
magazine

By and for the Java community

ORACLE.COM/JAVAMAGAZINE

SEPTEMBER/OCTOBER 2018

COMMENTS AS DESIGN ELEMENTS 05 | VISITOR DESIGN PATTERN 66 | QUIZ 76

GRAALVM:
COMPILING
TO NATIVE
BINARIES

17
JAKARTA EE:
THE NEW
ENTERPRISE
JAVA

26
CREATING RELIABLE
MICROSERVICES
EASILY WITH
NETFLIX HYSTRIX

37
JAVA ON ARM:
EASY PORTING
TO ARM-BASED
SERVERS

54

Working on the
Leading Edge

http://www.oracle.com/javamagazine

Visit us at:

Booth
5218

PICK
TWO

Meet
release

deadlines

Achieve
product

mandates

Stay
within
budget

Download the ebook!

roguewave.com/java-bestpractices

PICK
TWO

Meet
release

deadlines

Achieve
product

mandates

Stay
within
budget

41.1%
35.1%

of developers view waiting for
others as a major bottleneck

say subpar tools
hold them back

Productivity bottlenecks lead to tradeoffs
in quality, performance & security

Would you rather be
waiting... or coding?

Top 5 best practices for streamlining Java development

http://roguewave.com/java-bestpractices

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

02

//table of contents/

66
The Visitor Design
Pattern in Depth
By Ian Darwin

Perform one or more operations
on different data types without
disrupting existing code.

76
Fix This
By Simon Roberts and Mikalai Zaikin

More intermediate and advanced
test questions

26
JAKARTA EE: BUILDING
MICROSERVICES WITH
JAVA EE’s SUCCESSOR
By Josh Juneau

A first look at using the
emerging enterprise
Java release for building
microservices

37
BUILDING RESILIENCE
INTO MICROSERVICES
WITH HYSTRIX
By Henry Naftulin

This easy-to-use library
from Netflix handles delays
and failures in distributed
applications.

54
JAVA ON ARM
PROCESSORS
By Aleksei Voitylov

Arm already is a leading
architecture for IoT and
embedded processors.
Recent 64-bit releases are
pushing Arm CPUs onto
servers, where they have
full JDK support.

GraalVM: THE POLYGLOT VM AND JVM
By Oleg Šelajev

Easily combine languages in one project and benefit
from ahead-of-time compilation.

COVER FEATURES

OTHER FEATURES DEPARTMENTS

05
From the Editor
Using comments to design
classes

08
Java Books
Review of A Philosophy of
Software Design

10
Events
Upcoming Java conferences and events

14
User Groups
Instanbul JUG

91
Contact Us
Have a comment? Suggestion? Want to
submit an article proposal? Here’s how.

COVER ART BY WES ROWELL

17

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

03

EDITORIAL
Editor in Chief
Andrew Binstock
Senior Managing Editor
Leslie Steere
Copy Editors
Lea Anne Bantsari, Karen Perkins
Contributing Editors
Simon Roberts, Mikalai Zaikin
Technical Reviewer
Stephen Chin

DESIGN
Senior Creative Director
Francisco G Delgadillo
Design Director
Richard Merchán
Senior Designer
Arianna Pucherelli
Designer
Jaime Ferrand
Senior Publication Designer
Sheila Brennan
Production Designer
Kathy Cygnarowicz

PUBLISHING
Group Publisher
Karin Kinnear
Audience Development Manager
Jennifer Kurtz

ADVERTISING SALES
Tom Cometa
Mailing-List Rentals
Contact your sales representative.

RESOURCES
Oracle Products
+1.800.367.8674 (US/Canada)
Oracle Services
+1.888.283.0591 (US)

ARTICLE SUBMISSION
If you are interested in submitting an article, please email the editors.

SUBSCRIPTION INFORMATION
Subscriptions are complimentary for qualified individuals who complete the
subscription form.

MAGAZINE CUSTOMER SERVICE
java@omeda.com

PRIVACY
Oracle Publishing allows sharing of its mailing list with selected third parties. If you prefer
that your mailing address or email address not be included in this program, contact
Customer Service.

Copyright © 2018, Oracle and/or its affiliates. All Rights Reserved. No part of this publication may be reprinted or otherwise
reproduced without permission from the editors. JAVA MAGAZINE IS PROVIDED ON AN “AS IS” BASIS. ORACLE EXPRESSLY
DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS OR IMPLIED. IN NO EVENT SHALL ORACLE BE LIABLE FOR ANY
DAMAGES OF ANY KIND ARISING FROM YOUR USE OF OR RELIANCE ON ANY INFORMATION PROVIDED HEREIN. Opinions
expressed by authors, editors, and interviewees—even if they are Oracle employees—do not necessarily reflect the views of Oracle.
The information is intended to outline our general product direction. It is intended for information purposes only, and may not
be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied
upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s
products remains at the sole discretion of Oracle. Oracle and Java are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

Java Magazine is published bimonthly and made available at no cost to qualified subscribers by
Oracle, 500 Oracle Parkway, MS OPL-3A, Redwood City, CA 94065-1600.

Guarantee applies to same data warehouse or transaction processing workload run on Oracle Autonomous Database Cloud and AWS. Pricing based on standard published pricing for Oracle bring your own license
and AWS as of 3/1/18. Workload comparison to be based on actual required number of OCPU/VCPUs, storage amount, and time required to complete workload with minimum workload of one hour.

Any credits due will be applied to Universal Credit cloud account. Offer valid through 5/31/19. Copyright © 2018, Oracle and/or its affiliates. All rights reserved.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

oracle.com/thinkautonomous

Cut Your
Amazon
Bill in Half

Easy to Move—Guaranteed Savings

There’s the cloud… and there’s the
Oracle Autonomous Cloud.

#thinkautonomous

Oracle
Autonomous

Database

Any
Amazon
Database

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:karin.kinnear%40oracle.com?subject=
mailto:jennifer.s.kurtz%40oracle.com?subject=
mailto:tom.cometa%40oracle.com?subject=
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.sub-forms.com/dragon/init.do?site=ora6028_jfnew
mailto:java%40omeda.com?subject=
mailto:java%40omeda.com?subject=
http://oracle.com/thinkautonomous

https://www.jetbrains.com/idea/specials/idea/idea.html?utm_source=javamagazine&utm_medium=cpc&utm_campaign=idea

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

05

//from the editor/

PHOTOGRAPH BY BOB ADLER/STUDIO AT GETTY IMAGES FOR ORACLE

L ike most developers, I believe, I create classes
of two distinct types: the ones where my head

is full of contextual information and I need to
bang out a class that meets my immediate needs,
and the ones that I patiently and carefully design.
The former constitute the majority of my classes,
alas, and they are initially sloppy beasts: I hit a
keystroke combo and the IDE creates a new class
with the copyright block in place, I give it a name,
and I immediately start hacking. (If I’m refactor-
ing code, then the IDE will either pull in the code
from another class or generate new code for me. I
love today’s tools!) I can go for a while putting into
the code all the things teeming in my brain with-
out fear that I am creating an unsightly tangle. My
lack of fear is because I know I will refactor the
code, write the necessary tests, compile it, finish
cleaning it up, run the tests, and move on.

But I’m increasingly coming to the opinion
that this series of steps, which is familiar to every
developer, creates a lot of unnecessary activity. A
better approach is to write down all the same data
in words rather than code. Suppose instead of
code, I wrote the following comments:

This class validates a ticket number
by computing a pair of check digits. Since
we acquired [company name], the check-
digit algorithm varies by vendor, so first look
up the vendor #. The constructor accepts
the ticket number, and the principal method
returns an enum indicating a valid num-
ber or the type of error. All exceptions are
caught and converted to error enums. This
method is called only by [class name] and
so should be private.

Using Comments to Design Classes
What is the first thing you write when creating a new class?

#developersrule

Start here:
developer.oracle.com

Oracle Cloud.
Built for modern app dev.
Built for you.

Oracle Cloud delivers
high-performance and
battle-tested platform
and infrastructure services
for the most demanding
Java apps.

Java in
the Cloud

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://developer.oracle.com

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

06

//from the editor/
Now, I’ve captured what I

wanted to put into code and my
most immediate problem is com-
ing up with a good name for the
class. With the key details cap-
tured, I can develop it at leisure
and write good code that does not
need a lot of refactoring. If I’m a
TDD zealot, I can start writing a
test. Either way, I’m good to go.

An excellent new book called
A Philosophy of Software Design
(which I review on page 8) advo-
cates using comments as a design
step for classes. The book is writ-
ten by John Ousterhout, who is
the creator of Tcl and Tk and who
teaches at Stanford University
(and earlier at Berkeley) when not
working at his company, which
specializes in large-project con-
tinuous delivery tools. Ousterhout
suggests when creating a class
that you use the following steps,
which are a significant enlarge-
ment of what I’ve described above:

1. Write the class interface
comment.

2. Write the interface com-
ments and signatures of the
most important public meth-
ods, but leave the method
bodies empty.

3. Write comments and declara-
tions for the most important
instance variables.

4. Fill in the bodies of the
methods, adding imple-
mentation comments as you
go along.

5. As you discover the need for
more methods, write the
comments before the body.

According to Ousterhout’s experi-
ence, the benefits are threefold:
When the code is done, it’s prop-
erly commented and the com-
ments are entirely up to date. The
comment-first approach enables
you to focus on the abstractions
rather than being distracted by
the implementation. The code will
reveal complexity—if a method or
variable requires a long, complex
comment, it probably needs to be
rethought and simplified. That’s a
lot of benefits!

Of the things on which to
comment, the most important in
Ousterhout’s view are abstrac-
tions (which are difficult to tease
out from reading the implemen-
tation code) and the reason why
the code exists. In sum, a devel-
oper working on your code for the
first time should be able to scan
the class’s comments and have a
good idea of what it does and an
overview of the most important
implementation aspects.

If this approach appeals to
you—as it does to me—he sug-

gests that you should use it until
you’re accustomed to writing code
this way. He believes, and I agree,
that doing so will convert you—
by delivering cleaner, clearer code
that is fully commented.

Andrew Binstock, Editor in Chief
javamag_us@oracle.com

@platypusguy

PS: Many open source projects
wish they had more contributors,
but their code is often so poorly
commented and devoid of docu-
mentation that it’s impossible for
potential contributors to climb
on board. Ousterhout’s approach
would go a long way toward
addressing that problem.

#developersrule

developer.oracle.com

Trials. Downloads.
Tutorials. Start here:
developer.oracle.com

The Oracle Developer
Gateway is the best place
to jump-start your modern
cloud development skills
with free trials, downloads,
tutorials, documentation,
and more.

The Best
Resource
for Modern
Cloud Dev

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:javamag_us%40oracle.com?subject=
https://twitter.com/platypusguy
http://developer.oracle.com
http://developer.oracle.com

*Discount based on the onsite registration price. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates.

ORACLE CODE ONE
Code the Future, Together

Oct. 22–25, 2018 | San Francisco | #CodeOne

• Discover the Latest on Java—from the Source

• Be a Part of Technologies that are Changing Everything

• Connect with Your Global Community

REGISTER NOW

// Silver Sponsor

http://oracle.com/codeone

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

08

There are at once too many and too
few books on software design—
particularly, software design in the
small. By “in the small,” I mean
design at the level of implemen-
tation and coding, rather than at
the architectural level. There are
numerous books written by con-
sultants that offer advice primarily
designed to inveigle the reader in
the author’s preferred approach.
But truly good books in this area
are rare. Perhaps the most recent
is Growing Object-Oriented Software,
Guided by Tests, by Steve Freeman
and Nat Pryce. It dates from 2010.
Earlier, in 2007, there was Kent
Beck’s woefully underappreciated
Implementation Patterns.

Comes now this thin, inexpen-
sive volume from John Ousterhout,
which addresses many of the class-
level coding and design issues
that confront us daily. Ousterhout
is the inventor of the first widely
adopted scripting language, Tcl,
and the founder of Electric Cloud,
a company that specializes in con-

tinuous delivery tools for sites that
work on huge projects (in millions
of lines of code). In between, he’s
been a professor of computer sci-
ence at Stanford University and the
University of California, Berkeley.
It’s safe to say he understands
design, especially of large projects.

This book is a series of key
principles aimed at reducing com-
plexity and grounded in unwavering
pragmatism. There is no overarch-
ing philosophy that Ousterhout is
trying to convince you of (despite
the book’s title). Instead, he treats
topics such as how to reduce innate
complexity, how to code modules
to contain and hide the complex-
ity, how to think about abstractions
when coding, and so on.

A pair of chapters, compris-
ing some 25 pages, is devoted to
comments—which might seem a
lengthy diversion until you realize
that they are a cornerstone to the
other practices. Ousterhout recom-
mends that the first thing you do
when creating a class is to write

comments, which he segregates into
two types: high-level and low-level.
High-level comments address what
the class is about and its relation-
ship to other classes. Reading these
comments, you should not need to
read anything else unless you need
to know the implementation. The
low-level comments are the ones
that you sprinkle throughout the
implementation to illuminate the
why and how—only if it is not clear
from the code itself. Comments, he
points out, should lower the cogni-
tive load and make code clearer.
He then presents handy, pragmatic
conventions for commenting.

He also addresses module
cohesion, code repetition, error
handling, testing, and even per-
formance tuning—always with an
eye toward his central goal: reduc-
ing complexity, both intrinsic and
incidental. At 170 pages, this book
is an easy read and brimming with
original ideas. Most code examples
are in Java. Highly recommended.
—Andrew Binstock

//java books/
A PHILOSOPHY OF SOFTWARE DESIGN
By John Ousterhout

http://www.oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.amazon.com/Philosophy-Software-Design-John-Ousterhout/dp/1732102201

Written by leading experts in Java, Oracle Press books offer the most
definitive, complete, and up-to-date coverage of Java available.

www.OraclePressBooks.com • @OraclePressAvailable in print and eBook formats.

Your Destination for Oracle and Java Expertise

Java: A Beginner’s Guide,
 7th Edition

Herb Schildt

Revised to cover Java SE 9, this book
gets you started programming
in Java right away. Free online

supplement covering key new features
in JDK 10 available for download on the
book’s page on OraclePressBooks.com

Java: The Complete Reference,
10th Edition

Herb Schildt

Updated for Java SE 9, this book shows
how to develop, compile, debug,

and run Java programs. Visit the book’s
page on OraclePressBooks.com
to download free supplements

on JDK’s key new features.

OCA Java SE 8
Programmer I Exam Guide

(Exam 1Z0-808)
Kathy Sierra, Bert Bates

Get complete coverage of all objectives for
Exam 1Z0-808. Electronic practice exams
include more than 200 questions that help

you prepare for this challenging test.

OCP Java SE 8
Programmer II Exam Guide

(Exam 1Z0-809)
Kathy Sierra, Bert Bates, Elisabeth Robson

Prepare for the OCP Exam 1Z0-809 with
this comprehensive guide which offers
every subject appearing on the exam.

Includes more than 350 practice questions.

http://www.oraclepressbooks.com

10

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

//events/

PHOTOGRAPH BY ELIZABETH K. JOSEPH/FLICKR

Oracle Code One
OCTOBER 22–25
SAN FRANCISCO, CALIFORNIA
The annual JavaOne event has been remade as Oracle Code One,
a new developer conference that includes more languages, tech-
nologies, and developer communities. Look for talks on Go, Rust,
Python, JavaScript, and R, along with the great Java technical con-
tent that developers expect. Topics will include microservices,
containers, AI, chatbots, blockchain, and databases. A Java keynote
and community keynote will remain, and all of the Java-focused
community activities are being carried forward including IGNITE
sessions, Community Day (now as a track), Java Champion brief-
ings, and Duke’s Choice Awards. (Note that registration is to Oracle
OpenWorld, which is collocated with Oracle Code One.)

JSCamp
SEPTEMBER 22
CHICAGO, ILLINOIS
JSCamp is a one-day single-track
conference for developers inter-
ested in JavaScript. Speakers will
cover topics such as Node, React,
Vue, and Ember for both begin-
ners and experts.

jDays
SEPTEMBER 25
GOTHENBURG, SWEDEN
jDays brings together software
engineers from around the world
to share their experiences in dif-
ferent areas such as Java, software
engineering, IoT, digital trends,
testing, agile methodologies,
and security.

Strange Loop
SEPTEMBER 26–28
ST. LOUIS, MISSOURI
Strange Loop is a multidisci-
plinary conference that brings
together the developers and
thinkers building tomorrow’s
technology in fields such as
emerging languages, alternative
databases, concurrency, distrib-
uted systems, and security. Talks
are generally code-heavy and not
process-oriented.

Functions
SEPTEMBER 28
TORONTO, CANADA
Functions is a community-
focused, single-track conference
exploring serverless development
and architecture. Past confer-
ence speakers have included JS
Foundation’s Darcy Clarke and
Google’s Sandeep Dinesh.

NFJS New England Software
Symposium
SEPTEMBER 28–30
FRAMINGHAM, MASSACHUSETTS
This developer event covers the
latest trends within the Java and
JVM ecosystem. Scheduled are
talks on Java 9, reactive APIs, and
microservices. Team attendance
is encouraged.

Emerging Technology Conference
OCTOBER 2–3
SAINT PAUL, MINNESOTA
This conference explores the
emerging technologies that are
shaping the world, including
machine learning, blockchain, and
virtual/augmented reality.

