
SEPTEMBER/OCTOBER 2016

 JAX-RS 39 | JAVA INTERFACES 47 | FANTOM 53

Devices

and IoT

ORACLE.COM/JAVAMAGAZINE

magazine

By and for the Java community

IOT AND
THE CLOUD32

CONTROLLING
CNC ROUTING
FROM A
RASPBERRY PI

24

INTERACTING
WITH SENSORS14

http://www.oracle.com/javamagazine

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

01

//table of contents /

COVER ART BY I-HUA CHEN

04
From the Editor
Appreciating Limited Choice in

Languages: The more prescriptive

a language is in the details, the

easier it is to code productively.

06
Letters to the Editor
Comments, questions, suggestions,

and kudos

09
Events
Upcoming Java conferences and events

11
JVM Language Summit 2016
Recapping a small annual conference

that dives deeply into the JVM

12
Java Books
Review of Java Performance Companion

39
Enterprise Java

JAX-RS.next: A First Glance
By Sebastian Daschner

A look at what’s coming next in

JAX-RS 2.1

47
New to Java

The Evolving Nature of Interfaces
By Michael Kölling

Understanding multiple inheritance and

the role of Java 8’s default methods

53
JVM Languages

Fantom Programming Language
By Brian Frank

A language that runs on the JVM and

JavaScript VMs and delivers excellent

UI-building capabilities

58
Fix This
By Simon Roberts

Our latest code quiz

23
Java Proposals of Interest
JEP 293: Revising the format

of command-line options

64
User Groups
Danish JUG

65
Contact Us
Have a comment? Suggestion? Want to

submit an article proposal? Here’s how.

By Gastón Hillar

Capturing and responding to data are the heart and soul of IoT. Here’s how

to do both with Java on an inexpensive board that uses an x86 processor.

24
RASPBERRY PI–
CONTROLLED CNC
ROUTER
By Stephen Chin

Programming the Raspberry Pi

to manage cutting, carving,

and routing operations

32
USING THE CLOUD
WITH IOT
By Eric Bruno

By pushing device control and

analytics into an IoT-speciic

cloud, devices can be remotely

managed and operated.

//table of contents /

14
INTERACTING WITH SENSORS
ON INTEL’S X86 GALILEO BOARD

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

02

EDITORIAL

Editor in Chief
Andrew Binstock

Managing Editor
Claire Breen

Copy Editors
Karen Perkins, Jim Donahue

Technical Reviewer
Stephen Chin

DESIGN

Senior Creative Director
Francisco G Delgadillo

Design Director
Richard Merchán

Senior Designer
Arianna Pucherelli

Designer
Jaime Ferrand

Senior Production Manager
Sheila Brennan

Production Designer
Kathy Cygnarowicz

PUBLISHING

Publisher
Jennifer Hamilton +1.650.506.3794

Associate Publisher and Audience
Development Director
Karin Kinnear +1.650.506.1985

Audience Development Manager
Jennifer Kurtz

ADVERTISING SALES

Sales Director
Tom Cometa

Account Manager
Mark Makinney

Account Manager
Marcin Gamza

Advertising Sales Assistant
Cindy Elhaj +1.626.396.9400 x 201

Mailing-List Rentals
Contact your sales representative.

RESOURCES

Oracle Products
+1.800.367.8674 (US/Canada)

Oracle Services
+1.888.283.0591 (US)

ARTICLE SUBMISSION

If you are interested in submitting an article, please email the editors.

SUBSCRIPTION INFORMATION

Subscriptions are complimentary for qualified individuals who complete the
subscription form.

MAGAZINE CUSTOMER SERVICE

java@halldata.com Phone +1.847.763.9635

PRIVACY

Oracle Publishing allows sharing of its mailing list with selected third parties. If you prefer
that your mailing address or email address not be included in this program, contact
Customer Service.

Copyright © 2016, Oracle and/or its affiliates. All Rights Reserved. No part of this publication may be reprinted or otherwise

reproduced without permission from the editors. JAVA MAGAZINE IS PROVIDED ON AN “AS IS” BASIS. ORACLE EXPRESSLY

DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS OR IMPLIED. IN NO EVENT SHALL ORACLE BE LIABLE FOR ANY

DAMAGES OF ANY KIND ARISING FROM YOUR USE OF OR RELIANCE ON ANY INFORMATION PROVIDED HEREIN. Opinions

expressed by authors, editors, and interviewees—even if they are Oracle employees—do not necessarily reflect the views of Oracle.

The information is intended to outline our general product direction. It is intended for information purposes only, and may not

be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied

upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s

products remains at the sole discretion of Oracle. Oracle and Java are registered trademarks of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective owners.

Java Magazine is published bimonthly and made available at no cost to qualified subscribers by

Oracle, 500 Oracle Parkway, MS OPL-3A, Redwood City, CA 94065-1600.

Get Java
Certified
Oracle University

 Get noticed by hiring managers

 Learn from Java experts

 Join online or in the classroom

 Connect with our Java

certification community

Upgrade & Save 35%*

Save 35% when you upgrade or advance your existing Java certification. Offer expires December 31, 2016. Click for further details, terms, and conditions.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:jennifer.hamilton%40oracle.com?subject=
mailto:karin.kinnear%40oracle.com?subject=
mailto:jennifer.s.kurtz%40oracle.com?subject=
mailto:tom.cometa%40oracle.com?subject=
mailto:mark.makinney%40sprocketmedia.com?subject=
mailto:marcin%40sprocketmedia.com?subject=
mailto:cindy%40sprocketmedia.com?subject=
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.sub-forms.com/dragon/init.do?site=ora6028_jfnew
mailto:java%40halldata.com?subject=
mailto:java%40halldata.com?subject=
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=930&sc=%20OUNV160624P00129

https://zeroturnaround.com/software/xrebel/trial/tshirt/?utm_source=javamag&utm_medium=fullpage_october&utm_campaign=xrebeltshirtpromo

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

04

//from the editor /

PHOTOGRAPH BY BOB ADLER/GETTY IMAGES

Our coverage of JDK Enhancement Proposals

(JEPs) in this issue examines a recent pro-

posal to standardize the syntax of command-line

arguments for tools that ship in the JDK. As the

proposal points out in support of its core concern,

presently there are multiple ways of asking for

help from the command line. And if you happen

to guess wrong when using a given tool, you need

to circle through the variety of possibilities. These

can vary from –help to --help to -?. And then

there’s the unmentioned last resort, which is to

run the program with no arguments and see what

kind of information you get in the error message.

I wholly support this standardization, but

I’d go much further. In my view, the syntax of

command-line switches should be included in

style guides for the language. If the Java team

had speciied a standard convention for switches
when it released the language (in the same way

that it recommended initial capitals for class

names and all capitals for constants), this small

annoyance would not exist. The more a language

can formalize small details, the easier it is to get

things done.

But in an ideal world, even this solution is

insuicient. I strongly believe that the abundance
of Java style guides is itself a limitation. I’d far

prefer that there be one consistent set of recom-

mendations that was universally followed. For

example, writing out deinitive guidelines for the

Appreciating Limited Choice
in Languages
The more prescriptive a language is in the details,

the easier it is to code productively.

#developersrule

Start here:
developer.oracle.com

Oracle Cloud.

Built for modern app dev.

Built for you.

Oracle Cloud delivers

high-performance and

battle-tested platform

and infrastructure services

for the most demanding

Java apps.

Java in
the Cloud

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://developer.oracle.com

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

05

//from the editor /

location of opening braces, size

of indents, tabs vs. spaces, how

to stagger or not stagger if/else

sequences, Javadoc’s numerous

formatting options, and so forth.

Obviously, this would apply to

higher-level concerns as well: fully

expanded imports vs. wildcards,

the sequence of import state-

ments and variable declarations,

and so on. By having a ixed set of
guidelines, every Java listing would

be consistent and not require re-

examination to adjust to a given

individual’s or site’s style.

Curiously enough, in a certain

way, Java’s initial appearance on

the scene addressed what, at the

time, was a tremendous laxity in

language that made some tasks

exceedingly tedious. The principal

language before Java was C. It was

purposely designed from a radi-

cally nonprescriptive perspective.

Even today, after many rounds of

standardization, C has numerous

places where behavior is unde-

ined or left up to the implemen-

tation to deine. In the mid-’90s
when Java irst appeared, C was
far looser. An integer could be

more or less anything the com-

piler deined it to be, with—if I
recall correctly—a minimum of
16 bits of width. 16, 32, and 64 bits

were all legitimate implementa-

tions of an integer. As a result,

porting C from one platform

to another was extraordinarily

tedious. Java solved these prob-

lems. Data items had ixed sizes
across platforms, and code could

be run on multiple platforms

without modiication.
C’s lack of standardization

caused so much pointless activ-

ity that when the original team

from AT&T Bell Labs developed a

new language, Go, they chose a

highly prescriptive implementa-

tion. There is one formalized cod-

ing style for Go, and all code is

expected to use that style. A code

formatter is bundled with the Go

distribution. In the language itself,

there are additional constraints.

For example, the executable code

after any if statement must be

enclosed in braces, even it if con-

tains only a single line. Many other

conventional items are deined by
what is known as “idiomatic Go.”

The happy result is that all Go code

looks the same. Reading and writ-

ing it is easy.

The lack of standardization

of details during the last few

years has been an issue in Java

in small but annoying ways,

beyond command-line syntax. For

example, the three variants of the

annotation for indicating a ield
should not be null: @NonNull,

@Nonnull, and @NotNull. The

irst of these was used by Check-
style and FindBugs, the last of

them by Java EE 6 and the IntelliJ

IDE. The result was that if you

coded in one environment and

moved to a diferent development
environment, you had to change

your code or your toolchain to

get your expected level of null-

checking. This is, of course, the

exact antithesis of Java’s vaunted

portability, when switching IDEs

is enough to make code behave

diferently. Fortunately, Java 8’s
use of the Checker framework has

now consolidated the convention

around @NonNull.

The convenience and beneits
of such strictures that ensure

uniform syntax are widely rec-

ognized. This is evident in the

choice of most modern develop-

ment organizations to prescribe

their own “house style” for code,

which is frequently enforced in

code reviews, so that all develop-

ers use the same conventions. But

these styles conlict with each
other for lack of a single, uniied
set of conventions.

If the world were all Java, I

think it would not be too onerous

to put up with the diferences,
although the time lost in doing so

is lost for no good reason.

But in an increasingly poly-

glot world in which other lan-

guages (JavaScript, HTML, and

so on) play signiicant roles, the
lack of enforced coding standards

in Java and especially across those

languages combine to create a

sustained and pointless drag on

productivity.

Andrew Binstock, Editor in Chief

javamag_us@oracle.com

@platypusguy

Most modern development
organizations prescribe
their own “house style”
for code, which is frequently
enforced in code reviews. But
these styles conflict with each
other for lack of a single, unified
set of conventions.

Coming in November:

our special issue on JUnit 5.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:javamag_us%40oracle.com?subject=
https://twitter.com/platypusguy

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

06

//letters to the editor /

The Limitations of JSON-P

The article by David Delabassée titled “Using the Java

APIs for JSON Processing” in the July/August 2016 issue

does not mention signiicant problems with the JSON-P
standard, which is poorly designed, and the reference
implementation, which is poorly implemented.

I believe the standard is poorly designed because
neither of the two APIs in the standard support pars-
ing and serialization of plain old Java objects (POJOs)
to and from JSON, the natural it for an object-
oriented language.

JSON parsers and serializers written with the
JSON-P API are too big, require too many API calls,
and are too fragile, requiring extensive changes if the
structure of the JSON to be processed changes.

I believe the reference implementation is poorly
implemented because in my use case, converting
thousands of Java objects to JSON strings of 500 to
50,000 characters each, a program using the Jackson
API’s object model converted a real data set to JSON an
astounding 10 times faster than one using the object
model API in the JSON-P reference implementation.
The presumably more eicient streaming API in JSON-P
would have required unmaintainable code in which the
API calls to open JSON arrays and objects were often
widely separated from the API calls to close them.

So, I believe you should discuss alternative JSON

processing libraries such as Jackson and GSON.
—Jefrey S. Mayo

Norcross, Georgia

David Delabassée responds: “In the article, I discuss

marshaling: ‘Note that binding (that is, marshaling of

Java objects to JSON documents and vice versa) will be

addressed in a related API, the Java API for JSON Binding

(JSON-B), which is currently being deined in JSR 367.’”

The editors add: “JSON-P is part of the Java EE stan-

dard and has an elegant parsing interface; in addition,

it’s fast. When JSON-B is inalized, we’ll cover it in Java

Magazine as well. Jackson and GSON both represent good
choices for developers needing JSON serialization now.”

The Practice of Small Classes

With respect to your editorial in the July/August issue,
“The Problem of Writing Small Classes,” I second your

idea and argumentation about writing small classes
in any “normal” code project. But when it comes to
web development (servlets) or when writing a RESTful
API, I always ind it quite painful to externalize lots of
pure (RESTful) logic just to stay within my own limits.

Just as an example, I have a REST resource class
called ItemResource. I deine several methods that
make use of diferent media types and deine several
request mappings and request methods (using Spring,
but it would be the same with pure Java EE).

So, alone with the imports, injections, method
deinitions, annotations, and logging plus the pure
calls to business (Entity) classes and some Java 8
stream processing (mostly one-liners), I easily reach
200 lines of code or more.

I start to believe in the best of both worlds—
trying to keep it simple and small but still binding
semantic units together. A class should still be a class,
and if we divide this more and more into smaller
parts we could end up with one-method classes or
endless delegations to deeper classes.

I tend to not limit myself to a hard number of

lines, but take other measures in metrics plugins such
as method complexity and try to take the separation
of concerns seriously.

—Alex Hepp
Germany

JAVA 9’S NEW REPL 43 | NIO.2 49 | ADVANCED GENERICS 56 | JRUBY 62

ENTERPRISE JAVA

JULY/AUGUST 2016

ORACLE.COM/JAVAMAGAZINE

JSON-P

PROCESS DATA

EASILY

31
JAVAMAIL

AUTOMATE

ALERTS FROM

JAVA EE APPS

37
JASPIC

AUTHENTICATION

FOR CONTAINERS

25
JSF 2.3

WHAT’S

COMING?

17

JULY/AUGUST 2016

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

07

//letters to the editor /

Why Monospaced Fonts?

In your editorial in the July/August issue, you men-
tion that the code font is under discussion. Why not
use a nice sans-serif proportional font like Tahoma
or any other open font? Most important: Do syntax
highlighting!

Monospaced fonts for modern code samples are
completely old-fashioned and totally horrible. Nobody
needs to have columns vertically aligned anymore as

was useful in COBOL and Fortran times.
The advantage of syntax highlighting is obvious.

It is so much easier to see keywords, constants, com-
ments, and so on with little efort. Which scheme is
used for colors, italics, and font weight is highly sub-
jective, of course.

—Hubert Kauker
Germany

Andrew Binstock responds: “I can see no possible beneit
from giving up monospaced fonts for coding. I would note
that every reputable website and publisher uses monospace.
In addition, so does just about every developer I know—by
which I mean every developer whose code I’ve seen.

“Syntax highlighting is not ideal. The irst reason
is that every reader has a diferent preferred scheme.
Moreover, given our generally short printed listings (with

downloadable code available for the entire codebase), the

beneit would be small while the efort and cost required
would be signiicant.”

Contact Us

We welcome comments, suggestions, grumbles,
kudos, article proposals, and chocolate chip cookies.
All but the last two might be edited for publication.
Write to us at javamag_us@oracle.com. For other
ways to reach us, see the last page of this issue.

ATMs, Smartcards, POS Terminals, Blu-ray Players,

Set Top Boxes, Multifunction Printers, PCs, Servers,

Routers, Switches, Parking Meters, Smart Meters,

Lottery Systems, Airplane Systems, IoT Gateways,

Programmable Logic Controllers, Optical Sensors,

Wireless M2M Modules, Access Control Systems,

Medical Devices, Building Controls, Automobiles…

#1 Development Platform

13 Billion
Devices Run Java

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:javamag_us%40oracle.com?subject=
http://oracle.com/java

Coming this fall to selected Linux/ARM devices

AOT-Compiled Java for ARM
Starring: Your Java app and the Excelsior JET Runtime

From version 11.3, Excelsior JET will begin supporting Java SE 8 on ARM-based platforms

Get Your Early Access Copy Now
Registration-Free Download

LICENSEE

https://www.excelsiorjet.com/arm?utm_source=javamagazine&utm_medium=fullpage&utm_campaign=armea&utm_content=pcb

09

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

//events /

PHOTOGRAPH BY ERIC HUYBRECHTS/FLICKR

Devoxx Belgium NOVEMBER 7–11

ANTWERP, BELGIUM

Devoxx Belgium is dedicated to deep learning this year, touching on top-

ics such as quantum computing and machine learning. Tracks will cover

methodology; Java language skills; cloud, containers, and infrastructure;

server-side Java; and more. An estimated 3,500 developers will choose

from more than 200 sessions, including one-hour conference talks,

three-hour hands-on labs, informal presentations, a program for kids,

and more.

Desert Code Camp

OCTOBER 8

CHANDLER, ARIZONA

Desert Code Camp is a free,

developer-based conference

built on community content

that promises “No Fluf:
Only Code.” Topics scheduled

for the Java track include

bots, Amazon Echo, and

language user interfaces;

getting started with Apache

Kafka; and microservices with

Spring Boot.

JAX London

OCTOBER 10 AND 13,

WORKSHOPS

OCTOBER 11–12, CONFERENCE

LONDON, ENGLAND

JAX London is a four-day event

for cutting-edge software

engineers and enterprise-

level professionals, bringing

together the world’s leading

innovators in the ields of Java,
microservices, continuous

delivery, and DevOps. Speakers

include Klara Ward, Oracle’s

Java Mission Control principal

developer, and Raoul-Gabriel

Urma, coauthor of Java 8

in Action.

JavaDay Kiev

OCTOBER 14–15

KIEV, UKRAINE

JavaDay Kiev will feature more

than 50 sessions on topics

ranging from the core JVM

platform and Java SE (Java 8)

to JVM languages to big data

and NoSQL. Five keynotes

are slated, and more than

1,000 developers are expected

to attend this year’s event.

Juergen Hoeller, cofounder and

project lead of the open source

Spring Framework, is scheduled

to speak.

O’Reilly Software Architecture
Conference

OCTOBER 18–19, TRAINING

OCTOBER 19–21, TUTORIALS

AND CONFERENCE

LONDON, ENGLAND

This year, the O’Reilly Soft-

ware Architecture Conference

is exploring evolutionary

architecture to relect the
broadening of the ield,
encompassing disciplines such

as DevOps. Topics will include

strategies for meeting business

goals, developing leadership

skills, and making the concep-

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
https://devoxx.be
http://oct2016.desertcodecamp.com/home
https://jaxlondon.com
http://javaday.org.ua/kyiv/
http://conferences.oreilly.com/software-architecture/
http://conferences.oreilly.com/software-architecture/

10

//events /

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

esting speakers, core developers

of popular open source technolo-

gies, and professionals willing to

share their knowledge and experi-

ences. Former Oracle Technology

Evangelist Simon Ritter is

scheduled to present “JDK 9: Big
Changes to Make Java Smaller.”

