
NOVEMBER/DECEMBER 2017

ORACLE.COM/JAVAMAGAZINE

magazine

By and for the Java community

DYNAMIC METHOD INVOCATION 67 | INSIDE JAVA CARD 77 | JAVA QUIZ 91

WHAT YOU NEED TO KNOW

JAVA EE 8

SERVLET 4.0 CDI 2.0 JPA 2.2 MICROPROFILE

13 23 43 56

http://www.oracle.com/javamagazine

https://www.jetbrains.com/idea/specials/idea/idea.html?utm_source=javamagazine

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

02

//table of contents /

67
Understanding Java Method
Invocation with Invokedynamic
By Ben Evans

The instruction added in Java 7 makes

it possible to resolve method calls dynam-

ically at runtime.

77
An Introduction to Java Card
By Nicolas Ponsini and Florian Tournier

The smallest Java platform is one of the

most widely distributed. See how pro-

gramming it is diferent from developing

conventional apps.

91
Fix This
By Simon Roberts

Our latest quiz with questions that test

intermediate and advanced knowledge

of the language

23
CDI 2.0: MAKING
DEPENDENCY INJECTION
A LOT EASIER

By Arjan Tijms

A new spec, new features,

and new annotations. What’s

not to like?

43
WHAT’S NEW IN JPA 2.2

By Josh Juneau

Streaming results, better date

conversions, and new annotations

are just a few of the many handy

improvements.

56
ECLIPSE MICROPROFILE:
THE LIGHT ENTERPRISE
JAVA OPTION

By Mert Çalişkan

Examining a Java EE architecture

designed for microservices and

distributed applications

//table of contents /

By Alex Theedom

A major new release of the Servlet API embraces the

HTTP/2 protocol and anticipates resource requirements.

13
SERVLET 4.0: DOING MORE FASTER

COVER FEATURES

OTHER FEATURES DEPARTMENTS

05
From the Editor
Java EE development goes open source.

07
Java Books
Review of Ken Kousen’s Modern
Java Recipes

09
Events
Upcoming Java conferences and events

11
Java Proposals of Interest
JEP 295: Ahead-of-Time Compilation

to Native Binaries

42
User Groups
The Netherlands JUG

101
Contact Us
Have a comment? Suggestion? Want to

submit an article proposal? Here’s how.

COVER ART BY WES ROWELL

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

03

EDITORIAL

Editor in Chief
Andrew Binstock

Managing Editor
Claire Breen

Copy Editors
Karen Perkins, Jim Donahue

Technical Reviewer
Stephen Chin

DESIGN

Senior Creative Director
Francisco G Delgadillo

Design Director
Richard Merchán

Senior Designer
Arianna Pucherelli

Designer
Jaime Ferrand

Senior Publication Designer
Sheila Brennan

Production Designer
Kathy Cygnarowicz

PUBLISHING

Publisher and Audience Development
Director
Karin Kinnear

Audience Development Manager
Jennifer Kurtz

ADVERTISING SALES

Sales Director
Tom Cometa

Account Manager
Mark Makinney

Mailing-List Rentals
Contact your sales representative.

RESOURCES

Oracle Products
+1.800.367.8674 (US/Canada)

Oracle Services
+1.888.283.0591 (US)

ARTICLE SUBMISSION

If you are interested in submitting an article, please email the editors.

SUBSCRIPTION INFORMATION

Subscriptions are complimentary for qualified individuals who complete the
subscription form.

MAGAZINE CUSTOMER SERVICE

java@omeda.com

PRIVACY

Oracle Publishing allows sharing of its mailing list with selected third parties. If you prefer
that your mailing address or email address not be included in this program, contact
Customer Service.

Copyright © 2017, Oracle and/or its affiliates. All Rights Reserved. No part of this publication may be reprinted or otherwise

reproduced without permission from the editors. JAVA MAGAZINE IS PROVIDED ON AN “AS IS” BASIS. ORACLE EXPRESSLY

DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS OR IMPLIED. IN NO EVENT SHALL ORACLE BE LIABLE FOR ANY

DAMAGES OF ANY KIND ARISING FROM YOUR USE OF OR RELIANCE ON ANY INFORMATION PROVIDED HEREIN. Opinions

expressed by authors, editors, and interviewees—even if they are Oracle employees—do not necessarily reflect the views of Oracle.

The information is intended to outline our general product direction. It is intended for information purposes only, and may not

be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied

upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s

products remains at the sole discretion of Oracle. Oracle and Java are registered trademarks of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective owners.

Java Magazine is published bimonthly and made available at no cost to qualified subscribers by

Oracle, 500 Oracle Parkway, MS OPL-3A, Redwood City, CA 94065-1600.

ASSOCIATE PROFESSIONAL EXPERT MASTER SPECIALIST

Display Your Oracle Certification Digital Badge

Claim your certification badge and validate
your skills across all online platforms.

You’ve Earned It

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:karin.kinnear%40oracle.com?subject=
mailto:jennifer.s.kurtz%40oracle.com?subject=
mailto:tom.cometa%40oracle.com?subject=
mailto:mark.m.makinney%40oracle.com?subject=
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.sub-forms.com/dragon/init.do?site=ora6028_jfnew
mailto:java%40omeda.com?subject=
mailto:java%40omeda.com?subject=
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=861

Interested?
Here is what it takes:

Idea Build POC Apply Create Go to Market

The iText Developers Pla�orm is a revenue sharing partnership that takes
your crea�ve iText 7 add-on applica�on and leverages our experience in
sales and marke�ng, by selling the product as part of the iText 7 Suite.

iText Developers Pla�orm
Build on proven technology

Learn more at: www.itextpdf.com/itext-developer-pla�orm

www.itextpdf.com/itext-developer-platform

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

05

//from the editor /

PHOTOGRAPH BY BOB ADLER/THE VERBATIM AGENCY

In an unexpected and widely applauded move,

Oracle announced just before the JavaOne con-

ference this year that it would be moving develop-

ment of Java EE to the open source community.

This action, efectively unthinkable a few years
ago, is being done by giving control of develop-

ment technologies and of project governance to

the Eclipse Foundation. Included in this transition

are the full source code of the diferent reference
implementations and of the many test suites that

ensure conformance and compliance with Java EE

speciication requirements.
This migration shows emphatically that

Oracle is giving the technology to the community.

That is, this move should not be confused with

the occasional dumping of technologies to open

source foundations by companies no longer inter-

ested in supporting them—a phenomenon known

as “abandon-ware.” Rather, Oracle has pledged

to move its commercial Java EE ofering, Oracle
WebLogic, to conformance with Java EE 8 and to

continue contributing to the development and

evolution of the standards, along with vendors

Red Hat, IBM, Tomitribe, and Payara, as well as

the large contributing community of developers.

The Eclipse Foundation was chosen to be the

host due in part to its previous experience host-

ing Java EE technologies, such as JPA and JSON-B.

In addition, it currently hosts the complemen-

tary MicroProile project, which is examined in
detail on page 56 in this issue. Conversations with

Eclipse oicials revealed that they expect the
transition to take approximately a year. Why so
long? Not only do dozens of codebases and sup-

porting documents need to be migrated to Eclipse

servers, but a substantial amount of policy needs

Java EE Development Goes Open Source
Development of future releases will be hosted at the Eclipse Foundation.

#developersrule

developer.oracle.com

Get your free trial:

developer.oracle.com

Experience modern,

open cloud development

with a free trial to Oracle

Cloud platform and

infrastructure services.

Get a Free
Trial to
Oracle Cloud

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://developer.oracle.com
http://developer.oracle.com

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

06

//from the editor /

to be formulated, such as staing
the individual projects—who gets

to commit, who reviews changes,

and who runs the projects—as well

as larger questions such as how
will conformance with Java EE

standards be validated, what will

be the process for determining

a new release, and so on. As David

Delabassée of Oracle points out,

there are additional issues to

resolve as well, such as brand-

ing and the possible integration

of MicroProile.
With regard to branding, it

got of to a bit of a rocky start
at JavaOne when rumor had it

that Java EE would be renamed

EE4J (Eclipse Enterprise for Java).

However, that is actually the pro-

posed name of the project at the

Eclipse Foundation, rather than

of the technology itself. The rela-

tionship between EE4J and Java EE

is analogous to OpenJDK and

Java SE—the former is the devel-

opment project, and the latter is

the resulting technology.

Community reaction to the

move by Oracle has been uni-

formly supportive. And there’s

good reason for that enthusiasm.

Unlike many other projects trans-

ferred to open source, Java EE ben-

eits from a very active community
that continues to push forward the

multiple constituent technologies.

For example, in this issue, we look
at how those communities, along

with Oracle, have signiicantly
updated CDI, Servlet, and JPA. But

certainly, we could have included

other technologies, too—many of

which are driven by active expert

groups donating their time and

efort to the project.
This strong community, more

than any other aspect, I believe,

guarantees the success of this

migration. If all goes well, as I

expect it will, the migration

should make it possible to attract
even more developers to grow and

advance these technologies.

Andrew Binstock, Editor in Chief

javamag_us@oracle.com

@platypusguy

P.S. The events described here are

under active implementation and

discussion; so it’s entirely pos-

sible that details of the transition

and of the project at the Eclipse

Foundation might soon difer from
what has been described here.