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
http://ora.cl/Gl1Nn
https://chicagojs.org
http://www.jdays.se/
https://www.thestrangeloop.com/about.html
https://functions.events/2018/toronto/
https://nofluffjuststuff.com/conference/boston/2018/09/home
https://nofluffjuststuff.com/conference/boston/2018/09/home
https://emerging.events

11

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

//events/

DevOpsDays Detroit
OCTOBER 3–4
DETROIT, MICHIGAN
DevOpsDays is a worldwide com-
munity conference series for
anyone interested in information-
technology improvement. This
year marks its fourth annual iter-
ation in Motor City.

KotlinConf
OCTOBER 3, WORKSHOPS
OCTOBER 4–5, CONFERENCE
AMSTERDAM, THE NETHERLANDS
This is the principal confer-
ence for the popular JVM lan-
guage, Kotlin. Keynotes by Kotlin
Project Lead Andrey Breslav and
Purple Evolution CEO Alicia Carr
are slated.

Desert Code Camp
OCTOBER 6
CHANDLER, ARIZONA
Desert Code Camp is a free,
developer-based conference built
on community content. This year’s
sessions include talks on server-
less microservices and building a
website with Angular.

JAX London
OCTOBER 8 AND 11, WORKSHOPS
OCTOBER 9–10, CONFERENCE
LONDON, ENGLAND
JAX London is a four-day con-
ference for software engineers
and enterprise-level profession-
als, bringing together the world’s
leading innovators in the fields
of Java, microservices, continu-
ous delivery, and DevOps. Topics

slated for this year include deliv-
ering new features in the JDK,
developing Java applications on
blockchain with web3j, and cloud-
native Java with OpenJ9.

JCON
OCTOBER 9–11, CONFERENCE
OCTOBER 12, TRAINING
DÜSSELDORF, GERMANY
JCON is for professional Java
developers interested in core Java,
enterprise Java, frameworks, and
microservices. Daily focus starts
with cloud and DevOps, moves
to big data, and finishes with
architecture and agile. A parallel
XDEVCON conference focuses on
rapid cross-platform development.

re:develop
OCTOBER 12
BOURNEMOUTH, ENGLAND
This platform-agnostic developer
conference returns after a one-
year hiatus and will address key
new methodologies and practical
advice for approaching develop-
ment projects more effectively.

JFuture
OCTOBER 13
MINSK, BELARUS
This event gathers Java develop-
ers, software engineers, and tech-
nology enthusiasts and will focus
on major updates of Java and pop-
ular Java frameworks. Modularity,
Spring, Kotlin, and Rust are
slated topics.

Java Enterprise Summit
OCTOBER 17–19
DÜSSELDORF, GERMANY
The Java Enterprise Summit is a
Java EE training event exploring
new paradigms such as micro-
services, API design, and state-
of-the-art enterprise Java applica-
tions. (Website in German.)

All Things Open
OCTOBER 21–23
RALEIGH, NORTH CAROLINA
This annual conference explores
open source, open tech, and
the open web in the enterprise.
Speakers this year include Netflix
senior performance architect
Brendan Gregg and AWS principal
technologist Alolita Sharma. The
theme this year is open source
software and future disruption.

PHOTOGRAPH BY PAUL.WASNESKI/FLICKR

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
https://www.devopsdays.org/events/2018-detroit/welcome/
https://kotlinconf.com/
https://oct2018.desertcodecamp.com/home
https://jaxlondon.com/
http://jcon.one/en/
https://redevelop.io
https://jfuture.by
http://javaenterprisesummit.de
https://allthingsopen.org

12

//events/

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

Open Source Summit Europe
OCTOBER 22–24
EDINBURGH, SCOTLAND
More than 2,000 attendees are
expected for this annual gath-
ering of developers, architects,
and open source community and
industry leaders.

EclipseCon Europe 2018
OCTOBER 22, COMMUNITY DAY
OCTOBER 23–25, CONFERENCE
LUDWIGSBURG, GERMANY
The Eclipse event for the European
community will host presenta-
tions on Jakarta EE, Microprofile,
and many other Java technologies.
An OSGi community event is col-
located with this conference.

Lambda World
OCTOBER 25–26
CÁDIZ, SPAIN
Billed as one of the largest func-
tional programming events in
Europe, this conference will cover
languages such as Clojure, Scala,
Kotlin, F#, and Java.

O’Reilly Software Architecture
Conference
OCTOBER 29–31, CONFERENCE
AND TUTORIALS
OCTOBER 31–NOVEMBER 1, TRAINING
LONDON, ENGLAND
For four days, expert practitio-
ners share new techniques and
approaches, proven best prac-
tices, and technical skills. Topics
include application, microservices,
event-driven, and evolutionary
architectures.

Voxxed Days Microservices
OCTOBER 29–30, CONFERENCE
OCTOBER 31, WORKSHOPS
PARIS, FRANCE
Learn—and share—everything you
need to know about microservices
at Voxxed Days Microservices, a
new event with two days of ses-
sions and a day of workshops.
Session tracks include organiza-
tion and culture, architecture,
testing, scaling, and integration.

QCon San Francisco
NOVEMBER 5–7, CONFERENCE
NOVEMBER 8–9, WORKSHOPS
SAN FRANCISCO, CALIFORNIA
QCon San Francisco is an interna-
tional conference for professional

software developers. Topics this
year include microservices, next-
gen architecture, 21st-century
languages, JavaScript and web
tech, and enterprise languages
including Java.

W-JAX
NOVEMBER 5–9, CONFERENCE
NOVEMBER 6–8, EXPO
MUNICH, GERMANY
W-JAX is a conference dedicated to
cutting-edge Java and web devel-
opment, software architecture,
and innovative infrastructures.
Experts share their professional
experiences in sessions and work-
shops. This year’s event promises
more than 160 speakers and more
than 180 workshops, sessions,
and keynotes.

DeveloperWeek Austin
NOVEMBER 6–8
AUSTIN, TEXAS
DeveloperWeek Austin will fea-
ture tracks devoted to JavaScript,
virtual reality development,
microservices, and AI develop-
ment; a Hiring Mixer Expo; and
two days of hackathons.

J-Fall
NOVEMBER 8
EDE, THE NETHERLANDS
J-Fall is organized by and for the
Dutch Java community. With 1,500
Java professionals attending,
J-Fall is the biggest Java confer-
ence of the Netherlands, boasting
more than 45 sessions and four
hands-on labs, more than 70 top
speakers, and a preconference day
with in-depth workshops and the
Masters of Java contest. The lineup
will be revealed soon. Last year’s
speakers included Apache Maven
Project Chair Robert Scholte,
Google Developer Advocate Ray
Tsang, and AWS Senior Solutions
Architect Brian Hammons.

Devoxx Belgium
NOVEMBER 12–16
ANTWERP, BELGIUM
The largest Java developer confer-
ence in Europe takes place again
this year in Antwerp, Belgium,
with multiple tracks covering
Java, the mechanics of the JVM,
and JVM languages. The event is
held in a multiplex theater with
code and slides shown on giant
movie screens.

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
https://events.linuxfoundation.org/events/open-source-summit-europe-2018/
https://www.eclipsecon.org/europe2018/
http://cadiz.lambda.world
https://conferences.oreilly.com/software-architecture/sa-eu
https://conferences.oreilly.com/software-architecture/sa-eu
https://voxxeddays.com/microservices/
https://qconsf.com/
https://jax.de/en/
http://www.developerweek.com/Austin/
https://jfall.nl
https://devoxx.be/

13

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

//events/

KubeCon + CloudNativeCon
NOVEMBER 13–15
SHANGHAI, CHINA
This conference gathers leading
technologists from open source
cloud-native communities to
further the advancement of cloud-
native computing. Simultaneous
Mandarin-English translation
will be provided for all keynotes
and sessions.

Codemotion Berlin
NOVEMBER 20–21
BERLIN, GERMANY
Codemotion conferences are
devoted to developers sharing the
latest tech information and best
practices among the tech commu-
nity worldwide. Confirmed speak-

ers at this event include Picnic
CTO Daniel Gebler and Apache
Software Foundation member
Kanchana Welagedara. The event
is open to all languages and tech-
nologies and features coding lec-
tures and workshops.

Topconf Tallinn
NOVEMBER 20–22
TALLINN, ESTONIA
Topconf Tallinn is an international
software conference covering Java,
open source, agile development,
architecture, and new languages.

JVM-Con
NOVEMBER 27–28
COLOGNE, GERMANY
Among the topics slated for this
conference devoted to JVM lan-

guages are the JRE, Java 9, Java
EE 8, and cloud-native develop-
ment. (Website in German.)

Codemotion Milan
NOVEMBER 29–30
MILAN, ITALY
Codemotion conferences are
devoted to developers sharing the
latest tech information and best
practices among the tech commu-
nity worldwide. Confirmed speak-
ers at this event include Rogue
Wave Senior Software Engineer
Enrico Zimuel, ThoughtWorks
Quality Analyst Wamika Singh,
and Accenture Manager Maurizio
Mangione. The event is open
to all languages and technolo-
gies and features coding lectures
and workshops.

DevTernity
NOVEMBER 30–DECEMBER 1
RIGA, LATVIA
The DevTernity forum covers the
latest developments in coding,
architecture, operations, secu-
rity, leadership, and many other
IT topics. Venkat Subramaniam,
author of Programming Concurrency
on the JVM and Functional
Programming in Java, is slated to be
one of the featured speakers.

ArchConf
DECEMBER 10–13
CLEARWATER, FLORIDA
ArchConf is an educational event
for software architects, techni-
cal leaders, and senior develop-
ers presented by the No Fluff
Just Stuff software symposium.
Among the slated sessions are
talks on applying design patterns,
building serverless applications,
machine learning, and scalable
microservices.

CodeMash 2019
JANUARY 8–11, 2019
SANDUSKY, OHIO
CodeMash is an event that edu-
cates developers on current
practices, methodologies, and
technology trends in a variety of
platforms and development lan-
guages such as Java, .NET, Ruby,
Python, and PHP. The Java track
features participation from many
Java Champions.

Are you hosting an upcoming
Java conference that you would
like to see included in this cal-
endar? Please send us a link
and a description of your event
at least 90 days in advance at
javamag_us@oracle.com. Other
ways to reach us appear on the
last page of this issue.

PHOTOGRAPH BY UWE BRODRECHT/FLICKR

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
https://www.lfasiallc.com/events/kubecon-cloudnativecon-china-2018/
https://codemotionworld.com
https://www.topconf.com/conference/topconf-tallinn-2018
http://jvm-con.de
https://codemotionworld.com
https://devternity.com
https://archconf.com/conference/clearwater/2018/12/home
http://www.codemash.org/
mailto:javamag_us%40oracle.com?subject=

14

//user groups/

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

ISTANBUL JUG
The Istanbul Java User Group,
JUG Istanbul, was founded
in March 2006. Since then,
the community has been
organizing monthly meetups
as well as an annual confer-
ence called Java Day Istanbul,
in which Java Champions,
JUG leaders, and develop-
ers from around the world
participate. This year’s

conference took place in Istanbul in May 2018 at the Hilton
Bosphorus Istanbul and included trending topics such as effec-
tive Java, microservices, serverless architectures, DevOps, and
Java EE microprofile.

The community created a green-field open source project
named Second Opinion Doctor, a crowd-sourcing platform for
medical professionals. The project began in November 2017
with a co-op hackathon. The project is still ongoing, and other
open source communities have been participating in it. JUG
Istanbul joined the Eclipse Foundation in May 2018.

Today, more than 3,000 JUG members participate in
Turkey’s Java community. For communication outside meet-
ings, JUG Istanbul uses Facebook, Twitter (@jug_istanbul),
Slack (jugistanbul.slack.com), and meetups. Email JUG
Istanbul in advance if you are a member of another JUG, a Java
Champion, or a technology evangelist coming to Turkey so that
the group can host you and arrange some conversations.

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Join the World’s
Largest Developer

Community

ORACLE DEVELOPER COMMUNITY developer.oracle.com
Membership Is Free | Follow Us on Social:

@OracleDevs facebook.com/OracleDevs

 Download the latest software, tools,
and developer templates

Get exclusive access to hands-on
trainings and workshops

Grow your network with the Developer
Champion and Oracle ACE Programs

Publish your technical articles—and
get paid to share your expertise

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
https://github.com/JUGIstanbul/second-opinion-api
mailto:bilgi%40javausergroup.istanbul?subject=
mailto:bilgi%40javausergroup.istanbul?subject=
http://developer.oracle.com/
http://www.twitter.com/OracleDevs
http://www.facebook.com/OracleDevs

http://devoxx.com
http://voxxeddays.com

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

16

//the leading edge/

F ew programming languages make it past 20 years and still retain high popularity. But

Java has managed to remain widely used in many contexts because of its evolution—not

just of the language, but of the larger direction of the ecosystem. None of this is clearer

than in the advent of GraalVM, an ahead-of-time native compiler for Java code that

coincidentally is written in Java and supports many other languages—both JVM-based

and native. To understand how to use Graal for your own projects, see our article on page 17.

In the enterprise, Java EE has moved out from Oracle’s aegis and is now hosted at the Eclipse

Foundation under the name of Jakarta EE, which we examine in detail (page 26) in anticipation of

its upcoming 1.0 release.

Much of Java’s success comes from new tools contributed as open source.

Hystrix from Netflix is an excellent library for assuring uptime in distributed

apps—especially microservices. Our coverage of Hystrix (page 37) shows its

benefits and elegance of implementation.

Finally, we look at one of the most exciting platform developments: run-

ning Java apps on power-sipping ARM processors. As our article (page 54)

demonstrates, migration of existing code is not difficult, and on recent chip

releases, it does not entail a compromise on performance.

We also include the next installment (page 66) of our series on design pat-

terns, this time covering the Visitor pattern. And of course, this issue includes

our usual quiz (page 76), editorial (page 5), and a book review (page 8) of an

unusually interesting volume. Enjoy!

On the Leading Edge
of Java Development

GRAALVM 17
JAKARTA EE 26
NETFLIX HYSTRIX 37
JAVA ON ARM 54

ART BY WES ROWELL

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

17

//the leading edge/

G raalVM is a high-performance embeddable polyglot virtual machine capable of running

different programming languages, for example:
■■ JVM-based languages, such as Java, Scala, Kotlin, and Groovy
■■ Interpreted languages, such as JavaScript, Ruby, R, and Python
■■ Native languages that work with LLVM, such as C, C++, Rust, and Swift

GraalVM efficiently supports polyglot apps, allowing you to mix languages in a single process

without incurring significant performance overhead—thereby making it possible to include the

most suitable solution to the problem at hand.

GraalVM is designed to execute programs in different environments: in the JVM, compiled

into a standalone native image, or embedded into larger applications that include both Java and

native code modules. In this article, I present a quick overview of what GraalVM is capable of,

how to start using it for everyday tasks, and which parts of the project should you focus on.

Components of GraalVM
GraalVM is a large project with several moving parts that enable it to be as versatile as it is.

Just to give you a taste, GraalVM can run Java code really fast, run Node.js applications and be a

replacement for your Nashorn scripts, run Ruby and Python, and run R. It can compile some Java

applications into executable native images that take up just a few megabytes for use in a Docker

container and start in milliseconds. It also can execute JavaScript code as stored procedures

inside databases without greedily taking over resources your database expects to have for itself.

GraalVM:
The Polyglot VM and JVM
Easily combine languages in one project and benefit from
ahead-of-time compilation.

OLEG ŠELAJEV

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.graalvm.org
https://www.graalvm.org

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

18

//the leading edge/

GraalVM is open source and largely written in Java, so to get acquainted with the project

you don’t need to be an expert in the native code. This aspect also means that you can use the

tooling you use for everyday Java development to explore and develop GraalVM. Now, let’s look

briefly at some GraalVM components.

Graal, the JIT compiler. Without an outstanding just-in-time (JIT) compiler, it’s really hard to

produce a high-performance virtual machine. So at the heart of GraalVM, you find a compiler

called Graal. Graal can be used both as a JIT compiler and as a static, ahead-of-time compiler.

Just like the other components of GraalVM, Graal is written in Java. It implements several

typical compiler optimizations: common subexpression elimination, dead-code elimination,

constant folding, and so on. However, its inlining and escape analysis algorithms are where it

really shines. Graal is an aggressively optimizing compiler that uses an internal representa-

tion (IR) that bears resemblance to the program dependence graph the C2 compiler in the Java

HotSpot VM uses, although it differs in important ways. During the compilation, the IR is trans-

formed from representing high-level operations (such as load Java field) to low-level operations

(for example, read at address+offset). This low-level representation is eventually translated into

the machine code. In addition to standard JVM options that can assist you with analyzing the JIT

compilation (such as -XX:+PrintCompilation, XX:+PrintAssembly, and so on), the GraalVM distri-

bution includes a utility called the Ideal Graph Visualizer, which you can use to debug and ana-

lyze these graph transformations.

Truffle. The next major component of the GraalVM project is Truffle, which is a framework for

implementing programming languages. Truffle offers an API that you can use to implement

an interpreter of a language based on the abstract syntax trees (ASTs) of the source programs.