Devoxx Morocco

NOVEMBER 1, UNIVERSITY DAY

NOVEMBER 2–3, CONFERENCE

CASABLANCA, MOROCCO

Devoxx Morocco is the place to

go for learning, networking, and

sharing experiences about Java,

related technologies, and soft-

ware craftsmanship. This year,

more than 1,500 developers are

expected, 150 sessions are slated,

and activities are planned for chil-

dren ages 9 to 15.

QCon

NOVEMBER 7–9, CONFERENCE

NOVEMBER 10–11, WORKSHOPS

SAN FRANCISCO, CALIFORNIA

Billed as a practitioner-driven

software conference, QCon is

designed for technical team

leads, architects, engineering

directors, and project managers.

Tracks include an overview of

Java 9 hosted by QCon Chair Wes

Reisz that will focus on prepping

for JDK 9 and cover concurrency

updates, HTTP/2, uniied logging,
G1 garbage collector, Scala, and

Reactive Streams.

W-JAX

NOVEMBER 7 AND 11, WORKSHOPS

NOVEMBER 8–10, CONFERENCE

MUNICH, GERMANY

The W-JAX conference is focused

on Java, architecture, and soft-

ware innovation. More than 160

presentations on technologies

and languages—ranging from

Java, Scala, and Android to web

programming, agile develop-

ment models, and DevOps—are

planned. (No English page available.)

O’Reilly Software Architecture
Conference

NOVEMBER 13–14, TRAINING

NOVEMBER 14–16, TUTORIALS

AND CONFERENCE

SAN FRANCISCO, CALIFORNIA

Like its European counterpart, the

California version of this confer-

ence will explore evolutionary

architecture. Presentations of

interest to Java developers include

“An Introduction to Reactive

Applications, Reactive Streams,

and Options for the JVM” with

ThirdChannel’s Stephen Pember,

and “Clone Clone Make: A Better
PHOTOGRAPH BY BENBENW/FLICKR

tual jump from software devel-

oper to architect. Java-speciic
highlights include a session

devoted to fault-tolerant pro-

gramming with Hystrix and led

by Pivotal’s Matt Stine, a cloud-

native Java primer with Pivotal’s

Josh Long, and a presentation on

best practices in the use of con-

tainers by Red Hat’s Mark Little.

Java Forum Nord

OCTOBER 20

HANOVER, GERMANY

Java Forum Nord is a one-day,

noncommercial conference in

northern Germany for Java devel-

opers and decision-makers. With

more than 25 presentations in

parallel tracks and a diverse pro-

gram, the event also provides net-

working opportunities. (No English

page available.)

VOXXED Days Thessaloniki

OCTOBER 21

THESSALONIKI, GREECE

The inaugural VOXXED Days event

in Thessaloniki is a developer

conference that promises inter-

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
http://devoxx.ma
https://qconsf.com
https://jax.de
http://conferences.oreilly.com/software-architecture
http://conferences.oreilly.com/software-architecture
http://www.java-forum-nord.de
http://voxxeddays.com/thessaloniki

11

//events /

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

Way to Build,” led by IBM’s

Dan Heidinga.

Topconf

NOVEMBER 15, WORKSHOPS

NOVEMBER 16–18, CONFERENCE

TALLIN, ESTONIA

Java and the JVM, reactive archi-

tectures, sustainable develop-

ment, and big data highlight this

year’s conference. Couchbase

Developer Advocate Laurent

Doguin will present a practical

example of RxJava, and

MATHEMA Software Senior

Consultant Thomas Künneth

will discuss current approaches

to Java on mobile devices.

Java Enterprise Summit

NOVEMBER 28–30

BERLIN, GERMANY

What does a state-of-the-art

enterprise Java application look

like? Which APIs are useful? What

are the roles of various web and

JavaScript frameworks? And how

important is standard Java EE

today? These and many other

questions will be discussed at this

year’s Java Enterprise Summit. A

large training event is held con-

currently with the Micro Services

Summit, hosting 24 power work-

shops with well-known German

microservices and enterprise Java

experts. (No English page available.)

ConFoo

DECEMBER 5–7

VANCOUVER, CANADA

This multitechnology conference

for web developers features ses-

sions on Java and JVM. Scheduled

topics include Java 9; caching;

machine-learning models with

Java- and Spark-based tools;

Docker and Java; and writing bet-

ter streams with Java 8.

Special Note: Event Cancellation

QCon Rio

OCTOBER 5–7

RIO DE JANEIRO, BRAZIL

The organizers report: “Faced
with an unstable political and

economic environment . . . we

considered it prudent to cancel our

edition of QCon 2016. We empha-

size that this decision does not

afect the preparation of QCon
São Paulo 2017.”

Have an upcoming conference

you’d like to add to our listing?

Send us a link and a description of

your event four months in advance

at javamag_us@oracle.com.

For the past nine years, Oracle (and earlier, Sun) has

been sponsoring a small gathering of Java experts whose

primary work is on the JVM. The roughly 150 attendees

gather to discuss the JVM and JVM languages.

Unlike most conferences, at this summit there is

only a single track, attended by all the participants.

Over three days, many sessions of surpassing inter-

est are presented. All of them are recorded. The videos

for the 2016 summit are posted on YouTube. This year’s

summit in early August saw particular focus on Java 9

and post–Java 9 releases.

As for JVM languages, you can ind videos of ses-

sions on implementation details and upcoming features

for Kotlin and Scala. And there are sessions that focus

on standalone technical topics: immutable collections,
bytecodes, use of Intel vector instructions, and so forth.

While the sessions are technically demanding,

you do not need deep knowledge of the JVM to follow

along. However, as you’ll see in the videos, you do need

some luency with the terminology of JVM functions
and features.

The conference is held in July or August at Oracle’s

campus in Santa Clara, California. While attendance is

intentionally kept low, developers working on JVM top-

ics can apply to attend on the conference’s home page.

Attendance is generally opened 60 days before the next

summit begins. The home page also includes links to

the videos of sessions from previous summits. Enjoy the

deep dives! —Andrew Binstock

JVM Language Summit 2016

//event recap /

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
http://topconf.com/tallinn-2016/
http://javaenterprisesummit.de
https://confoo.ca/en/yvr2016
mailto:http://qconrio.com?subject=
mailto:javamag_us%40oracle.com?subject=
http://bit.ly/2bXW8NV
http://openjdk.java.net/projects/mlvm/jvmlangsummit/

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

12

This book’s title—in which

Companion is the operative

word—indicates its primary

mission: a supplement to the

highly regarded classic on

JVM performance tuning, Java

Performance, by Charlie Hunt

and Binu John. However, that

book irst appeared toward the
end of 2011 and has not been

updated by a second edition.

So, this new volume provides

information on the central per-

formance topic that came after

2011: the G1 garbage collector.

While G1, which is a standard

part of Java releases since JDK 7,

update 4, has been designed to

require only a few options (after

which the garbage collector will

sort out its ideal coniguration),
certain workloads can beneit
from an admin’s additional

tuning through switches and

runtime parameters.

The discussion of G1 starts

with an introduction compar-

ing garbage collectors, followed

by a deep dive into its internals.

And, inally, there are explana-

tions (and recommendations)
regarding the various conigura-

tion options that can be set by an

admin. The writing is clear but

does make occasional references

to the original book. It’s best to

read this volume as an adjunct to

that work, although for readers

familiar with JVM innards, it can

be read by itself.

The second half of the book

is dedicated to the Java Service-

ability Agent (SA), a little-known
debugging utility in the JDK. The

SA attaches to a running process

and takes a complete snapshot,

which it translates into human-

readable format. It includes full

stack and heap info, plus data on

the running processes. In addi-

tion, it provides very detailed

analysis of core dumps when

programs lock up or sufer fatal
exceptions. This data supple-

ments that provided by jhat, the

mainstay JDK analyzer of heap

dump iles.
Finally, an appendix reviews

performance-related command-

line options that have been added

to the JVM since the original book

appeared. Each switch enjoys

several paragraphs of explanation
and recommendations on its use.

Although a US$50 cover price

for a 150-page book seems more

than a tad on the expensive side,
the information in this slim vol-

ume will be valuable enough to

sites that need top performance

that the price should represent

no obstacle. With that in mind, I

have no diiculty recommend-

ing this book unreservedly.

—Andrew Binstock

//java books /

JAVA PERFORMANCE COMPANION

By Charlie Hunt, Monica Beckwith, et al.

Addison-Wesley

http://www.oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.pearsonhighered.com/program/Hunt-Java-Performance-Companion/PGM168439.html

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

13
ART BY I-HUA CHEN

I
n this issue, our feature articles focus

on how to program devices. The

devices range from small, single-

purpose hardware items to complex

machines. When hooked together,

typically via the cloud, they form the

Internet of Things (IoT). Much of IoT

programming consists of raw data pro-

cessing: you gather data from the device,

and you send it commands. The biggest

challenges are accessing the device and

knowing the command sequence that

translates into speciic actions. Learn
how to do most of this, add a little back-

end processing in the cloud, and you’re

most of the way there.

This issue has three articles that

build on each other to show how this

kind of programming is done in Java. The

irst article, by Gastón Hillar (page 14),

shows the basics of accessing a device—in

this case, an inexpensive Intel-based IoT

board—and using its features by querying

sensors and turning on various pins that

light an LED. If you’re not terribly famil-
iar with Java access to hardware, this is

the article to start with. It’s an ideal hob-

byist project: instructive and useful, and

it can be completed in a single afternoon.

The second article (page 24) dem-

onstrates how to control a CNC router by

sending commands to it from a Raspberry

Pi board. CNC routers are devices that

shape hardware items by grinding down

or cutting a piece of material into the

right shape. They’re like 3-D printers
except that they remove material from

a block rather than iteratively build up

the product from new material. As this

article shows, once a connection to the

device is established, the primary task is

getting data from the device and send-

ing it new commands. The Java code

for managing these two activities is

remarkably straightforward. The author,

Stephen Chin, wrote a similar article in

our May/June 2015 issue explaining how

to interact with an electronic scale from a

Raspberry Pi.

For the IoT to become a reality,

devices need to share data and typically

will do so by funneling the data from

multiple devices to a cloud instance. Our

third article on IoT (page 32) shows how

this works on a cloud platform as a ser-

vice custom-made for such data and for

controlling devices remotely.

In addition, you’ll ind our regular
assortment of Java articles: in-depth

tutorials, explorations of JVM languages,

book reviews, letters we’ve received, and

of course, our Java quiz.

Programming Devices

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.javamagazine.mozaicreader.com/MayJune2015/Default/31/0/3225161#&pageSet=31&page=0&contentItem=3225161

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

14

//internet of things /

In this article, I develop and explain a project that measures

ambient light and dims a red, green, blue (RGB) LED in

response. This way, you can see how to interact with ana-

log inputs and pulse width modulation (PWM) outputs using

Java SE 8. I use the latest versions of the Intel IoT Development

Kit, which includes support for Java. I take advantage of

both the upm and mraa libraries, which provide high-level

interfaces for controlling the Intel Galileo Gen 2 board—an

Arduino-compliant x86 chip based on the Pentium architec-

ture. I also show how to control wired electronic components,

sensors, and actuators.

Prerequisites

The Intel Galileo Gen 2 board boots the Yocto Poky Linux

image, which is the latest version of the Intel Galileo microSD

card Linux operating system image. You can download the

latest version of the Yocto Poky image for Galileo from the

Intel website.

For development, I use the Intel System Studio IoT

Edition software. It is an Eclipse-based IDE that makes it easy

to create a new IoT project with Java as the main program-

ming language. I also use the latest available versions of both

the mraa and upm libraries. The mraa library is a low-level

skeleton library for communication on Linux platforms, and

upm is a set of libraries for interacting with sensors and actu-

ators. Both are part of the Intel IoT Development Kit. You can

download Intel System Studio IoT Edition from Intel’s IoT site.

One of the main problems you can face when you start

a new IoT project with Java is that the versions for the upm

and mraa libraries included in Intel System Studio IoT Edition

must match the versions of these libraries installed in the

version of Yocto Poky Linux that is running on the Intel

Galileo Gen 2 board. Unfortunately, I had many problems

when using the synchronization features included in the

IDE and, therefore, I suggest irst updating the libraries in
the IDE and then in the board as separate operations. Select

Intel(R) IoT | Libraries Update… in the main menu for the

IDE and follow the steps to install the latest available versions

for the libraries.

Once the board has inished the boot process with the
microSD card Linux operating system image and is connected

to your LAN through the Ethernet port, the DHCP server will

have assigned the board an IP address. You will need this IP

address later. There are many ways for you to retrieve the

assigned address. For example, if you have access to the web

interface for your DHCP server, you can use it to retrieve the

IP assigned to the device with the MAC address that matches

the one printed on a label in the board.

You can also discover the board and its services on the

LAN automatically through the zero-coniguration network-

GASTÓN HILLAR

Interacting with Sensors on
Intel’s x86 Galileo Board
Capturing data and responding to it are the heart and soul of IoT. Here’s how it works
with Java and an inexpensive board that uses an x86 processor.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://software.intel.com/en-us/iot/hardware/galileo/downloads
https://software.intel.com/en-us/iot/software/ide/eclipse

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

15

//internet of things /

ing implementation. In Windows, you can use the free

Bonjour Browser for Windows. In OS X, you can use the free

Bonjour Browser for OS X.

Both applications display the available Bonjour services,

and you just need to pay attention to those named galileo.

The IP address displayed for the SSH service named galileo is

the one you can use to establish a connection with the board.

Then, use your favorite SSH terminal tool to connect to

Yocto Linux running on the Intel Galileo Gen 2 board by using

the previously retrieved IP address, the root user, and a blank

password. Then, execute the following commands in the

SSH terminal:

opkg update

opkg install mraa

opkg install upm

Then, click Create an IoT Project and select Java Project

in the IDE. I’ll use AmbientLightAndLed as the project name.

Enter the connection name and the IP address for your Intel

Galileo Gen 2 board. This way, the IDE will provide you with

an environment that will upload and run the project to the

speciied board. In the console, you will see the output gener-

ated by the project, and you can run commands in a terminal.

However, as always, once you learn how things work, you

will ind it easier to generate your own scripts and run your
own commands to upload the generated JAR ile and run it.
The IDE provides an integrated debugging experience that is

extremely useful when you start working with the mraa and

upm libraries in Java.

Wiring the Electronic Components

A photoresistor is an electronic component also known as a

light-dependent resistor (LDR) or photocell. It is not the best

component for sensing ambient light with high levels of

accuracy. However, the component is useful for determining

whether the environment is dark, and this example doesn’t

have problems with latencies (that is, delays in reporting the

dimming of light). Just make sure you take into account accu-

racy and latency if you need to sense ambient light in a more

complex project.

The photoresistor is a variable resistor whose resistance

value changes based on the ambient light intensity. When the

ambient light intensity increases, the resistance of the photo-

resistor decreases and vice versa.

The board makes it possible to read voltage values

through the analog input pins. I use a voltage divider con-

iguration that includes the photoresistor as one of its two
resistors. The voltage divider outputs a high voltage value

when the photoresistor receives a high amount of light, and it

outputs a low voltage value when the photoresistor receives a

small amount of light or no light at all.

The Intel Galileo Gen 2 board allows you to use only six

of the digital I/O pins as PWM output pins. These six pins are

labeled with a tilde symbol (~), which relects a preix to the
number on the board.

I use the analog pin labeled A0 to connect the positive

side (+) of the voltage divider that includes the photoresistor.

In addition, I use the following PWM-enabled pins to control

the brightness level of an RGB LED:
■■ Pin ~6 is connected to the anode pin for the red component

of the RGB LED.
■■ Pin ~5 is connected to the anode pin for the green component

of the RGB LED.
■■ Pin ~3 is connected to the anode pin for the blue component

of the RGB LED.

You need the following parts to work with this example:
■■ A photoresistor.
■■ A 10,000Ω (10 kΩ) resistor with 5 percent tolerance. The

color bands for the resistor are brown, black, orange,

and gold.
■■ A common cathode 5 mm RGB LED.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://hobbyistsoftware.com/bonjourbrowser
http://www.tildesoft.com

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

16

//internet of things /

■■ Three 270Ω resistors with 5 percent tolerance. The color
bands for the resistor are red, violet, brown, and gold.

Figure 1 shows the previously mentioned electronic com-

ponents connected to a breadboard, the necessary wirings,

and the wirings from the Intel Galileo Gen 2 board to the

breadboard. (I created the original diagram with the popu-

lar Fritzing multiplatform application. The Fritzing ile is
included in the code bundle related to this article, which is

available in the Java Magazine download area.

There are three PWM-capable GPIO (general-purpose

input/output) pins: ~6, ~5, and ~3. Each of them is connected

to a 270Ω resistor and wired to an anode pin for each LED
color. The common cathode is connected to ground (GND).

The analog input pin labeled A0 is connected to the volt-

age divider built from the photoresistor and a 10 kΩ resistor
with 5 percent tolerance. The photoresistor is wired to the

IOREF pin. I am using the board’s default coniguration and,
therefore, the IOREF voltage is 5V. The 10 kΩ resistor is wired
to GND.

Coding a Class to Dim an LED by Using PWM

Once you inish all the necessary wiring, you need to write
Java code to determine whether you are in a dark environ-

ment and then control the brightness of the three colors of

the RGB LED based on the ambient light value. The code reads

the result of converting a resistance value into a voltage, and

then transforms this analog value into its digital representa-

tion. The code maps the digital value to a voltage value, and

then it maps this voltage value to a darkness or ambient light

measurement value.

In order to keep the code easier to read and understand,

the next Java classes I explain won’t perform checks on the

results of each operation performed. However, in a inal
version of the example, you should check the result of each

call to a method of an instance of the diferent mraa
classes and make sure that the returned value is equal to

mraa.Result.SUCCESS.

I am going to create the following three classes:
■■ VariableBrightnessLed: This class represents an LED con-

nected to the board, and it will allow me to control its

brightness level.
■■ VoltageInput: This class represents a voltage source con-

nected to an analog input pin in the board, and it will allow

me to map the raw values read from the analog input into

voltage values.
■■ SimpleLightSensor: This class represents a light sensor,

and it will allow me to transform a voltage value, measured

with a VoltageInput instance, into a light measurement

and description.

Then, I will create a BoardManager class that creates instances
Figure 1. The electronic components connected to a breadboard and
wired to the Intel Galileo Gen 2 board

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://fritzing.org
http://bit.ly/2b2tXeb

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

17

//internet of things /

of the VariableBrightnessLed and SimpleLightSensor classes,

and will interact with them. Finally, I will create a master

class, called AmbientLightAndLed, which coordinates the

operations of the previously explained classes.