Same Java Runtime

Same Dev Tools

Same Standards

Same Architecture

…or Back to Your Data Center

Push a Button
Move Your Java Apps
to the Oracle Cloud

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:javamag_us%40oracle.com?subject=
https://twitter.com/platypusguy
http://cloud.oracle.com/java

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

07

I love recipe books. Judging from

the popularity of resources such

as StackOverlow, the thirst for
working chunks of code that cor-

rectly handle a discrete task is

nearly insatiable. The big difer-

ence between most online sites
that ofer code solutions and a book
such as Ken Kousen’s Modern Java

Recipes is the latter’s sustained

quality of the content, the detailed
explanations, and the ability of
one recipe to reference another for

developers who don’t entirely know
what to ask for. The other beneit
of a recipe book is that the contents

are laid out sequentially, so that
variations on a theme are grouped

together and you can compare dif-

ferent recipes to obtain a deeper

understanding of a problem.

The success of a recipe book

rests on the knowledge and dili-
gence of the author. In Kousen, a
Java Champion, you have a very

knowledgeable developer who is
equally expert at presenting the

information. There are 74 recipes in

300 pages, which shows the level of
detail and background that accom-

panies every recipe.

A common limitation of recipe

books is that you don’t remember

them when you have a problem
they cover or, conversely, you con-

sult them but they don’t address

the question you have. The better

books carefully identify the scope

of their contents. This is done in

this volume in the subtitle, “Simple
Solutions to Diicult Problems in
Java 8 and 9”—in other words, reci-
pes for the added features in these

two releases of Java. And in fact,
this is what you have: the basics
(lambdas, method references, func-

tional interfaces); the java.util

.function package (consumers, sup-

pliers, predicates, and functions);
streams; comparators and collec-

tors; optionals; the java.time pack-

age; parallelism and concurrency;

and a chapter on Java 9’s additions.

A useful addendum is an

18-page appendix that focuses on

understanding the complexities of

generics in recent releases of Java.

Surely, they are now as complex as
function declarations in C and C++.

Consider Listing 1 from Kousen’s

book, which itself is taken from the
Java 8 documentation.

This appendix, which saves
Kousen from explaining generics

syntax repeatedly, is a remarkably
clear and thoughtful presentation

of a topic that doesn’t get enough

attention. For expert developers, it
will serve as a good refresher.

I like Modern Java Recipes a lot

and can ind little to fault. Any
developer working through the
subtleties of the features added in

Java 8 and Java 9 will ind this book
a great help. —Andrew Binstock

//java books /

MODERN JAVA RECIPES
By Ken Kousen

Listing 1.

static <T, U extends Comparable <? super U>> Comparator<T> comparing(Function<? Super T,

 ? extends U> keyExtractor)

http://www.oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://shop.oreilly.com/product/0636920056669.do

Written by leading experts in Java, Oracle Press books offer the most

definitive, complete, and up-to-date coverage of Java available.

www.OraclePressBooks.com • @OraclePressAvailable in print and eBook formats.

Your Destination for Oracle and Java Expertise

Java: A Beginner’s Guide,

 7th Edition

Herb Schildt

Revised to cover Java SE 9,

this book gets you started

programming in Java right away.

Java: The Complete

Reference,

10th Edition

Herb Schildt

Updated for Java SE 9, this book

shows how to develop, compile,

debug, and run Java programs.

OCA Java SE 8

Programmer I Exam Guide

(Exam 1Z0-808)

Kathy Sierra, Bert Bates

Get complete coverage of all

objectives for Exam 1Z0-808.

Electronic practice exam

questions are included.

Rapid Modernization

of Java

Applications

G. Venkat

Adopt a high-performance

enterprise Java application

modernization strategy.

http://www.oraclepressbooks.com

09

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

//events /

PHOTOGRAPH BY THOMAS FABIAN/FLICKR

Jfokus

FEBRUARY 5–7, 2018

STOCKHOLM, SWEDEN

The annual Scandinavian Java developer conference encompasses Java SE

and Java EE, front-end and web development, mobile, cloud, IoT, and JVM

languages such as Scala and Clojure.

On February 5, the conference will hold the Jfokus VM Tech Summit,

which is an open technical collaboration among language designers,

compiler writers, tool builders, runtime engineers, and VM architects.

The schedule for the Summit will be divided e qually between traditional

presentations of 45 minutes and workshops.

Javaneiros

NOVEMBER 18

CAMPO GRANDE, BRAZIL

The Javaneiros conference is a

community-organized day of

presentations related to Java

programming. (No English

page available.)

Voxxed Days Thessaloniki

NOVEMBER 23, WORKSHOPS

NOVEMBER 24–25 CONFERENCE

THESSALONIKI, GREECE

Voxxed Days is a community con-

ference for developers, by devel-

opers. Sessions include “Spring

Boot and Kotlin: A Match Made

in Heaven,” “Stream Puzzlers:

Traps and Pitfalls in Using

Java 8 Streams,” and “Hands-on

Microservices with OpenShift.”

The two-day conference is pre-

ceded by a day of free software-

development workshops.

JVM-Con

NOVEMBER 28–29

COLOGNE, GERMANY

Among the topics slated for this

conference devoted to JVM lan-

guages are Java 9, Java EE, Scala,

Jython, Kotlin, Clojure, FreePascal,

Groovy, JRuby, cloud native devel-

opment, microservices, and secu-

rity. (No English page available.)

DevTernity

DECEMBER 1, KEYNOTES

DECEMBER 2, WORKSHOPS

RIGA, LATVIA

This conference focuses on mod-

ern approaches to coding, archi-

tecture, testing, engineering scal-

ability, and operations, with 20

speakers presenting in three par-

allel tracks. The conference is fol-

lowed by a full day of workshops.

ConFoo

DECEMBER 4–6

VANCOUVER, BRITISH COLUMBIA,

CANADA

This multitechnology conference

for web developers features tar-

geted sessions for Java and JVM

developers. Sessions include pre-

sentations on concurrency models

with Java 9, Angular/TypeScript,

and Practical Symfony 4.

ArchConf

DECEMBER 11, WORKSHOPS

DECEMBER 12–14, CONFERENCE

CLEARWATER, FLORIDA

ArchConf is an educational event

for software architects, techni-

cal leaders, and senior develop-

ers. Topics include agile design,

microservices, web application

security, cloud architectures, and

modular Java.

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
https://www.jfokus.se/jfokus/index.jsp
https://www.javaneiros.com.br
https://voxxeddays.com/thessaloniki/
http://jvm-con.de
https://devternity.com/
https://confoo.ca/en/yvr2017
https://archconf.com/conference/clearwater/2017/12/home

10

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

//events /

CodeMash

JANUARY 9–12, 2018

SANDUSKY, OHIO

CodeMash is a unique event that

educates developers on current

practices, methodologies, and

technology trends in a variety of

platforms and development lan-

guages such as Java, .NET, Ruby,

Python, and PHP.

jSpirit

JANUARY 12–16

HAUSHAM, GERMANY

This is an “unconference”-style

event organized by JUG Oberland

featuring two days of sessions fol-

lowed by two days of skiing. Day 3

also has a mini-conference for

kids, jSpirit4Kids. Speciic topics
other than programming in Java

are not known in advance.

SnowCamp

JANUARY 24: WORKSHOPS

JANUARY 25–26: CONFERENCE

JANUARY 27: UNCONFERENCE

GRENOBLE, FRANCE

SnowCamp is a developer con-

ference held in the French Alps

that focuses on Java, web, cloud,

DevOps, and software architec-

PHOTOGRAPH BY DOUGLAS SACHA/GETTY IMAGES

ture, with a mix of sessions in

French and English. The last day,

dubbed “unconference,” ofers a
unique opportunity to socialize

with peers and speakers on the

ski slopes.

DevConf.cz

JANUARY 26–28

BRNO, CZECH REPUBLIC

DevConf.cz is a free three-

day open source developer and

DevOps conference. All talks,

presentations, and workshops will

be conducted in English. Several

tracks are devoted speciically to
Java EE, and the conference can be

attended online.

DeveloperWeek

FEBRUARY 3–4: HACKATHON

FEBRUARY 5: WORKSHOPS

FEBRUARY 5–7: CONFERENCE

FEBRUARY 6–7: EXPO

OAKLAND, CALIFORNIA

DeveloperWeek is the world’s

largest developer expo and con-

ference series, gathering 8,000

participants for a week-long

technology-neutral programming

conference and associated events.

The theme for 2018 is “Industrial

Revolution of Code,” and tracks

include artiicial intelligence,
serverless development, block-

chain, APIs and microservices,

and JavaScript.

Devnexus

FEBRUARY 21–23

ATLANTA, GEORGIA

Devnexus is an international

open source developer confer-

ence. Its stated goal is to con-

nect developers from all over the

world, provide afordable educa-

tion, and promote open source

values. Past presenters have

included Venkat Subramaniam,

author of Pragmatic’s Functional

Programming in Java: Harnessing the

Power of Java 8 Lambda Expressions.

QCon London

MARCH 5–7: CONFERENCE

MARCH 8–9: WORKSHOPS

LONDON, ENGLAND

Although the content has not yet

been announced, past QCon con-

ferences have ofered several Java
tracks along with tracks related to

web development, DevOps, cloud

computing, and more. Last year’s

session topics included perfor-

mance and low-latency Java.