Evaluating ASTs is a relatively straightforward way to execute a program, so working on an

interpreter is much easier than creating an optimizing compiler. But Truffle, with the help of

the Graal compiler, can optimize these interpreters so their peak performance is on par and

sometimes better than the code produced by conventional compilers.

To compile the interpreters for the implemented language, Truffle uses a technique called

partial evaluation. In a nutshell, this means Truffle takes a language interpreter and a program,

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/oracle/graal

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

19

//the leading edge/

and produces a specialized version of the interpreter specifically for the given program. It does

this by attaching to the tree nodes the profiling and type information gathered at execution

time. Then Truffle can speculatively optimize the program by using this profile. Truffle needs a

runtime with a compiler aware of the partial evaluation, and Graal fits this requirement nicely.

There are plenty of examples of Truffle-based languages from which to take inspiration.

You can look at the JavaScript engine, an LLVM bitcode interpreter, a Ruby implementation, a

Python implementation, and an R implementation—and these are just the official projects by

the GraalVM team. You can find several other implementations of programming languages on

the GitHub page. There is even a demo programming language that was created to demonstrate

and teach the features of Truffle, which can get you started if you want to experiment.

The best part of Truffle languages is that at runtime, all the interpreters are using the same

interoperability protocol for objects in different programming languages, which means that

from the runtime’s point of view, there is no difference whether the program be written in

JavaScript, Python, Ruby, any other imple-

mented language, or a mix of those. The run-

time is able to optimize polyglot programs

written in different languages the same way

it optimizes code normally—without any

performance overhead for crossing the lan-

guage barrier. This aspect opens the door to using libraries and modules from all ecosystems

and truly picking the best programming language to focus on solving the problems you need to

solve, rather than trying to reimplement the missing piece of functionality in the language of

your project.

Another benefit of Truffle is that it virtualizes the language implementation, so from the

runtime point of view, all languages look similar. This is an excellent opportunity for the tool-

ing to become polyglot as well. For example, you can use the JavaScript debugger to step through

a Ruby program or use VisualVM to analyze the memory use of a JavaScript program just as

you’d normally use them for JavaScript and Java programs.

All the programs that run on the JDK
are supported by GraalVM.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/graalvm/graaljs
https://github.com/graalvm/sulong
https://github.com/oracle/truffleruby
http://github.com/graalvm/graalpython
https://github.com/oracle/fastr
https://github.com/oracle/graal/blob/master/truffle/docs/Languages.md
https://github.com/graalvm/simplelanguage
https://medium.com/graalvm/debugging-polyglot-node-js-ruby-r-apps-with-graalvm-81b1bb2614db
https://medium.com/graalvm/debugging-polyglot-node-js-ruby-r-apps-with-graalvm-81b1bb2614db

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

20

//the leading edge/

Native images. GraalVM has additional features, such as the SubstrateVM, which is a small

virtual machine written in Java that can be used to compile some Java applications to native

executable images. GraalVM native images do not require the JVM to run, don’t need to load

and initialize Java classes, and so on—so they have very fast startup. During generation of the

native images, the Graal compiler analyzes the classes of your applications and compiles them

to machine code ahead of time. SubstrateVM provides the services any virtual machine would:

garbage collection, thread scheduling, code caches, etcetera. And its code can also be compiled

ahead of time by Graal. The result is an executable that doesn’t have the peak performance of

fully warmed up JIT-compiled code, but has decent performance, has low runtime overhead,

and starts up in milliseconds. In some production environments, such as the cloud or serverless

deployments, startup is more important than the peak performance of the long-running code.

Additionally, it is possible to embed GraalVM in other runtime platforms, extending them

with the polyglot capabilities. Currently, there are experimental builds of Oracle Database that

embed GraalVM and enable you to write stored procedures in JavaScript instead of in PL/SQL.

Similar functionality is available as a MySQL plugin, so you can use GraalVM in the MySQL data-

base as well. At first sight, this might seem like a superficial capability, but this design gives

you the opportunity to use the programming languages you already know and the existing eco-

system of modules and libraries.

Getting Started with GraalVM
There are several ways to try GraalVM or its parts, depending on how much effort you want

to invest.

Of course, you can build GraalVM from the codebase because, as I mentioned earlier, it

is an open source project under the GPL2 with the classpath exception license—the same

license as that of OpenJDK. However, the easiest way to evaluate GraalVM is to download the

prebuilt binaries.

The distribution you get is similar to the JDK, but it also bundles the JavaScript engine and

an implementation of Node.js, the LLVM bitcode interpreter, and the native image utilities.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/oracle/graal/tree/master/substratevm
https://oracle.github.io/oracle-db-mle/
https://www.graalvm.org/downloads

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

21

//the leading edge/

Download a GraalVM distribution, and unzip the archive into a $GRAALVM_HOME directory.

Then you can run java from GraalVM:

> $GRAALVM_HOME/bin/java -version
java version "1.8.0_172"
Java(TM) SE Runtime Environment (build 1.8.0_172-b11)
GraalVM 1.0.0-rc3 (build 25.71-b01-internal-jvmci-0.45, mixed mode)

Or you can run JavaScript programs—for example, evaluating the following one-liner:

> $GRAALVM_HOME/bin/js -e 'console.log(1+2)'
3

You can install the experimental support for Ruby, R, and Python by using the gu utility on the

command line:

$GRAALVM_HOME/bin/gu install {ruby|python|r}

Then the command-line launchers for the languages you install will also be available under the

GraalVM directory—for example:

> $GRAALVM_HOME/bin/ruby -e 'puts 1 + 2'
3

Note that the prebuilt GraalVM distributions are based on OpenJDK. So all the programs that

run on the JDK are supported by GraalVM. If you want to compare performance on an apples-

to-apples basis, you can disable the Graal compiler in the GraalVM distribution by using the

-XX:-UseJVMCICompiler switch and then just use the Java HotSpot VM compiler that OpenJDK

uses normally.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

22

//the leading edge/

You can follow the getting started guide to get acquainted with what GraalVM can do for

you, try all the experiments in the article “Top 10 Things to Do with GraalVM,” or try some

examples gathered by the GraalVM team.

If you have a project ready to go with performance tests and all the infrastructure to mea-

sure the performance impact of GraalVM, a good starting point could also be trying out vari-

ous microbenchmarks. For example, consider the following benchmark. It is implemented with

the Java Microbenchmark Harness, which is the standard tool for Java microbenchmarks. The

benchmark method executes a simple series of Stream API method calls, manipulating the

numbers in a stream before adding everything up.

package org.graalvm.demos;

import org.openjdk.jmh.annotations.*;

import java.util.Arrays;
import java.util.concurrent.TimeUnit;

@Warmup(iterations = 1)
@Measurement(iterations = 3)
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@Fork(1)
public class JavaSimpleStreamBenchmark {

 static int[] values = new int[]{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

 @Benchmark
 public int testMethod() {
 return Arrays.stream(values)
 .map(x -> x + 1)
 .map(x -> x * 2)

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://medium.com/graalvm/graalvm-ten-things-12d9111f307d
http://www.graalvm.org/docs/examples
https://github.com/graalvm/graalvm-demos/tree/master/java-simple-stream-benchmark

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

23

//the leading edge/

 .map(x -> x + 2)
 .reduce(0, Integer::sum);
 }
}

On my machine, this benchmark executes several times faster on GraalVM than on OpenJDK 1.8.

If you want to experiment with it, clone the repository for the benchmark:

git clone https://github.com/graalvm/graalvm-demos
cd graalvm-demos/java-simple-stream-benchmark

To see the difference for yourself, you can build and run it using $GRAALVM_HOME/bin/java and the

normal OpenJDK:

mvn clean install
$GRAALVM_HOME/bin/java -jar target/benchmarks.jar

Naturally, this is not the most scientific assessment of the runtime performance, and you

should always properly measure the performance impact yourself. But it shows that for some

code, GraalVM execution is significantly faster than on the Java HotSpot VM.

Using GraalVM to Integrate Java with Other Languages
One of the most interesting features of GraalVM is its polyglot capability, so let’s look at how

GraalVM makes polyglot applications possible.

At the center of the polyglot API in GraalVM is the Context class. A Context is a representa-

tion of the global runtime state of all non-Java (compiled to the JVM bytecode) languages. You

can initialize all available languages on demand and evaluate the code in the desired languages.

The following snippet is the simplest example of the polyglot GraalVM application. It’s normal

Java code that evaluates a string of JavaScript, which declares a value of 42 and returns a Value

object to Java.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.graalvm.org/truffle/javadoc/org/graalvm/polyglot/Context.html

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

24

//the leading edge/

Context context = Context.create();
Value result = context.eval("js", "42");
assert result.asInt() == 42;

Value is how languages communicate with each other. Any Java object can be converted to a

Value with the Value.asValue(Object value) method call, and the Value can be converted to its

Java counterpart with Value.as(Class<T> targetType). The exact description of the conversion

process is outside the scope of this article, but the API always tries to do the sensible thing:

it converts numbers to numbers, strings to Strings, values that can be executed to functional

interfaces, collections to collections, and so on. For example, all of the following expressions

are true:

context.eval("js", "'foobar'").as(String.class).equals("foobar");
context.eval("js", "{foo:'bar'}").as(Map.class).get("foo").equals("bar");
@FunctionalInterface interface IntFunction { int f(int value); }
context.eval("js", "(function(a){a})").as(IntFunction.class).f(42) == 42;

Armed with the Context and the Value, you can pass data between the components written in

different languages.

However, a modern application will probably hide the details of the polyglot implementa-

tion of its components behind some abstraction. For example, this demo application is a Spring

Boot web app that uses R to plot CPU utilization data as an SVG image.

In the app, the GraalVM polyglot context is defined as a Spring @Bean:

@Bean
public Context getGraalVMContext() {
 return Context.newBuilder().allowAllAccess(true).build();
}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.graalvm.org/sdk/javadoc/org/graalvm/polyglot/Value.html#as-java.lang.Class
https://github.com/graalvm/graalvm-demos/tree/master/spring-r

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

25

//the leading edge/

The function written in R that takes data and plots the result (the source of which is located in a

resource file) is exposed as a Spring bean. The definition takes the GraalVM context, evaluates

the R source, and returns the result as a Java Function<Double, String>.

@Bean
Function<Double, String> getPlotFunction(@Autowired Context ctx) {
 Source source =
 Source.newBuilder("R", rSource.getURL()).build();
 return ctx.eval(source).as(Function.class);
}

After that, there’s no difference in using the R function or any other Java functional interface

implementation. Similarly, you can bring other languages supported by GraalVM into your Java app.

Conclusion
In this article, I looked at the GraalVM project and its components—the Graal compiler, Truffle,

and the native images utility—as well as the most important API for the polyglot programs, and

I tried to provide a short guide on how you can get started with GraalVM.

Give GraalVM a try. Many Java applications run faster on GraalVM; many can benefit from

instant startup; and some perhaps can be enhanced with modules written in other supported

languages such as Ruby, JavaScript, R, and Python. And if you find any issues or want to partici-

pate in this exciting project, visit its Github repository. </article>

Oleg Šelajev (@shelajev) is a developer advocate at Oracle Labs, working on GraalVM—the high-performance
embeddable polyglot virtual machine. He organizes the VirtualJUG, the online Java User Group, and a GDG
chapter in Tartu, Estonia. In his spare time, he is pursuing a PhD in dynamic system updates and code evolu-
tion. He became a Java Champion in 2017.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/oracle/graal

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

26

//the leading edge/

Developers have taken many approaches over the years to developing web and enterprise

applications on the Java platform. At the inception of the JVM, the groundbreaking servlet

technology was introduced in an effort to bring dynamic content to web applications, and tech-

nology such as applets provided a way to deliver rich internet applications to a user’s desktop.

Over time, developers created easier and more intuitive ways to work with servlets via frame-

works such as JavaServer Pages (JSPs) and Apache Struts. Built on top of servlet technology,

these solutions enabled developers to focus more on the front end than on boilerplate code.

The J2EE platform was introduced in 1999, providing a handful of APIs for the creation

of enterprise-based applications. The APIs included JDBC, Enterprise JavaBeans (EJB), JSPs,

and Java Message Service (JMS), to name a few. In the early era, J2EE was complex, because

there were many configurations that needed to be made and the logic was difficult to follow.

Configuration made the platform difficult to use.

As the years went on, J2EE evolved to include more APIs and the complexity level decreased.

The platform name was changed in 2006 when Java EE 5 was introduced. This release was a

significant, because it included some great productivity boosters such as the changes made in

EJB 3.0, and the JavaServer Faces (JSF) framework was introduced to the platform. The next two

releases, Java EE 6 and Java EE 7, focused primarily on developer productivity and platform mod-

ernization. Each of these releases significantly reduced the complexity of the platform by incor-

porating technologies such as annotations, rather than requiring XML for configuration. Contexts

and Dependency Injection (CDI) was introduced to the core of the platform in Java EE 6, providing

an easy way to utilize contextual objects throughout an application. Developing and deploying

Jakarta EE: Building Microservices
with Java EE’s Successor
A first look at using the emerging enterprise Java release for building microservices

JOSH JUNEAU

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

27

//the leading edge/

modern applications within a single WAR file was then streamlined with the Java EE platform.

Although Java EE evolved significantly, rapid changes in technology placed demand on the

platform to advance more quickly. The Java EE 8 release answered the call by providing APIs to

facilitate using web services, a new security API, and improvements for deployment to container

environments. However, the need to advance the platform at a more rapid pace remained an

issue. To accommodate this requirement, Oracle open-sourced the platform through the Eclipse

Foundation in 2017.

In this article, I take you through an introduction to the next evolution in the enterprise

Java space: Jakarta EE. I explain the transfer of the specifications from Oracle to the Eclipse

Foundation, and I demonstrate how to grab the latest code to get started with Jakarta EE.

How We Got to Jakarta EE
When Oracle decided to open source the Java EE platform via the Eclipse Foundation, the Eclipse

Enterprise for Java (EE4J) project was formed. This project is a base repository that resides on

GitHub, and it is in place for the purpose of transitioning and housing the codebase, documenta-

tion, and Technology Compatibility Kits (TCKs) for each of the Java EE specifications. EE4J is not

going to become the open platform; rather, it is a project that contains each of the specifications

for the new platform. Oracle began to transfer the documentation, codebase, and TCK for each

of the specifications to their respective EE4J projects during the second half of 2016. At the time

of this writing (mid-2018), the transition is still underway, and significant work is being done to

make the transition as seamless and timely as possible.

The name Jakarta EE was chosen for the new open-sourced platform that was once known

as Java EE. That is, all EE4J projects that are transferred from Oracle will be combined to cre-

ate the Jakarta EE platform. (The Jakarta name has significance in the Java community, because

a project known as the Jakarta Project was operated as an umbrella project under the Apache

Software Foundation for several years. The project was retired in 2011, because most of the sub-

projects had formed independent projects within the Apache Software Foundation, so the proj-

ect team felt that no confusion would arise.)

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://jakarta.ee/

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

28

//the leading edge/

New Governance Process
A key feature of Jakarta EE is a more frequent release cadence than Java EE had. To this end, the

Jakarta EE platform will be governed by the Jakarta EE Working Group. This group will help to

evolve and promote broad adoption of the technologies related to EE4J. As part of its mandate,

the working group will provide vendor-neutral marketing, define and manage a new gover-

nance process for formalizing specifications, define compatibility and branding rules, encourage

community participation, and establish a funding model that will enable the working group and

community to operate on a sustainable basis.

There are five different classes of Jakarta EE Working Group membership: Strategic,

Enterprise, Participant, Committer, and Guest. The Strategic, Enterprise, and Participant classes

are geared toward organizations and provide different levels of participation in the process.

Committer members are individuals who are able to contribute and commit code to the Eclipse

Foundation projects. Guest members are organizations that are Associate members of the

Eclipse Foundation; they are invited by the steering committee for a renewable year of member-

ship in which they participate in specific aspects. Under the Jakarta EE Working Group, mem-

bers will be able to help steer the direction of the platform or contribute directly by committing

patches or adding enhancements to the EE4J projects that make up the platform.

Getting Started with Jakarta EE
Let’s look at how to start building applications on the Jakarta EE platform. The Jakarta EE 8

release is due prior to the end of 2018. With that in mind, some of the information discussed in

the following section will be relevant only to those of you who are trying Jakarta EE 8 prior to its

official release.

In the next few sections, I cover how to obtain the libraries required to develop various

services that will be used together to compose an example application. The individual services

in the example application are actually separate projects that use only the EE4J projects that are

required. In the end, I demonstrate how to deploy each of the services to a single instance of the

“full” version of Payara Server to deliver the application. This setup can be used to deploy appli-

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

29

//the leading edge/

cations that are composed of multiple WAR files to a single server. However, it is more common

for each WAR file to be deployed to separate containers as microservices. Either choice is valid

and depends upon the requirements of your project.

Building the Sports Roster Application
A Jakarta EE application is built on standards, and it’s easy to develop. The example applica-

tion will allow a sports team to register and query team members. The application I’m going to

build utilizes a JSF 2.3 (Mojarra) front end, along with JAX-RS web services for communication

with the Java Persistence API (JPA) that works with the database. The application is composed

of three separate services, each of them Maven projects. The first project I demonstrate will be

used to query the database, the second will register (insert or update to the database), and the

third is a front-end user interface.