First, I create a new VariableBrightnessLed class that

represents an LED connected to the board that can have a

brightness level from 0 to 255 inclusive. The following code

lines show the import statements that I use for all the classes

and the code for the new class:

import mraa.Aio;

import mraa.Pwm;

class VariableBrightnessLed {

 private final int gpioPin;

 private final String name;

 private final Pwm pwm;

 private int brightnessLevel;

 public VariableBrightnessLed(int gpioPin,

 String name) {

 this.name = name;

 this.gpioPin = gpioPin;

 this.pwm = new Pwm(gpioPin);

 this.pwm.period_us(700);

 this.pwm.enable(true);

 // Set the initial brightness level to 0

 this.setBrightnessLevel(0);

 }

 public void setBrightnessLevel(

 int brightnessLevel) {

 int validBrightnessLevel = brightnessLevel;

 if (validBrightnessLevel > 255) {

 validBrightnessLevel = 255;

 } else if (validBrightnessLevel < 0){

 validBrightnessLevel = 0;

 }

 float convertedLevel =

 validBrightnessLevel / 255f;

 this.pwm.write(convertedLevel);

 this.brightnessLevel = validBrightnessLevel;

 System.out.format(

 "%s LED connected to PWM Pin #%d " +

 "set to brightness level %d.%n",

 this.name,

 this.gpioPin,

 validBrightnessLevel);

 }

 public int getBrightnessLevel() {

 return this.brightnessLevel;

 }

 public int getGpioPin() {

 return this.gpioPin;

 }

}

When I create an instance of the VariableBrightnessLed class,

it is necessary to specify the GPIO pin number to which the

LED is connected in the gpioPin int argument and a name for

the LED in the name String argument. The constructor creates

a new mraa.Pwm instance with the received gpioPin as its pin

argument, saves its reference in the pwm ield, and calls its
period_us method to conigure the PWM period to 700 micro-

seconds (700 µs). This way, the output duty cycle will deter-

mine the percentage of the 700 µs period during which the

signal is in the on state.

For example, a 0.10 (10 percent) output duty cycle means

that the signal is on during 70 µs of the 700 µs period.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

18

//internet of things /

Then, the constructor calls the

pwm.enable method with true as a

parameter to set the enable status

of the PWM-enabled pin and

allow the code to start setting

the output duty-cycle percentage

for the PWM pin with calls to the

pwm.write method.

Finally, the constructor

calls the setBrightnessLevel

method with 0 as the value for

the brightnessLevel argument.

This way, the constructor sets the

brightness level to 0 for the LED

wired to the speciied pin number
and turns of the LED. Speciically,

the call turns of a speciic color component of the RGB LED.
The class declares a setBrightnessLevel method that

translates a brightness level from 0 to 255 (inclusive) into

the appropriate output duty-cycle value for the PWM pin.

The method receives a brightness level int value in the

brightnessLevel argument.

First, the code makes sure that the brightness level is

a value between 0 and 255 (inclusive). If the value is out of

range, the code uses either the lower-level or the upper-

level value and saves it in the validBrightnessLevel

local variable.

Then, the code calculates the required output duty-

cycle percentage for the PWM pin to represent the bright-

ness level as a loat value between 1.0f and 0.0f (100 percent
and 0 percent). It is necessary to divide the valid brightness

level (validBrightnessLevel) by 255f. The code saves the

value in the convertedLevel variable. The next line calls the

this.pwm.write method with the convertedLevel variable for

the percentage argument and sets the output duty cycle for

the pin conigured as the PWM output to convertedLevel.

Finally, the code saves the valid brightness level in the

brightnessLevel ield, which is read-only accessible through
the getBrightnessLevel method. The last line prints details

about the brightness level set to the LED identiied with a
name and wired to a speciic pin number. The line is printed
with System.out.format, and it is possible to see the output

when you run the generated JAR ile through the IDE or by
running commands through SSH on Yocto Linux running on

the board. I’ll dive deep on the beneits of printing useful
information later.

Measuring Ambient Light via Analog Input

Now, I create a new VoltageInput class that represents a volt-

age source connected to an analog input pin on the board. The

following lines show the code for this new class:

class VoltageInput {

 private final int analogPin;

 private final Aio aio;

 public VoltageInput(int analogPin) {

 this.analogPin = analogPin;

 this.aio = new Aio(analogPin);

 // Configure the ADC

 // (short for Analog-to-Digital Converter)

 // resolution to 12 bits (0 to 4095)

 this.aio.setBit(12);

 }

 public float getVoltage() {

 long rawValue = this.aio.read();

 float voltageValue =

 rawValue / 4095f * 5f;

 return voltageValue;

 }

The class declares
a method that
translates a
brightness level
from 0 to 255
(inclusive) into the
appropriate output
duty-cycle value for
the PWM pin.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

19

//internet of things /

 public int getAnalogPin() {

 return analogPin;

 }

}

When I create an instance of the VoltageInput class, it is

necessary to specify, in the analogPin int argument, the

analog pin number to which the voltage source is connected.

The constructor saves the received analog pin number in

the analogPin ield, which is read-only accessible through
the getAnalogPin method. Then, the constructor creates a

new mraa.Aio instance with the received analogPin as its pin

argument, saves its reference in the aio ield, and calls its
setBit method to conigure the analog-to-digital converter
(ADC) resolution to 12 bits. This way, the ADC will provide

4,096 possible values (212 = 4096) to represent from 0V to 5V. A

0 value read from the ADC represents 0V, and 4095 means 5V.

It is necessary to apply a linear function to convert the

raw values read from the analog pin and map them to the

corresponding input voltage values. Thus, the code multiplies

the raw value read from the analog pin by 5 and divides it by

4095 to obtain the input voltage value from the raw value.

As I am using 12 bits of resolution, the detected values will

have a step of 5V / 4095 = 0.001220012V, that is, approximately

1.22 millivolts.

The VoltageInput class declares a getVoltage method

that calls the this.aio.read method to retrieve the raw value

from the analog pin and saves it in the rawValue long vari-

able. The code saves the value in this variable to make it

easy to debug and understand how the code works. Then, the

method calculates the result of dividing rawValue by 4,095

and multiplying it by 5, and saves it to the loat voltageValue

variable. Finally, the method returns the value of the

voltageValue variable. This way, the method returns the

voltage value, converted from the raw value retrieved by the

this.aio.read method.

I have a class that allows me to retrieve a voltage

value from a voltage source. Now, I will create a new Simple

LightSensor class that represents the photoresistor, which

is included in the voltage divider and wired to an analog

pin of the board. The new class uses the previously coded

VoltageInput class that reads and transforms an analog

input. The new class allows me to transform a voltage value

into a light measurement and description. The following lines

show the code for this new class:

class SimpleLightSensor {

 // Light-level descriptions

 public static final String

 LL_EXTREMELY_DARK = "Extremely dark";

 public static final String

 LL_VERY_DARK = "Very dark";

 public static final String

 LL_JUST_DARK = "Just dark";

 public static final String

 LL_SUNNY_DAY = "Like a sunny day";

 // Maximum voltages that determine the light level

 private static final float

 EXTREMELY_DARK = 2.1f;

 private static final float

 VERY_DARK = 3.1f;

 private static final float

 JUST_DARK = 4.05f;

 private final VoltageInput voltageInput;

 private float measuredVoltage = 0f;

 private String lightLevel =

 SimpleLightSensor.LL_SUNNY_DAY;

 public SimpleLightSensor(int analogPin) {

 this.voltageInput =

 new VoltageInput(analogPin);

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

20

//internet of things /

 this.measureLight();

 }

 public void measureLight() {

 this.measuredVoltage =

 this.voltageInput.getVoltage();

 if (this.measuredVoltage <

 SimpleLightSensor.EXTREMELY_DARK) {

 this.lightLevel =

 SimpleLightSensor.LL_EXTREMELY_DARK;

 } else if (this.measuredVoltage <

 SimpleLightSensor.VERY_DARK) {

 this.lightLevel =

 SimpleLightSensor.LL_VERY_DARK;

 } else if (this.measuredVoltage <

 SimpleLightSensor.JUST_DARK) {

 this.lightLevel =

 SimpleLightSensor.LL_JUST_DARK;

 } else {

 this.lightLevel =

 SimpleLightSensor.LL_SUNNY_DAY;

 }

 }

 public String getLightLevel() {

 return this.lightLevel;

 }

}

The class deines the following three class ields, which specify
the maximum voltage values that determine each light level.

■■ EXTREMELY_DARK: 2.1V
■■ VERY_DARK: 3.1V
■■ JUST_DARK: 4.05V

If the retrieved voltage is lower than 2.1V, the environment

is extremely dark. If the retrieved voltage is lower than 3V,

the environment is very dark. If

the retrieved voltage is lower than

4.05V, the environment is just barely

dark. These values work with a spe-

ciic photoresistor; you might have
to check the voltage values that

determine speciic environments in
your own coniguration. It is neces-

sary to change only the values of the

class ields.
The main goal for the Simple

LightSensor class is to convert a

quantitative value (a voltage value) into a qualitative value (an

ambient light description). The class declares the following

four class ields with the descriptions for the light levels:
■■ LL_EXTREMELY_DARK
■■ LL_VERY_DARK
■■ LL_JUST_DARK
■■ LL_SUNNY_DAY

When I create an instance of the SimpleLightSensor class,

I need to specify in the analogPin argument, which is the

analog pin number to which the voltage divider that includes

the photoresistor is connected. The constructor creates a new

VoltageInput instance with the received analogPin argu-

ment and saves its reference in the voltageInput ield. The
next line calls the measureLight method that transforms

the voltage value retrieved with the VoltageInput instance

(this.voltageInput) into a description of the light level.

The class declares the measureLight method, which saves

the voltage value retrieved by calling the this.voltageInput

.getVoltage method in the measuredVoltage ield. Then,
the next lines use the previously explained class ields to
determine whether the value of the measuredVoltage ield is
lower than the maximum voltages that determine each light

level. The code sets the appropriate value for the lightLevel

ield according to the measured voltage value. Then, it is

The new class
allows me to
transform a voltage
value into a light
measurement and
description.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

21

//internet of things /

possible to access the light level description by calling the

getLightLevel method.

Controlling One Input and Three Outputs with a

Board Manager

Now, I will create a new BoardManager class that creates an

instance of the previously coded SimpleLightSensor class and

three instances of the VariableBrightnessLed class. This way,

there is one instance of the VariableBrightnessLed class for

each color component of the RGB LED. The class ires actions
when the ambient light changes. Speciically, the class adjusts
the brightness for the three color components of the RGB LED

based on the measured ambient light. The following lines

show the code for this new class:

class BoardManager {

 public final SimpleLightSensor lightSensor;

 public final VariableBrightnessLed redLed;

 public final VariableBrightnessLed greenLed;

 public final VariableBrightnessLed blueLed;

 public BoardManager() {

 this.lightSensor =

 new SimpleLightSensor(0);

 this.redLed =

 new VariableBrightnessLed(6, "Red");

 this.greenLed =

 new VariableBrightnessLed(5, "Green");

 this.blueLed =

 new VariableBrightnessLed(3, "Blue");

 }

 public void setRGBBrightnessLevel(int value) {

 this.redLed.setBrightnessLevel(value);

 this.greenLed.setBrightnessLevel(value);

 this.blueLed.setBrightnessLevel(value);

 }

 public void updateLedsBasedOnLight() {

 String lightLevel =

 this.lightSensor.getLightLevel();

 switch (lightLevel) {

 case SimpleLightSensor.LL_EXTREMELY_DARK:

 this.setRGBBrightnessLevel(255);

 break;

 case SimpleLightSensor.LL_VERY_DARK:

 this.setRGBBrightnessLevel(128);

 break;

 case SimpleLightSensor.LL_JUST_DARK:

 this.setRGBBrightnessLevel(64);

 break;

 default:

 this.setRGBBrightnessLevel(0);

 break;

 }

 }

}

The BoardManager class declares the following four ields that
the constructor initializes:

■■ lightSensor: An instance of SimpleLightSensor, which

represents the photoresistor included in the voltage divider

connected to the analog pin labeled A0.
■■ redLed: An instance of VariableBrightnessLed, which rep-

resents the red component of the RGB LED connected to the

GPIO pin labeled ~6.
■■ greenLed: An instance of VariableBrightnessLed, which

represents the green component of the RGB LED connected

to the GPIO pin labeled ~5.
■■ blueLed: An instance of VariableBrightnessLed, which rep-

resents the blue component of the RGB LED connected to

the GPIO pin labeled ~3.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

22

//internet of things /

The setRGBBrightnessLevel method calls the set

BrightnessLevel method for the three VariableBrightness

Led instances with the value received as an argument. This

way, the three color components of the RGB LED are set to

the same brightness level through a single call.

The updateLedsBasedOnLight method retrieves the

light-level description from the SimpleLightSensor instance

and calls the previously explained setRGBBrightnessLevel

method to set the brightness level for the three components

of the RGB LED based on the measured light. If it is extremely

dark, the brightness level

is set to 255. If it is very

dark, the brightness level

is set to 128. If it is just

dark, the brightness level

is set to 64. Otherwise, the

brightness level is set to 0,

which means the RGB LED

is completely of.
Now, I will write code

that uses the BoardManager

class to measure the

ambient light and set the brightness for the three color

components of the RGB LED based on the measured ambi-

ent light. The following lines show the code for the new

AmbientLightAndLed class:

public class AmbientLightAndLed {

 public static void main(String[] args) {

 String lastlightLevel = "";

 BoardManager board = new BoardManager();

 while (true) {

 board.lightSensor.measureLight();

 String newLightLevel =

 board.lightSensor.getLightLevel();

 if (newLightLevel != lastlightLevel) {

 // The measured light level has changed

 lastlightLevel = newLightLevel;

 System.out.format(

 "Measured light level: %s%n",

 newLightLevel);

 board.updateLedsBasedOnLight();

 }

 try {

 Thread.sleep(1000);

 } catch (InterruptedException e) {

 System.err.format(

 "Sleep interruption: %s",

 e.toString());

 }

 }

 }

}

The class declares the main method that is executed when I

upload and launch the project on the board. First, the method

initializes the lastLightLevel local variable with an empty

String and creates an instance of the BoardManager class

named board. Then, the method runs a loop forever.

The loop calls the board.lightSensor.measureLight

method to update the ambient light measurement. The next

line saves the light-level description retrieved with the call

to board.lightSensor.getLightLevel in the newLightLevel

local variable. If the new light level is diferent from the last
recorded ambient light level, the code updates the value for

the lastLightLevel variable, prints the measured light level,

and calls the board.updateLedsBasedOnLight method.

You can run the example and use a lashlight or your
smartphone to move light over the photoresistor. You should

see the printed messages and see that the RGB dims and

inally turns of. After you reduce the light in the environ-

ment, the RGB LED increases its brightness.

The main goal for the
SimpleLightSensor class
is to convert a quantitative
value (a voltage value) into a
qualitative value (an ambient
light description).

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

23

//internet of things /

Figure 2 is an example of the output shown in the console

window of the IDE. The console window displays all the mes-

sages I printed, which makes it easy for me to understand

what should happen with the components.

Conclusion

This simple example demonstrates that you can take advan-

tage of Java SE 8 to create high-level code that interacts with

IoT components on the Intel Galileo Gen 2 board. The mraa

and upm libraries are regularly updated, and combining them

with Java makes it easy to leverage your existing knowledge

to undertake IoT projects that interact with diferent kinds of
inputs, outputs, sensors, displays, and actuators. </article>

Gastón Hillar (@gastonhillar) has been working as a software

architect with Java since its irst release. He has 20 years of expe-

rience designing and developing software. He is the author of many

books related to software development, hardware, electronics, and

the Internet of Things.

Yocto Poky Linux image from the Yocto Project

Intel System Studio IoT Edition User Guide for Java

learn more

Figure 2. Console messages

This recent enhancement proposal suggests that the

JDK tools that are run from the command line should

share a common syntax for passed-in arguments. As the

document points out, at present JDK tools don’t share a

common syntactical convention for switches. For exam-

ple, the help command, which most readers will agree

should be consistent across all tools, varies between -?,

-help, and --help.

While JEP 293 primarily advocates uniformity in

future command-line JDK products, it also suggests

that a useful format to adopt would be the set of GNU

syntax conventions, described in large part in getopt(3).

These conventions use a single hyphen for single-letter

options (which can be combined) and a double hyphen

for the so-called “long” options. Although this choice

is likely best because it’s familiar to many users and

libraries exist that already parse its syntax, it sufers
from its own peculiarities (-W is reserved) and conlicts
at points with the POSIX syntax. Of course, this kind of

dialogue is precisely the point of these JEPs—to invite

the community to share its views on potential changes

to the JDK.

This proposal wisely doesn’t advocate changing the

options of existing tools, so no compatibility breakage

is envisioned. Instead, it recommends that new releases

all support the agreed-upon syntax, and, presumably,

that existing tools eventually add duplicate switches to

attain conformity.

JEP 293: Revising the Format
of Command-Line Options

FEATURED JDK ENHANCEMENT PROPOSAL

//java proposals of interest /

Listening for transport dt_socket at address: 8009
Red LED connected to PWM Pin #6 set to brightness level 0.
Green LED connected to PWM Pin #5 set to brightness level 0.
Blue LED connected to PWM Pin #3 set to brightness level 0.
Measured light level: Extremely dark
Red LED connected to PWM Pin #6 set to brightness level 255.
Green LED connected to PWM Pin #5 set to brightness level 255.
Blue LED connected to PWM Pin #3 set to brightness level 255.
Measured light level: Extremely dark
Red LED connected to PWM Pin #6 set to brightness level 128.
Green LED connected to PWM Pin #5 set to brightness level 128.
Blue LED connected to PWM Pin #3 set to brightness level 128.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.yoctoproject.org/tools-resources/projects/poky
https://software.intel.com/en-us/intel-system-studio-iot-edition-guide-for-java
http://openjdk.java.net/jeps/293
http://linux.die.net/man/3/getopt

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

24

//internet of things /

CNC routers are very useful tools for creating physical

objects by carving material out of blocks of wood, plastic,

or even soft metals. (CNC stands for computer numerical

control and simply indicates that the routers are directed by

computers.) They are the opposite of a 3-D printer, which

creates objects by adding material, but they are equally use-

ful. Besides cutting out lat objects, by the careful removal of
material in small layers you can carve complex 3-D geometries

into durable materials.

Traditionally CNC routing was limited to large indus-

trial machines, but modern desktop CNC routers are small

enough to it beside your computer. They are relatively quiet
and have full enclosures to limit the spread of dust and shav-

ings. They use motors similar to 3-D printer motors, so they

have very high accuracy that can be used to create ine detail
in carvings. And they are relatively easy to control, because

they accept standard G-code instructions from an attached

computer or microcontroller. G-code is a simple text-based

language for describing low-level machine instructions that

control a CNC router, 3-D printer, or other machinery. There

are G-code commands to control coordinates, movement,

rotation, and other machine functions.