Voxxed Days Zürich

MARCH 8

ZÜRICH, SWITZERLAND

Voxxed Days Zürich shares the

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
http://www.codemash.org
https://jspirit.org/
http://snowcamp.io/en/
https://devconf.cz
http://www.developerweek.com
http://www.devnexus.com
https://qconlondon.com
https://voxxeddays.com/zurich/

11

//events /

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

Devoxx philosophy that content

comes irst and draws inter-

nationally renowned and local

speakers. While the schedule

of speakers has not yet been

announced, last year’s event fea-

tured presentations on using

Java 8 lambdas and StampedLock

to manage thread safety, extract-

ing knowledge from crypto-

curren cies, and a preview

of Java EE 8.

Voxxed Days Melbourne

MAY 2–3

MELBOURNE, AUSTRALIA

Voxxed Days is heading down

under to Melbourne, Australia.

The event will feature insights

into cloud, containers and infra-

structure, real-world architec-

tures, data and machine learning,

the modern web, and program-

ming languages.

JavaOne 2018

OCTOBER 28–NOVEMBER 1

SAN FRANCISCO, CALIFORNIA

Whether you are a seasoned

coder or a new Java programmer,

JavaOne is for you. It’s the ulti-

mate source of technical informa-

tion and learning about Java. For

ive days, Java developers gather

from around the world to talk

about all aspects of Java and JVM

languages, development tools, and

trends in programming. Tutorials

on numerous related Java and JVM

topics will be ofered.

JavaOne 2017 Recap

The JavaOne conference in October

was headlined by the release of

Java SE 9 and the news that Oracle

was migrating Java EE to the

Eclipse Foundation. These links

provide access to some of the pop-

ular sessions from the conference:
■■ “ JDK 9 Language, Tooling, and

Library Features”
■■ “ Migrating to Modules”
■■ “JDK 9 Hidden Gems”
■■ “ JUnit 5: New Opportunities for

Testing on the JVM”
■■ “ Streams in JDK 8: The Good,

The Bad, and The Ugly”
■■ “Exploring Java 9 with REPL”

Are you hosting an upcoming

Java conference that you would

like to see included in this cal-

endar? Please send us a link

and a description of your event

at least 90 days in advance at

javamag_us@oracle.com. Other

ways to reach us appear on the

last page of this issue.

//java proposals of interest /

As most Java developers know, Java code is executed by

the JVM using one of two primary mechanisms: initially

interpretation, and then for code that is used exten-

sively, just-in-time (JIT) compilation. Java does not have

ahead-of-time (AOT) compilation in which code is com-

piled to native executable binaries a priori as is done by

C or C++.

JDK Enhancement Proposal (JEP) 295 proposes that

Java provide an AOT option. Its primary goal is to reduce

the amount of time Java applications spend starting up.

Speciically, during the initial parts of a Java program’s
execution, the JVM has not yet determined what meth-

ods to run through the JIT compiler, so the performance

does not immediately get the beneit of this step. With
the proposed AOT compilation, Java programs would

execute binary code from the start. Note that the goal

is speciically to reduce that initial delay, rather than
achieving higher performance throughout the pro-

gram’s entire run.

The compiler referenced in this JEP uses Graal as

the code-generating back end. At present, the AOT

option is being targeted exclusively at 64-bit Linux.

Third-party AOT compilers exist for Java—most

notably, Excelsior JET, which delivers binaries for

Windows, Linux, macOS, and ARM. Excelsior notes that

while the AOT compilation improves startup times, one

of the key reasons customers purchase its product is

IP protection, as native binaries are more diicult to
reverse-engineer than Java bytecode.

JEP 295: Ahead-of-Time
Compilation to Native Binaries

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
https://voxxeddays.com/melbourne/
https://www.oracle.com/javaone/index.html
https://www.youtube.com/watch?v=VrI6rJNO2x4
https://www.youtube.com/watch?v=VrI6rJNO2x4
https://www.youtube.com/watch?v=M7q3C8OwJe8
https://www.youtube.com/watch?v=G7pfr2XyLfI
https://www.youtube.com/watch?v=-mIrA5cVfZ4
https://www.youtube.com/watch?v=-mIrA5cVfZ4
https://www.youtube.com/watch?v=3CSfYGsmGEk
https://www.youtube.com/watch?v=3CSfYGsmGEk
https://www.youtube.com/watch?v=0RegttLUXeU
mailto:javamag_us%40oracle.com?subject=
http://openjdk.java.net/jeps/295
https://github.com/graalvm/graal
https://www.excelsiorjet.com/

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

12

//java ee 8 /

W
hile the Java SE community has been focused on the release of Java 9, the

Java EE community now has its turn in the spotlight. The editorial at the

front of this issue (page 5) examines Oracle’s recent announcement that

Java EE development is being moved to the Eclipse Foundation.

The articles in this section focus on the many technical advances in

Java EE 8. For some technologies, the new release brings signiicant upgrades and welcome

enhancements. These include Servlet 4.0’s embrace of HTTP/2 and its new server push capabili-

ties (page 13); CDI 2.0’s improved dependency injection (page 23); and JPA 2.2’s streaming results,

upgraded date conversions, and new annotations (page 43).

We also examine MicroProile, the new lightweight implementation of

Java EE intended for microservices and distributed computing (page 56).

If a single lightweight vehicle isn’t enough for you, we look at Java Card,

a super-lightweight Java SE implementation that thrives on smartcards

(page 77). It’s interesting to ind out how the JVM is activated, how objects’

lifetimes are managed, and of course how security is enforced. None of this

is easy or trivial in tiny environments.

In addition, we have the inal installment of Ben Evans’ two-part series

on how the JVM executes dynamic method invocations (page 67). Throw in

our book review (page 7) and the usual quiz (page 91) with its deep look into

the operations of the language, and you have an issue of Java Magazine that

tops 100 pages. Enjoy! We’ll have more coming after this!

Java EE 8:
What You Need to Know

SERVLET 4.0 13

CDI 2.0 23

JPA 2.2 43

MICROPROFILE 56

ART BY WES ROWELL

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

13

//java ee 8 /

The long-awaited update to Java EE 8 includes updates to existing APIs—JAX-RS 2.1, Bean

Validation 2.0, JavaServer Faces (JSF) 2.3, Contexts and Dependency Injection (CDI) 2.0,

JSON with Padding (JSONP) 1.1, and Servlet 4.0—and two brand-new APIs: JSON-Binding

(JSON-B) and Java EE Security. Among these APIs, Servlet 4.0 represents a major update, its

irst since 2009.

The impetus that prompted this major release (rather than a point release) is the worldwide

rollout of the HTTP/2 protocol and the many new capabilities it brings. This update to HTTP is

the irst in nearly 20 years and addresses many of the shortcomings of HTTP 1.x. The new capa-

bilities are numerous (request/response multiplexing, header compression, stream prioritiza-

tion, and server push), but the most visible feature to users of the Servlet API is Server Push,

which I will discuss in this article.

Server Push is not the only noteworthy addition to Servlet 4.0. This release also introduces

a feature reinement in the form of the Servlet Mapping API, which permits the runtime dis-

covery of mappings by reining the way referrer paths are obtained. This article discusses these

features and how Server Push has been integrated into the JavaServer Faces 2.3 API.

Server Push

Designed to anticipate the resource requirements of a web page, the Server Push feature pushes

images, CSS, and JavaScript iles, and other resources to the client before request processing has

been completed. Therefore, by the time the browser receives the response to its request for the

web page, the resources it needs are already in its cache and ready to use.

Servlet 4.0: Doing More Faster
A major new release of the Servlet API embraces the HTTP/2 protocol and

anticipates resource requirements.

ALEX THEEDOM

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.ibm.com/developerworks/library/wa-http2-under-the-hood/index.html

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

14

//java ee 8 /

Gone is the need to shard resources across domains to get around browser TCP connection

limitations. Simply specify the resources and let the server handle delivery. This is the way it

should always have been.

With the resources already in the browser’s cache, the browser can render the page much

more quickly. With a typical web page requiring more than 100 resources, it’s easy to see how

much of an opportunity this represents for performance enhancements.

Server Push in Action

Servlets are the backbone technology behind the Java EE web application tier. They provide the

server capabilities that form the basis of many frameworks. JavaServer Faces (JSF) relies on the

FacesServlet to manage the request processing lifecycle for web applications, and JSP pages are

translated into servlets upon the irst client request; so it should be no wonder that servlets are

the natural place to expose the HTTP/2 Server Push abstraction.

That abstraction is represented as a PushBuilder object and is created by calling the

newPushBuilder() method from the HttpServletRequest instance passed to all overridden request

handling methods.

With a PushBuilder instance, you can start pushing the resources required by the requested

web page. The resource is set on the PushBuilder instance by passing its location to the path()

method. The resource is pushed to the client by invoking the push() method. It can be reused to

send as many resources as required.

Listing 1 and Listing 2 show the simplest example that uses Server Push. Listing 1 shows an

HTTP servlet that responds to a GET request to the URI /simplestexample:

Listing 1.