Consider that each service may be deployed to separate containers, such as Apache Tomcat,

that do not bundle the full Jakarta EE stack. For that reason, I list only the dependencies in the

POM that each service requires, rather than listing the entire stack. For this article, each of

the services can be deployed to a single instance of GlassFish 5 or another application server or

servlet container.

Setting Up the Environment
There are plenty of IDEs you can use for developing a Jakarta EE application. The main issue

at the time of this writing is that none of them offers direct support for Jakarta EE, per se.

However, most of them have complete support for Java EE 8. Because the initial release of

Jakarta EE is aligned with Java EE 8, it is possible to make use of the IDE support for Java EE

when developing Jakarta EE applications. Most of the major IDEs eventually will contain direct

support for Jakarta EE.

The IDE that I use for this article is a release candidate of Apache NetBeans 9.0, built from

the codebase. The Java EE plugins can be installed after the IDE has been built.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://netbeans.apache.org/

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

30

//the leading edge/

Obtaining Projects for Use Within Services
EE4J hosts the various projects that make up the Jakarta EE platform. As the Jakarta EE platform

begins to have full releases, there will be Maven coordinates or a location where different varia-

tions of the Jakarta EE platform can be downloaded and added to a project. The platform will

likely be available in its entirety or as separate APIs. Prior to the official release of Jakarta EE,

the EE4J projects need to be downloaded or added as Maven dependencies separately. You

can use a couple of paths to obtain the specifications or APIs that are required: download the

codebases and build them yourself, or utilize the Maven Central repository to pull them into

the project.

To download and build an EE4J API, visit its corresponding EE4J GitHub project page and

find the respective GitHub repository, clone the codebase of the project, and (typically) use

Maven to build the API. Follow the procedures on the respective project’s GitHub repository

homepage. See the Mojarra project for a good example, because it contains lots of documenta-

tion on how to build and use it in resulting projects. Most of the projects simply require the

project to be built by issuing mvn clean install, and the dependency JAR will be produced.

The resulting JAR can then be added to a local Maven repository, or it can be added directly to

a project.

For the examples in this article, I use Maven Central by adding the dependencies to project

POM files. Note that Maven Central might not yet have true Jakarta EE platform APIs registered

within it, so some of the APIs still point to the Java EE 8 dependency.

Developing the Services
I created each of the services for the example as Maven projects in Apache NetBeans by

selecting New Project > Maven > Web Application. The projects are named as follows:

SportsTeamQueryService, SportsTeamRegistrationService, and SportsTeamUIService.

The following lines of SQL can be used to create the database table (Apache Derby) for the

example. You can add the table to the sample Derby schema for convenience. If you are using

GlassFish 5 or Payara Server 5 to deploy the example, the Derby sample schema should already

be registered as a JDBC connection.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

31

//the leading edge/

create table team_roster (
id numeric,
first_name varchar(150),
last_name varchar(150),
position varchar(150),
registration_date date,
PRIMARY KEY (ID)
);

Query service. SportsTeamQueryService is the most straightforward, because it involves only a

few lines of code to produce—especially if you’re using an IDE. Listing 1 shows the POM for this

service, because the service uses the EJB, JPA, and JAX-RS Jakarta EE specifications. (All the

code—including the listings discussed but not inserted in this article—is available from my

GitHub repository.)

A persistence unit is required so the service can connect to the database (Listing 2). The

service uses an entity class for persistence. To create the TeamRoster entity class using Apache

NetBeans, select New > Entity Classes from Database, and then select the database table that

was created in the previous section. Listing 3 shows the codebase for the TeamRoster entity class.

A JAX-RS service can be used to query the database. To enable JAX-RS within the service,

create an ApplicationConfig class with the contents of Listing 4.

Listing 4.
package org.javamagazine.sportsteamqueryservice.service;

import java.util.Set;
import javax.ws.rs.core.Application;

@javax.ws.rs.ApplicationPath("rest")
public class ApplicationConfig extends Application {

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/juneau001/jakartaee_examples

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

32

//the leading edge/

 @Override
 public Set<Class<?>> getClasses() {
 Set<Class<?>> resources =
 new java.util.HashSet<>();
 addRestResourceClasses(resources);
 return resources;
 }

 private void addRestResourceClasses(
 Set<Class<?>> resources) {
 resources.add(
 org.javamagazine.sportsteamqueryservice
 .service.TeamRosterFacadeREST.class
);
 }
}

The @ApplicationPath annotation is used to define the URL path to use as an entry point for each

of the service’s RESTful web services. All resource classes that are used as a RESTful service

must be registered within the ApplicationConfig.

The REST service class is named TeamRosterFacadeREST, as shown in Listing 5.

Listing 5.
@javax.ejb.Stateless
@Path("teamrosterqueryservice")
public class TeamRosterFacadeREST {

 @PersistenceContext(unitName =
 "SportsTeamQueryServicePU")
 private EntityManager em;

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

33

//the leading edge/

 public TeamRosterFacadeREST() {
 }

 @GET
 @Path("{id}")
 @Produces({MediaType.APPLICATION_XML,
 MediaType.APPLICATION_JSON})
 public TeamRoster find(
 @PathParam("id") BigDecimal id) {
 return (TeamRoster)
 em.createQuery(
 "select object(o) from TeamRoster o " + "where o.id = :id")
 .setParameter("id", id)
 .setHint("javax.persistence.cache.retrieveMode",
 CacheRetrieveMode.BYPASS)
 .getSingleResult();
 }

 @GET
 @Produces({MediaType.APPLICATION_XML,
 MediaType.APPLICATION_JSON})
 public List<TeamRoster> findAll() {
 return em.createQuery("select object(o) from TeamRoster o")
 .setHint("javax.persistence.cache.retrieveMode",
 CacheRetrieveMode.BYPASS)
 .getResultList();
 }

 protected EntityManager getEntityManager() {
 return em;
 }
}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

34

//the leading edge/

This class is annotated with @javax.ejb.Stateless, marking it as a stateless session bean. The

javax.ws.rs.Path annotation defines the URL path that can be used to access the class service

endpoints. The TeamRosterFacadeREST class contains two service methods, find() and findAll(),

to find a TeamRoster or a List of TeamRoster, respectively.

The service can be used by calling the URL http://localhost:8080/SportsTeamQueryService/

rest/teamrosterqueryservice, or a TeamRoster ID can be passed as a path parameter by appending

it to the end of the URL.

Registration service. The SportsTeamRegistrationService exposes a web service capable of regis-

tering new players to a sports team. The service is nearly identical to the SportsTeamQueryService,

with the exception of the TeamRosterFacadeREST class (Listing 6), which contains different

RESTful web service methods. It contains a @GET method named countRoster() that returns a

count of TeamRoster objects, and a @POST method named addPlayer() that accepts parameters of

type @FormParam for a player’s first name, last name, and position. The method creates a new

TeamRoster object; sets the values passed in as parameters; and persists the object to the data-

base, using an EntityManager. Finally, the method returns a javax.ws.rs.core.Response to indi-

cate success or failure.

To register a player, a javax.ws.rs.core.Form can be sent via a JAX-RS client to the addPlayer

web service. The following section demonstrates how to do so via a JSF user interface.

User interface service. The SportsTeamUIService drives the user interface, using the JSF frame-

work. The service also requires the JAX-RS client dependency to query the SportsTeamQueryService

web services and to register new players by using the SportsTeamRegistrationService. The POM

file is shown in Listing 7. The UI service could use any web framework, but here I chose to use JSF.

Therefore, the web views are created as XHTML files, and CDI controller classes are used to com-

municate between the front end and the back end.

The main view, the index.xhtml file (shown in Listing 8), simply uses a DataTable to list each

of the registered players, and it also contains a form for registering new players. The back-

ing beans behind index.xhtml are CDI controllers named TeamRegistrationController (shown in

Listing 9) and TeamQueryController (shown in Listing 10).

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

35

//the leading edge/

The controller is annotated with @RequestScoped, which means that a new instance of the

controller is constructed with each request. Therefore, each time the index.xhtml view is visited,

the controller is constructed and the getTeamRosterList() method is invoked, returning the full

list of players. A JAX-RS client is employed to query the SportsTeamQueryService to populate the

list of players.

The teamRoster field of the controller populates and constructs new players (TeamRoster

objects). Clicking the Register button in the view (Figure 1) calls on the registerPlayer() control-

ler method. This method creates a new JAX-RS client to initiate a call to the teamroster-

registrationservice.addPlayer web service. A new javax.ws.rs.core.Form is created, and the

appropriate fields for a TeamRoster object are populated from the data entered into the view. The

JAX-RS response is returned from the service call to indicate success or failure. Note that in a

real-world scenario, a security API should be used to secure the web service, employing tech-

nology such as JSON Web Tokens.

Figure 1: The user interface of the SportsTeamRegistrationService

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

36

//the leading edge/

Deployment Options and Configurations
Jakarta EE is a cloud platform, which means that applications can be deployed to almost any

container. As previously mentioned, the three services demonstrated in this article can be

deployed to a single application server container, or each of them can be deployed to separate

containers such as Docker containers.

In situations where you use separate containers, it might be helpful to use a configuration

API such as the one offered by MicroProfile for handling dynamic configurations such as web

service URIs. The initial release of Jakarta EE does not contain a configuration API, but one may

be added later. It also makes sense to use a standardized security solution such as the Java EE

Security API or JSON Web Tokens for securing web service endpoints.

Roadmap
Jakarta EE is a new, open platform, which means it has the potential to evolve at a much faster

pace than its predecessor, Java EE. The initial release of Jakarta EE will be at parity with Java

EE 8. However, later releases of Jakarta EE will introduce new features, and possibly new APIs,

into the platform. Throughout its evolution, the Java EE platform has become easier to use while

adding more features along the way. The release of Jakarta EE 9, the second release under the

new branding, will begin to paint the picture for the future of the platform.

However, now is the time to get involved with Jakarta EE. One of the most important ways

to engage is by joining the mailing lists and participating in the conversations. You can also

join the Jakarta EE Working Group or the Eclipse Foundation to become a Committer to the EE4J

projects. Either way, if you’re writing web apps or enterprise apps in Java, take the time to come

up to speed on Jakarta EE. </article>

Josh Juneau (@javajuneau) works as an application developer, system analyst, and database administrator.
He primarily develops using Java and other JVM languages. He is a frequent contributor to Oracle Technology
Network and Java Magazine and has written several books for Apress about Java and Java EE. Juneau was a
JCP Expert Group member for JSR 372 and JSR 378. He is a member of the NetBeans Dream Team, a Java
Champion, leader for the CJUG OSS Initiative, and a regular voice on the JavaPubHouse Off Heap podcast.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

37

//the leading edge/

When you build applications based on a microservices architecture or you break down a

monolith into multiple services, you face several common challenges:
■■ How do you make sure that failure or slowness in one of the subsystems does not make your

entire system unavailable to your clients?
■■ If you have several subsystems that you can use for servicing client requests, what pattern do

you use to switch between them? For example, what if you are starting to use a microservice

instead of a stored procedure, but you need to retain the ability to call the stored procedure

during the migration period? Or perhaps your preference is to get the latest data from a data-

base, but if the database is slow, how you can use an answer from your cache service?
■■ How do you monitor in real time which of the subsystems are getting too much load or

becoming too slow?
■■ How do you automatically allow a subsystem to recover from a load spike?
■■ How do you open up your API to be used by other systems, while isolating the potential per-

formance impact to your system?

In this article, I show how these common challenges can be addressed with Hystrix, an open

source library developed by Netflix. Its description in GitHub states that Hystrix “is a latency-

and fault-tolerance library designed to isolate points of access to remote systems, services and

third-party libraries, stop cascading failure and enable resilience in complex distributed sys-

tems where failure is inevitable.”

Building Resilience into
Microservices with Hystrix
This easy-to-use library from Netflix handles delays and failures
in distributed applications.

HENRY NAFTULIN

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/Netflix/Hystrix

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

38

//the leading edge/

You will need knowledge of Spring Boot and Maven to follow along, because I will use these

technologies in this article.

Setting the Stage
Imagine that you need to write a microservice that displays your stock brokerage account hold-

ings: specifically, when you give it a user name, it will return the number of shares the user

owns, the price of these shares, and the value of the holdings (number of shares multiplied by

price per share).

To accomplish this task, you need to rely on a microservice created by your teammate,

which accepts the ticker symbol of the stock and returns its price. Let’s look first at the price

microservice that gives you the price of the stock (Listing 1).

Listing 1: A simple service that returns a stock price
@RestController
public class TickerServiceController {
 ...

 @RequestMapping(value = "/getTickerPrice/{ticker}",
 method = RequestMethod.GET)
 public Double getTickerPrice(@PathVariable String ticker){
 Random r = new Random();

 long processingTime = (long)
 (r.nextGaussian() * stdDevProcessingTimeInMillis +
 meanProcessingTimeInMillis);

 try {
 Thread.sleep(processingTime);
 } catch (InterruptedException e) {
 LOGGER.error(e.getMessage(), e);
 }

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

39

//the leading edge/

 if (r.nextDouble() < (outOfServiceRate/100.0)) {
 throw new RuntimeException("Service not available");
 }
 return getTickerPriceFromExchanges(ticker);
 }
}

The service is a very simple one: for any name, it returns a price that is generated by the

getTickerPriceFromExchanges method. For this service, I will simulate two important behaviors:

the failure rate of the service and the time it takes to get the data from the datastore. In real

life, failure could occur in the larger application when this subsystem is not working because of

some unanticipated internal failure—for example, if the datastore is down.

Now let’s look at the holdings service. This service uses Spring’s restTemplate, which sends

the request to the price microservice and gets the result back, as shown in Listing 2.

Listing 2: Service for requesting a price using Spring’s restTemplate
@Service
public class TickerPriceRetrieverService {
 public Double getLatestPrice(String ticker,
 RestTemplate restTemplate) throws Exception {
 Double price = restTemplate.exchange(
 "http://localhost:8098/getTickerPrice/{ticker}"
 , HttpMethod.GET
 , null
 , new ParameterizedTypeReference<Double>() {}
 , ticker).getBody();

 return price;
 }
}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

40

//the leading edge/

I expose this service in my web application via the getHoldings endpoint, shown in Listing 3,

which contains multiple classes.

Listing 3: The holdings service endpoint
public interface PriceDelegate {
 Double getLatestPrice(String ticker) throws Exception;
}

@Service
public class NonHystrixDelegate implements PriceDelegate {

 private TickerPriceRetrieverService priceService;

 private final RestTemplate restTemplate;

 public NonHystrixDelegate(TickerPriceRetrieverService priceService){
 this.priceService = priceService;
 restTemplate = new RestTemplate();
 }

 @Override
 public Double getLatestPrice(String ticker) throws Exception {
 return priceService.getLatestPrice(ticker, restTemplate);
 }
}

@RestController
public class HoldingsServiceController {
...

 private final NonHystrixDelegate nonHystrix;

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

41

//the leading edge/

 private final HystrixDelegate hystrix;

 ...

 @RequestMapping(value = "/getHoldings/{customer}",
 method = RequestMethod.GET)
 public List<Holding> getHoldings(
 @PathVariable String customer)
 throws Exception {

 List<Holding> holdings = getHoldings();
 holdings.stream().forEach(h -> {
 try {
 h.setPrice(nonHystrix.getLatestPrice(h.getTicker()));
 } catch (Exception e) {
 LOGGER.error(e.getMessage(),e);
 }
 });
 return holdings;

 }

 private List<Holding> getHoldings() {
 return Arrays.asList(new Holding("IBM", 100.0));
 }
}

Let’s test this implementation. I use Apache’s HTTP server testing tool, ab, to load-test this solu-

tion. The ab tool will call the holdings service, which in turn calls the price service. I am inter-

ested in the resilience of the holdings service, regardless of how the price service behaves.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://httpd.apache.org/docs/2.4/programs/ab.html

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

42

//the leading edge/

Let’s test the application by simulating a total of 500 requests by 10 clients—first, when the

price service takes 100 milliseconds (ms) to respond (test #1); then when the price service takes

1,000 ms to respond (test #2); and finally, when the price service takes 1,000 ms to retrieve the

request with a 15% out-of-service rate (test #3).

Here is an example of how you would run the test:

ab -n 500 -c 10 http://localhost:8088/getHoldings/Jake

Table 1 shows the results from these tests.

As expected, the time for the holdings service to process requests depends directly on the

amount of time it takes the underlying price microservice to retrieve results plus some small

added overhead.

Once I set the out-of-service rate, some requests failed—just slightly over the expected

failure rate of 15%. Because the holdings service processing time and error rate depends directly

on the price microservice, this implementation is not resilient to the behavior of the underly-

ing subsystem.