In this article, I show you how to interface with the

Nomad 883 Pro router produced by Carbide 3D. This router

accepts G-code over a serial connection and uses a Grbl con-

troller on an embedded Arduino board. If you are using a

diferent printer there will most likely be diferent G-code
initialization instructions and possibly a diferent controller
board, so check your printer speciications.

You can ind the complete code for the example I use in
this article on GitHub.

Connecting to the Router

For sending data to the router, I use the UniversalGcode

Sender project by Will Winder. It exposes a simple API for

sending commands to an attached router that uses either a

Grbl or TinyG controller.

To start, download the latest version of UniversalGcode

Sender (version 1.0.9, as of the writing of this article) from the

download page.

Then create a new project in your favorite IDE (I happen

to be using NetBeans) and include the UniversalGcodeSender

.jar ile as a dependency in your project. You can create a new
connection to the router as follows:

static GrblController grblController;

static final CutterListener listener =

 new CutterListener();

static String PORT_NAME = "/dev/ttyACM0";

public static void main(String[] args) throws Exception {

 // Send decimals with "." instead of ",":

 Locale.setDefault(Locale.ENGLISH);

 grblController = new GrblController();

 grblController.addListener(listener);

 grblController.setSingleStepMode(true);

 Boolean openCommPort =

STEPHEN CHIN

Raspberry Pi–Controlled CNC Router
Programming the Raspberry Pi to manage cutting, carving, and routing

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/steveonjava/cnc-star-creator
http://winder.github.io/ugs_website/download/

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

25

//internet of things /

 grblController.openCommPort(PORT_NAME, 115200);

 if (openCommPort != true) {

 throw new IllegalStateException(

 "Cannot open connection to the cutter");

 }

}

PORT_NAME is a constant that speciies the serial port your
router is using, and 115200 is the baud rate at which your

router communicates. To determine the port name of your

router on Mac OS X or Linux, check the output of the dmesg

command right after connecting the router. On Windows,

you can use Device Manager to determine the port name by

checking the Ports section for attached devices.

Note that I am using single-step mode to avoid errors on

the Nomad 883 Pro. It prefers commands to be sent sequen-

tially rather than having them be queued.

Once you have determined the correct port name and ini-

tiated a connection to the router, the next step is to initiate the

router’s homing and tool-measurement step. To initialize the

Nomad 883 Pro, I execute the following G-code commands:

static final List<String> PROBE1 =

 Arrays.asList("G4P0.005", "M05", "G92.1",

 "G54", "G10 L2 P1 X0 Y0 Z0", "G21",

 "G49", "G90", "G10 L2 P1 X0 Y0 Z0",

 "G0 X-2.5 Z-5", "G0 Z-35.000",

 "G38.2Z-105 F800", "G4P0.005");

static final List<String> PROBE2 =

 Arrays.asList("G0 Z-70",

 "G38.2Z-182.675F200.0", "G4P0.005");

static final List<String> PROBE3 =

 Arrays.asList("G0 Z-5", "G0 X-5");

PROBE1 initializes the

coordinate system and

moves to the probe

location. Then it checks

the probe length at

a rate of 800 mm/m.

PROBE2 repeats the

probing at a slower,

more accurate speed

of 200 mm/m. Finally,

PROBE3 moves the head away from the work surface and back

to the home position.

Because the GrblController is designed to be asynchro-

nous, issuing commands requires a little bit of work. To sim-

plify this process, I created some wrapper commands that

send commands and wait for them to inish. Using those
wrapper methods, here is the initialization cycle:

waitForConnection();

homeAndWait();

sendSequenceAndWait(PROBE1);

sendSequenceAndWait(PROBE2);

sendSequenceAndWait(PROBE3);

Before you can issue commands, the initialization cycle of the

router has to inish. For this, I wait until I get back the initial-
ization messages from the CNC router:

private static void waitForConnection()

 throws InterruptedException {

 synchronized (listener) {

 while (!listener.connected) {

 listener.wait();

 }

 }

}

Create a new project in your
favorite IDE (I happen to be
using NetBeans), and include the
UniversalGcodeSender.jar file as
a dependency in your project.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

26

//internet of things /

The implementation of homeAndWait calls the underlying

performHomingMethod on the controller and then waits for the

command to inish executing, as shown here:

static void homeAndWait() throws Exception {

 synchronized(listener) {

 listener.commandComplete = false;

 grblController.performHomingCycle();

 while (!listener.commandComplete) {

 listener.wait();

 }

 }

}

The implementation of sendSequenceAndWait simply iter-

ates through the array and sends each string as a separate

command, after which it waits for the stream of commands

to inish:

static void sendSequenceAndWait(List<String> sequence)

 throws Exception {

 synchronized(listener) {

 grblController.queueCommands(sequence);

 listener.fileStreamComplete = false;

 grblController.beginStreaming();

 while (!listener.fileStreamComplete) {

 listener.wait();

 }

 }

}

All these methods reference a listener that I need to implement

to ind out when the commands and streams are inished.

static class CutterListener

 implements ControllerListener {

 volatile boolean connected;

 volatile boolean commandComplete;

 volatile boolean fileStreamComplete;

 double prbZ;

 @Override

 public synchronized void fileStreamComplete(

 String string, boolean bln) {

 fileStreamComplete = true;

 notify();

 }

 @Override

 public synchronized void commandComplete(

 GcodeCommand gc) {

 commandComplete = true;

 notify();

 }

 @Override

 public void messageForConsole(

 String msg, Boolean verbose) {

 if (!verbose &&

 msg.startsWith("['$H'|'$X' to unlock]")) {

 synchronized (this) {

 connected = true;

 notify();

 }

 }

 if (!verbose && msg.startsWith("[PRB:")) {

 String pattern =

 "\\[PRB\\:-[0-9]*\\.[0-9]*,-[0-9]*\\.[0-9]*," +

 "(-[0-9]*\\.[0-9]*)\\:1\\]";

 Matcher matcher =

 Pattern.compile(pattern).matcher(msg);

 if (matcher.find()) {

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

27

//internet of things /

 prbZ =

 Double.parseDouble(matcher.group(1));

 }

 }

 }

 // Additional empty methods omitted

}

Executing this program homes the router and runs the probe

algorithm to test the length of the tool. The last method

parses the probe output to ind the Z coordinates of the router
when the end-mill’s tip is touching the probe. To output the

probe coordinates and cleanly shut down the router, you can

inish by using the following code:

System.out.println(

 "PRB_Z = " + listener.prbZ);

TimeUnit.SECONDS.sleep(5);

grblController.closeCommPort();

Write down the value of PRB_Z, because you will need it for

calculating the ofset to the workplane.

Calculating the Workspace Location

To igure out the workspace location, you need to manually
move the router to touch the surface of the work area. The

easiest way to do this is to open the UniversalGcodeSender

user interface. To run it, use the appropriate platform-speciic
script or simply type the following at the command line:

java -jar UniversalGcodeSender.jar

The UI lets you specify the port and the baud rate. Choose the

same values you used in your Java program to connect to the

CNC router, and then click the Open button.

Once the router is connected, it is in a “WARN” state,

because the router has not been homed. Navigate to the

Machine Control tab and click the $H button to send a hom-

ing command.

Now you can manually control the router head by using

the X, Y, and Z movement buttons. Start with a course move-

ment speed to get the head close to the work surface, and

then change to a iner movement speed as you get closer.
Using a piece of paper, get the head as close to the work sur-

face as you can without touching the paper, as shown in

Figure 1.

The value for Z shown under the Machine Position

section of the screen tells you where the top of your work

surface is. Record this value as WRK_Z.

To calculate the PROBE_OFFSET, use the following formulas:

PROBE_OFFSET = PRB_Z - WRK_Z - 5

Plugging in the values that I got from my machine gives me:

Figure 1. Putting the head close to the work surface

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

28

//internet of things /

PROBE_OFFSET = -85.525 - (-91.57) - 5

PROBE_OFFSET = 1.045

Once you have calculated the PROBE_OFFSET for your machine,

you can accurately and repeatedly cut through objects to the

top of your work surface.

To modify my program to use the new probe ofset value
I calculated, I am going to reset the coordinate system after

performing the homing and probing steps. To do this, I use a

G10L20 G-code command.

This G-code command enables you to specify X, Y, and

Z values for the new coordinate space. Here is a static string
that has the new coordinates speciied:

static final String COORDINATE_RESET_TEMPLATE

 = "G10 L20 P0 X220 Y205"; // Z is added based on PRB_Z

The P0 modiier speciies that you are modifying the default
coordinate system. The X and Y values should be about right

for any Nomad 883 Pro, but the Z value requires more preci-
sion and should be set using the PROBE_OFFSET value you cal-

culated earlier.

To set the Z value, add the following line after the probe
sequence:

sendCommandAndWait(

 COORDINATE_RESET_TEMPLATE + " Z" +

 (PROBE_OFFSET - listener.prbZ));

Building a Path

To demonstrate how you can generate G-code from within

Java programmatically, I’ll create a simple geometric algo-

rithm to cut out a star pattern. Because I’m doing this in code,

I can make the number of points and the size of the inner and

outer radius conigurable.
The basic algorithm for creating a star is to calculate the

location of equally spaced points along a circle. For a circle of

radius R and a star with P points, you can ind the location of
an outer vertex, v, by using the following algorithm:

x = cos(v * 360 / P)

y = sin(v * 360 / P)

Converting this to radians (where 180 degrees is equal to π
radians), you get the following:

x = cos(v * 2π / P)

y = sin(v * 2π / P)

To complete the algorithm, you also need to calculate the

inner vertices, which occur halfway between each of the outer

vertices. A more generalized algorithm in Java code that gives

you both inner and outer vertices is the following:

for (int i=0; i<points * 2; i++) {

 double r = i%2 == 0 ?

 innerRadius : outerRadius;

 double x = Math.cos(i * Math.PI/points) * r;

 double y = Math.sin(i * Math.PI/points) * r;

}

Now that I know the vertices for creating a star, I can out-

put G-code that will tell the CNC router to trace the outline.

These are the relevant G-code instructions:
■■ G0: Rapidly move to a speciic location.
■■ G1: Perform a linear move to a location.

Both of these methods take optional X, Y, and Z parameters
in decimal format for the location to move to.

To get the starting location of the star, you simply need

to calculate the position of the irst vertex. Conveniently,
sin(0) is 0 and cos(0) is 1, so the earlier algorithm is reduced to

the following:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

29

//internet of things /

x = innerRadius;

y = 0;

Using an ofset to help center the star in the work area and
applying the previously mentioned G-code functions, you get

the following function for moving to the starting location of

the star:

static void moveToStart(

 double innerRadius, double offset)

 throws Exception {

 sendCommandAndWait(

 "G0X" +

 String.format("%.3f", innerRadius + offset) +

 "Y" +

 String.format("%.3f", offset) +

 "Z" +

 String.format("%.3f", MATERIAL_THICKNESS + 1));

}

This uses a modiied version of the sendSequenceAndWait

function that takes a single command. Here is the code for

that function:

static void sendCommandAndWait(String sequence)

 throws Exception {

 synchronized(listener) {

 grblController.queueCommand(sequence);

 listener.fileStreamComplete = false;

 grblController.beginStreaming();

 while (!listener.fileStreamComplete) {

 listener.wait();

 }

 }

}

And the full drawStar function to create the G-code for trac-

ing all of the points of the star is shown here:

static List<String> drawStar(

 int points, double innerRadius,

 double outerRadius, double offset) {

 List<String> gcode =

 new ArrayList<>(points * 2 + 1);

 for (int i=0; i<points * 2; i++) {

 double r = i%2 == 0 ?

 innerRadius : outerRadius;

 double x =

 Math.cos(i * Math.PI/points) * r;

 double y =

 Math.sin(i * Math.PI/points) * r;

 gcode.add("G1X" +

 String.format("%.3f", x + offset) +

 "Y" +

 String.format("%.3f", y + offset));

 }

 gcode.add(gcode.get(0));

 return gcode;

}

To complete the example, I need a few extra G-code sequences:

static final List<String> START_SPINDLE =

 Arrays.asList("G21", "G90", "M3 S9000");

static final List<String> END_SEQUENCE =

 Arrays.asList("M5", "$H", "M30");

These sequences are used at diferent times. The irst
sequence in the code above sets the units to metric (G21),

sets absolute distance mode (G90), and starts the spindle

(M3 S9000). The second sequence is an end sequence that

stops the spindle (M5), homes the head ($H), and then

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

30

//internet of things /

ends the program (M30).

I also need to support multiple passes through the mate-

rial, because acrylic is too hard to cut in one pass. For a 1/8-

inch thick piece of acrylic, I recommend seven passes, each

incrementally deeper. The following code calls the drawStar

function multiple times to accomplish that:

sendSequenceAndWait(START_SPINDLE);

moveToStart(50, 100);

for (int i = 1; i <= Z_STEPS; i++) {

 double newZ = MATERIAL_THICKNESS *

 (Z_STEPS - i) / Z_STEPS;

 sendCommandAndWait(

 "G1Z" + String.format("%.3f", newZ) +

 "F355.600");

 sendCommandAndWait("F1117.600");

 sendSequenceAndWait(

 drawStar(9, 50, 90, 100));

}

sendSequenceAndWait(END_SEQUENCE);

This code makes use of a new argument, F, to G1. It is the

feed rate. You can also call this code by itself to set the feed

rate for subsequent linear operations. Finally, there are two

parameters, the MATERIAL_THICKNESS and number of Z_STEPS,

that you can set based on the material you are using:

static final int Z_STEPS = 7;

static final double

 MATERIAL_THICKNESS = 25.4 * 1/8;

Just to make sure the program is working correctly, you

might want to perform a irst run with no material inside the
machine. If anything unexpected happens, killing the Java

program or pressing the power switch on the Nomad 883 Pro

will immediately stop the operation.

Once you are conident that you have a working applica-

tion, load a piece of acrylic plastic into your Nomad 883 Pro, and

run the program again. The router should slowly cut the acrylic

layer by layer until it gets just above the router’s wasteboard.

Upon completion, vacuum up the plastic scraps and care-

fully remove the inished piece from the tray. You should
have a perfectly cut star similar to the one shown in Figure 2.

Running the Code on the Raspberry Pi

Running the code on the Raspberry Pi is the easiest part of

the process described in this article. Java 8 comes bundled

with the standard Raspbian Linux distribution, so if you have

an up-to-date installation, you already have Java ready to go.

And if you are using NetBeans, there is built-in support for

running the code on the Raspberry Pi using the Remote Java

Platform functionality.

To set up your Raspberry Pi in NetBeans for the irst time:
1. In the Tools menu, choose Java Platforms.

2. Click Add Platform and select Remote Java Standard

Edition.

Figure 2. An acrylic star cut using the presented code

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

31

//internet of things /

3. Name your platform whatever you like and set the fol-

lowing values (as shown in Figure 3):

a. For Host, specify your Raspberry Pi’s IP address.

b. For Username, specify the SSH user (the default is pi).

c. For Password, specify the SSH password (the default

is raspberry).

d. For Remote JRE Path, specify the location of Java 8.

Note: Use sudo update-alternatives --display java

to ind the path.
4. Click Finish.

Now you have a working JRE setup. To enable this in your

project, open the Project Properties dialog box, select the Run

category, and from the Runtime Platform list, select the new

platform you created. You will be prompted to save the new

coniguration, which you can name anything you like.
The inal step is to modify the code to change the port

name to match how the Nomad 883 Pro shows up under

Raspbian Linux. This port name will be available when you

run the dmesg command after connecting the router via a

USB. For me, the following value worked:

static String PORT_NAME = "/dev/ttyACM0";

Once this is all set up, you can run, debug, and proile the
sample code I provided on the Raspberry Pi right from your

IDE. The advantage of running the code on the Raspberry Pi

is that you can execute the application without having a com-

puter hooked up, which frees your expensive laptop or desk-

top from issuing repetitive serial commands. Also, because

the Raspberry Pi is a dedicated device, the chance of timing

delays or system crashes is greatly reduced.

For more information about running Java on the Rasp-

berry Pi, check out the book Raspberry Pi with Java: Program-

ming the Internet of Things (IoT) from Oracle Press. [A chapter

from that book appeared in the May/June 2015 issue of Java

Magazine. —Ed.]

Conclusion

What this project shows is that a lot of the basic program-

ming of devices consists of coniguring the setup to receive
commands from a Java program and then sending those com-

mands to the device in a format it understands. The Java tool-

ing and its large ecosystem of software for devices makes this

particularly easy. </article>

Stephen Chin is the lead Java community manager at Oracle

Technology Network, author of Raspberry Pi with Java, coauthor of

Pro JavaFX Platform, and JavaOne community chair. He is a ive-

time Rock Star Award recipient. Chin interviews hackers in their

natural habitat and posts the videos on http://nighthacking.com/.Figure 3. The configuration screen in NetBeans

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.amazon.com/Raspberry-Pi-Java-Programming-Internet/dp/0071842012
https://www.amazon.com/Raspberry-Pi-Java-Programming-Internet/dp/0071842012
http://nighthacking.com/

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

32

//internet of things /

The growing area of the Internet of Things (IoT) is an end-

to-end discipline involving the integration of remote

devices (sensors, controllers, actuators, and so on) with

server-side analytics, monitoring, database storage, and

enterprise integration. Reliable distributed communication

is also a must. Because of the many platforms, devices, and

discrete activities that must be bound together, the multi-

platform nature of Java makes it an ideal language to work in.

What’s frequently needed, however, is a platform or

framework to help organize all of the related business and

technical activities that go into an IoT application. This is

where the cloud can help.

With respect to the cloud, there are three important

points to remember:
■■ The cloud is more than someone else’s data center. Look

past infrastructure and toward platform as a service (PaaS),

where you’re insulated from details such as servers, load

balancers, clusters, database sizes, and coniguration.
Instead, focus on solving problems and writing code.

■■ PaaS services ofer ways to implement analytics that
don’t replace the fun of Java coding, but instead reduce

tedious tasks.
■■ The cloud puts the power of customer- and business-driven

changes in the hands of business owners. This reduces the

need for developers to make minor changes and tweaks.

For instance, by oloading key analytics from within Java
to the cloud, you leave the task of tuning threshold values,

monitoring details, and dealing with other tunable param-

eters to business owners who know the problem domain and

are in touch with users. In this article, I explore this approach

with an example using Oracle Internet of Things Cloud

Service (hereafter called Oracle IoT Cloud Service or IoTCS).

Using Java and Oracle IoT Cloud Service

Being a PaaS service, Oracle IoT Cloud Service enables you to

focus on building solutions instead of worrying about servers,

software updates, manual deployment, load balancing, and

other infrastructure issues.

Rather than ofering just plain-vanilla PaaS services,
providers increasingly ofer specialized implementations and
frameworks in the cloud, such as Oracle IoT Cloud Service, to

make it easier for you to build applications with less efort,
management, and code.

For IoT analytics, this often means being able to modify

thresholds, add new alerts based on new conditions, and

remove old alerts. Oracle IoT Cloud Service makes these tasks

simple with its built-in Streams Explorer analytics rules. To

see this in action, I’ll examine what it takes to build a cloud

application using these services.