@WebServlet("/simplestexample")

public class SimplestExample extends HttpServlet {

 @Override

 protected void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://httparchive.org/trends.php#bytesTotal&reqTotal

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

15

//java ee 8 /

 request.newPushBuilder()

 .path("images/coffee-cup.jpg")

 .push();

 getServletContext()

 .getRequestDispatcher("/coffee-cup.jsp")

 .forward(request, response); }}

Listing 2 shows the JSP web page:

Listing 2.

<html>

<head>

 <title>Coffee-Cup</title>

</head>

<body>

</body>

</html>

In Listing 1, I have a servlet called SimplestExample and a JSP to which the servlet dispatches.

As you can see, the JSP page requires only one resource, the coffee-cup.jpg image. When the

doGet() request handling method is invoked, it creates a new PushBuilder instance, sets the

image’s location, and calls the push() method to send the resource to the client.

As the image is making its way to the client, the servlet is forwarding the request to the JSP

that requires the coffee-cup.jpg resource. By the time the browser has received the rendered

HTML, it already has the image in its cache and can display the page without needing to make

another request.

To see Server Push in action, you can use the developer’s tools provided by Google’s Chrome

browser. Select More Tools>Developer Tools and then click the Network tab, and make a request

to the SimplestExample servlet. You should see a result similar to that shown in Figure 1. You can

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

16

//java ee 8 /

clearly see that the protocol it uses is h2 (short for “HTTP/2”) and the image was initiated via

Push. This conirms that Server Push was used to satisfy the resource request.

TLS Required for HTTP/2

You might have noticed in Figure 1 that the scheme of the request is HTTPS. This is because all

major browser vendors have chosen to implement HTTP/2 over Transport Layer Security (TLS)

only. However, the speciication does not mandate that a secure connection is required for suc-

cessful HTTP/2 communication. Browser vendors have made that decision on our behalf.

Care must be taken when using a new PushBuilder object. A call to newPushBuilder() will

return null if the connection is not secure, if the client does not support Server Push, or if the

client has requested to disable Server Push via the SETTINGS_ENABLE_PUSH parameter of a

SETTINGS frame.

If you want to try this example for yourself, you can clone the code from the GitHub

repository.

Anatomy of a PushBuilder

Each new instance of PushBuilder created by calling newPushBuilder() is based upon the cur-

rent HttpServletRequest instance. It is initiated with the HTTP GET method, and all headers are

stripped out except for conditional, range, expect, authorization, and referrer headers.

PushBuilder implements the builder pattern where chained method calls are used to mutate

the instance before calling the push() method. The resource path is the only coniguration

Figure 1: Resource request satisfied by Server Push

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://tools.ietf.org/html/rfc7540#section-6.5
http://bit.ly/2xCA7vb
http://bit.ly/2xCA7vb

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

17

//java ee 8 /

required before pushing. The push

action initiates an asynchronous

nonblocking request, and when it

returns, the path and conditional

headers are cleared in preparation

for the builder’s reuse.

You might be wondering how

useful it is to use PushBuilder in this

way in a real-world application, and you would be right to question this. The example was a little

artiicial and is for demonstration purposes only. A more likely scenario is that your application

will use JSF or JSP. So let’s look at JSF integration and how you might use the Server Push feature

with JSP.

JSF Integration

The JSF API takes full advantage of Server Push. It has full knowledge of all the resource

requirements of the requested web page and is well placed to push resources to the client.

Listing 3 shows a simple example of a JSF page that relies on three resources:

Listing 3.

<h:outputStylesheet library="css"

 name="coffee-cup.css"/>

<h:outputScript library="js" name="coffee-cup.js"

 target="head"/>

<h:head>

 <title>JSF 2.3 Server Push Example</title>

</h:head>

<h:body>

 <h:form>

 <h:graphicImage library="images" name="coffee-cup.jpg"/>

 </h:form>

Especially welcome is Server Push’s seamless
integration into the JSF API, which makes the adoption
of performance-enhancing HTTP/2 features possible
without any code changes.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

18

//java ee 8 /

</h:body>

</html>

As you can see, the JSF web page requires an image, a CSS ile, and a JavaScript ile. When

the page is requested, all three resources will be pushed to the client via Server Push before

the rendered page is returned. This can be clearly seen in Chrome’s Network tab, as shown in

Figure 2.

The page’s resources are pushed during the JSF RenderResponsePhase lifecycle phase. For

each resource that is identiied during this process, the ExternalContextImpl.encodeResourceURL()

method is invoked and passed the resource location. A new PushBuilder object is created from

the HttpServletRequest instance associated with the ExternalContext, and the resource is pushed

to the client. All inline resources are pushed to the client, and all such pushes are initiated

before the page is rendered to the client.

If you want to try this, the code can be cloned from the GitHub repository.

JSP Integration

So what about JSP? Disappointingly, JSP has not been updated to beneit from Server Push.

This is unfortunate considering the number of active web applications still using JSP. However,

Figure 2. JSF inline resource pushed to client

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://bit.ly/2wSB9Ua

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

19

//java ee 8 /

this does not mean that your JSP web

applications are doomed to HTTP 1.1

slowness; there is a solution, albeit a

bespoke solution.

You know that JSP pages are translated

into servlets and requests to those servlets

can be intercepted with web ilters. With

this knowledge, you can create a solution that allows you to harness the power of Server Push.

By implementing a web ilter, all requests to the web application can be intercepted and the

intercepting ilter maintains a cache of resource locations for each page requested. On subse-

quent requests, the resources the page requires are pulled from the cache and pushed to the cli-

ent before the ilter forwards to the JSP translated servlet (or to the next ilter in the chain).

The way this works is that the irst time a page is requested, the resources it needs are

identiied. It is assumed that soon after the initial page request is made, the browser will start

asking for the resources it needs. These resource requests are identiied by examining the refer-

rer header and matching the referrer page name to the name of the initial page request, thus

building up a cache of page-to-resource locations.

This is an efective solution that brings the Server Push feature to any part of your applica-

tion that does not support it out of the box. In fact, this is the solution that Jetty version 9 has

implemented in its PushCacheFilter web ilter.

The HttpServletRequest is the gateway to the Server Push ilter, which means that anywhere

you ind the HttpServletRequest instance you can use a new instance of PushBuilder and start

pushing resources.

Runtime Discovery of Mappings

The runtime discovery of the URL mapping that causes a servlet to be activated has been

reined, thanks to the new Servlet Mapping API. Frameworks that need to know the exact map-

ping that caused the servlet activation are the most likely to beneit from this feature. For

The runtime discovery of the URL mapping
that causes a servlet to be activated has been
refined, thanks to the new Servlet Mapping API.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://download.oracle.com/otndocs/jcp/servlet-4-final-spec/index.html

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

20

//java ee 8 /

example, a request to file.ext, /path, and /path/to/file.ext activates the servlet with URL

patterns /path/* and *.ext.

A reference to the Servlet Mapping API is obtained from the servlet’s HttpServletRequest

instance by calling the getHttpServletMapping() method. The API exposes four methods:

■■ The getMatchValue() method that returns the value that was matched

■■ The getPattern() method that returns the URL pattern that matched the request
■■ The getMappingMatch() method that returns the type of the match and is represented as an

enum with one of the following values: CONTEXT_ROOT, DEFAULT, EXACT, EXTENSION, IMPLICIT, PATH,

and UNKNOWN

■■ The getServletName() method that returns the fully qualiied name of the servlet that was

activated with the request

Listing 4 shows runtime discovery of mappings:

Listing 4.

@WebServlet({"/path/*", "*.ext"})

public class ServletMapping extends HttpServlet {

 protected void doGet(HttpServletRequest request,

 HttpServlet Response response)

 throws ServletException,

 IOException {

 HttpServletMapping servletMapping =

 request.getHttpServletMapping();

 response.getWriter()

 .append("<html><body>")

 .append("Value Matched: ")

 .append(servletMapping.getMatchValue())

 .append("
")

 .append("Pattern Used: ")

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

21

//java ee 8 /

 .append(servletMapping.getPattern())

 .append("
")

 .append("Mapping Matched: ")

 .append(servletMapping.getMappingMatch()

 .name())

 .append("
")

 .append("Servlet Name:")

 .append(servletMapping.getServletName())

 .append("
")

 .append("</body></html>");

 }

}

The output of the code in Listing 4 is shown in Table 1.

The servlet name returned by this example is com.readlearncode.servlet4.mapping

.ServletMapping.

Other Notable Updates in Servlet 4.0

Arguably, Server Push and the Servlet Mapping API are the most signiicant additions to the Servlet

4.0 release; nevertheless, I would be remiss if I did not mention other changes and additions.

Support has been added for HTTP Trailer, and a new GenericFilter and HttpFilter have

also been added. These additions simplify writing ilters. The GenericFilter provides minimal

implementations of the lifecycle methods init and destroy.

f ile.ex t /p a th /p a th /t o/f ile.ex t

MAPPING MATCHED file path to/file.ext

VALUE MATCHED *.ext /path/* /path/*

PATTERN USED EXTENSION PATH PATH

Table 1. Output from Listing 4

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Trailer

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

22

//java ee 8 /

In addition, ServletContext gets a few new methods. The addJspFile() method adds the

servlet with the given JSP ile to the servlet context. The session timeout and the default request

character encoding for the current servlet context get mutator and accessor methods.