Table 1: Results of testing the app with three runs of ab

t e s t #1 t e s t #2 t e s t # 3

NUMBE R O F R E Q UE S T S 500 500 500

P RIC E S E R V IC E ME A N P R O C E S S IN G T IME (M S) 100 1,000 1,000

P RIC E S E R V IC E O U T- O F - S E R V IC E R AT E 0% 0% 15%

P RIC E S E R V IC E S TA ND A R D D E V I AT IO N P R O C E S S IN G T IME (M S) 20 200 200

T IME TA K E N F O R T E S T S (S E C O ND S) 5.31 50.666 51.052

NUMBE R O F FA IL E D R E Q UE S T S 0 0 85

R E Q UE S T S P E R S E C O ND 94.00 9.87 9.80

H O L D IN G S S E R V IC E R E S P O N S E T IME 50 T H P E R C E N T IL E (M S) 105 1,011 1,010

H O L D IN G S S E R V IC E R E S P O N S E T IME 9 5T H P E R C E N T IL E (M S) 138 1,321 1,334

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

43

//the leading edge/

Adding Hystrix to the Mix
Now imagine that the requirements have changed and you need to cap the time you wait for the

price microservice to 1,200 milliseconds. If you can’t get the latest price from the price service,

you’ll return the price from the local cache. This scenario is realistic, because you don’t want

to wait forever for the underlying service to return the result. (And to know the value at risk,

or perhaps to know the net worth, it might be better to have a good estimate of the asset price

than to have no value at all.)

Although it’s possible to write code that would introduce time-outs and implement fail-

ure, you are much better served by using the Hystrix library. I will use Hystrix to monitor the

response time and execute the failover if the delay crosses the preset threshold. I do this by

creating a Hystrix command and instantiating it as shown in the upcoming listings. You will see

how Hystrix makes the implementation simple, and how it can be tuned to your needs and pro-

vide a way to monitor your interaction with the price microservice.

To start, you need to add a couple of dependencies to the project: one for Hystrix itself and

one for the rxjava library, which is used by Hystrix under the covers:

<dependency>
 <groupId>com.netflix.hystrix</groupId>
 <artifactId>hystrix-core</artifactId>
 <version>1.2.0</version>
</dependency>

<!-- used by Hystrix -->
<dependency>
 <groupId>io.reactivex</groupId>
 <artifactId>rxjava</artifactId>
 <version>1.2.0</version>
</dependency>

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

44

//the leading edge/

Next, you need to define the Hystrix command, which will get the price for a given stock ticker

symbol as shown in Listing 4.

Listing 4: Defining the Hystrix command
static class PriceCommand extends HystrixCommand<Double> {
 private final TickerPriceRetrieverService priceDelegate;
 private final String ticker;
 private final RestTemplate restTemplate;

 public PriceCommand(TickerPriceRetrieverService priceDelegate,
 String ticker, RestTemplate restTemplate,
 HystrixCommand.Setter config) {
 super(config);
 this.priceDelegate = priceDelegate;
 this.ticker = ticker;
 this.restTemplate = restTemplate;
 }

 @Override
 public Double run() throws Exception {
 return priceDelegate.getLatestPrice(ticker, restTemplate);
 }

 @Override
 public Double getFallback() {
 return Cache.getPrice(ticker);
 }
}

There are two methods that are usually overwritten in a Hystrix command: run and getFallback.

The run method is the workhorse of the Hystrix command: it implements the logic of retrieving

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

45

//the leading edge/

the result from the underlying subsystem or API. Here the code is very simple: I delegate imple-

mentation to the existing API that I wrote earlier to get the ticker price (see Listing 2). I don’t

need to worry about setting a time-out here because it (along with other configuration param-

eters) is set in the configuration object that I use during the initialization of the command. The

getFallback method is overwritten, because I use an alternative result when the run method

fails due to time-out or due to the underlying service throwing an error. In my case, the fallback

is to use the price from cache. If I didn’t overwrite the getFallback method, then a time-out or

an error received by the price delegate would be propagated to the calling code.

The command needs to be instantiated for every request, because it is stateful and cannot

be reused. I instantiate it with a specific configuration, which I describe shortly. The code in

Listing 5 instantiates the Hystrix command.

Listing 5: Instantiating the Hystrix command
@Service
public class HystrixDelegate implements PriceDelegate {
 ...
 HystrixCommand.Setter config;

 public HystrixDelegate(
 TickerPriceRetrieverService priceDelegateImpl) {
 this.priceDelegateImpl = priceDelegateImpl;
 restTemplate = new RestTemplate();

 config = HystrixCommand
 .Setter
 .withGroupKey(HystrixCommandGroupKey
 .Factory.asKey("PriceCommand"));

 HystrixCommandProperties.Setter commandProperties =
 HystrixCommandProperties.Setter();

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

46

//the leading edge/

 commandProperties
 .withExecutionIsolationThreadTimeoutInMilliseconds(1200);

 config.andCommandPropertiesDefaults(commandProperties);
 config.andThreadPoolPropertiesDefaults(
 HystrixThreadPoolProperties.Setter()
 .withMaxQueueSize(-1)
 .withCoreSize(15));

 }

 @Override
 public Double getLatestPrice(String ticker)
 throws Exception {
 PriceCommand pc = new PriceCommand(priceDelegateImpl,
 ticker, restTemplate, config);

 Future<Double> pcFuture = pc.queue();
 return pcFuture.get();
 }
}

The goal here is to overwrite the default Hystrix configuration, specifically configuring

Hystrix to abandon the original request sent to the price service if it takes more than 1,200

milliseconds for processing. In such a case, Hystrix will return the value given by the

getFallback method.

Under the covers, Hystrix instantiates and uses a thread pool of 10 threads that is assigned

to each command type the user had defined. In my case, I have only one Hystrix command,

PriceCommand, so by default, my command will execute on one thread pool of 10 threads. A little

later in the article, I discuss what happens when I use the default settings, but for now I will

refer to Hystrix documentation to size my thread pool correctly.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/Netflix/Hystrix/wiki/Configuration#threadpool-properties

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

47

//the leading edge/

To set the thread pool size that will be used in calling the price service, I use the formula

from the documentation:

maximum requests per second at peak when healthy × 99th percentile latency in
seconds + some breathing room

Let’s refer to the test results in Table 1 rows “Requests per second” and “Holdings service

response time 95th percentile” to get the optimal number of threads. When the price service is

fast, I get 94 requests per second. Plugging that into the formula and multiplying by 0.138 sec-

onds (95th percentile) equals approximately 12 threads. When the service is slow, the values for

the formula are 9.87 requests per second multiplied by 1.321 seconds, which is approximately

13 threads. So, to give myself some breathing

room, I set the thread pool configuration to have

15 threads.

One of the benefits of using Hystrix is that

the Hystrix API keeps statistics on Hystrix com-

mand execution: how long the command took to

process results, whether the command timed out

or not, whether there were enough threads in the

thread pool to service the requests, and so forth.

These statistics can be used to allow real-time monitoring and to drive the Hystrix com-

mand’s behavior. By default, when you create a command, Hystrix configures a circuit breaker

that monitors command failures. In my example, command failures are the following:
■■ The ticker price taking more than 1,200 milliseconds (time-out) to return
■■ An exception being thrown by the command
■■ The price service being down

After a certain number of failures in a particular time interval, which is again a configura-

tion value that can be changed, the Hystrix circuit breaker will switch from a closed state to an

open state. In the closed state, which is the default state, the Hystrix circuit breaker will allow

An added benefit of using Hystrix
is that it is easy to add a real-time monitor
to report how the system behaves.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

48

//the leading edge/

requests to go to the target system. In the open state, which is usually reached after failure,

thresholds are breached, Hystrix will not call the underlying system, and Hystrix will return the

value provided by the getFallback method.

By default, the circuit is tripped after 20 failed requests or if more than 50% of the requests

failed within a rolling time period, which defaults to 10 seconds. Table 2 shows the results of the

same set of ab tests run on the Hystrix implementation.

When the price microservice is fast—that is, configured to process requests within 100 mil-

liseconds on average—the results are very similar to the non-Hystrix implementation. It does

take a little longer for Hystrix to process the requests, but that extra time is not significant for

my purposes here.

When the price service is configured to take an average of a full second to process requests,

Hystrix will time-out the requests that take longer than 1,200 milliseconds, and in such cases, it

will use the fallback solution. If a circuit breaker is tripped, requests will not be sent to the price

Table 2: Test results using Hystrix

t e s t #1 t e s t #2 t e s t # 3 t e s t # 4

NUMBE R O F R E Q UE S T S 500 500 500 500

P RIC E S E R V IC E ME A N P R O C E S S IN G T IME (M S) 100 1,000 1,000 1,000

O U T- O F - S E R V IC E R AT E 0% 0% 15% SERVICE IS DOWN

P RIC E S E R V IC E S TA ND A R D D E V I AT IO N P R O C E S S IN G T IME (M S) 20 200 200 200

M A X IMUM A L L OW E D T IME F O R R E Q UE S T (M S) 1,200 1,200 1,200 1,200

T IME TA K E N F O R T E S T S (S E C O ND S) 5.401 49.559 49.869 4.723

NUMBE R O F FA IL E D R E Q UE S T S 0 0 85 0

R E Q UE S T S P E R S E C O ND 92.58 9.87 10.3 105.87

H O L D IN G S S E R V IC E R E S P O N S E T IME 50 T H P E R C E N T IL E (M S) 108 997 1,001 36

H O L D IN G S S E R V IC E R E S P O N S E T IME 9 5T H P E R C E N T IL E (M S) 140 1,207 1,207 109

NUMBE R O F R E Q UE S T S U S IN G FA L L B A C K ME T H O D 0 83 170 500

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

49

//the leading edge/

service for a while and a fallback solution is used until Hystrix decides to close the circuit again.

You can see this behavior clearly when I bring the price service down. The application tries

to access the service initially; then the circuit breaker trips and the application will not even try

to access the underlying service. Specifically, in this example, you can see that on average, my

pricing requests are taking much less time (50th percentile is 36 ms) than in the column where

15% of requests are failing.

This behavior highlights the main features of a Hystrix command that uses a circuit breaker:
■■ It returns a fallback value if the underlying library or service is not responsive or throws

an error.
■■ It does not propagate the errors from underlying libraries to the client unless your require-

ments specify to do so.
■■ It gives the library or the underlying service some time to recover. Once the circuit breaker is

open, most requests will not hit the underlying service. There will be one probing request sent

once in a while to see if the underlying system recovered. If the probing request succeeds, the

underlying system is deemed to be healthy and the requests are routed to use the system.

Monitoring
An added benefit of using Hystrix is that it is easy to add a real-time monitor to report how the

system behaves. To do that, I need to add the following library, which is responsible for emitting

Hystrix statistics, into my holdings project:

<dependency>
 <groupId>com.netflix.hystrix</groupId>
 <artifactId>hystrix-metrics-event-stream</artifactId>
 <version>1.2.0</version>
</dependency>

And then I configure the stream servlet as shown in Listing 6.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

50

//the leading edge/

Listing 6: Configuring the stream servlet to get real-time statistics
@Configuration
public class HystrixStreamServletDefinition {

 @Bean(name = "hystrixRegistrationBean")
 public ServletRegistrationBean servletRegistrationBean() {
 ServletRegistrationBean registration =
 new ServletRegistrationBean(
 new HystrixMetricsStreamServlet(),"/hystrix.stream");
 registration.setName("hystrixServlet");
 registration.setLoadOnStartup(1);
 return registration;
 }
}

That’s it. Now I need to create a monitoring application. I decided to keep my monitoring appli-

cation as a separate service, because I didn’t want it to affect the performance of the holdings

service. In real life, you would probably configure a similar service adding the right authentica-

tion and authorization and then let it monitor all your Hystrix streams in one place.

To start a standalone monitoring service, you can download the entire setup, but it is just as

easy to create the service with Spring Boot. To create it, you need to have the following libraries

in Spring Boot:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-hystrix-dashboard</artifactId>
 <version>1.4.5.RELEASE</version>
</dependency>

Listing 7 shows how I configured the monitoring application.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/Netflix-Skunkworks/hystrix-dashboard/wiki#run-via-gradle

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

51

//the leading edge/

Listing 7: Configuring the monitoring application
@SpringBootApplication
@EnableHystrixDashboard
public class HystrixMonitorApplication {

 public static void main(String[] args) {
 SpringApplication.run(HystrixMonitorApplication.class, args);
 }
}

Here, the annotation that enables the Hystrix dashboard does the trick. Run the services and

paste the stream URL (http://localhost:8088/hystrix.stream) into the Hystrix dashboard applica-

tion (at http://localhost:8078/hystrix/), as shown in Figure 1.

Figure 1: Hystrix dashboard application

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

52

//the leading edge/

Figure 2 shows a screenshot of the monitoring app while I reran one of the tests. In Figure 2,

the yellow circle indicates the volume and the health of the requests, and the blue line indicates

the request rate. I had 66 successful requests within this time period, 16 time-outs, 12 excep-

tions, and a 24% command error rate for the reported time interval. The Hystrix command pro-

cessed requests at a speed of 9.8 requests per second.

Hystrix monitoring provides useful information as you look at systems you depend on. And

based on my experience, running the dashboard helps you understand how Hystrix works. The

dashboard is also extremely helpful in figuring out which parameters to adjust.

For example, for a while I ran my example application configured with the Hystrix default

thread pool size of 10 threads. I observed that responses were coming to the client much

faster than I expected. It turns out there were not enough threads processing the requests,

Figure 2: Screenshot of monitoring app

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

53

//the leading edge/

which resulted in Hystrix counting each such failed request as an error; after a while that

forced Hystrix to open the circuit breaker. Once the circuit breaker was open, the fallback

response was served to the client, and that was much faster than a response served from the

price service.

Also, while running the Hystrix dashboard, I saw that the circuit breaker opened shortly

after requests were sent and that the thread pool rejection count was getting high. Once I

adjusted the thread pool size using the formula Hystrix provides, as discussed earlier, the

thread pool rejections stopped and the tests behaved as I expected.

Conclusion
In this article, I have demonstrated how to use Hystrix in a simple, real-life example that

showed how to ensure failure not make the application unavailable. This is a good example of

a system where getting real-time prices is a preferred solution, while falling back to cached

prices is acceptable.

Hystrix is used by many enterprises, because it is a very useful library that can help make

your systems more resilient. This example showed how easy it is to use Hystrix and the consid-

erable benefits it delivers. </article>

Henry Naftulin has been designing Java EE distributed systems for more than 15 years. He is currently lead-
ing development of a proprietary award-winning fixed-income trading platform for one of the largest financial
companies in the United States.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

54

//the leading edge/

Today, Arm-based processors primarily are viewed as targeting the embedded market,

because they offer sufficient performance while keeping power consumption low. But many

hardware vendors are now using this architecture to build server CPUs and to compete with x86

architecture in the cloud and in the high-performance computing (HPC) market. This range of

deployment platforms adds to the complexity of the Java Arm port, because the port must sup-

port a variety of CPU vendors and workloads.

In this article, I explore the evolution of Java and the Java ecosystem and their status on

Arm architectures. I also discuss some recent developments in Java features and performance

for Arm processors, emphasizing both server and IoT/embedded deployments. [The company

behind Arm processors, Arm Limited, is transitioning its brand from the acronym ARM to Arm

and arm. We use the traditional capitalized form ARM when referring to specific processor mod-

els and Arm in all other instances. –Ed.]

The State of the Arm Architecture
Leaving aside the embedded and mobile markets, where Arm dominates with its 32-bit ARMv5,

ARMv6, ARMv7, and ARMv8 instruction set architectures (ISAs), it’s no longer stretching the

point to say that Arm provides a viable alternative for markets that are currently dominated by

the x86 architecture. Unlike microprocessor vendors such as Intel that focus on shipping pro-

cessors, Arm is primarily an architecture design company selling architectural and core licenses

to its customers, which turn that intellectual property into actual silicon. This model allows a

great variety of actual implementations of the same architecture to coexist and compete in dif-

ferent market segments.

Java on Arm Processors
Arm already is a leading architecture for IoT and embedded processors. Recent 64-bit
releases are pushing Arm CPUs onto servers, where they have full JDK support.

ALEKSEI VOITYLOV

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

55

//the leading edge/

It is clear from recent developments in the Arm architecture itself that the focus has shifted

to competitive Arm-based server CPU designs. In 2016, Arm finalized a 64-bit- and 32-bit-

capable ARMv8-A ISA that targets both the embedded and server markets. This architecture

mandated the presence of a single instruction, multiple data (SIMD) instruction set (called NEON)

and introduced optional instructions for AES encryption and for SHA-1, SHA-256, and CRC32 cal-

culations, which some vendors use to boost cryptographic and checksum performance.

In 2017, Arm extended this architecture by adding new atomic instructions. Later, the

ARMv8.2-A ISA added half-precision floating-point data processing and specialized SIMD

instructions that improve the performance of machine-learning computations. In addition, in

the ARMv8.2-A ISA, optional Scalable Vector Extension (SVE) instructions were introduced for

better support of vectorization (com-

pared to the NEON instruction set),

thereby making the ARMv8 archi-

tecture much more suitable for tech-

nical computing. Most recently, the

ARMv8.3-A ISA added SIMD complex-

number support.

The ARMv8 architecture leaves room for vendor design selection to achieve performance,

complexity, and power goals. It adopts a relaxed hardware memory model that is weaker than

that of x86 processors (which use x86-TSO). Thus, you can observe more out-of-order effects.

This architecture also adds new concurrency primitives, including the load-acquire and store-

release instructions, as well as weaker barrier instructions. But most Java developers will not

notice these changes because the JVM hides them inside the implementation.

Several hardware vendors compete with Intel in the server market with their ARMv8-based

processor design. Some hardware vendors are already established in the Arm-based server

market and have delivered 64-bit production systems used in data centers for several years now.