Looking at the IoTCS documentation, you’ll notice many

REST APIs, rules-based analytics, and integration with busi-

ness intelligence, mobile devices, and enterprise systems

based on packages and adapters. It might not be apparent

how Java plays a role. However, Oracle provides a Java-based

IoTCS Client Software Library that facilitates device, gateway,

and enterprise application development in Java.

ERIC BRUNO

Using the Cloud with IoT
By pushing device control and analytics into an IoT-specific cloud, devices can be
remotely managed and operated.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://docs.oracle.com/cloud/latest/iot/IOTRQ/index.html
http://www.oracle.com/technetwork/indexes/downloads/iot-client-libraries-2705514.html

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

33

//internet of things /

For example, IoTCS uses

OAuth 2.0 tokening to implement

much of its security model. Using

the REST APIs, your device would

need to read an SSL keystore,

Base64-encode the appropriate

username and password, send the

proper OAuth 2 handshake mes-

sages, and handle the responses—

all to activate an IoT device and

have it communicate data. Doing

this with pure REST can be tedious.

However, by using parts of the

Oracle IoT Cloud Service Java

Client Software Library, the code

to authenticate and activate an IoT

device is reduced to what’s shown in Listing 1.

Listing 1.

String url = ...

HttpClient httpClient =

 new HttpClient(server_url,uid,pwd);

WebResource resource =

 httpClient.createHTTPClient(true).resource(url);

TokenInputDetails tokenInputDetails =

 new TokenInputDetails();

tokenInputDetails.setTokenType(

 TokenType.TOKEN_TYPE_ACTIVATION);

tokenInputDetails.setDeviceId(endpointID);

tokenInputDetails.setSharedSecret(secret);

String deviceModelStr =

 "urn:com:acme:conveyorbeltmodel";

String messageFormat =

 "urn:com:acme:conveyorbeltmodel:speed";

Authorization authorization =

 new Authorization(resource);

PrivateKey privateKey =

 authorization.activate(tokenInputDetails);

In fact, this code can be reduced further to the following using

the oracle.iot.client.device.DirectlyConnectedDevice

class from the IoTCS Client Software Library (see Listing 2).

Listing 2.

DirectlyConnectedDevice device =

 new DirectlyConnectedDevice();

if (! device.isActivated()) {

 device.activate(getDeviceModelURN());

}

When leveraging the cloud-based development paradigm, the

key is understanding which aspects of an IoT solution to leave

as cloud-handled analytics and which to implement in code.

The goal is to alleviate tedious maintenance requirements by

allowing the business to make changes without new software

deployments. To demonstrate, I describe an IoT application

scenario, dive into the Java code, and explore the Oracle IoT

Cloud Service setup that makes this goal achievable.

Sample Application: Monitoring Industrial Conveyor Belts

In this sample IoT application, a factory conveyor belt is

implemented, monitored, and controlled using Java and

IoTCS. Although the belt motor is emulated here, the Java

code is written with the IoTCS Client Software Library to run

on an actual device or on a gateway connecting the device to

the cloud. It’s assumed that the conveyor belt in this scenario

has the ability to connect to the internet directly to send

Oracle provides
a Java-based
Oracle IoT Cloud
Service Client
Software Library
that facilitates
device, gateway, and
enterprise application
development in Java.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

34

//internet of things /

attribute updates and listen for actions.

The irst step is to create a new device model in the IoTCS

instance, as shown in Figure 1. Here, the device’s data attri-

butes and actions are deined.
In this image, device attributes indicate belt speed, cool-

ing fan speed, oil pressure, and temperature, and an action is

created to power the belt on or of.
On the server side, you deine an IoTCS application to

maintain the device data analytics and integration with other

cloud services or applications. The illustration in Figure 2

shows the overall architecture of the sample end-to-end

IoTCS application. In this case, the monitoring application is

built in Java and runs on premises—on my laptop—but it can

also run in the cloud.

Analytics are deined to handle the threshold processing
to indicate when the cooling fan needs to be turned on or the

belt needs to be shut down (for example, due to overheating

or low oil pressure), and to handle the integration with a Java

monitoring application. Figure 3 shows the implementation

of the TempThreshold1 analytic, deined using Boolean logic

Figure 1. The conveyor belt’s device model in the Oracle IoTCS administrative console

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

35

//internet of things /

with the appropriate device attributes.

The data source is the conveyor belt motor, and the logic

should send an alert when the motor temperature goes above

100 degrees Fahrenheit and the cooling fan speed is less than

1 (the fan is not on). The TempThreshold2 analytic is similar,

except that it looks for a higher temperature (> 150 degrees

Fahrenheit) and a fan speed that is less than 2. The remain-

ing analytics are similar.

However, these analytics are useless unless there’s an

application that listens for the resulting alerts to act on them.

This is the Java monitoring application mentioned previously,

which is integrated through a REST endpoint to which IoTCS

sends the analytics-driven alerts. As a result, the monitor-

ing application instructs the device to change its belt motor

speed, adjust the cooling fan speed, or shut down in response
to the analytics alerts (see Listing 3).

Listing 3.

public static void handleREST(HttpExchange t)

 throws Exception {

 // Read request JSON string

 BufferedReader bodyReader =

 new BufferedReader(

 new InputStreamReader(

 t.getRequestBody()));

 //...

 // Parse the JSON string

 StringReader sr =

 new StringReader(alert.toString());

 JsonReader jr = Json.createReader(sr);

 JsonObject jo = //...

 JsonObject payload =

 jo.getJsonObject("payload");

 // Get the alert type by URN

Figure 2. The architecture of the sample Oracle IoTCS application

“Power” Action

Data
Updates

Data
Updates

ALERT!

Activate

Action
Requests

Oracle IoT Cloud Service Java Device
Client Software Library

Oracle IoT Cloud Service Java Enterprise
Client Software Library

ORACLE

IOT CLOUD SERVICE

Real-Time
Analytics

Model: “Conveyor Belt Device Model”

Device: “Conveyor Belt”

IoT Application: “My Factory”

IoT Integration: “Factory Monitor App”

FACTORY MONITOR

APPLICATION

CONVEYOR

BELT

(EMULATOR)

Figure 3. A Streams Explorer analytic definition

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

36

//internet of things /

 String alertType =

 payload.getString("format");

 switch (alertType) {

 case TEMP_TOO_LOW_ALERT_URN:

 device.set(FAN_SPEED_ATTR,

 OFF);

 break;

 case TEMP_LOW_ALERT_URN:

 device.set(FAN_SPEED_ATTR,

 FAN_LOW_SPEED);

 break;

 case TEMP_MED_ALERT_URN:

 device.set(FAN_SPEED_ATTR,

 FAN_MED_SPEED);

 break;

 case TEMP_HIGH_ALERT_URN:

 device.set(FAN_SPEED_ATTR,

 FAN_HIGH_SPEED);

 break;

 case TEMP_CRITICAL_ALERT_URN:

 shutDownBelt(device);

 break;

 //...

 }

}

With this IoTCS analytics-based implementation, changing

the thresholds that indicate when the cooling fan speed

needs to be increased or decreased doesn’t require changes

to the Java application. The analytics can be set and adjusted
instead by someone who understands the mechanical proper-

ties of the belt motor. The alternative would be the much less

satisfactory hard-coding of values and limits, using code such

as shown in Listing 4.

Listing 4.

VirtualDevice device = event.getVirtualDevice();

int temp = (Integer)namedValue.getValue();

int coolingFanSpeed = device.get(FAN_SPEED_ATTR);

// Determine if action is needed based on new temp

if (temp >= 300) {

 // Shut things down!

 device.set(BELT_SPEED_ATTR, 0);

}

else if (temp > 250 && ...

To receive notiication that the monitoring application
changed the belt or fan speed, the device needs to register for

appropriate attribute changes, as shown in Listing 5.

Listing 5.

DeviceModel model =

 device.getDeviceModel(

 CONVEYOR_BELT_MODEL_URN);

VirtualDevice virtualDevice =

 device.createVirtualDevice(

 device.getEndpointId(),

 model);

virtualDevice.setOnChange(

 BELT_SPEED_ATTR,

 new VirtualDevice

 .ChangeCallback<VirtualDevice>() {

 public void onChange(

 VirtualDevice

 .ChangeEvent<VirtualDevice> e) {

 onBeltSpeedChange(e);

 }

});

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

37

//internet of things /

virtualDevice.setOnChange(

 COOLING_FAN_SPEED_ATTR,

 new VirtualDevice.ChangeCallback<VirtualDevice>() {

 public void onChange(

 VirtualDevice.ChangeEvent<VirtualDevice> e) {

 onFanSpeedChange(e);

 }

});

For cleaner code, I use a Java 8 lambda expression, as shown

in Listing 6. The callback method—not shown—simply

switches on the attribute name to react to the value change

accordingly.

Listing 6.

virtualDevice.setOnChange(

 (VirtualDevice.ChangeEvent<VirtualDevice>

 event) -> {

 onAttributeChange(event);

});

To listen for IoTCS action requests (such as the power action),

the device needs to implement a separate callback (see

Listing 7). The callback method needs to deine the param-

eters to match those deined in the IoTCS device model.

Listing 7.

virtualDevice.setCallable("power",

 new VirtualDevice.Callable<Boolean>() {

 public void call(

 VirtualDevice virtualDevice, Boolean on) {

 belt.power(on);

 }

});

Of course, devices can update their own attributes. To enable

them to do so, use the IoTCS Client Software Library to ensure

that changes are sent to the cloud eiciently. You do this
through the concept of a virtual device, which is the cloud’s

representation of the device itself. The code in Listing 8 starts

the process with a call to VirtualDevice.update. Next, each

attribute value is assigned with a call to VirtualDevice.set.

Finally, a call to VirtualDevice.finish indicates the changes

can be sent to IoTCS. Under the covers, the client library uses

reliable REST-based messaging to send changes to IoTCS.

Listing 8.

virtualDevice.update()

 .set(BELT_SPEED_ATTR, beltSpeed)

 .set(TEMP_ATTR, temp)

 .set(FAN_SPEED_ATTR, fanSpeed)

 .set(OIL_PRESSURE_ATTR, oilPSI)

 .finish();

To receive device attribute updates, the monitoring applica-

tion registers just as the device does. The code in Listing 9

shows this as well as how to call actions and change an attri-

bute value on a device, all from the monitoring application.

Listing 9.

EnterpriseClient ec =

 EnterpriseClient.newClient(APP_NAME);

VirtualDevice virtualDevice =

 ec.createVirtualDevice(

 "0-LENQ", deviceModel);

virtualDevice.setOnChange(/*...*/);

virtualDevice("power", true);

virtualDevice.set(BELT_SPEED_ATTR, 1);

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

38

//internet of things /

In this example, the monitoring application turns the con-

veyor belt on by calling the power action with the right

parameter value and then setting the belt speed.

At this point, everything is in place for the end-to-end

conveyor belt IoT application to function properly. In reality,

the application would have a user interface to more easily

view the activity, but for my purposes, the command line will

do ine. The following listing shows some sample output from
the conveyor belt device emulator as it receives commands

from the monitoring application. [Indented lines are wrapped

from the previous lines. —Ed.]

Created the directly-connected device

--Device model=urn:com:acme:conveyorbeltmodel

--Instance=0-LENQ

--Starting belt speed:0

Motor temp: 70

Motor oil pressure: 0

Mon Jul 25 12:00:37 EDT 2016 :

 0-LENQ : Call : "power"=true

Motor temp: 70

Motor oil pressure: 0

Mon Jul 25 12:00:50 EDT 2016 :

 0-LENQ : onChange : BeltSpeed was: 0, now: 1

Motor temp: 81

Motor oil pressure: 40

Motor temp: 82

Motor oil pressure: 42

...

Mon Jul 25 12:07:50 EDT 2016 :

 0-LENQ : onChange : CoolingFanSpeed was: 0, now: 1

...

IoTCS analytics alert the monitoring application regarding

when to turn the cooling fan on or of, as well as about other
important events such as low oil pressure and overheating

events. The following output shows the monitoring applica-

tion reacting to the various IoTCS analytics alerts.

Listening on http://localhost:7890/monitor/messages

Device: 0-LENQ, OilPressure: 49

Device: 0-LENQ, Temperature: 71

Alert: 0-LENQ, TempThreshold1 - set cooling fan to 1

...

What should be noted from this output, and the correspond-

ing code shown earlier, is how the device and the monitor-

ing application both react to events from IoTCS, as imple-

mented through the Java Client Software Library and driven

by analytics deined in IoTCS itself. The cloud abstracts
much of the tedious coniguration and glue to make this
application functional.

Conclusion

As you can see, a PaaS cloud restores some of the fun to cod-

ing. It removes a level of monotony, and it enables users

to have greater agility for adjusting applications to their
needs. </article>

Eric Bruno is a principal sales consultant and an Oracle IoT

Champion in the Oracle ISV software sales team. He has more than

20 years’ experience in the information technology community as

an enterprise architect, developer, and industry analyst with exper-

tise in full lifecycle, large-scale software architecture, design, and

development.

Oracle IoT Cloud Service home page

OAuth 2.0

learn more

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/cloud/latest/iot/
https://oauth.net/2/

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

39

//enterprise java /

JAX-RS is the standard for developing RESTful HTTP web

services in an enterprise application. It ofers a produc-

tive yet powerful way of deining REST resources by annotat-
ing plain old Java objects (POJOs) that contain the business

logic without needing to write the HTTP plumbing by hand.

Due to the fact that RESTful web services—or HTTP services

implementing some of the REST constraints—are commonly

used in enterprise projects and also because of its productive

programming model, the JAX-RS standard is widely adopted

among Java developers.

Java EE 7 comes with JAX-RS 2.0 (JSR 339), whereas Java

EE 8, which is currently in progress, will contain JAX-RS 2.1

(JSR 370).

This article explains some of the new concepts and fea-

tures the speciication’s update will deliver. These include
support for server-sent events (SSEs), better integration with

other Java EE speciications, and integration of reactive pro-

gramming functionality, as well as non-blocking I/O on the

client side. To follow along, you need some experience with

JAX-RS.

Note: The speciication and all the topics and examples
this article covers are still subject to change. This article,

then, is a preliminary explanation of what very likely will be

included in the next JAX-RS version.

Server-Sent Events

SSEs are a new technology that is part of HTML5. SSEs auto-

matically receive updates from a server via HTTP, and they

ofer an easy-to-use, one-way streaming communication

protocol that perfectly its use cases that have broadcast
updates—for example, social media updates, stock prices, or

news feeds.

The server pushes UTF-8 text-based data as content

type text/event-stream to a client that previously connected

to the streaming endpoint and, therefore, registered for the

events. The format of the events looks as follows:

data: This is a message

event: namedmessage

data: This message has an event name

id: 10

data: This message has an id which will be sent as

 'last event ID' if the client reconnects

This approach of asynchronous events over an established

connection competes with the more powerful WebSockets

standard, which supports bidirectional communication. The

main advantages of SSEs, however, are that they are com-

pliant with HTTP technology, because they use HTTP as the

communication protocol (which makes it easy to integrate

them into existing networks or developer tools), and they

natively support event IDs and reconnects.

JAX-RS 2.1 will support SSEs for both JAX-RS resources

and the clients.

The server side of SSEs. The following code shows an SSE-

enabled JAX-RS endpoint.

SEBASTIAN DASCHNER

JAX-RS.next: A First Glance
A look at what’s coming next in JAX-RS 2.1

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.jcp.org/en/jsr/detail?id=339
https://www.jcp.org/en/jsr/detail?id=370
https://html.spec.whatwg.org/#server-sent-events

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

40

//enterprise java /

@Path("events-examples")

@Singleton

public class EventsResource {

 @Inject

 SseContext sseContext;

 private SseBroadcaster sseBroadcaster;

 private int lastEventId;

 private List<String> messages = new ArrayList<>();

 // see methods initSse(), itemEvents(), newMessage()

 // and createEvent() below

}

The EventsResource class is a singleton Enterprise JavaBean

(EJB). It contains the SseBroadcaster, which is connected to

all clients. SseContext is an injectable context object respon-

sible for creating SSE broadcasters, outputs, and events. The

messages represent the history of all created messages. The

sseBroadcaster is initialized and enhanced with optional

SseBroadcaster.Listeners in the @PostConstruct method.

@PostConstruct

public void initSse() {

 sseBroadcaster = sseContext.newBroadcaster();

 sseBroadcaster.register(

 new SseBroadcaster.Listener() {

 @Override

 public void onException(SseEventOutput output,

 Exception exception) {

 // ...

 }

 @Override

 public void onClose(SseEventOutput output) {

 // ...

 }

 });

}

The clients connect against the following JAX-RS resource:

@GET

@Produces(MediaType.SERVER_SENT_EVENTS)

@Lock(LockType.READ)

public SseEventOutput itemEvents(

 @HeaderParam(HttpHeaders.LAST_EVENT_ID_HEADER)

 @DefaultValue("-1") int lastEventId) {

 final SseEventOutput eventOutput =

 sseContext.newOutput();

 if (!sseBroadcaster.register(eventOutput)) {

 // try to make the client reconnect after

 // 5 seconds

 throw new ServiceUnavailableException(5L);

 }

 if (lastEventId >= 0) {

 // replay messages

 try {

 for (int i = lastEventId;

 i < messages.size(); i++) {

 eventOutput.write(createEvent(

 messages.get(i), i + 1));

 }

 } catch (IOException e) {

 throw new InternalServerErrorException(

 "Could not replay messages ", e);

 }

 }

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

41

//enterprise java /

 return eventOutput;

}

private OutboundSseEvent createEvent(String message,

 int id) {

 return sseContext.newEvent()

 .id(String.valueOf(id))

 .data(message)

 .build();

}

The SseEventOutput return type tells the JAX-RS imple-

mentation to keep the client connection open and capable

of sending events through the broadcaster. Content type

text/event-stream is used for SSEs. The SSE standard speci-

ies that the Last-Event-ID header controls the event stream

of the previously received events; that is, if SSE is supported

by the server, the server resends the events created after

lastEventId.

The method registers the newly created output to the

sseBroadcaster and then immediately resends the events if

the corresponding HTTP header has been sent. After the out-

put is registered to the broadcaster, the client—together with

all other active clients—receives events, which are created

using the SseContext injected to the resource class.

This process is shown in the following code:

@Schedule(second = "*/5", minute = "*", hour = "*",

 persistent = false)

@Lock(LockType.WRITE)

public void newMessage() {

 final String message =

 "It's now: " + LocalDateTime.now();

 messages.add(message);

 final OutboundSseEvent event = createEvent(

 message, ++lastEventId);

 sseBroadcaster.broadcast(event);

}

Here, the @Schedule method is called every ive seconds to
create new events and broadcast them to all connected clients.

I store the messages for later reuse in case any reconnect-

ing client asks to continue the event stream from the last

received message.

The client side of SSEs. JAX-RS 2.1 will also include client-side

functionality to consume SSEs. There are two ways of creating

a connection to an endpoint.