Java SE 8 is now the minimum version with which servlet containers must be built. With

this change, there has been an upgrade to Java 8 features such as the addition of default meth-

ods to Listener interfaces.

The HttpServletRequestWrapper.isRequestedSessionIdFromUrl() method has been depre-

cated, and there has been some modiication and clariication to the corresponding Javadoc with

regard to various methods and XML conigurations.

Spring Framework 5.0

Spring Framework version 5.0, which has just been released, boasts HTTP/2 support natively

with Tomcat, Jetty, and Undertow. Full support for Servlet 4.0 is expected in Spring Framework

5.1. Nevertheless, the framework fully supports Server Push’s capabilities.

Conclusion

Two headline features, Server Push and the Servlet Mapping API, are welcome additions to the

Servlet API. Especially welcome is Server Push’s seamless integration into the JSF API, which

makes the adoption of performance-enhancing HTTP/2 features possible without any code

changes. </article>

Alex Theedom (@readlearncode) is an instructor at LinkedIn Learning. He is the author of Java EE 8: Only

What’s New (Leanpub.com) and coauthor of Professional Java EE Design Patterns (Wrox Press, 2015). He

blogs profusely at readlearncode.com about Java EE. When he’s not in front of the computer screen, you can

often ind him presenting at conferences on Java EE–related topics.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

23

//java ee 8 /

Contexts and Dependency Injection (CDI) is Java EE’s primary dependency injection frame-

work. It was introduced with Java EE 6 in 2009. Started by Gavin King (of Hibernate fame)

and originally intended to unite the JavaServer Faces (JSF) and Enterprise JavaBeans (EJB) bean

models, CDI is now slowly but steadily becoming the backbone of all of Java EE. JSF 2.3, for

instance, has fully deprecated its own managed bean model and dependency injection in favor

of CDI, while the new Java EE Security API has been designed speciically to work with CDI.

Interceptors and bean validation are usable without CDI, but they are both easier to use with CDI.

Java EE 8 delivered a major update with CDI 2.0. Central to this update was splitting the spec

into three parts: the core spec, Java SE features, and Java EE features. This division was done

primarily to standardize how to use CDI in Java SE, but it can also be seen as an attempt to make

CDI a more-core, fundamental technology. For instance, the built-in beans for Java EE—which

make, for example, the injection of HttpServletRequest or Principal possible—could be moved

to a more appropriate spec in Java EE without afecting the core part of the spec or the Java SE

part of CDI.

In this article, I demonstrate some of the most useful features in CDI 2.0, including

■■ Simpliied programmatic creation of beans
■■ Programmatically adding an interceptor (to a built-in CDI bean)

■■ Programmatic bean lookup simpliications

There are some other interesting new features in CDI 2.0, such as event ordering and asynchro-

nous events, which will be covered in future articles in this magazine. As you can tell if you’ve

gotten this far, this article is aimed at developers already familiar with Java EE and CDI.

CDI 2.0: Making Dependency
Injection a Lot Easier
A new spec, new features, and new annotations—what’s not to like?

ARJAN TIJMS

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

24

//java ee 8 /

Simplified Programmatic Creation of Beans

CDI has the well-known concept of producers. Simply put, a producer is a kind of general factory

method for some type. It’s deined by annotating a method with @Produces. An alternative “fac-

tory” for a type is simply a class itself; a class is inherently a factory of objects of its own type.

In CDI, both of these kinds of factories are represented by the Bean<T> type. The name might

be somewhat confusing, but a Bean<T> in CDI is, thus, not a bean itself but a type used to create

instances (that is, a factory). An interesting aspect of CDI is that those Bean<T> instances are not

just internally created by CDI after encountering class deinitions and producer methods; they

can be added programmatically by user code as well.

Via this mechanism, it’s possible to

dynamically register these “factories.”

This ability can be handy in a variety of

cases, for instance, when many simi-

lar producer methods would have to be

deined statically or when generic pro-

ducers are needed. As it stands, gener-

ics are not particularly well supported

in CDI. Instead of trying to create a somewhat generic producer, an alternative strategy could be

to actually scan which types an application is using and then dynamically create a Bean<T> for

each type.

Programmatically adding a Bean<T> instance and using CDI producers are techniques that

overlap somewhat in functionality. The diference is that CDI producers essentially make only

the “create instance” aspect dynamic; the rest (such as scope, types, and so on) is more or

less static. However, a programmatically added Bean<T> makes all those aspects dynamic. The

downside of a Bean<T> is that it has to be added via a CDI extension, which runs only when CDI

starts up.

In CDI 1.x, programmatically adding Bean<T> is quite a bit of work and a bit complex, because

it requires you to decide what to return as a default for various methods that are not directly

of interest.

In CDI 2.0, you can take advantage of the
new InterceptionFactory to bind a library-
shipped interceptor to a library-shipped built-in bean.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

25

//java ee 8 /

CDI 2.0 has addressed that by providing a very convenient builder that not only makes cre-

ating a Bean<T> instance far less verbose but also takes away most of the guesswork. Consider

the simple interface shown in the following code:

public interface MyBean {

 String sayHi();

}

And a class implementing that interface:

public class MyBeanImpl implements MyBean {

 private final String greet;

 public MyBeanImpl(String greet) {

 this.greet = greet;

 }

 @Override

 public String sayHi() {

 return greet;

 }

}

Note that this class has no default constructor, so CDI normally would not be able to use this

class directly as a bean.

Now consider the following CDI extension:

public class CdiExtension implements Extension {

 public void afterBean(

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

26

//java ee 8 /

 @Observes AfterBeanDiscovery afterBeanDiscovery) {

 afterBeanDiscovery

 .addBean()

 .scope(ApplicationScoped.class)

 .types(MyBean.class)

 .id("Created by " + CdiExtension.class)

 .createWith(e -> new MyBeanImpl("Hi!"));

 }

}

This code makes an @ApplicationScoped bean available for injection into MyBean injection points,

backed by the MyBeanImpl class. In the example shown above, the MyBeanImpl type is completely

hidden and CDI will inject only into MyBean and nothing else. If there were a need to inject into

other (related) types, the other types can be provided in the types() method of the builder as well.

As with all CDI extensions, the extension class has to be registered by putting its fully qual-

iied name (FQN) in META-INF/services/javax.enterprise.inject.spi.Extension.

Once all this is done, the bean can be injected just like any other bean:

@ApplicationScoped

public class SomeBean {

 @Inject

 private MyBean myBean;

}

Programmatically Adding an Interceptor to a Built-In CDI Bean

In CDI, beans can be augmented via two artifacts: decorators and interceptors.

■■ Decorators are typically owned by the application code and can decorate a bean that’s shipped

by the container (built-in beans) or a library.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

27

//java ee 8 /

■■ Interceptors are typically shipped by a library and can be applied (bound) to a bean that’s

owned by the application.

So, how do you bind a library-shipped interceptor to a library-shipped built-in bean? In CDI

1.2 and before, this wasn’t really possible, but in CDI 2.0, you can take advantage of the new

InterceptionFactory to do this. It’s not entirely trivial yet, but it’s doable. Here is how to apply

the @RememberMe interceptor binding from the new Java EE 8 Security speciication to a built-in

bean of type HttpAuthenticationMechanism, which is from the Java EE Security spec as well.

First, conigure the authentication mechanism by means of the following annotation:

@BasicAuthenticationMechanismDefinition(

 realmName="foo"

)

This annotation causes the container to enable a built-in bean with an interface type of

HttpAuthenticationMechanism, but having an unknown (vendor-speciic) implementation.

The annotation can be placed on almost any class on the classpath.

Next, deine an alternative for this bean via a CDI producer:

@Alternative

@Priority(500)

@ApplicationScoped

public class ApplicationInit {

 @Produces

 public HttpAuthenticationMechanism produce(

 InterceptionFactory<HttpAuthenticationMechanismWrapper>

 interceptionFactory,

 BeanManager beanManager) {

 return ...

 }

}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

28

//java ee 8 /

Note, perhaps somewhat counterintuitively, that the @Alternative annotation is put on the bean

hosting the producer method, not on the producer method itself. A small challenge here is to

obtain the bean with type HttpAuthenticationMechanism that would have been chosen by the CDI

runtime had the producer not been there. For a decorator, this is easy because CDI makes that

exact bean injectable via the @Decorated qualiier. Here, this will have to be done manually. One

way is to get all the beans of type HttpAuthenticationMechanism from the bean manager (this

will include both alternatives and nonalternatives), ilter the producer bean (ApplicationInit)

from that set, and then let the bean manager resolve the set to the one that would be chosen for

injection. After that, a reference is created for that chosen bean.

The following shows this process in code:

HttpAuthenticationMechanism mechanism =

 createRef(

 beanManager.resolve(

 beanManager

 .getBeans(HttpAuthenticationMechanism.class)

 .stream()

 .filter(e -> !e.getBeanClass()

 .equals(ApplicationInit.class))

 .collect(toSet())), beanManager);

Note that the code ilters on the getBeanClass() outcome. The BeanClass, perhaps somewhat

confusingly, does not necessarily represent the class (or classes) of the bean itself but rather

where the bean is created. For a producer, this is the bean that contains the producer method, so

that is a very good handle for iltering out the “current” producer bean.