In technical computing, Sandia National Labs is deploying an Arm-based supercomputer

that has a theoretical peak of more than 2.3 petaflops. All major Linux distributions support

It’s no longer stretching the point to say
Arm provides a viable alternative for markets currently
dominated by the x86 architecture.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://bit.ly/2ONA8Gc

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

56

//the leading edge/

Arm, including Debian, Oracle Linux, Red Hat Linux, SUSE, and Ubuntu. All the tooling at the

OS and kernel level is stable and ready for production use.

Availability of Java on Arm Architectures
End users will find a good choice of providers for Java and OpenJDK binaries for Arm-based

architectures. The Java ports for both the ARMv7 and ARMv8 ISAs are fully functional, and the

codebases are available from OpenJDK under the GPLv2.1 license with the classpath extension,

which enabled most Linux distributions to bundle them.

If your favorite Linux distribution does not contain the required packages or you are looking

for commercial support, an excellent set of Java/OpenJDK binaries is provided by AdoptOpenJDK,

Azul, BellSoft, and Oracle. At the time this article was written, Azul and Oracle provide only

JDK 8 binaries for the ARMv8 and ARMv5/6/7 ISAs, while BellSoft offers binaries for JDK 9 and 10

that, for the Raspberry Pi, include the OpenJFX and Device I/O API modules. Azul, BellSoft, and

Oracle provide supported binaries that comply with the Java SE specification, and they verify

their binaries with the Java Compatibility Kit (JCK) test suite.

Features of the Java Ports for Arm Architectures
Although it is very important to ensure the compatibility of Java implementations, passing the

JCK test suite is not the only requirement for a successful Java port. To meet startup and through-

put performance expectations, Java ports for both the ARMv7 and ARMv8 ISAs implement C1

and C2 JIT compilers, thus allowing them to produce optimized code that takes advantage of

the underlying architecture specifics. On top of that, the -XX:+TieredCompilation command-

line option is supported and turned on in the server virtual machine (VM), which allows faster

startup and higher C2 throughput. A full set of garbage collectors (GCs)—the parallel G1, the

serial GCs, and the deprecated CMS—is supported in both the ARMv7 and ARMv8 Java ports.

For embedded use cases, some ARMv7 ports include a lightweight minimal VM. On JDK 9

or higher, the new Java modules enable building Java runtime images that have a low static

footprint. Running the following commands on the BellSoft ARM JDK 10, for example, pro-

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://wiki.debian.org/Arm64Port
http://bit.ly/2Ogct04
https://red.ht/2McX7fC
https://www.suse.com/products/arm/
https://www.ubuntu.com/download/server/arm
https://www.azul.com/downloads/zulu/zulu-download-arm/
https://bell-sw.com/products.html
http://bit.ly/2OdjbDY
https://bell-sw.com/products.html

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

57

//the leading edge/

duces a Java runtime with the java.base module that has a static footprint as small as 16 MB.

Surprisingly, java.base (perhaps with the addition of several other modules) is sufficient for

many Java applications that are tailored for constrained IoT gateways. For example, a runtime

capable of running Apache Felix or Jetty fits into 32 MB.

OUTPUT=~/out
bin/jlink --module-path jmods --compress=2 --add-modules java.base --output $OUTPUT
rm -r $OUTPUT/lib/client $OUTPUT/lib/server
echo "-minimal KNOWN" > $OUTPUT/lib/jvm.cfg

Over the years, the ARMv8 port received built-in optimized assembly intrinsics for CPU-

intensive operations. At present, only several intrinsics present in the x86 port are absent in

the ARMv8 port, and the gap will be closed soon by JEP 315.

All the common features that appear in other Java ports also work on Arm, including

Docker support and Application Class-Data Sharing (AppCDS) v2, as specified in JEP 310.

Table 1, on the following page, provides a detailed comparison of major JVM features on

x86/64, ARMv8 64-bit, and Arm 32-bit ports.

Performance of the Arm 64-Bit JVM Port
Let’s dive into the performance of the ARMv8 port, because the server market is where perfor-

mance matters most. To make a valid comparison, it is important to find x86- and Arm-based

server equivalents. Luckily, the recently released Cavium ThunderX2 ARMv8 CPU line provides

a processor that’s comparable to the Intel Xeon processors based on SPECint2017 rates.

For this comparison, I selected the Cavium ThunderX2 CN9975 and the Intel Xeon Gold 6140

single-socket systems, both equipped with DDR4-2666 memory and running Ubuntu 16.04.

(Dual-socket systems with these CPUs are also available.) The ThunderX2 CN9975 CPU has 112

threads (28-core system with 4-way SMP), and the comparable Intel Xeon Gold 6140 CPU has 36

threads (18-core system with Hyper-Threading).

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://openjdk.java.net/jeps/315
http://bit.ly/2nfId9Z
http://openjdk.java.net/jeps/310
https://www.anandtech.com/show/12694/assessing-cavium-thunderx2-arm-server-reality/4

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

58

//the leading edge/

To assess the performance of the JVM ARMv8 and x86 ports, I ran the widely used

SPECjbb2015 1.01 and SPECjvm2008 1.01 benchmarks with OpenJDK 11 EA build 18. All bench-

marks were executed 20 times, and the mean values were collected. The SPECjbb2015

benchmark was used to obtain an overall score, while the SPECjvm2008 benchmark provided

additional insights into the performance of the ARMv8 HotSpot JVM port.

Table 1: Comparison of features for major x86 and Arm JVM ports

x86/6 4 A RM v 8 (6 4 - BI T) A RM (32- BI T)

V M S CLIENT YES NO YES

SERVER YES YES YES

MINIMAL YES (32-BIT) NO YES

JI T C1 COMPILER YES YES YES

C2 COMPILER YES YES YES

TieredCompilation YES YES YES

GRA AL JIT COMPILER (E XPERIMENTAL) YES, SINCE JDK 10 YES, SINCE JDK 11 NO

G C SERIAL GC YES YES YES

PARALLEL GC YES YES YES

CMS GC YES; DEPRECATED YES; DEPRECATED YES; DEPRECATED

G1 GC YES YES YES

Z GARBAGE COLLECTOR (ZGC) E XPERIMENTAL IN DEVELOPMENT NO

R UN T IME CONTAINER SUPPORT YES YES YES

APPCDS YES YES, SINCE JDK 10 YES, SINCE JDK 10

LINUX HUGEPAGES YES YES YES

NUMA SUPPORT YES YES NO

S ER V IC E A BIL I T Y FLIGHT RECORDER (JEP 328) YES YES, SINCE JDK 11 YES, SINCE JDK 11

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.spec.org/jbb2015/
https://www.spec.org/jvm2008/
http://openjdk.java.net/jeps/328

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

59

//the leading edge/

Because the intent of this article is not to report the best score obtainable on a specific

hardware system but instead to study the performance a typical end user would see, I inten-

tionally did not fine-tune low-level JVM parameters or kernel settings on either system.

Check the SPEC scores for the processors, as reported by the hardware vendors, to compare

the highest achievable numbers available with JVM options tuning.

SPECjbb2015 results. Figure 1 presents the SPECjbb2015 1.01-Composite results (Critical-jOPS and

Max-jOPS) for a single-socket Intel Xeon Gold 6140 system and a ThunderX2 CN9975 single-socket

system, both with DDR4-2666 memory and running Ubuntu 16.04. (Higher scores are better.)

The JVM command-line options used for these runs were very common for SPECjbb2015

runs. On the Arm-based system, I used the following:

-Xmx24G -Xms24G -Xmn16G -XX:+AlwaysPreTouch -XX:+UseParallelGC
-XX:+UseTransparentHugePages -XX:-UseBiasedLocking

On the x86-based system, I used this:

-Xmx24G -Xms24G -Xmn16G -XX:+AlwaysPreTouch -XX:+UseParallelGC
-XX:+UseTransparentHugePages -XX:+UseBiasedLocking

Figure 1: SPECjbb2015-Composite performance results

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

60

//the leading edge/

(Switching biased locking off for the

ARMv8 architecture and leaving it on

for the x86 architecture gave both plat-

forms slightly better results.)

As you can see in Figure 1, the

OpenJDK 11 ARMv8 port running on

the ThunderX2 CN9975 system outper-

formed the x86 port running on the Intel Xeon Gold 6140 system by 33% for the Max-jOPS score

and by 16% for the Critical-jOPS score. This suggests the ThunderX2 system with the ARMv8 JVM

port is very suitable for enterprise workloads represented by the SPECjbb2015 benchmark.

To assess per-thread performance, I also limited the number of CPU threads on the

ThunderX2 system to be the same as on the Intel Xeon Gold 6140 system, which used only 32%

of its CPU threads. Unsurprisingly, in this case the SPECjbb2015 results clearly favored the Xeon

Gold 6140 system, giving it a 30% advantage.

SPECjvm2008 results. Figure 2 presents the SPECjvm2008 base results for individual bench-

marks together with the composite base results for a single-socket Xeon Gold 6140 system and

a single-socket ThunderX2 CN9975 system, both of which had DDR4-2666 memory and were

running Ubuntu 16.04. (Higher scores are better.) Because the SPECjvm2008 “compiler” sub-

benchmark has not worked in this suite since JDK 8, the composite geometric mean base score

was manually calculated without a “compiler” benchmark result.

As you can see in Figure 2, the OpenJDK 11 ARMv8 port running on the ThunderX2 CN9975

system outperformed the x86 port running on the Xeon Gold 6140 system by 28% in the

SPECjvm2008 benchmark composite base score. There are two main reasons for the overall bet-

ter score on the ARMv8-based system. The first is that the system has a higher memory band-

width (eight channels compared with six channels on the Xeon Gold 6140 system). The second

is related to the work done in the ARMv8 Java port that allowed the full utilization of the CPU

potential and extensions.

To gain additional insights, let’s explore the scores for individual SPECjvm2008 workloads.

In eight out of nine SPECjvm2008 benchmarks, the ARMv8 results outperformed the Intel pro-

A full set of garbage collectors—the parallel G1,
the serial GCs, and the deprecated CMS—is supported
in both the ARMv7 and ARMv8 Java ports.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

61

//the leading edge/

cessor, and in the remaining result, the Intel processor was faster. The crypto benchmark results

clearly favor an ARMv8-based system, giving it a 62% advantage, which could not be attained if

the ARMv8 port didn’t fully utilize the AES and SHA extensions available on the Arm chip.

The compress benchmark (in which the ARMv8 system leads by 12%) uses the CRC32C

intrinsic. The XML benchmark (in which the ARMv8 processor leads by 29%) and the mpegAudio

benchmark (in which the ARMv8 leads by 44%) use the java.lang.String and java.lang.Arrays

intrinsics. Some of these intrinsics were recently improved in JDK 10 and 11 for the ARMv8.

It is also important to understand the results for the benchmark where the x86 OpenJDK

port did better (by 29%): scimark.small. The reason for that is the benchmark code: the FFT,

LU, SOR, and SPARSE scimark sub-benchmarks all contain heavy loops and matrix computa-

Figure 2: SPECjvm2008 performance results

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

62

//the leading edge/

tion code. Over the years, Intel has invested

a lot of effort into loop unrolling and vec-

torization, which allowed the mapping of

such code sequences to AVX instructions on

x86 processors. This work has not yet been

completed for the ARMv8 C2 port, and the

absence of a good equivalent to the Intel AVX

512-bit instruction set does not help.

There is definitely some work ahead to bring the ARMv8 port’s scientific workload perfor-

mance up to par with that of the x86 implementation. However, for regular server-side Java

business application workloads (data processing, XML, crypto operations, and so forth), the

OpenJDK 11 ARMv8 port running on Cavium ThunderX2 units currently provides better perfor-

mance compared with the x86 equivalent.

Performance Diagnostics
Performance diagnostics tools are essential for understanding the bottlenecks of a Java applica-

tion being developed or run in production.

Regular performance diagnostics via JDK tools such as Java Management Extensions (JMX)

and the JVMTI API work on Arm-based systems just as they do on x86 systems. For more-

thorough Java performance analysis, a group I work with ported the Async Profiler and Honest

Profiler to the ARMv8 and contributed the changes back to the project. These ports enabled

enhancement of the performance of an application as complex as Hadoop on ARMv8 systems.

If you intend to work on a complex Java application and would like to profile the JVM bottle-

necks on the Arm architecture (or any other architecture), these are the open source tools I

would recommend.

Flight Recorder, which was open-sourced by Oracle and contributed to OpenJDK 11, is also

available in Arm-based ports.

Performance diagnostics via JDK tools
such as Java Management Extensions (JMX) and
the JVMTI API work on Arm-based systems just
as they do on x86 systems.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/jvm-profiling-tools/

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

63

//the leading edge/

Java Ecosystem on Arm Systems
In theory, all software written in Java should work on all Arm-based systems. However, some

big projects make specific tweaks that tie them to a specific architecture, such as using natively

built libraries. The following popular projects, although not claiming official support for the

ARMv8 ISA, were tested and work on Arm systems without modification: Hadoop 3.1.0, Tomcat

9.0.8, Spark 2.3.0, Kafka 1.1.0, Cassandra 3.11.2, Lucene 7.3.0, and Flink 1.4.2.

Future Developments
Several companies—including Arm itself, Azul, BellSoft, Cavium, Linaro, Oracle, Red Hat, and

others—collaborate in the OpenJDK codebase to ensure the long-term future of Arm-based

ports. This work includes gradual improvements in performance and stability, as well as work

on a fully supported GraalVM and Graal as a JIT compiler on ARMv8 processors. Future projects

such as Valhalla and Panama will be part of this effort as well.

Conclusion
The upstream Arm 32-bit and ARMv8 Java ports are ready for production use, and all of the rel-

evant features are on par with those of x86 platforms.

The 32-bit Arm port provides all the necessary functionality for embedded and IoT deploy-

ments, including the C1 compiler for fast startup, a low dynamic memory footprint, and a

minimal VM, which allows for the production of Java runtime images that have a low static

footprint (under 16 MB). This port works well on such popular devices as the Raspberry Pi and,

after proper device and application-specific tuning, the 32-bit Arm port can be used in pro-

duction under the GPL license.

The ARMv8 port that is aimed primar-

ily at the server market shows better per-

formance results when compared with x86

counterparts on equivalent hardware (a 16%

advantage in the SPECjbb2015 Critical-jOPS

For embedded and IoT use cases,
the Arm platform is already the primary platform
of choice.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

64

//the leading edge/

benchmark, a 33% advantage in the SPECjbb2015 Max-jOPS benchmark, and a 28% advantage in

the SPECjvm2008 base composite benchmark). As demonstrated by the SPECjvm2008 bench-

marks for typical server-side Java business applications that process and encrypt data and XML

files, the OpenJDK 11 ARMv8 port running on a Cavium ThunderX2 system is faster than the

Intel counterpart.

The Java software ecosystem is ready for production deployments on Arm-based systems.

For embedded and IoT use cases, the Arm platform is already the primary platform of choice,

but why would server manufacturers and major cloud providers consider moving to a different

architecture if the performance advantage is only tens of percents? Price/performance is the

answer. Given the performance of the JVM on Arm-based systems and the price of the CPUs,

this starts to make sense. And it becomes very easy to try—considering how little effort is

required to take existing Java applications to a new architecture. </article>

Aleksei Voitylov is the CTO of BellSoft, where he drives innovation for the company’s customers, includ-
ing optimizing OpenJDK for Cavium systems. Prior to cofounding BellSoft, he ran teams at Oracle and Sun
Microsystems and, in particular, he helped deliver multiple components of the JDK 8 and 9 releases, including
the HotSpot JVM, and the Java language. He holds a PhD from Saint Petersburg State University.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

DEVELOP WITH THE
GLOBAL STANDARD

developer.oracle.com/java

1Developer
Choice
for the Cloud

#
12 Million Developers Run Java
21 Billion Cloud-Connected Java Virtual Machines
38 Billion Java Virtual Machines are in the Cloud

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates.

http://developer.oracle.com/java

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

66

//design patterns/

Suppose it’s your first day at a new job at a midsize company. You’ll probably be escorted

around the building and introduced to every department of the organization. At each one

you’ll say “Glad to meet you” a few times and talk with the team there to discuss your common

projects, and then you’ll say “Nice to have met you.” And you’ll repeat this for each department.

Congratulations! You have just implemented the Visitor design pattern in humanware.

The Pattern
Visitor is a useful pattern when you have many objects of different types in your data structure

and you want to apply some operation to several or all of them. The pattern is helpful when

you don’t know ahead of time all the operations you will need; it gives you flexibility to add

new operations without having to add them to each object type. The basic idea is that a Visitor

object is taken around the nodes of a data structure by some kind of iterator, and each node

“accepts” the visitor, allowing it access to that node object’s internal data. When a new function

is needed, only a new visitor needs to be written. The iteration is conceptually simple:

for (Node node : collection) {
 node.accept(visitor);
}

(There are two main code examples in this article; both can be found in my GitHub repository.

The Visitor Design
Pattern in Depth
Perform one or more operations on a collection of different
data types without disrupting existing code.

IAN DARWIN

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/IanDarwin/patterns-demos/tree/master/src/main/java/behavioral/visitor

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

67

//design patterns/

Code from other articles in this series on design patterns can be found further up the trunk of

that repository.)