SseEventSource ofers functionality to open a connection
to an SSE endpoint by registering an event listener and, thus,

providing a reactive way of handling the events.

public class SseClient {

 private final WebTarget target =

 ClientBuilder.newClient().target("...");

 private SseEventSource eventSource;

 public void connect(Consumer<String> dataConsumer){

 eventSource = SseEventSource.target(target)

 .register(ev ->

 dataConsumer.accept(ev.readData()))

 .open();

 }

 public void disconnect() {

 if (eventSource != null)

 eventSource.close();

 }

}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

42

//enterprise java /

The SseEventSource is created

by calling the target method

on a WebTarget, registering

an SseEventSource.Listener,

and opening the connection.

After successfully opening

the connection, the current

thread continues and the

listener—which in this case

would be dataConsumer

.accept—is called as soon as

events arrive.

SseEventSource handles all required plumbing, including

reconnecting after a connection loss, by sending an appro-

priate Last-Event-ID header and then handling Retry-After

headers sent from the server appropriately.

If a more sophisticated way is needed, for instance, to

manually control the Last-Event-ID header, you can manu-

ally request an SseEventInput from the server.

public class StatefulSseClient {

 private final WebTarget target =

 ClientBuilder.newClient().target("...");

 private final Consumer<String> dataConsumer;

 private String lastEventId;

 private SseEventInput eventInput;

 public StatefulSseClient(

 Consumer<String> dataConsumer) {

 this.dataConsumer = dataConsumer;

 }

 public void start() {

 eventInput = target

 .request(MediaType.SERVER_SENT_EVENTS)

 .header(HttpHeaders.LAST_EVENT_ID_HEADER,

 lastEventId)

 .get(SseEventInput.class);

 new Thread(() -> {

 while (!eventInput.isClosed()) {

 final InboundSseEvent event =

 eventInput.read();

 if (event != null) {

 lastEventId = event.getId();

 dataConsumer.accept(

 event.readData());

 }

 }

 }).start();

 }

 public void stop() {

 if (eventInput != null &&

 !eventInput.isClosed())

 try {

 eventInput.close();

 } catch (IOException e) {

 // suppress

 }

 }

}

By requesting the input directly, all required information

has to be sent manually and potential reconnects need to

be handled manually. Therefore, the client sends the text/

event-stream HTTP header and expects the response to be

an SseEventInput type that is handled appropriately by the

JAX-RS implementation. This event input is used to receive

the actual incoming events.

Because the eventInput.read method blocks until some

Consumers can call start()
and stop() to resume
and pause the stream,
and all events that happen
during the pause are
replayed after resuming.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

43

//enterprise java /

event is being sent, you need to manually take care of thread-

ing. Therefore, you start a new thread that waits for the events

and, thus, the execution in the start method can continue.

Consumers of the StatefulSseClient class can call

start() and stop() to resume and pause the stream, and

all events that happen during the pause are replayed

after resuming.

Reactive Programming

On the client side, another interesting new feature will be

the integration of reactive computation types, such as

CompletionStage, into the JAX-RS client.

As an example, I’ll call several web services and combine
the results with functionality that is available in JAX-RS 2.0

already.

Suppose I have a slow HTTP endpoint returning a ran-

domly created response after a while, and suppose I want

to consume this service several times and calculate a result

from all responses. Polling the services sequentially and then

constructing the result would lead to long wait times while

the threads are blocked. To avoid that, I can use constructs

such as CompletableFutures together with Java 8 lambdas

and streams.

Here’s a JAX-RS 2.0 client-side example:

final Executor executor =

 Executors.newCachedThreadPool();

// endpoint takes 2 seconds to respond

// with data like {"random":1}

final OptionalDouble average =

 IntStream

 .range(0, 10).parallel()

 .map(i ->

 CompletableFuture.supplyAsync(() ->

 target

 .request(MediaType.APPLICATION_JSON_TYPE)

 .get(JsonObject.class), executor)

 .thenApply(o -> o.getInt("random"))

 .join()

).average();

System.out.println(

 "average = " + average.getAsDouble());

Calling the endpoint via the target results in a 2-second

wait time. To avoid this, I wrap the action in a Completable

Future and extract the total value from the JSON data once

the result is available. The executor is provided as a param-

eter so you can manage the threads for the 10 concurrent

polls while most of the calling threads are waiting. The

execution blocks when join() is called, but because I’m run-

ning the IntStream in parallel, all the results are available at

roughly the same time—after about 2 seconds, rather than

after 20 seconds, as they would be when polling one after

the other. (The stream of results is then aggregated into the

average value.)

This is what is possible today using JAX-RS 2.0 and

CompletableFuture to wrap long-running jobs.

JAX-RS 2.1 will integrate reactive invokers for the client

side. Constructing invocations is enhanced with rx() meth-

ods that wrap responses into a reactive invocation type and,

optionally, use a speciic ExecutorService. Here’s an example:

final ExecutorService executor =

 Executors.newCachedThreadPool();

final OptionalDouble average = IntStream

 .range(0, 10).parallel()

 .map(i -> target

 .request(MediaType.APPLICATION_JSON_TYPE)

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

44

//enterprise java /

 .rx(executor)

 .get(JsonObject.class)

 .thenApply(o -> o.getInt("total"))

 .toCompletableFuture().join()

).average();

System.out.println("average = " +

 average.getAsDouble());

Calling the rx() method conigures the builder to use an
RxInvoker, and the CompletionStage is used as the default

invocation type. Therefore, all subsequent actions, such as

get(), return the responses wrapped in this correspond-

ing reactive type. As in the previous example, I chain several

actions together and CompletionStage.toCompletableFuture

enables me to call join() as well.

This is one of the many useful improvements in the next

release of JAX-RS.

Non-Blocking I/O

Another extension to both the client and the server side will

be support for non-blocking I/O (NIO). By using NIO, the caller

is guaranteed to be able to call certain methods for either

sending data without being blocked or registering a reader

that will eventually be called when data is available.

Server-side NIO. The JAX-RS server-side programming

model will be enhanced so that developers can register

NioReaderHandlers for responses or NioWriterHandlers for

requests, respectively. These callback handlers are called

when data needs to be read or written without blocking.

The following examples show how to read and write data

in a non-blocking way in a JAX-RS resource:

@GET

@Produces(MediaType.APPLICATION_OCTET_STREAM)

public Response download() {

 final InputStream in = // ...

 final byte[] buffer = new byte[1000];

 return Response.ok().entity(

 out -> {

 try {

 final int length = in.read(buffer);

 if (length >= 0) {

 out.write(buffer, 0, length);

 return true;

 }

 in.close();

 return false;

 } catch (IOException e) {

 throw new WebApplicationException(e);

 }

 }).build();

}

The Response.ok().entity method takes an NioWriterHandler

as an argument and, thus, the lambda implementing the

NioWriterHandler.write(NioOutputStream) method is called

each time out is ready to accept data. The handler method is

expected to return a boolean value indicating whether there

is more data to write.

A similar handler approach is realized for reading

uploaded data from the client’s request:

@POST

@Consumes(MediaType.APPLICATION_OCTET_STREAM)

public void upload(@Context Request request) {

 final ByteArrayOutputStream out = // ...

 final byte[] buffer = new byte[1000];

 request.entity(

 in -> {

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

45

//enterprise java /

 try {

 if (in.isFinished()) {

 out.close();

 } else {

 final int length =

 in.read(buffer);

 out.write(

 buffer, 0, length);

 }

 } catch (IOException e) {

 throw new

 WebApplicationException(e);

 }

 });

}

The Request.entity method accepts an NioReaderHandler

.read(NioInputStream) handler and, optionally, an Nio

CompletionHandler or NioErrorHandler, respectively, as

an additional listener. Calling isFinished() on the input

stream reveals whether more data is available.

By using these approaches, you can realize NIO by

specifying asynchronous handlers for the data sent with the

request or response.

Client-side NIO. Similar to the reactive integration in the client

that was shown earlier, the NIO feature is realized as a sepa-

rate invoker, callable by nio() on the Invocation.Builder,

which returns an NioInvoker that is capable of handling non-

blocking requests by NioWriterHandler or NioReaderHandler

callbacks.

The following examples write and read data from the cli-

ent side in a non-blocking way.

final InputStream in = // ...

final byte[] buffer = new byte[1000];

target.request(

 MediaType.APPLICATION_OCTET_STREAM).nio().post(

 out -> {

 try {

 final int length = in.read(buffer);

 if (length >= 0) {

 out.write(buffer, 0, length);

 return true;

 }

 in.close();

 return false;

 } catch (IOException e) {

 throw new WebApplicationException(e);

 }

 });

final OutputStream out = // ...

final byte[] buffer = new byte[1000];

target.request().accept(

 MediaType.APPLICATION_OCTET_STREAM).nio().get(

 in -> {

 try {

 if (in.isFinished()) {

 out.close();

 // processing the output further...

 } else {

 final int length = in.read(buffer);

 out.write(buffer, 0, length);

 }

 } catch (IOException e) {

 throw new WebApplicationException(e);

 }

 });

As on the server side, these builders also optionally accept an

NioErrorHandler.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

46

//enterprise java /

The JAX-RS implementation

for both the client and the server

takes care of the internal processing

of the NIO by using java.nio.*

features so that you don’t need to
worry about scheduling or handling

the asynchronicity.

Integration with Other Specifications

Besides the previously mentioned features that will afect
the JAX-RS programming model, there will also be a few

improvements in how the rest of the speciications work
together within Java EE.

Because Java EE 8 will be the irst version to have native
support for JSON binding via JSON-B, it is crucial to be able

to use that speciication seamlessly with JAX-RS. As of today,
binding XML to POJOs can be realized via Java Architecture

for XML Binding (JAXB) mapping—most likely with a declara-

tive approach using annotations. It works equally well to read

from and write to POJOs that are mapped to JSON with JAX-RS

using the JSON-B provider:

@Path("{id}")

@GET

public Example getExample(

 @PathParam("id") long id) {

 // ...

}

@POST

public void createExample(Example example) {

 // ...

}

public class Example {

 @JsonbTransient

 private long id;

 @JsonbProperty("hello")

 private String greeting;

 // getters & setters omitted

}

Another possible improvement is how other speciications
that work with JAX-RS tackle Contexts and Dependency

Injection (CDI), or JSR 330. Objects managed by the JAX-RS

implementation are injected into the resource classes and

methods mainly via @Context and ield Params.

Conclusion

As of today, JAX-RS 2.0 is a very usable and widely adopted

speciication in Java EE. Version 2.1, which will ship with Java
EE 8, will be improved by the small enhancements and new

features I’ve described here. Other changes that are already in
the API’s snapshot version can be found in the repositories on
GitHub. </article>

Sebastian Daschner (@DaschnerS) is a Java EE freelancer based

in Munich, Germany. He has more than six years of Java experience,

contributes to various open source projects, is a Java Champion,

and participates in the JCP as a JSR 370 Expert Group member.

Daschner evangelizes computer science practices on his blog.

When not working with Java, he loves to travel the world by plane

or motorbike.

JSR 370 web page

learn more

Version 2.1 of
JAX-RS will ship
with new features
in Java EE 8.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/jax-rs
https://blog.sebastian-daschner.com
https://www.jcp.org/en/jsr/detail?id=370

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

47

//new to java /

In the “New to Java” series, I try to provide beneit by picking
topics that invite a deeper understanding of the conceptual

background of a language construct. Often, novice program-

mers have a working knowledge of a concept—that is, they
can use it in many situations, but they lack a deeper under-

standing of the underlying principles that would lead to writ-
ing better code, creating better structures, and making better
decisions about when to use a given construct. Java interfaces

are just such a topic.
In this article, I assume that you have a basic understand-

ing of inheritance. Java interfaces are closely related to inher-

itance, as are the extends and implements keywords. So, I will
discuss why Java has two diferent inheritance mechanisms
(indicated by these keywords), how abstract classes it in, and
what various tasks interfaces can be used for.

As is so often the case, the story of these features starts
with some quite simple and elegant ideas that lead to the def-
inition of concepts in early Java versions, and the story gets
more complicated as Java advances to tackle more-intricate,
real-world problems. This leads to the introduction of default
methods in Java 8, which muddy the waters a bit.

A Little Background on Inheritance

Inheritance is quite straightforward to understand in prin-

ciple: a class can be speciied as an extension of another
class. In such a case, the present class is called a subclass, and

the class it’s extending is called the superclass. Objects of the
subclass have all the properties of both the superclass and
the subclass. They have all ields deined in either subclass or

superclass and also all methods from both. So far, so good.
Inheritance is, however, the equivalent of the Swiss

Army knife in programming: it can be used to achieve some
very diverse goals. I can use inheritance to reuse some code
I have written before, I can use it for subtyping and dynamic
dispatch, I can use it to separate speciication from imple-

mentation, I can use it to specify a contract between diferent
parts of a system, and I can use it for a variety of other tasks.
These are all important, but very diferent, ideas. It is nec-

essary to understand these diferences to get a good feel for
inheritance and interfaces.

Type Inheritance Versus Code Inheritance

Two main capabilities that inheritance provides are the abil-
ity to inherit code and the ability to inherit a type. It is useful
to separate these two ideas conceptually, especially because
standard Java inheritance mixes them together. In Java, every
class I deine also deines a type: as soon as I have a class, I
can create variables of that type, for example.

When I create a subclass (using the extends keyword),
the subclass inherits both the code and the type of the super-

class. Inherited methods are available to be called (I’ll refer to
this as “the code”), and objects of the subclass can be used in
places where objects of the superclass are expected (thus, the
subclass creates a subtype).

Let’s look at an example. If Student is a subclass of
Person, then objects of class Student have the type Student,

but they also have the type Person. A student is a person.
Both the code and the type are inherited.

The Evolving Nature of Interfaces
Understanding multiple inheritance in Java

PHOTOGRAPH BY

JOHN BLYTHE

MICHAEL KÖLLING

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

48

//new to java /

The decision to link type
inheritance and code inheri-
tance in Java is a language
design choice: it was done
because it is often useful, but
it is not the only way a lan-

guage can be designed. Other
programming languages
allow inheriting code with-

out inheriting the type (such
as C++ private inheritance) or
inheriting type without code
(which Java also supports, as I
explain shortly).

Multiple Inheritance

The next idea entering the
mix is multiple inheritance: a
class may have more than
one superclass. Let me give
you an example: PhD students
at my university also work
as instructors. In that sense,
they are like faculty (they are
instructors for a class, have a
room number, a payroll num-

ber, and so on). But they are also students: they are enrolled
in a course, have a student ID number, and so on. I can model
this as multiple inheritance (see Figure 1).

PhDStudent is a subclass of both Faculty and Student.
This way, a PhD student will have the attributes of both stu-

dents and faculty. Conceptually this is straightforward. In
practice, however, the language becomes more complicated
if it allows multiple inheritance, because that introduces new
problems: What if both superclasses have ields with the same
name? What if they have methods with the same signature

but diferent implementations? For these cases, I need lan-

guage constructs that specify some solution to the problem of
ambiguity and name overloading. However, it gets worse.

Diamond Inheritance

A more complicated scenario is known as diamond inheritance

(see Figure 2). This is where a class (PhDStudent) has two
superclasses (Faculty and Student), which in turn have a
common superclass (Person). The inheritance graph forms a
diamond shape.

Now, consider this question: if there is a ield in the top-
level superclass (Person, in this case), should the class at the
bottom (PhDStudent) have one copy of this ield or two? It
inherits this ield twice, after all, once via each of its inheri-
tance branches.

The answer is: it depends. If the ield in question is, say,
an ID number, maybe a PhD student should have two: a stu-

dent ID and a faculty/payroll ID that might be a diferent
number. If the ield is, however, the person’s family name,
then you want only one (the PhD student has only one family
name, even though it is inherited from both superclasses).

In short, things can become very messy. Languages
that allow full, multiple inheritance need to have rules and
constructs to deal with all these situations, and these rules
are complicated.

Type Inheritance to the Rescue

When you think about these problems carefully, you realize
that all the problems with multiple inheritance are related to
inheriting code: method implementations and ields. Multiple
code inheritance is messy, but multiple type inheritance
causes no problems. This fact is coupled with another obser-

vation: multiple code inheritance is not terribly important,
because you can use delegation (using a reference to another
object) instead, but multiple subtyping is often very useful
and not easily replaced in an elegant way.

Figure 1. An example of multiple inheritance

Faculty Student

PhDStudent

Figure 2. An example of diamond inheritance

Faculty Student

PhDStudent

Person

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

49

//new to java /

That is why the Java designers arrived at a pragmatic
solution: allow only single inheritance for code, but allow
multiple inheritance for types.

Interfaces

To make it possible to have diferent rules for types and code,
Java needs to be able to specify types without specifying code.
That is what a Java interface does.

Interfaces specify a Java type (the type name and the sig-

natures of its methods) without specifying any implementa-

tion. No ields and no method bodies are speciied. Interfaces
can contain constants. You can leave out the modiiers
(public static final for constants and public for methods)

—they are implicitly assumed.
This arrangement provides me with two types of inheri-

tance in Java: I can inherit a class (using extends), in which I
inherit both the type and the code, or I can inherit a type only
(using implements) by inheriting from an interface. And I can
now have diferent rules concerning multiple inheritance:
Java permits multiple inheritance for types (interfaces) but
only single inheritance for classes (which contain code).

Benefits of Multiple Inheritance for Types

The beneits of allowing the inheritance of multiple types—
essentially of being able to declare that one object can be
viewed as having a diferent type at diferent times—is quite
easy to see. Suppose you are writing a traic simulation, and
in it you have objects of class Car. Apart from cars, there
are other kinds of active objects in your simulation, such as
pedestrians, trucks, traic lights, and so on. You may then
have a central collection in your program—say, a List—that
holds all the actors:

private List<Actor> actors;

Actor, in this case, could be an interface with an act method:

public interface Actor

{

 void act();

}

Your Car class can then implement this interface:

class Car implements Actor

{

 public void act()

 {

 ...

 }

}

Note that, because Car inherits only the type, including the
signature of the act method, but no code, it must itself supply
the code to implement the type (the implementation of the
act method) before you can create objects from it.

So far, this is just single inheritance and could have been
achieved by inheriting a class. But imagine now that there is
also a list of all objects to be drawn on screen (which is not
the same as the list of actors, because some actors are not
drawn, and some drawn objects are not actors):

private List<Drawable> drawables;

You might also want to save a simulation to permanent
storage at some point, and the objects to be saved might,
again, be a diferent list. To be saved, they need to be of type
Serializable:

private List<Serializable> objectsToSave;

In this case, if the Car objects are part of all three lists (they
act, they are drawn, and they should be saved), the class Car

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

50

//new to java /

can be deined to implement all three interfaces:

class Car implements Actor, Drawable, Serializable ...

Situations like this are common, and allowing multiple
supertypes enables you to view a single object (the car, in
this case) from diferent perspectives, focusing on diferent
aspects to group them with other similar objects or to treat
them according to a certain subset of their possible behaviors.