The createRef() method is deined as follows:

HttpAuthenticationMechanism createRef(

 Bean<?> bean, BeanManager beanManager) {

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

29

//java ee 8 /

 return (HttpAuthenticationMechanism) beanManager.getReference(

 bean,

 HttpAuthenticationMechanism.class,

 beanManager.createCreationalContext(bean));

}

You now have an instance of the bean on which you can apply the interceptor binding. Unfor-

tunately, there’s a somewhat peculiar and very serious note in the CDI spec regarding the

method that creates a proxy with the required interceptor attached: “If the provided instance is

an internal container construct (such as client proxy), non-portable behavior results.”

Because the HttpAuthenticationMechanism is a client proxy (it’s application-scoped by spec

deinition), you have no choice but to provide an extra wrapper. The interceptor will be applied

to the wrapper, then, and the wrapper will delegate to the actual HttpAuthenticationMechanism

instance, for example:

HttpAuthenticationMechanismWrapper wrapper =

 new HttpAuthenticationMechanismWrapper(mechanism);

The wrapper is deined straightforwardly, as follows:

public class HttpAuthenticationMechanismWrapper

 implements HttpAuthenticationMechanism {

 private HttpAuthenticationMechanism httpAuthenticationMechanism;

 public HttpAuthenticationMechanismWrapper() {

 }

 public HttpAuthenticationMechanismWrapper(

 HttpAuthenticationMechanism httpAuthenticationMechanism) {

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

30

//java ee 8 /

 this.httpAuthenticationMechanism = httpAuthenticationMechanism;

 }

 HttpAuthenticationMechanism getWrapped() {

 return httpAuthenticationMechanism;

 }

 @Override

 public AuthenticationStatus validateRequest(

 HttpServletRequest request, HttpServletResponse response,

 HttpMessageContext httpMessageContext)

 throws AuthenticationException {

 return getWrapped().validateRequest(

 request,

 response,

 httpMessageContext);

 }

 @Override

 public AuthenticationStatus secureResponse(

 HttpServletRequest request, HttpServletResponse response,

 HttpMessageContext httpMessageContext)

 throws AuthenticationException {

 return getWrapped().secureResponse(

 request,

 response,

 httpMessageContext);

 }

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

31

//java ee 8 /

 @Override

 public void cleanSubject(HttpServletRequest request,

 HttpServletResponse response,

 HttpMessageContext httpMessageContext) {

 getWrapped().cleanSubject(

 request,

 response,

 httpMessageContext);

 }

}

Having the HttpAuthenticationMechanism instance ready, the annotation instance can now be

conigured dynamically. The instance has to be created irst, which can be done via CDI’s pro-

vided AnnotationLiteral helper type. Because the @RememberMe annotation has many attributes,

it’s a little unwieldy, but it’s still relatively straightforward:

public class RememberMeAnnotationLiteral extends

 AnnotationLiteral<RememberMe> implements RememberMe {

 private static final long serialVersionUID = 1L;

 int cookieMaxAgeSeconds;

 String cookieMaxAgeSecondsExpression;

 boolean cookieSecureOnly;

 String cookieSecureOnlyExpression;

 boolean cookieHttpOnly;

 String cookieHttpOnlyExpression;

 String cookieName;

 boolean isRememberMe;

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

32

//java ee 8 /

 String isRememberMeExpression;

 public RememberMeAnnotationLiteral(

 int cookieMaxAgeSeconds,

 String cookieMaxAgeSecondsExpression,

 boolean cookieSecureOnly,

 String cookieSecureOnlyExpression,

 boolean cookieHttpOnly,

 String cookieHttpOnlyExpression,

 String cookieName,

 boolean isRememberMe,

 String isRememberMeExpression) {

 this.cookieMaxAgeSeconds = cookieMaxAgeSeconds;

 this.cookieMaxAgeSecondsExpression = cookieMaxAgeSecondsExpression;

 this.cookieSecureOnly = cookieSecureOnly;

 this.cookieSecureOnlyExpression = cookieSecureOnlyExpression;

 this.cookieHttpOnly = cookieHttpOnly;

 this.cookieHttpOnlyExpression = cookieHttpOnlyExpression;

 this.cookieName = cookieName;

 this.isRememberMe = isRememberMe;

 this.isRememberMeExpression = isRememberMeExpression;

 }

// + getters for instance variables

}

With that deinition in place, the annotation can be added to the interception factory with pro-

grammatically conigured attribute values:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

33

//java ee 8 /

interceptionFactory.configure().add(

 new RememberMeAnnotationLiteral(

 86400, "", // cookieMaxAgeSeconds

 false, "", // cookieSecureOnly

 true, "", // cookieHttpOnly

 "JREMEMBERMEID", // cookieName

 true, "" // isRememberMe

)

);

Finally, the above-mentioned new proxy can be created with the conigured interceptor bind-

ing applied to it using the interception factory’s createInterceptedInstance() method and return

this from the produce() method of the ApplicationInit bean that was shown at the start of

this section:

return interceptionFactory.createInterceptedInstance(

 new HttpAuthenticationMechanismWrapper(wrapper));

Note that there’s a small caveat here: if the Interceptor needs access to the interceptor bindings

(which is almost always the case when the binding has attributes), you cannot just inspect the

target type as you would usually do in CDI 1.2 and earlier code. The interceptor binding annota-

tion is not physically present on the type. At present, it’s not entirely clear how to obtain these

in a portable way. The interceptors in the Java EE Security reference implementation (Soteria)

use a reference-implementation-speciic way for now.

As a second example, I’ll demonstrate another use case where the Java Transaction API (JTA)

@Transactional annotation is dynamically applied to a single method of a bean.

For this example, consider a simple Employee entity deined as follows:

@Entity

public class Employee {

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

34

//java ee 8 /

 @Id

 @GeneratedValue

 private int id;

 private String name;

 public int getId() {

 return id;

 }

 public void setId(int id) {

 this.id = id;

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

}

And consider a service that persists that entity, which is deined as:

@ApplicationScoped

public class EmployeeService {

 @Inject

 private EntityManager entityManager;

 public void persist(Employee employee) {

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

35

//java ee 8 /

 entityManager.persist(employee);

 }

 public Employee getById(int id) {

 return entityManager.find(Employee.class, id);

 }

}

For completeness, a resource producer ield and a persistence.xml ile are needed, which are

deined as follows. The producer ield:

 @Produces @PersistenceContext

 private EntityManager entityManager;

The persistence.xml ile:

<?xml version="1.0" encoding="UTF-8"?>

<persistence version="2.1"

 xmlns="http://xmlns.jcp.org/xml/ns/persistence" xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence http://xmlns.jcp.org/

xml/ns/persistence/persistence_2_1.xsd">

 <persistence-unit name="MyPU">

 <properties>

 <property

 name="javax.persistence.schema-generation.database.action"

 value="drop-and-create" />

 </properties>

 </persistence-unit>

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

36

//java ee 8 /

</persistence>

The EmployeeService shown above is a plain CDI bean, and it doesn’t have any transactional

semantics of its own. Yet, per the requirements of EntityManager#persist, a transaction is

required for that method to do its work. Possibly, the service has been written with the assump-

tion that the client starts that transaction. If the service wasn’t, you modify the code directly

to add @Transactional to the persist() method, and the CDI 2.0 InterceptionFactory can be used

again to dynamically add it.

The full producer method is shown below:

@Produces

public EmployeeService produce(

 InterceptionFactory<EmployeeService> interceptionFactory,

 BeanManager beanManager) {

 EmployeeService employeeBean = createRef(beanManager.resolve(

 beanManager.getBeans(EmployeeService.class)

 .stream()

 .filter(e -> !e.getBeanClass()

 .equals(ApplicationInit.class))

 .collect(toSet())), beanManager);

 interceptionFactory.configure()

 .filterMethods(

 am -> am.getJavaMember()

 .getName()

 .equals("persist"))

 .forEach(

 amc -> amc.add(new TransactionLiteral()));

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

37

//java ee 8 /

 return interceptionFactory.createInterceptedInstance(

 new EmployeeBeanWrapper(employeeBean));

}

Notice that I have now added the filterMethods() part to select all methods with the name

“persist.” For this service, that would be only one method. Subsequently, the code adds the

@Transaction annotation to that method via a TransactionLiteral, which works in the same way

as the RememberMeAnnotationLiteral shown above. I also need a wrapper again, which this time is

created by subclassing the service instead of using an interface. It’s shown below:

public class EmployeeBeanWrapper extends EmployeeService {

 private EmployeeService employeeBean;

 public EmployeeBeanWrapper() {

 }

 public EmployeeBeanWrapper(EmployeeService employeeBean) {

 this.employeeBean = employeeBean;

 }

 EmployeeService getWrapped() {

 return employeeBean;

 }

 @Override

 public void persist(Employee employee) {

 getWrapped().persist(employee);

 }

 @Override

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

38

//java ee 8 /

 public Employee getById(int id) {

 return getWrapped().getById(id);

 }

}

Note that in the produce() method shown in the code immediately before this latest code, I

obtained an instance of the original EmployeeService class using CDI instead of just instantiating

via the new operator. This approach is needed for the injection in that bean to do its work and to

apply the correct scope.