The Node objects must know how to accept the Visitor, and they will usually call a method

on the Visitor that is appropriate to the type of the node—for example:

class TextNode implements Node {
 void accept(Visitor v) {
 v.visitTextNode(this);
 }
 // other state and methods
}

Therefore, one consequence of this pattern is that the Visitor needs to know about all the node

types it might encounter.

Double Dispatch
Many explanations of the Visitor pattern refer to it as double dispatch. This term sometimes

makes readers think of a two-step dispatching process, as with a pointer to another pointer

used in some languages. That’s not what is meant. The term refers to the fact that both the

type of the visitor and the type of the node (or “receiver”) are used in sorting out which method

winds up doing the work. You can see this in the accept() method above: there’s the call to

accept() and the call back to visitTextNode().

Visiting the Text
Suppose I need to maintain a word processor that was written in Java. There are a few data types

(text node, image node, and so on). Common operations, such as editing text, setting fonts, and

setting colors, are taken care of. But there are many supplemental operations that need to be

performed on the text, and new ones come along often as customers provide feedback. Here’s

what the text node’s class started as:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

68

//design patterns/

public class TextNodeOld extends Node {
 private StringBuilder text = new StringBuilder();

 public TextNodeOld() {
 // empty
 }

 public TextNodeOld(String s) {
 // Here, you know the StringBuilder exists and is empty
 text.append(s);
 }

 public String getText() {
 return text.toString();
 }

 public void setText(String text) {
 this.text.setLength(0);
 this.text.append(text);
 }

 // Lots of supplemental functionality methods here
 // that will be added below
}

It’s becoming annoying that all the data types need to be modified every time somebody has

an idea for a new function. I know from experience that I’m unlikely to be able to predict, at the

start of the maintenance, all the remaining functionality that will be needed. So I’ll introduce a

Visitor pattern.

The basic data structure is still the Node, with subclasses TextNode and ImageNode. A real word

processor would have more types of nodes, but I want to focus on the Visitor pattern, not com-

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

69

//design patterns/

pete with the well-known word processor that’s out there. Therefore, Node is now an interface

with just one method:

public interface Node {
 abstract void accept(Visitor v);
}

I was tempted to call this interface Visitable instead of Node. On one hand, Visitable is a more

descriptive name for this version. On the other hand, most formal definitions of Visitor use the

term Node. I know some of you will go to Wikipedia to get a second opinion after reading this,

and I don’t want to confuse anyone.

Node could alternatively be an abstract class, but that would force all the implementation

classes to be related by inheritance, which may be an unnecessary restriction.

Node uses Visitor as a type, so the next step is to define Visitor:

public abstract class Visitor {
 public abstract void visitTextNode(TextNode textNode);

 public abstract void visitImageNode(ImageNode imageNode);

 // And so on for TableNode, SectionNode, VideoNode, and so forth
}

Note that you could make all the methods be overloads of a single method called visit(),

because the argument types are unique, but I think this way is clearer. It’s a stylistic choice, so

pick one way and try to be consistent.

At any rate, here you meet the one complication of the Visitor pattern: Visitors need to know

how to visit every main kind of node.

The revised node classes themselves are not that interesting, so I didn’t show their code—

the Text node has a Text property; the Image node has a FileName, a width, a height, and an

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

70

//design patterns/

optional Caption (which is subclassed from

TextNode); and so on.

With all that structure in place, it’s time to

start to write visitors. First, suppose there’s a

requirement to print a quick draft of the docu-

ment, without trying to display the images (this

capability was in the requirements from the days when graphics printers were expensive). The

text stored in a TextNode might contain more characters than fit on a line, so I use an existing

program called Fmt to crudely format lines to fit. Fmt wants its input as a stream (even though in

this case it’s only one string), so the visitTextNode() method wraps the current TextNode’s string

in an array and streams that to the format() method of Fmt.

 static Visitor draftPrinterVisitor = new Visitor() {
 @Override
 public void visitTextNode(TextNode textNode) {
 String[] lines = { textNode.getText() };
 Fmt.format(Stream.of(lines), out);
 }

 @Override
 public void visitImageNode(ImageNode imageNode) {
 String caption = imageNode.caption != null ?
 imageNode.caption.getText() : "no caption";
 System.out.printf("Image: name='%s',
 caption='%s'%n", imageNode.fileName, caption);
 }
 };

The Fmt program requires a PrintWriter for output, so the code on the following page wraps

System.out in a PrintWriter before passing the draftPrinterVisitor around to all the nodes.

The iteration doesn’t need to be a for
loop or even an iterator—any means of
traversing all the nodes is fine.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

71

//design patterns/

The visitImageNode() method doesn’t need to use Fmt, because image captions are assumed

to be one line long. The method simply gets the text from the ImageNode’s caption (which is a

subtype of TextNode, so it has a getText() method), defaulting to “no caption” if there is no cap-

tion, and prints the result to System.out.

The main demo program, WordProcessorDemo, creates a demo document and iterates over its

Node instances like this:

 out = new PrintWriter(System.out);
 for (Node n : nodes) {
 n.accept(draftPrinterVisitor);
 }
 out.flush();

Note that the iteration doesn’t need to be a for loop or even an iterator—any means of travers-

ing all the nodes is fine.

Suddenly, someone from marketing rushes in and says, “Gee, this draft format is neat. But

the boss wants it to show the word count as well. Can you add a function to compute that too?”

“No problem,” you can say, turning back to the code. Soon the new code takes shape. The

following Visitor counts the number of words in text nodes, and it even descends into ImageNodes

to get the word count of the caption, if there is one.

public class WordCountVisitor extends Visitor {

 int wordCount = 0;

 public int getWordCount() {
 return wordCount;
 }

 @Override

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

72

//design patterns/

 public void visitTextNode(TextNode textNode) {
 wordCount += wordCount(textNode.getText());
 }

 @Override
 public void visitImageNode(ImageNode imageNode) {
 // You might say there's nothing to do, but let's try this:
 if (imageNode.caption != null) {
 visitTextNode(imageNode.caption);
 }
 }

 /** Simplistic implementation of word counting */
 private int wordCount(String text) {
 // Replace all nonspace chars with nothing;
 // add one because "hello word" has one space,
 // but it is two words.
 return text.trim().
 replaceAll("[^\\s]", "").length() + 1;
 }
}

This code is plugged into main() in a similar fashion:

Visitor wordCountVisitor = new WordCountVisitor();
for (Node n : nodes) {
 n.accept(wordCountVisitor);
}
System.out.printf("The document has about %d words%n",
 ((WordCountVisitor) wordCountVisitor).getWordCount());

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

73

//design patterns/

And when the code is run with the sample document, it prints this, which turns out to be the

correct answer:

The document has about 78 words

Revisiting the JDK
Java 8 and later versions include two sets of visitor types: ElementVisitor or TypeVisitor, and

FileVisitor. The ElementVisitor types are part of the package javax.lang.model, which bills

itself as “Classes and hierarchies of packages used to model the Java programming language.”

I don’t have room in this article to write my own Java compiler, so I’ll skip the language-

modeling types. But I’ll note that the Visitor pattern is often explained in terms of a program

language compiler visiting the nodes of an abstract syntax tree (AST), which is the output of the

parsing phase.

The FileVisitor and its

solitary implementation class,

SimpleFileVisitor in java.nio,

are specialized for process-

ing file hierarchies. They do

follow the visit… naming pat-

tern. A typical use is to subclass

SimpleFileVisitor—overriding one or two of its four methods—and pass an instance of it to the

Files.walkFileTree() method. The nodes you’re visiting this time are actual file system nodes

(represented by inodes in the UNIX/Linux sense). The walkFileTree() method performs the iter-

ation, and it calls your FileVisitor’s visitation methods to “do something” at the beginning and

end of each directory and for each file in each directory. A simple directory lister, for example,

can be made with just the following visitor class (this example is in the visitor.file package in

the GitHub repository):

public class TrivialListerVisitor extends SimpleFileVisitor<Path> {

The Visitor pattern allows you to retain flexibility
to add new methods at a slight cost: the reduction of
encapsulation and the need for every visitor to know about all
the different node types.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/8/docs/api/javax/lang/model/type/TypeVisitor.html

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

74

//design patterns/

 @Override
 public FileVisitResult preVisitDirectory(Path dir,
 BasicFileAttributes attrs) throws IOException {
 System.out.println("Start directory " + dir);
 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult visitFile(Path file,
 BasicFileAttributes attrs) throws IOException {
 System.out.println(file.getFileName());
 return FileVisitResult.CONTINUE;
 }
}

I also need to invoke the walkFileTree() method to do the iteration, using a Path object to

describe the directory. This code is in the main() method of FileVisitorDemo.java:

// Set the starting path
Path startingPath = Paths.get(".");

// Instantiate the Visitor object
FileVisitor<Path> visitor = new TrivialFileVisitor();

// Use the built-in walkFileTree client to
// visit all directory and file nodes
Files.walkFileTree(startingPath, visitor);

This code works, although it’s obviously not a replacement for something like the UNIX/Linux/

MacOS ls command, which sorts the entries and has a zillion options.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

75

//design patterns/

A slightly fancier version might indent one tab stop for each directory level. There’s a start

at making such a thing in the class IndentingFileVisitor in my GitHub repository, although

it doesn’t work superbly yet. To try it, just change the instantiation of the FileVisitor in the

main method.

Conclusion
Besides the examples of the word processor add-on and directory navigation, are there other

uses of the Visitor pattern? Certainly! Examples include its use in compilers (as mentioned

earlier), report writing where different people need different reports, and graphics programs—

in short, any application in which you need to add functionality across a hierarchy without

disrupting (or even changing) the nodes in the hierarchy.

Visitor is like walking around a new company visiting all the teams and having them accept

you (the introductions) and give you their impressions of your job (the visit). The Visitor pattern

allows you to retain flexibility to add new methods at a slight cost: the reduction of encapsula-

tion and the need for every visitor to know about all the different node types. It’s not a one-

size-fits-all pattern. It’s optimal when the number of functionalities that you (might) have to

add is significantly greater than the number of node types in your data structure. If the number

of data types (node types) to be added is greater than the functions you’ll need to add or you

truly know that you won’t need to add new functions very often, don’t use this pattern, but for

the other cases, you’ll find Visitor to be an elegant solution. </article>

Ian Darwin (@Ian_Darwin) has done all kinds of development, from mainframe applications and desktop pub-
lishing applications for UNIX and Windows, to a desktop database application in Java, to healthcare apps in
Java for Android. He’s the author of Java Cookbook and Android Cookbook (both from O’Reilly). He has also
written a few courses and taught many at Learning Tree International.

Previous design patterns
presented in this series:
State Pattern

Command Pattern

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.javamagazine.mozaicreader.com/JulyAugust2018#&pageSet=66&page=0
http://www.javamagazine.mozaicreader.com/MayJune2018#&pageSet=15&page=0

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

76

//fix this/

If you’re a regular reader of this quiz, you know that these questions simulate the level of dif-

ficulty of two different certification tests. Those marked “intermediate” correspond to ques-

tions from the Oracle Certified Associate exam, which contains questions for a preliminary level

of certification. Questions marked “advanced” come from the 1Z0-809 Programmer II exam,

which is the certification test for developers who have been certified at a basic level of Java 8

programming knowledge and now are looking to demonstrate more-advanced expertise.

Question 1 (intermediate). The objective is to create and overload constructors and to differen-

tiate between default and user-defined constructors. Given three classes tied by inheritance:

public class Buffer {
 int capacity = 10;
 String name = "Unknown";
 public Buffer() { super(); }
}

public class NamedBuffer extends Buffer {
 protected NamedBuffer(String name) {
 this.name = name;
 }
}

public class HugeNamedBuffer extends NamedBuffer {
 public HugeNamedBuffer(String name) {

Answer 1
page 80

Quiz Yourself
More intermediate and advanced test questions

SIMON ROBERTS

MIKALAI ZAIKIN

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-808
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-809

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

77

//fix this/

 this.name = name;
 this.capacity = 1000;
 }
}

Which statement is true?
A. Compilation fails at the Buffer class.

B. Compilation fails at the NamedBuffer class.

C. Compilation fails at the HugeNamedBuffer class.

D. Compilation succeeds.

Question 2 (intermediate). The objective is to determine the effect upon object references

and primitive values when they are passed into methods that change the values. Given these

two classes:

public class Message {
 public String text;
 public int code;
 public Message(String text, int code) {
 this.text = text;
 this.code = code;
 }
}

public class Logger {
 static public void log(final Message msg, boolean status) {
 // ... writing message to the log file
 msg.code = 0; // line n1
 status = true;
 }
}

Answer 2
page 83

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

78

//fix this/

And given the following code fragment:

Message m = new Message("Critical error", 255);
boolean handled = false;
Logger.log(m, handled);
System.out.printf("Error code: %d, was handled: %b\n", m.code, handled);

What is the result?
A. Error code: 0, was handled: true

B. Error code: 255, was handled: false

C. Error code: 0, was handled: false

D. Compilation fails because of line n1.

Question 3 (advanced). The objective is to create and use ArrayList, TreeSet, TreeMap, and

ArrayDeque objects. Given this class:

public class Item {
 private String name;
 Item(String name) {
 this.name = name;
 }
 public String toString() {
 return name;
 }

 @Override
 public int hashCode() {
 return name.hashCode();
 }
 @Override
 public boolean equals(Object o) {

Answer 3
page 86

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

79

//fix this/

 return name.equals(((Item)o).name);
 }
}

And given this code fragment:

Item i1 = new Item("2");
Item i2 = new Item("3");
Item i3 = new Item("1");
TreeSet<Item> ts = new TreeSet<>();
ts.add(i2);
ts.add(i1);
ts.add(i3);
System.out.print(ts);

What is the result?
A. [1, 2, 3]

B. [2, 3, 1]

C. [3, 2, 1]

D. The result is a representation of the items 1, 2, and 3, but the items are in an undetermined

order based on the hashcode values of String objects.

E. No output and runtime exception is thrown.

Question 4 (advanced). The objective is to use the Files class to check, read, delete, copy, move,

and manage metadata of a file or directory.

Given the text file text.txt, which contains:

AAA
BBB
CCC

Answer 4
page 88

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

80

//fix this/

Assuming that the file is in the default working directory and is accessible and that, in general,

p correctly refers to the file after this statement executes:

Path p = Paths.get("text.txt");

Which of the following three lines, if run independently, will print the content of the text file to
the console?

A. Files.lines(p).forEach(System.out::println);

B. Files.lines(p).stream().forEach(System.out::println);

C. Files.readAllLines(p).forEach(System.out::println);

D. Files.readAllLines(p).stream().forEach(System.out::println);

E. Files.list(p).forEach(System.out::println);

Answer 1. The correct answer is option C. This question investigates the process of object cre-

ation, object initialization, and, in particular, the rules for passing control from one constructor

to a constructor of a parent class. Of course, the Java compiler checks that the code conforms to

the requirements.

The Buffer class is syntactically sound. The constructor provided and its call to super(); are

correct. The explicitly provided constructor is exactly what the compiler would have inserted if

no constructors had been provided in the source code.

A default constructor is a zero-argument constructor inserted by the compiler. Such a con-

structor passes control directly to the parent class constructor (Object, in this case) with a call to

super(), and it does nothing else. It has the accessibility of the class as a whole (or it is private in

the case of enum types). A default constructor is created by the compiler in the specific situation

Answers

Question 1
page 76

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

81

//fix this/

of a class that has no constructors in its source code. You might think that coding such a con-

structor, as in the Buffer class in this question, is pointless. However, default constructors are

a kind of emergency fallback; as soon as any constructor is provided explicitly, the default con-

structor goes away. That can be surprising. From a stylistic perspective, it probably makes more

sense to entirely avoid the default constructor. If you want to be able to create an object with no

explicit initialization, write that constructor deliberately. If you don’t (and incompletely initial-

ized objects are probably bad for code reliability anyway), don’t let the compiler create it in the

first place.

The call to the superclass constructor must happen in all classes except Object. You don’t

always have to code it, because if no explicit call to either super or this is in the code, the

compiler inserts the call to super() with zero arguments (exactly as is coded explicitly in the

Buffer class).

Given this information, you know that the Buffer class compiles correctly, and option A

is incorrect.

During object initialization, the object’s memory is first allocated (for the entire object,

with data space allocated as needed for all the fields of all the classes in the hierarchy). Then

the initialization process starts by passing control up through the inheritance hierarchy to the

Object that is always found at the top of the hierarchy. This process is performed by the super

calls at the start of every constructor. (Note that a call to this might replace a call to super, but

these amount to sidesteps in the same class, and before any real initialization happens in this

class, a call to super will definitely take control up the hierarchy.) When control reaches the

top (java.lang.Object), the body of the Object constructor is executed, and then control returns

down to the previous constructor. That constructor is executed and returns to the next class

down the hierarchy. This process continues all the way back to the constructor on which new was

invoked. Finally, when that constructor completes, you have an initialized object.

As a side note, no matter how many constructors are invoked in the hierarchy, this process

initializes the single object of the class on which new was called. Of course, other objects might

be created during this process by explicit calls to new on other classes. The essential observa-

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

82

//fix this/

tion here is that a single call to new might result in many constructors being executed, but those

executions are all working to initialize a single object.