Java’s GUI event-processing model is built around the
same idea: event handling is achieved via event listeners—
interfaces (such as ActionListener) that often just implement
a single method—so that objects that implement it can be
viewed as being of a listener type when necessary.

Abstract Classes

I should say a few words about abstract classes, because it is
common to wonder how they relate to interfaces. Abstract
classes sit halfway between classes and interfaces: they
deine a type and can contain code (as classes do), but they
can also have abstract methods—methods that are speciied
only, but not implemented. You can think of them as partially
implemented classes with some gaps in them (code that is
missing and needs to be illed in by subclasses).

In my example above, the Actor interface could be an
abstract class instead. The act method itself might be
abstract (because it is diferent in each speciic actor and
there is no reasonable default), but maybe it contains some
other code that is common to all actors.

In this case, I can write Actor as an abstract class, and
the inheritance declaration of my Car class would look
like this:

class Car extends Actor implements Drawable, Serializable

...

If I want several of my interfaces to contain code, turning
them all into abstract classes does not work. As I stated
before, Java allows only single inheritance for classes (that
means only one class can be listed after the extends key-

word). Multiple inheritance is for interfaces only.
There is a way out, though: default methods, which were

introduced in Java 8. I’ll get to them shortly.

Empty Interfaces

Sometimes you come across interfaces that are empty—

they deine only the interface name and no methods.
Serializable, mentioned previously, is such an interface.
Cloneable is another. These interfaces are known as marker

interfaces. They mark certain classes as possessing a speciic
property, and their purpose is more closely related to provid-

ing metadata than to implementing a type or deining a con-

tract between parts of a program. Java, since version 5, has
had annotations, which are a better way of providing meta-

data. There is little reason today to use marker interfaces in
Java. If you are tempted, look instead at using annotations.

A New Dawn with Java 8

So far, I have purposely ignored some new features that were
introduced with Java 8. This is because Java 8 adds function-

ality that contradicts some of the earlier design decisions
of the language (such as “only single inheritance for code”),
which makes explaining the relationship of some constructs
quite diicult. Arguing the diference between and justii-

cation for the existence of interfaces and abstract classes,
for instance, becomes quite tricky. As I will show in a
moment, interfaces in Java 8 have been extended so that
they become more similar to abstract classes, but with some
subtle diferences.

In my explanation of the issues, I have taken you down
the historical path—explaining the pre-Java 8 situation irst

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

51

//new to java /

and now adding the newer Java 8 features. I did this on pur-

pose, because understanding the justiication for the combi-
nation of features as they are today is possible only in light of
this history.

If the Java team were to design Java from scratch now,
and if breaking backward compatibility were not a problem,
they would not design it in the same way. The Java language
is, however, not foremost a theoretical exercise, but a system
for practical use. And in the real world, you must ind ways to
evolve and extend your language without breaking everything
that has been done before. Default methods and static meth-

ods in interfaces are two mechanisms that made progress
possible in Java 8.

Evolving Interfaces

One problem in developing Java 8 was how to evolve inter-

faces. Java 8 added lambdas and several other features to the
Java language that made it desirable to adapt some of the
existing interfaces in the Java library. But how do you evolve
an interface without breaking all the existing code that uses
this interface?

Imagine you have an interface MagicWand in your existing
library:

public interface MagicWand

{

 void doMagic();

}

This interface has already been used and implemented by
many classes in many projects. But you now come up with
some really great new functionality, and you would like to add
a really useful new method:

public interface MagicWand

{

 void doMagic();

 void doAdvancedMagic();

}

If you do that, then all classes that previously implemented
this interface break, because they are required to provide
an implementation for this new method. So, at irst glance,
it seems you are stuck: either you break existing user code
(which you don’t want to do) or you’re doomed to stick with
your old libraries without a chance to improve them easily.
(In reality, there are some other approaches that you could
try, such as extending interfaces in subinterfaces, but these
have their own problems, which I do not discuss here.) Java 8
came up with a clever trick to get the best of both worlds: the
ability to add to existing interfaces without breaking exist-
ing code. This is done using default methods and static methods,

which I discuss next.

Default Methods

Default methods are methods in interfaces that have a
method body—the default implementation. They are deined
by using the default modiier at the beginning of the method
signature, and they have a full method body:

public interface MagicWand

{

 void doMagic();

 default void doAdvancedMagic()

 {

 ... // some code here

 }

}

Classes that implement this interface now have the chance
to provide their own implementation for this method (by
overriding it), or they can completely ignore this method,

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

52

//new to java /

in which case they receive the
default implementation from the
interface. Old code continues to
work, while new code can use
this new functionality.

Static Methods

Interfaces can now also contain
static methods with implemen-

tations. These are deined by
using the usual static modiier
at the beginning of the method
signature. As always, when writing interfaces, the public

modiier may be left out, because all methods and all con-

stants in interfaces are always public.

So, What About the Diamond Problem?

As you can see, abstract classes and interfaces have become
quite similar now. Both can contain abstract methods and
methods with implementations, although the syntax is dif-
ferent. There are still some diferences (for instance, abstract
classes can have instance ields, whereas interfaces cannot),
but these still leave the central point: since the release of
Java 8, you have multiple inheritance (via interfaces) that can
contain code!

At the beginning of this article I pointed out how the
Java designers treaded very carefully to avoid multiple code
inheritance because of possible problems, mostly related to
inheriting multiple times and to name clashes. So what is the
situation now?

As usual, the Java designers have settled on the following
pragmatic rules to deal with these problems:

■■ Inheriting multiple abstract methods with the same name
is not a problem—they are viewed as the same method.

■■ Diamond inheritance of ields—one of the diicult problems

—is avoided, because interfaces still are not allowed to

contain ields that are not constants.
■■ Inheriting static methods and constants (which are also

static by deinition) is not a problem, because they are pre-

ixed by the interface name when they are used, so their
names do not clash.

■■ Inheriting from diferent interfaces multiple default meth-

ods with the same signature and diferent implementations
is a problem. But here Java chooses a much more pragmatic
solution than some other languages: instead of deining a
new language construct to deal with this, the compiler just
reports an error. In other words, it’s your problem. Java just
tells you, “Don’t do this.”

Conclusion

Interfaces are a powerful feature in Java. They are useful in
many situations, including for deining contracts between
diferent parts of the program, deining types for dynamic
dispatch, separating the deinition of a type from its imple-

mentation, and allowing for multiple inheritance in Java.
They are very often useful in your code; you should make sure
you understand their behavior well.

The new interface features in Java 8, such as default
methods, are most useful when you write libraries; they are
less likely to be used in application code. However, the Java
libraries now make extensive use of them, so make sure you
know what they do. Careful use of interfaces can signiicantly
improve the quality of your code. </article>

Michael Kölling is a Java Champion and a professor at the

University of Kent, England. He has published two Java textbooks

and numerous papers on object orientation and computing educa-

tion topics, and he is the lead developer of BlueJ and Greenfoot,

two educational programming environments. Kölling is also a

Distinguished Educator of the ACM.

There is little
reason today to use
marker interfaces
in Java. If you are
tempted, look instead
at using annotations.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

53

//jvm languages /

F antom is a programming language derived from main-

stream languages such as Java and C#. The primary design

goal from its start in 2005 was portability between heteroge-

neous runtime environments, speciically the JVM and browser
JavaScript VMs. The Fantom compiler and extensive standard
library ensure that code written in Fantom works exactly the
same on a Java server and in a browser client. Although many

JVM languages now have eforts around providing a JavaScript
port, few were designed from the ground up to solve this chal-

lenging problem. You will ind the goal for seamless portability
woven into every aspect of the Fantom platform.

Fantom also supports a novel approach to immutability
and concurrency. The type system and runtime work in con-

cert to provide guaranteed immutability. An actor model for

concurrency leverages the type system to ensure that muta-

ble state is never shared between threads.

Fantom is designed to be a single language for writing
both server-side and browser-client-side code. On the client

side, it has a new library called domkit for building rich
HTML5 user experiences.

This article provides an in-depth look into several of
these prominent features: portability; immutability; actor

concurrency; and Fantom’s HTML5 toolkit, domkit.

Portability

True portability requires both compiler support and library

support. If your language is portable but all the libraries you

use are not, then you haven’t really solved the problem. For

this reason, Fantom has its own standard library, which is
equally important as the language itself.

Fantom was conceived to provide both compiler support
and a standard library to port between three diferent run-

time environments: Java, .NET, and JavaScript VMs. Although
we prototyped a Fantom runtime for .NET, it isn’t currently
supported. Today, all development is done only for the Java

and JavaScript runtimes. These two runtimes have been used

in production for commercial software for more than six
years—making them very mature and robust.

The Fantom compiler supports a pluggable architecture.
A single pass of the compiler is used to simultaneously gener-

ate bytecode for the Java VM and transpiled JavaScript source
for browser environments. Once a Fantom module is built, a
single module ile can be deployed with everything required
to use the code on a Java server and in a browser.

The compiler also provides a mechanism for classes and

methods to be implemented “natively.” Native code is imple-

mented in Java and/or JavaScript to create the low-level APIs

that access functionality from the underlying VM. These low-
level APIs include core types (Str, Int, DateTime), collections,

I/O, networking, concurrency, and Document Object Model
(DOM) access. With these APIs in place, most Fantom modules
are written in 100 percent Fantom and have guaranteed por-

tability between Java and JavaScript.

Immutability

One of Fantom’s guiding principles has been to have a type

BRIAN FRANK

Fantom Programming Language
A language that runs on the JVM and JavaScript VMs and delivers excellent UI-building capabilities

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

54

//jvm languages /

system and standard library designed to support immutabil-

ity. Although immutable data structures are common in func-

tional languages, they typically aren’t built into mainstream
object-oriented languages.

Fields in Fantom may be marked const to guarantee that

they are immutable:

const Point pt

This snippet of code declares a ield of type Point that has a

compile-time guarantee of deep immutability. Deep immuta-

bility means that we not only guarantee that the pt reference

is set only once, but we also guarantee that everything the

Point instance references is also immutable. Contrast this

with a Java final ield that provides only shallow immutability:

the reference cannot be changed, but there is no guarantee of

immutability for the referenced objects.
Deep immutability is guaranteed by the type system

using const classes:

const class Point

{

 new make(Int x, Int y) { this.x = x; this.y = y }

 const Int x

 const Int y

}

In the preceding example, the entire class is marked const,

which uses compile-time checking to ensure that instances of
the class are deeply immutable. Speciically, this means that
all ields are marked const and set only in the constructor

(the method named make annotated with the new keyword).
The standard library provides many conveniences for

using a mutable data structure to build up a collection and

then freezing it as an immutable instance:

list := [,] // create an empty list

list.add("a") // add some items

list.toImmutable // returns immutable copy of list

The snippet above uses an immutable list to build up a result,

and then uses the toImmutable method to eiciently get an
immutable copy of the list. Similar APIs are available for

other collection types, in-memory byte bufers, and even
functions. Once we have immutable instances, we can safely

assign them to const ields and share them between threads.

Concurrency

Fantom’s approach to concurrency is built around this key
concept: make it impossible to share mutable state between
threads. Enforcing this restriction makes it much easier to
reason about concurrency, avoids deadlocks and race condi-
tions, and greatly increases robustness. Fantom achieves this
goal with a built-in concurrency model based on actors. There

is no synchronized or volatile mechanism in Fantom; there
are only actors.

Actors are lightweight objects designed to asynchro-

nously process work on a thread pool. Interaction with actors
is done via a message queue. Client code sends a message

to an actor and is returned a Future, which the client can

optionally use to block until the result is ready. Messages sent
to actors are queued. Once the actor framework detects that
an actor has pending messages, the actor is scheduled to a

thread to process its message queue via the receive method.

Actors are guaranteed to receive their messages in order and

to safely execute within one thread.
Let’s look at a simple example for an actor that receives

integer messages and returns the mathematical square. Here

is our actor class:

const class SquareActor : Actor

{

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

55

//jvm languages /

 new make(ActorPool pool) : super(pool) {}

 override Obj? receive(Obj? msg)

 {

 i := msg as Int ?:

 throw ArgErr("Expecting Int msg")

 return i * i

 }

}

There are several things to note in the preceding code. Actors

are required to be const classes (immutable). The constructor

takes an ActorPool, which manages the threading for this

actor. The receive method is overridden to process incoming

messages. Notice that receive takes and returns an Obj?

type. This syntax illustrates a nullable type, which means

the type system allows null to be used for these signatures.

Conversely, the type Obj (without a question mark) is non-
nullable and enforced by the type system to never be null.

The implementation of receive casts the object to an integer
and returns the square. Note the use of the as keyword, which
works as it does in C#, and the elvis operator (?:), which is

syntax sugar for this code:

 Int i = msg instanceof Int ? (Int)msg : null;

 if (i == null) throw new ArgErr("Expecting Int msg");

Now let’s look at how we can use this actor:

pool := ActorPool()

actor := SquareActor(pool)

future := actor.send(3)

val := future.get

Let’s digest the code above. First, I create an ActorPool

instance, which manages the thread pool. Next, I create an

instance of SquareActor, which I bind to the pool. The third

line sends a message to the actor. What happens under the
covers is that the actor queues the messages, allocates a

thread from the pool, and processes the message on a back-

ground thread using the receive method. Meanwhile, the
client code has blocked on the Future.get method. When
the result becomes available, then the val variable will be

assigned the result of 9.

The Fantom actor framework enforces that all messages
are immutable using the const class type system. This

approach ensures that data mutations are restricted to a single

actor thread and avoids the need for synchronization. Actors

provide an elegant, robust alternative to the mainstream con-

currency techniques used in languages such as Java.

domkit

One of Fantom’s most recent developments is a new HTML5
widget toolkit named domkit. It provides a rich library to build
highly polished HTML5 UIs with a design familiar to anyone
who has experience with a traditional toolkit such as Swing.

Fantom provides two levels of abstraction for working in
HTML5. The dom module provides a statically typed, low-level

API to access and manipulate the DOM, user input events,
CSS, and XHR (XML HTTP Request). Under the covers, it pro-

vides the JavaScript glue to the HTML5 platform.
The domkit module provides a much higher level of

abstraction. It is built entirely in Fantom on top of the dom

module. It provides DOM-backed widgets using a familiar
widget design including Menus, Tables, Trees, Buttons, and
Dialogs. domkit leverages CSS for styling and layout, but
allows you to work at a higher level of abstraction.

Let’s look at an example for a table widget. In Swing, if
you wanted to show information as a table you would cre-

ate an instance of TableModel and render it using a JTable

instance. Browsers don’t come with anything like JTable, but

domkit comes with a Table and TableModel API, which work

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

56

//jvm languages /

just like Swing. The domkit Table automatically handles all

the thorny issues: eiciently mapping the model to DOM ele-

ments (but only for the visible rows), scrolling, column sort-

ing, single/multiple selection, and many other features.

Let’s look at some real code to illustrate how to build a
table using domkit:

@Js

class MyTableModel : TableModel

{

 override Int numCols() { 5 }

 override Int numRows() { 3 }

 override Void onHeader(Elem e, Int c) {

 e.text = "Col $c" }

 override Void onCell(

 Elem e, Int c, Int r, TableFlags f)

 { e.text = "$r x $c" }

}

This creates a subclass of the domkit TableModel. It deines
the number of rows and columns for the model and provides

a callback for how to render the column headers and cells.
Now let’s see how I put it all together to create a table:

table := Table

{

 model = MyTableModel()

 sel.multi = true

 onAction |t| {

 echo("onAction: $t.sel.indexes") }

 onSelect |t| {

 echo("onSelect: $t.sel.indexes") }

}

This code creates an instance of Table using the model class

and sets multiple selection to be enabled. Then, I add some

event handlers for action (double click) and selection changes
that echo to stdout the selected row indexes. Figure 1 shows

what the table looks like in a browser.
If you have experience building HTML5 UIs and miss the

higher-level abstractions that a widget toolkit such as Swing
provides, then domkit might be just the technology for you.

Conclusion

In this article, I examined four key features of Fantom: por-

tability, immutability, actor concurrency, and domkit. This
only briely touches on the Fantom language, libraries, and
tools. If you would like to learn more, visit our website,

where you can ind documentation, a community forum,
an active mailing list, and links to downloads as well as our
BitBucket repo. </article>

Brian Frank is the founder and president of SkyFoundry, a soft-

ware company specializing in IoT data collection, analysis, and

visualization. Brian and his brother, Andy Frank, have been devel-

oping the Fantom platform since 2005. Brian also serves as the

technical lead for project-haystack.org, an open source project for

deining data models and formats in the IoT space.

Figure 1. A sample table created with Fantom domkit

Why Fantom?

learn more

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://fantom.org/
http://fantom.org/doc/docIntro/WhyFantom

http://www.OraclePressBooks.com

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

58

//ix this /

I’ve put together more problems that simulate questions from

the 1Z0-809 Programmer II exam, which is the certiication
test for developers who have been certiied at a basic level of
Java 8 programming knowledge and now are looking to dem-

onstrate more-advanced expertise. [Readers wishing basic

instruction should consult the “New to Java” column, which

appears in every issue. —Ed.] These questions might require

careful deduction to obtain the right answer.

Question 1. Given this code:

public IntSupplier doStuff(int [] vals, int i) {

 // line n1

 return () -> vals[i];

}

Which two are true? Choose two.

a. The code compiles.

b. The argument list must be changed to

(final int[] vals, final int i) to allow the code to

compile.

c. If the code if (vals[0] < 0) vals[i] = 0; is added

at line n1, the argument list must be changed to

(final int[] vals, final int i) to allow the code to

compile.

d. The code if (vals[0] < 0) vals[i] = 0; can be added

at line n1 without causing compilation errors.

e. The code vals = Arrays.copyOf(vals, vals.length); can

be added at line n1 without causing compilation errors.

Question 2. Given the following code:

public class Wrapper {

 public class Wrapped {}

}

Which is true? Choose one.

a. An instance of Wrapped can be created only by code

inside the class Wrapper.

b. An instance of Wrapped can be created using the expres-

sion new Wrapper.Wrapped().

c. An instance of Wrapped can be created using the expres-

sion new Wrapper().Wrapped().

d. An instance of Wrapped can be created using the expres-

sion new Wrapper().new Wrapped().

e. An instance of Wrapped can be created using the expres-

sion new Wrapper::Wrapped().

Question 3. You wish to calculate the sum of the numbers in a

stream and also print out each one. So far, you have this code:

public static int sumAndPrint(IntStream is) {

 int total = 0;

 is.parallel()

 .peek(v -> total += v)

 .forEach(System.out::println);

 return total;

}

SIMON ROBERTS

Quiz Yourself
More subtle questions from an author of the Java certification tests

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-809

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

59

//ix this /

Which is true? Choose one.

a. The code reliably returns the correct sum of the numbers

as it is.

b. The code would reliably return the correct sum of the

numbers if the body of the method were changed to this:

 int[] total = {0};

 is.peek(v -> total[0] += v)

 .forEach(System.out::println);

 return total[0];

c. The code would reliably return the correct sum of the

numbers if the type of total were changed to Integer.

d. The code would reliably return the correct sum of the

numbers if the call to .parallel() were moved after the

call to .peek(v -> total += v).

e. The code would reliably return the correct sum of the

numbers if the type of total were changed to LongAdder

and if the lambda in peek were changed accordingly.