Earlier, I mentioned a caveat: it is diicult for an Interceptor implementation to access the

interceptor bindings when they have been added dynamically. That same caveat applies here.

The current JTA Interceptor implementations are not yet aware of CDI 2.0 and will not see the

dynamic annotation, and thus they will

not be able to read its attributes. Payara 5

will address this, and I expect other imple-

mentations will soon do the same thing.

You should also be aware that the

add() methods of the InterceptionFactory

will happily accept any type of anno-

tation literal, but only those representing interceptor bindings will have any efect. For

instance, interceptionFactory.configure().add(SessionScoped.Literal.INSTANCE) will both

compile and not throw any exceptions at runtime, but the produced bean will not be given the

conigured scope.

Programmatic Bean Lookup Simplifications

While CDI is widely known for its ability to inject beans into injection points, it also features an

API to look up beans programmatically. This API largely mimics the way injection works. That

is, if you can create an injection point of type Foo with qualiier Bar, then the same bean that

While CDI is widely known for its ability
to inject beans into injection points, it also
features an API to look up beans programmatically.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

39

//java ee 8 /

would have been injected there can also be looked up by passing Foo.class and a Bar annotation

instance to this API.

As seen previously, though, annotation instances are somewhat tedious to create. So, CDI

2.0 has introduced default annotation instances and builders for most of its annotations. A short

example was already shown earlier. Instead of painstakingly creating an annotation instance for

@SessionScoped, you can use SessionScoped.Literal.INSTANCE.

For annotations that have attributes, convenient builders have been provided by CDI 2.0,

and for the important annotations that CDI does not own (those from JSR 330, which had lit-

tle hope of being updated during Java EE 8), CDI has provided annotation literal types too, for

example, for @Named.

A few other smaller conveniences for lookup have been added as well. For example, when

you are doing a lookup, it’s now possible to check via one test whether the lookup resolved to

an instance, instead of testing for various diferent failure modes (such as ambiguity, no bean

found, and so forth).

Finally, JDK 8 support has been added, such as getting streams for a lookup that can result

in many candidates. Let’s look at examples of these. Consider the following simple interface:

public interface MyGreeting {

 String getGreet();

}

And two diferent implementations of this:

@Named("northern")

public class MyGreeting1 implements MyGreeting {

 @Override

 public String getGreet() {

 return "Ay-up!";

 }

}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

40

//java ee 8 /

And consider this:

@Named("informal")

public class MyGreeting2 implements MyGreeting {

 @Override

 public String getGreet() {

 return "Hiya!";

 }

}

With CDI 2.0, you can easily look up all MyGreeting candidates and process these via a

JDK 8 stream:

Instance<MyGreeting> myGreetings =

 CDI.current().select(MyGreeting.class);

myGreetings.stream()

 .forEach(e -> out.println(e.getGreet()));

This code prints “Ay-up!” and “Hiya!” to the standard output. Because it’s a normal JDK 8

stream, any other operation can be applied to it if needed, such as iltering, mapping, and so on.

Selecting a single speciic instance from the myGreetings preselection can be done as follows;

MyGreeting greeting =

 myGreetings.select(NamedLiteral.of("northern")).get();

Or, without the preselection, it can be done in one step:

MyGreeting greeting =

 CDI.current()

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

41

//java ee 8 /

 .select(MyGreeting.class, NamedLiteral.of("northern"))

 .get();

Both versions of the code will result

in the MyGreeting1 instance being

resolved. The existence of the new

NamedLiteral class makes it relatively

easy to do this lookup.

Of course, a bean might not be

available for several reasons. For exam-

ple, a bean of the requested type might exist but not have the requested qualiier. Or, if the

requested type is an interface, it might be implemented by two or more classes, which makes

it impossible to return a single instance. To test for any kind of failure to obtain a bean, CDI 2.0

introduced the new isResolvable() method. The following example shows how this is used:

boolean isResolvable =

 myGreetings.select(NamedLiteral.of("formal"))

 .isResolvable()

Because there isn’t a MyGreeting implementation available with a @Named("formal") qualiier, the

result of the test above will be false.

Conclusion

CDI 2.0 has made working with beans in a programmatic way much easier, and it has enabled

things that weren’t possible before in CDI, such as combining interceptor bindings that are pro-

vided by a container or library with beans that are also provided by a container or library. We’ve

seen that combining these provided interceptor bindings and beans takes a bit of code, but that

code should be easy to adapt for your own projects.

CDI 2.0 has made working with beans in a
programmatic way much easier, and it has
enabled things that weren’t possible before in CDI.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

42

//java ee 8 /

The new annotation instances are a great addition,

and make requesting beans from the bean manager

much easier. You should be aware, though, that in Java

EE 8, they are available only for CDI annotations from

the CDI spec itself and not for CDI annotations originat-

ing from other specs (such as JSF, Java EE Security, JTA,

and so on) with the exception of JSR 330 annotations.

Existing interceptors both inside and outside

Java EE that require access to an annotation’s attri-

butes might need to be updated to take into account

that interceptors can be added dynamically and that

the interceptor binding annotations are not necessar-

ily actually present on the class or its methods. Up until

now, this hasn’t really been done much (for example,

the reference implementation of the Java EE Security

API supports this in a limited way, but the spec makes

no mention of it).

All in all, CDI 2.0 is another great step forward and

ofers a lot of useful new features. </article>

Arjan Tijms works for Payara Services on the next-generation

Payara 5 server, and he is a JSF (JSR 372) and Security API

(JSR 375) Expert Group member. He is a cocreator of the popu-

lar OmniFaces library for JSF that won a 2015 Duke’s Choice

Award, and he is the main creator of a set of tests for the

Java Authentication Service Provider Interface for Containers

(JASPIC), which has been used by various Java EE vendors.

Tijms holds an MSc in computer science from the University of

Leiden in the Netherlands.

//user groups /

THE NLJUG
The Netherlands Java User

Group, better known as

the NLJUG, has a national

reach throughout the

Netherlands. One of the

largest JUGs in Europe, it

currently has more than

4,300 members and

58 business partners.

The NLJUG is best

known for its J-Fall con-

ference, the leading event of its kind for the Dutch-speaking

Java community. In addition to J-Fall, the NLJUG organizes

J-Spring; the IoT Tech Day; and the Masters of Java, a Java

“funprogging” contest.

It also publishes its own Java magazine for members

six times a year, featuring articles from both the Dutch Java

community and international authors.

The JUG participates in the Java Community Process

(JCP) through the Adopt-a-JSR program. It was nominated

as Outstanding Adopt-a-JSR Participant in the JCP Awards in

2016 and won a Duke’s Choice Award in 2013.

The JUG regularly cooperates with other JUGs (such as

the Virtual JUG) and supports two smaller local JUGs: the

Amsterdam JUG and the Utrecht JUG. It is also a part of the

Devoxx4Kids initiative: multiple events organized by its busi-

ness partners every year that enable kids to learn to code and

experiment with technology.

NLJUG members frequently speak at events across

Europe and the United States. The NLJUG is always looking

for new members to join and help continue the mission of

making the Netherlands a great place to be a Java developer.

For more information, visit nljug.org.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.nljug.org

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

43

//java ee 8 /

The Java Persistence API (JPA) is a foundational Java EE speciication that is widely used

throughout the industry. Whether you are developing for the Java EE platform or an alter-

native framework for Java, JPA is likely your principal choice for data persistence. JPA 2.1 took

the speciication to new frontiers, because it enabled developers to perform tasks such as

automatically generating a database schema and eiciently working with database stored pro-

cedures. The latest release, JPA 2.2, builds upon these improvements and makes incremental

improvements to the speciication.

In this article, I outline the new features, providing examples that can be used to get

started. I use an example project known as the “Java EE 8 Playground,” which resides on GitHub.

The example application is built upon the Java EE 8 speciications, and it uses the JavaServer

Faces (JSF) framework along with Enterprise JavaBeans (EJB) and JPA for persistence. To follow

along, you’ll need to be familiar with JPA.

Using JPA 2.2

The JPA 2.2 release is part of the Java EE 8 platform. That said, only Java EE 8–compliant appli-

cation servers provide the speciication for use out of the box. At the time of this writing (late

2017), there aren’t many Java EE 8–compliant application servers. However, it is still easy to

use JPA 2.2 if you’re using Java EE 7. The irst step is to download the pertinent JAR iles using

Maven Central and include them with the project. If you are using Maven for the project, add the

coordinates to the Maven project object model (POM) ile:

What’s New in JPA 2.2
Streaming results, better date conversions, and new annotations

are just a few of the many handy improvements.

JOSH JUNEAU

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/juneau001/JavaEE8-Playground
https://mvnrepository.com/artifact/org.eclipse.persistence/javax.persistence/2.2.0
https://mvnrepository.com/artifact/org.eclipse.persistence/javax.persistence/2.2.0

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

44

//java ee 8 /

<dependency>

 <groupId>javax.persistence</groupId>

 <artifactId>javax.persistence-api</artifactId>

 <version>2.2</version>

</dependency>

Next, choose the JPA implementation that you want to use. As of the release of JPA 2.2, both

EclipseLink and Hibernate have compatible implementations. For the examples in this article,

I use EclipseLink by adding the following dependency:

<dependency>

 <groupId>org.eclipse.persistence</groupId>

 <artifactId>eclipselink</artifactId>

 <version>2.7.0 </version>

</dependency>

If you are using a Java EE 8–compliant server, such as GlassFish 5 or Payara 5, you should be able

to specify a scope of “provided” for these dependencies in the POM ile. Otherwise, specify the

“compile” scope to include them in the project build.