Therefore, one of the following three situations will occur in the very first line of any con-

structor, and that situation determines execution flow:
■■ If the first line is an explicit call to another overloaded constructor in the same class (written

as this(...);), execution sidesteps to that constructor.
■■ If the first line is an explicit call to a superclass constructor (written as super(...);), execution

moves up to that superclass constructor.
■■ If the first line is neither this(...) nor super(...), a compiler-generated call to the zero-

argument constructor in the parent class is invoked.

In the NamedBuffer class, there’s no explicit call to this(...) or super(...). Therefore, the third

situation described above applies. The resulting call to the zero-argument constructor is suc-

cessful, because such a constructor is defined (explicitly, in this case) in the parent class Buffer.

Because of this, you can determine that the NamedBuffer class compiles successfully and option B

is incorrect.

The constructor of the HugeNamedBuffer class also follows the third situation described

above—that is, neither this(...) nor super(...) is mentioned. Therefore, just as with the

NamedBuffer, the compiler will insert super(); implicitly. This results in generated bytecode

equivalent to this source code:

 public HugeNamedBuffer(String name) {
 super(); // added by compiler
 this.name = name;
 this.capacity = 1000;
 }

Of course, the parent class (NamedBuffer) has one explicit constructor in the source code. The

existence of that constructor prevents the compiler from generating a default, so this is the

only constructor available for initialization of any NamedBuffer or the NamedBuffer elements of

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

83

//fix this/

any subclass of NamedBuffer. That constructor requires a single String argument. Because of this,

when the code in the HugeNamedBuffer attempts to call a zero-argument constructor, none exists,

and compilation fails. Therefore, option C is correct and option D is incorrect.

Answer 2. The correct answer is option C. This question investigates how values are passed

into methods. This topic is the essence of the Associate exam objective to determine the effect

upon object references and primitive values when they are passed into methods that change

the values.

Unlike some other languages, Java is not a “pure” object-oriented language in that eight

data types, known as the primitive data types, are handled not as objects but as simple values.

Those types, by the way, are boolean, byte, short, char, int, long, float, and double. These types

all have names that are entirely lowercase; don’t confuse them with their object wrapper

counter parts (Boolean, Byte, Short, Character, Integer, Long, Float, and Double). This distinction is

not just esoteric; it has a significant practical impact on how the language works and the effects

that you might see when passing data into method calls.

When you call a method, it’s often necessary to pass information from the caller to the

method. How that happens can have important consequences. Consider this analogy. Imagine

a chef—let’s call her Rachel—who is preparing a breakfast banquet. Rachel has numbered

file cabinets in her office, and one of those cabinets contains her overall plan for the ban-

quet, including a uniquely numbered sheet on which she has written the quantity of pancakes

required. Rachel wants Jamie, one of her assistants, to make the pancakes. Rachel might tell

Jamie how many pancakes to make in either of two distinct ways. She could copy the quantity of

pancakes from her files onto a new piece of paper and hand that paper to Jamie. Alternatively,

she could write the file cabinet and sheet numbers on a piece of paper, hand that information to

Jamie, and invite Jamie to go into the file when she needs to know what to do.

Notice that these two techniques have different consequences if either Rachel or Jamie

decides to change the quantity of pancakes.

If Jamie has the quantity written on her own paper, there are two copies of the num-

Question 2
page 77

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

84

//fix this/

ber, and if either of the cooks writes a new number on her own copy, the other cook’s copy

remains unchanged.

However, if Jamie goes directly to Rachel’s files, then either of them changing the value will

cause both of them to see the new number—if they look at the file after the change is made.

These two forms are exact analogies to how data can be passed into methods in Java.

Furthermore, the consequences of the visibility of changes are the same.

In Java, the value of a variable is always passed by copying that value into a new variable that

is local (or exclusive) to a particular method invocation. (Indeed, if you call the same method

three times, three separate copies will have been created.) This is called pass by value or pass by

copy. It is equivalent to Jamie getting a piece of paper with something written on it. However,

what a “variable” is, and therefore the significance of what is written on the paper, depends on

the data type.

A variable of primitive type contains the actual value represented. But for any data that is of

object type—that is, anything except one of the eight primitive types—the value of the variable

describes how to find the data. That is, the variable contains information equivalent to the filing

cabinet and sheet number where the information can be found.

In the log method, two arguments are passed. One, Message, is an object. The other is a

primitive boolean. From the analogy, this means that for Message, the log method has instruc-

tions on where to find the data and that—potentially—any changes it makes to that data would

alter the original value seen after the log call. However, for the status value, the log method

gets a copy of the true or false value, and it has no ability to interact with the original data in

the caller. Therefore, it has no chance of changing the value that is printed by the printf call

after it returns.

So, at this point you can see that the assignment in line n1 would change the message code

to zero (if it works at all); therefore, any final output message cannot include the error code 255.

This means that option B must be incorrect.

This also means that the assignment to status immediately after line n1 affects the local

copy of the status value and cannot change the value of handled in the caller. Importantly, this

would still be the case even if the variable were called status in the caller. These are entirely

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

85

//fix this/

distinct variables (this would also be true of m

and msg). Because of this, the final output mes-

sage cannot contain the output true, and option

A must be incorrect.

An important issue that’s not yet been

investigated is the effect of the modifier final

on the Message argument. In Java, the modifier

final means that the value of the affected vari-

able must be assigned exactly once and cannot be changed afterward. Why is variable empha-

sized in the preceding sentence? Because a variable that has an object type does not contain the

object; it contains instructions on how to find the object (this is what’s meant by a reference). So,

when it is said that a final variable of object type can never be changed (and it cannot!), what

this means is that the variable cannot refer to a different object. However, it does not mean that

the contents of the object to which it refers can’t be changed. The mutability of the object is a

completely separate issue that depends on how the class is defined (for example, all the primi-

tive wrapper classes, such as Integer and String, are immutable, but a StringBuilder is muta-

ble). In this case, the class has nonfinal fields, and it is entirely mutable. In view of this, you

can determine that there’s no problem with the assignment at line n1, and there’s no reason to

expect compilation to fail. Therefore, option D is incorrect and, in fact, option C is correct.

A final side note is that although you can modify the contents of the original object via the

passed-in reference, you cannot replace (substitute) the whole object in the caller. In the anal-

ogy, when Jamie is given instructions on how to find the information in the cabinet, she gains

the ability to modify the contents of the file. However, Jamie doesn’t have the ability to change

the file in which Rachel will look when she is hunting for her information. To do that, Jamie

would have to write on the notes that are on Rachel’s desk. Those notes tell Rachel which cabi-

net and sheets contain the plans for the banquet. Jamie never gets to modify Rachel’s variables;

she always gets a copy of them. But, if the variable refers to a filing cabinet, Jamie can change

(and see changes in) the contents of those filing cabinets.

Java is not a “pure” object-oriented
language in that eight data types, known
as the primitive data types, are handled not as
objects but as simple values.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

86

//fix this/

In Java, all arguments to method calls are pass by value. That is, the value of the argu-

ment variable is copied into a new variable for use by the method. However, the value of a vari-

able of object type is itself a reference, so the method has access to the original object through

that reference.

Answer 3. The correct answer is option E. The exam objectives include determining whether

exam takers have knowledge of several elements of the Collections API, including the TreeSet.

Two things are significant in the word TreeSet. A Set rejects duplicate entries, but in this ques-

tion no duplicates are offered. The second thing is that a tree structure facilitates fast data

searches by putting the data items in locations based on their order. For this to happen, there

must be an order associated with the items being stored.

In a Java TreeSet, this ordering is determined when the collection is initially built, and it can

be supplied in either of two ways:
■■ Using the natural order of the items. A “natural order” is defined in the Java API documenta-

tion as being the order implicit in the object’s implementation of the java.lang.Comparable

interface. The Item class in this question does not implement that interface.
■■ Using an externally provided ordering. Such an order is provided via an implementation of the

java.lang.Comparator interface. As already mentioned, the order is determined at the time the

collection is constructed; therefore, the comparator must be supplied as a constructor argu-

ment. In this example, no such argument is provided.

Because neither of the options for specifying order is used in this question, the tree cannot work

properly. So, how might this failure be visible?

There are three possibilities: the code doesn’t compile, the code fails to store items in a

rapidly retrievable way (perhaps storing them randomly and then failing to find them), or an

exception is thrown. In fact, after a TreeSet has been created without a Comparator to use for

ordering, any attempt to add an object that does not implement the Comparable interface will

cause the TreeSet.add method to throw a runtime exception. Because of this, option E is correct.

Let’s examine the background for some of the other options.

Clearly, if TreeSet is expected to put items into order, then option A is tempting, because it

Question 3
page 78

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

87

//fix this/

presents the items in alphabetical order. Indeed, if Item implemented Comparable<Item> based

on the String contents of Item, that is the output you would see. The provision of the equals and

hashCode methods based on that String value is distracting and further nudges unwary exam

takers toward this wrong interpretation. But option A is incorrect.

Given that Item implements equals and hashCode based on the String, it could be tempting to

favor the very verbose option D. However, while this might be true for a HashSet that contained

these Item objects, it’s not applicable here. Further, the hashcode value of String objects formed

from single digits is actually the character code of those digits, and those run in monotonically

increasing order (with character 1 having the value 49 and characters 2 and 3 having the values

50 and 51, respectively). Therefore, if the assumptions that might tempt you to select option D

were not incorrect anyway, the correct answer would in fact have been option A, not option D.

But both option A and option D are incorrect.

The alternate ordering suggested by option B is tempting because it’s the order in which

the Item objects are initialized, but this is irrelevant. They are not added in the order in which

they’re created, and unlike with a List, the order of adding isn’t significant to a traditional Set

anyway. Therefore, option B is incorrect.

The order suggested by option C might be tempting if either you expected the descending

order to somehow be natural or you fell for the distraction of the hashcode while simultaneously

believing the hashcode order for String objects formed from single digits to be in descending

order. But option C is incorrect.

A distractor answer that was not offered could have suggested a compiler error. Indeed, it’s

interesting to consider why Java doesn’t reject the use of the zero-argument TreeSet constructor

to build a TreeSet of some object that doesn’t implement the Comparable interface. The problem

is that this situation falls through a “crack” in Java’s generics system. The generics mechanism

allows you to constrain a generic type to require that its type argument implement an interface

such as Comparable. For TreeSet, that would be a declaration along the following lines:

 public class TreeSet<E extends Comparable<E>>

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

88

//fix this/

However, this constraint is not appropriate for TreeSet, because it’s OK to have non-Comparable

contents, as long as a Comparator is supplied at construction time. This level of conditional com-

plexity cannot be expressed by the generics mechanism.

It’s also not possible for the generics mechanism to perform a compile-time check on the

argument to the add method, because the add method is declared in the Set interface, where no

such constraints apply. As a result, the Java compiler cannot analyze the “correctness” of this

use of TreeSet, and the following error occurs at runtime, specifically at ts.add(i2):

Exception in thread "main" java.lang.ClassCastException: Item cannot be cast to
java.lang.Comparable
 at java.util.TreeMap.compare(TreeMap.java:1290)
 at java.util.TreeMap.put(TreeMap.java:538)
 at java.util.TreeSet.add(TreeSet.java:255)
 at TreeSetDemo.main(TreeSetDemo.java:44)

Answer 4. The correct answers are options A, C, and D. This is one of those rather frustrating

questions for which you must simply know some API methods. Such “rote learning” questions

do exist on real exams, and although they’re kept to a minimum, you will obviously score better

if you are able to answer them. Generally, such questions are focused on frequently used meth-

ods (which a regular practitioner would likely have learned in day-to-day usage) or particularly

interesting methods. The methods used here are both very useful and interesting, and with a

little luck you’ll be glad you learned them.

The Java 8 release introduced many functional features to the language and the APIs. The

Stream API and the addition of lambda expressions to the language are probably the most

noticeable, but other additions in both the language and APIs exist.

One change that is frequently used is internal iteration. In traditional iteration, you write a

loop, and in that loop you write code that extracts one item at a time from some kind of collec-

tion and then performs an operation with the extracted item as an argument. Internal iteration

changes this sequence, and instead behavior is passed into the collection. The collection then

Question 4
page 79

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

89

//fix this/

performs the iteration and applies the provided method to each item in turn. This is the job of

the forEach methods.

A forEach method exists in both the Iterable interface of the collections API and in the

various Streams interfaces (both the regular object stream and the three primitive variants).

This question investigates how to obtain the appropriate interface implementations and then

use these methods.

The signatures of both the forEach methods are the same. They take a Consumer<? super E>,

where E is the element type in the Iterable or Stream. The return type is void, and this means

that when it is called on a stream, forEach is a “terminal operation.” Consumer is one of Java’s

standard functional interfaces. It accepts one argument and returns void.

If the forEach method is to be valid, the target object must be either an Iterable (such as a

List or other a collection) or a Stream. Also, the argument type provided to the Consumer must be

applicable to the item type. In this case, all the Consumers have the same println behavior, and

because println can accept any type, you can safely assume that no problems will arise because

of type constraints in any of the options.

Let’s look at the options in turn.

In option A, the subexpression Files.lines(...) has the type Stream<String>. That stream

will produce all the lines in the text file. From the perspective of the question, however, because

it’s a Stream, you can call forEach on it. Therefore, option A is correct.

The expression in option B attempts to invoke a stream() method on the stream expression

just investigated for option A. Needless to say, there is no stream method on a Stream, so option

B will not compile and is incorrect.

Option C illustrates another useful method on the Files class. Files.readAllLines(p) reads

all the data from the file into memory and creates a List<String>. That list and, therefore, the

entire contents of the file, are returned to the caller. In contrast, the lines method used in

option A is generally lazy, as most stream methods are. This means that while it probably reads

chunks of data into a buffer, the lines method should not read anything until some data is

requested downstream. Further, it should read the entire file only if that file is smaller than the

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

90

//fix this/

buffer size. Of course, the java.util.List returned from the readAllLines method implements

Iterable; therefore, you can call forEach on it and print all lines. Notice this forEach is a totally

different method from the one on Stream, but its external behavior is identical. Given this, you

can determine that option C compiles successfully and is correct.

In option D, the initial subexpression Files.readAllLines(p) is the same as in option C.

Therefore, this is an expression of List<String> type. Because you can extract a Stream from a

List, option D is also correct.

Notice that the code in option D is definitely not optimal: First, it draws the entire file into

memory (which might be a problem with a large file). Then it wraps a Stream around that List.

This approach takes extra effort, uses the maximum memory possible for this file, and then

makes a Stream. Going directly to the Stream would reduce memory use, create simpler code, and

still support all the operations you might want to perform using the Stream API.

The Files.list() method shown in option E does not supply the contents of a file. Instead,

it returns a listing of the contents of a directory. The contents are provided in the form of a

stream, specifically Stream<Path>, which makes this a very useful method too, and the code will

compile successfully—although it throws an exception at runtime—because the Path that is

provided refers to a file, not to directory. Because of this, option E is incorrect. </article>

Simon Roberts joined Sun Microsystems in time to teach Sun’s first Java classes in the UK. He created the
Sun Certified Java Programmer and Sun Certified Java Developer exams. He also wrote several Java certi-
fication guides and is currently a freelance educator who publishes recorded and live video training through
Pearson InformIT (available direct and through the O’Reilly Safari Books Online service). He remains involved
with Oracle’s Java certification projects.

Mikalai Zaikin is a lead Java developer at IBA IT Park in Minsk, Belarus. During his career, he has helped Oracle
with development of Java certification exams, and he has been a technical reviewer of several Java certifica-
tion books, including three editions of the famous Sun Certified Programmer for Java study guides by Kathy
Sierra and Bert Bates.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2018

91

//contact us/

Comments
We welcome your comments, corrections,
opinions on topics we’ve covered, and any
other thoughts you feel impor tant to share
with us or our readers. Unless you specifi-
cally tell us that your correspondence is
private, we reserve the right to publish it in
our Letters to the Editor section.

Article Proposals
We welcome article proposals on all
topics regarding Java and other JVM
languages, as well as the JVM itself.
We also are interested in proposals for
articles on Java utilities (either open
source or those bundled with the JDK).
Finally, algorithms, unusual but useful

programming techniques, and most other
topics that hard-core Java programmers
would enjoy are of great interest to us,
too. Please contact us with your ideas
at javamag_us@oracle.com and we’ll
give you our thoughts on the topic and
send you our nifty writer guidelines,
which will give you more information
on preparing an article.

Customer Service
If you’re having trouble with your
subscription, please contact the folks
at java@omeda.com, who will do what-
ever they can to help.

Where?
Comments and article proposals should
be sent to our editor, Andrew Binstock,
at javamag_us@oracle.com.

While they will have no influence on our
decision whether to publish your article
or letter, cookies and edible treats will
be gratefully accepted by our staff at
Java Magazine, Oracle Corporation,
500 Oracle Parkway, MS OPL 3A-3133,
Redwood Shores, CA 94065, USA.

 World’s shortest subscription form
 Download area for code and
other items

 Java Magazine in Japanese

magazine

By and for the Java community

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:javamag_us%40oracle.com?subject=
mailto:java%40omeda.com?subject=
mailto:javamag_us%40oracle.com?subject=
https://www.sub-forms.com/dragon/init.do?site=ora6028_jfnew
http://bit.ly/2b2tXeb
http://bit.ly/2b2tXeb
http://www.oracle.com/technetwork/jp/articles/java/overview/index.html

