something else. Remember that the value you bring to
your audience is your experience.

Presenting talks and writing blog posts and articles are
acquired skills that you need to develop. By starting with
small, easy steps, you will boost your confidence and ben-
efit your career. This is an attitude change that will last your
whole life.
ACTION ITEM: Present the slides of a presentation you watched
to your coworkers.
ACTION ITEM: Prepare a short talk that will be useful to your
friends.
ACTION ITEM: Turn those slides into a blog post or propose
to present them to a local user group, university, or techni-
cal school. Maybe you’ll decide to record your talk and post it
on YouTube.
BONUS ITEM: Experiment with getting this talk approved.
Submit it to a conference or tradeshow, even if the event is
one that you don’t expect to accept it—maybe an event in
another country. Add your blog post or your recorded presen-
tation as supporting material.

DevOps: Start Now
Software development is all about creating something new. It
is about looking to the future and shaping new functionalities
out of thin air. That’s why great developers are open-minded.
They experiment. And some ideas or technologies really help:
they push the boundaries of our thinking. DevOps is one of
those attitude-changing ideas.

As developers, we need to take responsibility for the soft-
ware we build, and review our definition of “done.” Software
is not truly done until the end user benefits from it. Software
development should be all about delivering value to end
users. What good is code sitting idle in a repository some-
where? There are too many reasons why we allow this: It isn’t
ready. It has bugs. It needs improving. It needs to perform
better. These are recurring fears that can serve as excuses on
every project.

DevOps is the idea that Developers and Operations (every-

It isn’t difficult
to steer your
career in the right
direction. Keep
your mind open to
new possibilities,
experiment with
new ideas, and
engage with the
community.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=78&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=78&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=78&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=78&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

79

//career /

one, in fact) work together to deliver software. DevOps gets
us to think differently. It makes delivering value to the users
our top priority. When the whole company works together
toward the goal of people using the software, we focus more
on the benefits to our users and less on the fears that prevent
us from doing it. We become better developers.

DevOps is an all-encompassing skill. It requires us to
improve everywhere—from our tools and collaboration to
our code and tests. And it is easy to start. Think big, but start
small. Change your attitude. Focus on automation and deliv-
ery. Others will follow.
ACTION ITEM: Automate something that you do manually, such
as your build, your deployment, or one of your high-level
tests and test suites.
ACTION ITEM: Define something useful to measure, such as the
number of bugs in the project, or how long it takes to deploy
a new version. Start tracking this for the next few weeks. Add
new metrics later.
BONUS ITEM: Learn one automation tool that you currently
don’t use, such as Jenkins, Ansible, Chef, or Selenium. Go
beyond the tutorial: Run a small but real test to automate one
thing in your project.

Pulling It All Together
The skills described previously are easily combined. Using
the CLI to automate tasks is a useful DevOps skill. Spending
time automating your deployment will not only get you mov-
ing going in the right direction, but it will also make your
life easier. Consider delivering a brief presentation to your
coworkers demonstrating what you did. You can then pass
along this important skill by presenting the same talk to stu-
dents in a nearby university.

It isn’t difficult to steer your career in the right direction.
Keep your mind open to new possibilities, and experiment
with new ideas. Engage with the community in ways that are
positive for you and others. And keep coding! </article>

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=79&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=79&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=79&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=79&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=79&exitLink=http%3A%2F%2Foracle.com%2Fjava

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2015

80

//contact us /

Comments
We welcome your comments, correc
tions, opinions on topics we’ve covered,
and any other thoughts you feel impor
tant to share with us or our readers.
Unless you specifically tell us that your
correspondence is private, we reserve
the right to publish it in our Letters to
the Editor section.

Article Proposals
We welcome article proposals on all
topics regarding Java and other JVM
languages, as well as the JVM itself. We
also are interested in proposals for ar
ticles on Java utilities (either open source

or those bundled with the JDK). Finally,
algorithms, unusual but useful pro
gramming techniques, and most other
topics that hardcore Java programmers
would enjoy are of great interest to us,
too. Please contact us with your ideas at
javamag_us@oracle.com and we’ll give
you our thoughts on the topic and send
you our nifty writer guidelines, which
will give you more information on pre
paring an article.

Customer Service
If you’re having trouble with your
subscription, please contact the
folks at java@halldata.com (phone

+1.847.763.9635), who will do whatever
they can to help.

Where?
Comments and article proposals should
be sent to me, Andrew Binstock, at
javamag_us@oracle.com.

While it will have no influence on
our decision whether to publish your
article or letter, cookies and edible treats
will be gratefully accepted by our staff
at Java Magazine, Oracle Corporation,
500 Oracle Parkway, MS OPL 3A,
Redwood Shores, CA 94065, USA.

http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=80&exitLink=http%3A%2F%2Foracle.com%2Fjavamagazine
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=80&exitLink=https%3A%2F%2Ftwitter.com%2Foraclejavamag
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=80&exitLink=https%3A%2F%2Fwww.facebook.com%2FJavaMagazineOracle
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=80&exitLink=mailto%3AJAVAMAG_US%2540ORACLE.COM%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=80&exitLink=mailto%3Ajavamag_us%2540oracle.com%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=80&exitLink=mailto%3Ajava%2540halldata.com%3Fsubject%3D
http://www.oraclejavamagazine-digital.com/javamagazine/september_october_2015/TrackLink.action?pageName=80&exitLink=mailto%3Ajavamag_us%2540oracle.com%3Fsubject%3D

	Table of Contents
	From the Editor
	Letters to the Editor
	Events
	Java Books
	Testing: We're All in this Together
	Test JavaFX Apps with TestFX
	Eight Greatly Underused Features of JUnit
	Building and Automating a Functional Test Grid
	Stress Testing Java EE Applications
	Think Like a Tester and Get Rid of QA

	JVM Languages
	Kotlin: A Low-Ceremony, High-Integration Language

	Functional Programming
	Functional Programming in Java: Using Collections

	Java EE
	Contexts and Dependency Injection: The New Java EE Toolbox

	Architecture
	A First Look at Microservices

	Fix This
	Career
	More Ideas to Boost Your Developer Career

	Java Proposals of Interest
	User Groups
	Contact Us