Question 4. Given this code:

public static void main(String[] args) {

 ExecutorService es = Executors.newFixedThreadPool(2);

 Callable<String> job = () -> {

 Thread.sleep(5000); // line n1

 return "Hello";

 };

 es.submit(job);

 es.submit(job);

 Future<String> handle = es.submit(job); // line n2

 System.out.println("submitted");

 String message = handle.get(); // line n3

 System.out.println("> " + message);

 System.exit(0);

}

Which is true? Choose one.

a. Compilation fails due to an error at line n1.

b. Compilation fails due to an error at line n3.

c. The program throws a RejectedExecutionException

because there are no available threads at line n2.

d. The program immediately prints submitted, and then

after a 10-second pause, it prints > Hello.

e. The program pauses ive seconds, then prints submitted,

and then after a further ive-second pause, it prints
> Hello.

Question 5. Given that the current working directory of the

following program contains this tree:

.

|———— one/
| |———— a/
| | |————— t1.txt
| |———— b/
|———— two/

 |———— c/
 |———— t2.txt

where one, two, a, b, and c are directories, and the program

code is this:

public static void main(String[] args) throws Throwable {

 Files

 .find(Paths.get("."), 1, (p,a)->a.isDirectory())

 .forEach(System.out::println);

}

What is the output? Choose one.

a. -

b. .

./one

./two

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

60

//ix this /

c. ./one

./one/b

./one/a

./two

./two/c

d. ./one

./one/b

./one/a

./two

./two/c

./two/t2.txt

e. ./two/t2.txt

Question 1. The correct answers are options A and D. The irst
decision is probably to determine whether the code compiles

or whether the change outlined in option B is necessary. This

one is interesting, because it depends critically on the version

of Java in use.

When a method-local variable is referenced from a class

or lambda expression enclosed in the method’s scope, a

potential problem arises. A method-local variable ceases to

exist when the method returns. However, the lifetime of the

object created by a nested class or lambda is potentially much

longer. Java’s particular solution to this situation (some-

times called a closure or a captured variable) is to insist that

the method-local variable must never be changed. Given that

restriction, it’s possible to simply take a copy of the variable

and embed it in the longer-lived object. If the variable can’t

change, a copy is as good as the original.

From Java 1.1—which introduced nested classes—through

Java 7, any method-local variable accessed from a nested

class had to be labeled final. This means that option B would

be correct for Java 7. However, Java 8 changed the require-

ments a little, and the keyword final is no longer required

(although the variable must be treated as though final

were present).

It turns out that the compiler has had the ability since

the beginning to determine if the rules of final are properly

adhered to; that’s been important because the compiler must

issue an error if you try to change a final variable. Also, a

final variable can permit some optimizations in the gener-

ated code, and the compiler has been doing neat tricks using

this for some time. Of course, those optimizations can be

done based on a variable behaving like a final, not on whether

the programmer labeled the variable as such. The compiler

has a notion of “efectively final”—the programmer didn’t

say it’s final, but it is, so the compiler treats it as such.

As mentioned, Java 8 changed the rules for those

method-local variables. Today, they must be efectively final,

but they do not have to be marked as such. Consequently,

the code does in fact compile in a Java 8 environment (and

this article is written about the Java 8 certiication exam). So,
option A is correct and option B is not.

Option C builds on this question of inality. What hap-

pens if the code if (vals[0] < 0) vals[i] = 0; is added at

line n1? Well, vals is a pointer to an array, and the pointer is

not changed by this, so vals remains efectively final. This

is an important point about inal-ness for variables, and
indeed, one of the key reasons that Java 1.1 added the final

restriction. A final variable that is of reference type can-

not be changed to point at a diferent object, but the contents
of the object (or array, in this case) are not protected by the

final keyword, so not much of a restriction is being imposed.

Immutable objects such as Integer and String are special, not

because final makes any special considerations, but because

Answers

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

61

//ix this /

they are intrinsically immutable. Anyway, in this case, vals

is still efectively final; only the contents of the array are

changed, and adding the code is successful without any other

changes needed. Hence, option C is false.

In fact, the preceding argument shows that option D is

also true. The code can be added, and no changes are needed.

By the same token, however, option E is false. Assigning

a new value to vals—that is, pointing vals at a diferent array
(although it’s a copy of the original, which might seem like a

good thing in general)—is suicient to break the “efectively
final” requirement, and this code will not compile.

Question 2. The correct answer is option D. This is a question

with less depth and complexity than many. The terminology

sometimes can be confusing, but to be frank, that terminol-

ogy isn’t really very important. Java uses the term nested class

to describe classes deined inside other classes. So, Wrapped is

a nested class. However, such a class can be labeled static. If

it’s static then, just like any other static element, it’s associ-

ated with the class as a whole rather than with any speciic
instance. On the other hand, a nested class that is not labeled

static is properly called an inner class (though, as I suggested,

the terminology is commonly used very loosely, and no exam

question would test such a distinction of terminology). What

matters, however, is that a nonstatic nested class—that is, an

inner class in the oicial sense—actually has direct access,
through a hidden reference that acts similarly to this, to the

ields of a particular instance of the enclosing class. It’s as if
the inner class is part of the enclosing instance.

Of course, that means that when the instance of the

inner class is created, there must be an enclosing instance

for it to belong to. This is why option D turns out to be the

required syntax. The general approach is that there must be

some kind of preix for the new operation. The preix can be
explicit as it is here; irst, you build the instance of Wrapper,

and then you invoke new upon that instance to create the

Wrapped object within.

The operation could be done in two stages. If myWrapper

were a variable of type Wrapper, you could initialize

myWrapper, and then use myWrapper.new Wrapped(). However,

in this case, it was done all at once.

Option A isn’t true; you can create instances outside of

Wrapper. That said, it’s probably much more common, and

often a better design, to create the inner classes inside the

enclosing class using something along the lines of a factory

method. It’s even likely that the inner class might be private

and known to the outer world only by some public interface

that it implements. While acknowledging that there are, of

course, special cases, the general notion of encapsulation

suggests that iddling with the inner class should mostly
be done by the outer one. The bottom line for this question,

though, is that option A is incorrect.

All the other syntax oferings are incorrect for the pur-

pose at hand. Option B would work if Wrapped were a nested

class, but not if it were an inner class. That is, if Wrapped were

a static class, then option B would be correct. But, because the

conditions are not so, it’s incorrect.

Option C is not a valid construction of anything. It could

be valid as an invocation of a method called Wrapped() that’s

a member of the Wrapper class. Such a method contradicts

normal Java style conventions, which reserve capital irst let-
ters for classes and interfaces and call for lowercase letters

for methods. However, it’s actually possible for that method

to coexist with the class of the same name, creating a situa-

tion where option C could compile and return a new object of

Wrapped type. However, that’s not going to work unless the

method is added to the class, and because the entire class

is shown in the example, you can rule out this line of rea-

soning, which is based on some crazy inappropriate broken

style conventions.

Option E is just made-up syntax. It’s not a method ref-

erence, because it includes parentheses. It doesn’t have any

context for a lambda’s type to be determined to support the

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

62

//ix this /

use of method references anyway. Further, the new keyword

should follow the double colon in a method reference. Option

E is just wrong.

Question 3. The correct answer is option E. This question

investigates the concurrent mode of stream processing and

the rules that ensure it runs correctly and in a thread-safe

fashion. A common recommendation is that stream process-

ing, if there’s any chance of the stream being executed in

concurrent mode, should not mutate any shared data. Such

an approach is a great way to ensure that concurrency prob-

lems do not arise. However, the actual rule is somewhat

less restrictive. If shared state will be modiied, then the
programmer must ensure that those modiications are safe.
In this case, using a LongAdder would achieve this goal, and

option E is the correct answer. Interestingly, this situation

could also be served by using the AtomicInteger, but the

LongAdder was deliberately created to support many concur-

rent mutations in a scenario where relatively few reads are

performed. Both would be functionally correct, but the adder

will be more scalable.

Let’s look at the wrong answers and see what might be

interesting about those. First, why doesn’t this code compile?

The variable total is a method-local variable, and for that to

be used in an enclosed lambda, it must be final or efectively
final. Consequently, because it is not final, and it cannot be

because it is mutated, the code as it stands will not compile.

This is why option A is incorrect.

Option B looks tempting, and in many cases it would

probably work. First, it uses an array of one int to accumulate

the total. This successfully sidesteps the problem of a final

variable, because the variable is a pointer to the array and

is, indeed, now efectively final. However, even though the

call to parallel was also removed from the code, the stream

was received as an argument to the method, so it’s not safe

to assume that the stream is now running sequentially. It

could have been set to parallel by the caller. In that situation,

the code remains unsafe from a concurrency perspective. So,

option B is incorrect, because the behavior would still not

be reliable.

Option C is unworkable; Integer objects are immu-

table, and given that total must be efectively final,

there’s really no way that such a suggestion could result in

correct counting.

Option D might seem tempting. Presumably the idea is

that if the mutation operation, performed by peek, can be

performed sequentially, there will be no concurrency issue

with respect to the updates to total. Unfortunately, this

fails for two reasons: irst and most compellingly, the option
still doesn’t compile because total is (still) not efectively
final. Second, and also important, is the fact that streams

don’t shift between parallel and serial modes along their

length. The whole stream, from end to end, is either parallel

or sequential. Therefore, moving the call to parallel later in

the chain changes absolutely nothing. For both these reasons,

option D is also incorrect.

Question 4. The correct answer is option B. There’s quite a lot

of code in this question. That is unusual in the actual cer-

tiication exam, but it does happen. This question tests one
speciic piece of understanding, but it introduces a number of
interesting side issues for discussion as distractions.

The code does not compile, simply because the get

method on a Future object throws checked exceptions. In

fact, the documentation declares three exceptions, two of

which are checked. The unchecked exception is Cancellation

Exception, which indicates that the job was canceled.

Therefore, trying to get its result is meaningless. The checked

exceptions are InterruptedException and Execution

Exception. An InterruptedException results if the get

method, which will block if the job hasn’t inished yet, is
interrupted while waiting. An ExecutionException arises if

the job itself throws an exception; the cause of the Execution

Exception is the actual exception thrown by the job.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

63

//ix this /

What about the other options? Why are they wrong?

Option A suggests that compilation fails at line n1. That’s

tempting, because it might appear that the Interrupted

Exception, which is thrown by the Thread.sleep method,

is unhandled. However, the deinition of Callable, which is

the interface that the lambda expression will be implement-

ing, speciies a method call(), which is declared as throws

Exception. So, in fact, this answer doesn’t cause a problem,

and option A is incorrect.

Option C tries to get you to believe that if an Executor

Service is created with a ixed thread count of two, you can-

not submit more than two jobs. That’s not the case, of course.

You can submit more jobs, which will be placed in a queue and

executed as one of the threads becomes available. Therefore,

option C is also incorrect.

Option D, in which the code prints submitted immedi-

ately and then pauses 10 seconds before printing > Hello, is

actually what would happen if the problem of the checked

exception in the get method at line n3 is ixed. The submit

calls for all three jobs to complete without noticeable delay.

Two jobs start executing promptly, and the third is queued.

The irst two take 5 seconds to complete, but because they’re
running on two concurrent threads, that’s a total elapsed

time of only 5 seconds, not 10. Then, when either of them
inishes, the third job starts executing, delays a further 5
seconds, and inally completes, and the get call at line n1

receives the message from it.

The timing suggested by option E is testing to see if you

know that the ExecutorService has a job queue. If it did not,

the third job could not complete submitting until a thread

was available for it (incidentally, such service conigurations
are possible). After the pause, the message submitted would

be printed, and ive seconds later, the inal output would be
shown. However, because a job queue is created when the

service is built using Executors.newFixedThreadPool(...),

option E is incorrect.

Question 5. The correct answer is option B. This, unfortunately,

is one of those questions that depends largely on rote learn-

ing, which here has one small redeeming aspect: Those who

have spent time playing with an API are likely to use it more

luently. They know what is available, and they spend less
time looking it up.

This question is here mainly because it’s an interesting

excuse to look at a fairly neat, and commonly overlooked,

feature of Java’s core APIs. The class java.nio.file.Files is

a utility class illed with static methods that do handy ile
I/O operations in easy-to-use packages. If you haven’t seen it

before—it was introduced with Java 7—it’s worth spending a

few minutes looking over what it ofers. The class also gained
quite a few additional methods with Java 8, many of which are

built to make good use of the Stream API. The find method

(along with a close cousin, walk) is one of those.

The find method is clearly modeled on the UNIX find

utility. It takes a starting directory as its irst argument, and
begins a recursive search down the ile system hierarchy
from that starting point. Path elements that are found might

be passed into the Stream<Path> that is the return value of

the method.

The next two arguments are the depth of the search and

a BiPredicate that ilters. Let’s look at these individually.
There’s actually a fourth, variable length, argument too, but

I’ll let you investigate that yourself.

The depth parameter, which is the second argument,

speciies the number of directories that the operation will
descend into. The starting point is considered to be a direc-

tory. Therefore, if a depth of zero is given, only the initial

directory will be reported. Speciically, with a depth of zero,
no directories, not even the initial one, will be entered. So,

if the depth had been zero, the output could only have been

as shown in option A. However, a depth of 1 is given, which

means that the operation will enter the initial directory and

look at what’s in there, but it will not descend any further.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

64

//ix this /

This means that the only elements that will even be consid-

ered are the two directories one and two, and the ile t2.txt.

The next argument is a BiPredicate<Path,BasicFile

Attributes>. This is called for every path element that is seen

to determine whether to include that element in the output.

It’s a predicate, so it’s probably no surprise that if this returns

false, the item will be removed from the output stream.

Nothing in the question tells you that the arguments are

a Path and a BasicFileAttributes, but because no options

include “does not compile,” it’s a safe assumption that the

second lambda argument—a, in this case—actually does have

a method isDirectory(). From that, you can deduce that only

directories will be passed into the output, and now the situa-

tion goes from three path elements being seen (one, two, and

t2.txt) to only the two directories moving to the output. Now

you know that the correct answer is option B.

It’s interesting that this find method returns a stream.

It’s lazy like all streams are supposed to be (though presum-

ably it has a decent-size bufer at the ile system interface!).
This actually raises another observation that the ques-

tion ignores. Stream objects implement AutoCloseable, and

while in-memory streams don’t really need to be closed,

those that are attached to operating system resources other

than memory (for example, iles, network, and database con-

nections) should be closed. This can be a subtle but important

issue if you’re writing a method that receives a stream as an

argument: if you don’t know how the stream was opened, can

you assume that it doesn’t need to be closed? In such situa-

tions, perhaps you should give the stream the protection of

the try-with-resources construct. </article>

Simon Roberts joined Sun Microsystems in time to teach Sun’s

irst Java classes in the UK. He created the Sun Certiied Java

Programmer and Sun Certiied Java Developer exams. He wrote

several Java certiication guides and is currently a freelance educa-

tor who teaches at many large companies.

//user groups /

THE DANISH JUG
The only Danish Java user

group (JUG), Javagruppen,

was founded in December

1996. The irst oicial
meeting was held in

January 1997 and was ini-

tiated with these words:

“Never before in computer

history has a new technol-

ogy been gaining support

the way Java has. Maybe

it is because there is a real need for an alternative to C++ and

Visual Basic.”

During its irst years, the JUG functioned as a special
interest group for companies working with Java in Denmark,

and in 2004 it was reformed as a new legal entity with an

elected board and yearly general assemblies. Members of the

JUG pay a yearly fee. Until this year, only companies could

become members and that membership covered individuals

or all employees. Recently, it was decided that private indi-

viduals could become members for a reduced fee and students

could join for free.

Today the group consists of about 80 paying members,

split evenly between individuals and company member-

ships. The JUG organizes 6 to 10 meetings every year divided

between Copenhagen and Aarhus.

The JUG hosts an annual Java developer conference, JDK

IO. This year’s conference takes place in Copenhagen in the

middle of September at the Royal National Library.

Javagruppen has for many years organized programming

for kids and has joined the Devoxx4Kids initiative.

Find out more about the JUG by following it on Facebook

and Twitter.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.javagruppen.dk/
http://jdk.io/
https://www.facebook.com/Javagruppen/
https://twitter.com/Javagruppen

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

65

//contact us /

Comments
We welcome your comments, correc-

tions, opinions on topics we’ve covered,

and any other thoughts you feel impor-

tant to share with us or our readers.

Unless you speciically tell us that your

correspondence is private, we reserve

the right to publish it in our Letters to

the Editor section.

Article Proposals
We welcome article proposals on all

topics regarding Java and other JVM

languages, as well as the JVM itself.

We also are interested in proposals for

articles on Java utilities (either open

source or those bundled with the JDK).

Finally, algorithms, unusual but useful

programming techniques, and most other

topics that hard-core Java programmers

would enjoy are of great interest to us,

too. Please contact us with your ideas

at javamag_us@oracle.com and we’ll

give you our thoughts on the topic and

send you our nifty writer guidelines,

which will give you more information

on preparing an article.

Customer Service
If you’re having trouble with your

subscription, please contact the

folks at java@halldata.com (phone

+1.847.763.9635), who will do

whatever they can to help.

Where?
Comments and article proposals should

be sent to our editor, Andrew Binstock,

at javamag_us@oracle.com.

While it will have no inluence on

our decision whether to publish your

article or letter, cookies and edible treats

will be gratefully accepted by our staf

at Java Magazine, Oracle Corporation,

500 Oracle Parkway, MS OPL 3A,

Redwood Shores, CA 94065, USA.

 Subscription application

 Download area for code and

other items

 Java Magazine in Japanese

magazine

By and for the Java community

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:javamag_us%40oracle.com?subject=
mailto:java%40halldata.com?subject=
mailto:javamag_us%40oracle.com?subject=
https://www.sub-forms.com/dragon/init.do?site=ora6028_jfnew
http://bit.ly/2b2tXeb
http://bit.ly/2b2tXeb
http://www.oracle.com/technetwork/jp/articles/java/overview/index.html

	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65
	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

	
	JavaMag_SO16_cover
	JavaMag_SO16_pg01
	JavaMag_SO16_pg2
	JavaMag_SO16_pg03
	JavaMag_SO16_pg4-5
	JavaMag_SO16_pg6-7
	JavaMag_SO16_pg08
	JavaMag_SO16_pg9-11
	JavaMag_SO16_pg12
	JavaMag_SO16_pg13
	JavaMag_SO16_pg14-23
	JavaMag_SO16_pg24-31
	JavaMag_SO16_pg32-38
	JavaMag_SO16_pg39-46
	JavaMag_SO16_pg47-52
	JavaMag_SO16_pg53-56
	JavaMag_SO16_pg57
	JavaMag_SO16_pg58-64
	JavaMag_SO16_pg65