Java 8 Date and Time Support

Perhaps one of the most welcome new additions is support for the Java 8 Date and Time API.

Since the release of Java SE 8 in 2014, developers have been using workarounds to enable the use

of the Date and Time API with JPA. Although most workarounds are quite simple, the require-

ment for basic support of the updated Date and Time API has been long overdue. The JPA support

for the Date and Time API includes the following common types:
■■ java.time.LocalDate

■■ java.time.LocalTime

■■ java.time.LocalDateTime

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://mvnrepository.com/artifact/org.eclipse.persistence/eclipselink/2.7.0

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

45

//java ee 8 /

■■ java.time.OffsetTime

■■ java.time.OffsetDateTime

I put this into context by irst explaining how to support the Date and Time API without JPA 2.2.

Because JPA 2.1 is capable only of working with older date constructs such as java.util.Date and

java.sql.Timestamp, a converter must be used to convert from data that is stored in a database

to older date constructs supported by the JPA 2.1 release and then to the updated Date and Time

API for use in an application. A date converter in JPA 2.1 that is capable of performing such con-

version might look like that in Listing 1. The converter in the listing is used to convert between

LocalDate and java.util.Date.

Listing 1.

@Converter(autoApply = true)

public class LocalDateTimeConverter implements

 AttributeConverter<LocalDate, Date> {

 @Override

 public Date convertToDatabaseColumn(

 LocalDate entityValue) {

 LocalTime time = LocalTime.now();

 Instant instant = time.atDate(entityValue)

 .atZone(ZoneId.systemDefault())

 .toInstant();

 return Date.from(instant);

 }

 @Override

 public LocalDate convertToEntityAttribute(

 Date databaseValue){

 Instant instant = Instant

 .ofEpochMilli(databaseValue.getTime());

 return LocalDateTime.ofInstant(instant,

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

46

//java ee 8 /

 ZoneId.systemDefault()).toLocalDate();

 }

}

In JPA 2.2, there is no longer a need for coding such a converter when you are using the supported

date-time types. Support for those types is built in, so you can simply specify the supported

type on a ield of an entity class without any further code. The following code excerpt demon-

strates this concept. In the code, note that there is no need to add a @Temporal annotation,

because the type mapping occurs automatically.

public class Job implements Serializable {

 . . .

 @Column(name = "WORK_DATE")

 private LocalDate workDate;

 . . .

}

Because the supported date-time types are irst-class citizens of JPA, they can simply be

speciied without the extra ceremony. In JPA 2.1, the @Temporal annotation must be speci-

ied on all persistent ields or properties of type

java.util.Date and java.util.Calendar.

Although only a subset of the date-time types

is supported in this release, an attribute converter

can easily be generated for working with other

types, such as conversion between LocalDateTime

and ZonedDateTime. The biggest challenge to writ-

ing such a converter is determining how to best make the conversion between the diferent

types. To make things even easier, attribute converters are now injectable. I show an example of

injection in the next section.

The JPA 2.2 update adds the useful
ability of enabling attribute converters to
become injectable.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

47

//java ee 8 /

The code in Listing 2 demonstrates how to convert between LocalDateTime and ZonedDateTime.

Listing 2.

@Converter

public class LocalToZonedConverter implements

 AttributeConverter<ZonedDateTime, LocalDateTime> {

 @Override

 public LocalDateTime convertToDatabaseColumn(

 ZonedDateTime entityValue) {

 return entityValue.toLocalDateTime();

 }

 @Override

 public ZonedDateTime convertToEntityAttribute(

 LocalDateTime databaseValue) {

 return ZonedDateTime.of(databaseValue,

 ZoneId.systemDefault());

 }

}

This particular example is straightforward, because ZonedDateTime contains easy-to-use con-

version methods. It is converted by calling upon its toLocalDateTime() method. The oppo-

site conversion can be made by calling upon the ZonedDateTimeOf() method and passing the

LocalDateTime value along with the ZoneId for the time zone to use.

Injectable Attribute Converters

Attribute converters were a very useful addition to JPA 2.1, because they allowed entity attri-

bute types to become much more lexible. The JPA 2.2 update adds the useful ability of enabling

attribute converters to become injectable. That is, you can now inject Contexts and Dependency

Injection (CDI) resources into an attribute converter. This modiication falls in line with other

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

48

//java ee 8 /

CDI improvements made throughout the Java EE 8 speciications such as the enhanced JSF con-

verters, because they can also now use CDI injection.

To use this new feature, simply inject CDI resources into an attribute converter, as needed.

Listing 2 demonstrates an example of an attribute converter, and now I will walk through it to

point out the important pieces.

The converter class must implement

the javax.persistence.AttributeConverter

interface, passing an X and Y value. The X

value should correspond to the data type

in the Java object, and the Y value should

correspond to the database column type.

Next, the converter class should be annotated with @Converter. Finally, the class should override

the convertToDatabaseColumn() and convertToEntityAttribute() methods. The implementation in

each of these methods should convert the values to and from the speciied types.

To automatically apply the converter each time the speciied data type is used, specify

“automatic,” as in @Converter(autoApply=true). To apply the converter to a single attribute, use

the @Converter annotation at the attribute level, as shown here:

@Convert(converter=LocalDateConverter.java)

private LocalDate workDate;

A converter can also be applied at the class level, as follows:

@Convert(attributeName="workDate",

 converter = LocalDateConverter.class)

public class Job implements Serializable {

 . . .

The scrollable ResultSet and pagination
techniques fetch only a portion of the data at one
time, which might be better with large datasets.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

49

//java ee 8 /

Suppose that I wanted to encrypt the values that are contained in the creditLimit ield of a

Customer entity when it is persisted. To implement such a process, the values would need to be

encrypted prior to being persisted and unencrypted upon retrieval from the database. This can

be done within a converter and, by using JPA 2.2, I can inject an encryption object into the con-

verter to achieve the desired result. Listing 3 provides an example.

Listing3.

@Converter

public class CreditLimitConverter implements

 AttributeConverter<BigDecimal, BigDecimal> {

 @Inject

 CreditLimitEncryptor encryptor;

 @Override

 public BigDecimal convertToDatabaseColumn

 (BigDecimal entityValue) {

 String encryptedFormat =

 encryptor.base64encode(

 entityValue.toString());

 return BigDecimal.valueOf(

 Long.valueOf(encryptedFormat));

 }

 . . .

}

In this code, the process is performed by injecting the CreditLimitEncryptor class into the con-

verter and making use of it to assist in the process.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

50

//java ee 8 /

Streaming Results of Query Executions

It is now very easy to take full advantage of the Java SE 8 stream features when you are work-

ing with the results of query executions. Not only do streams make code easier to read, write,

and maintain, but they also can help queries to perform better in some situations. Some stream

implementations can also help to prevent querying too much data at once, although in some

cases the use of ResultSet pagination can perform better than streams.

To enable this feature, the getResultStream() method has been added to both the Query and

TypedQuery interfaces. This minor change allows JPA to simply return a stream of results, rather

than a list. Therefore, if you are working with a large ResultSet, it makes sense to do some

performance comparisons between the new stream implementation and scrollable ResultSets

or pagination. The reason is that the stream

implementations will fetch all records at once,

storing them in a list and then returning. The

scrollable ResultSet and pagination techniques

fetch only a portion of the data at one time,

which might be better with large datasets.

Persistence providers can choose to override the new getResultStream() method with a

better implementation. Hibernate already includes a stream() method, which uses a scrol-

lable ResultSet to parse through result records rather than returning everything. This enables

Hibernate to work with very large datasets and perform very well. Expect other providers to

override this method to provide similar features that will be beneicial for JPA.

Performance aside, the option to stream results very easily is a favorable addition to JPA,

providing a convenient way to work with data. I am going to demonstrate a couple of the scenar-

ios where this might be a beneit, although there are countless possibilities. In both scenarios, I

query the Job entity and return a stream. First, take a look at the following code where I simply

parse a stream of Jobs for a speciied Customer by calling the Query interface’s getResultStream()

method. I then use that stream to print out details regarding the Job customer and work date.

Be aware of performance in scenarios
where lots of data is returned.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

51

//java ee 8 /

public void findByCustomer(PoolCustomer customer){

 Stream<Job> jobList = em.createQuery(

 "select object(o) from Job o " +

 "where o.customer = :customer")

 .getResultStream();

 jobList.map(j -> j.getCustomerId()

 .getCustomerId().getCustomerId()

 + " ordered job " + j.getId()

 + " - Starting " + j.getWorkDate())

 .forEach(jm -> System.out.println(jm));

}

This method can be modiied slightly to return a list of results by using the Collectors

.toList() utility method, as follows.

public List<Job> findByCustomer(

 PoolCustomer customer){

 Stream<Job> jobList = em.createQuery(

 "select object(o) from Job o " +

 "where o.customerId = :customer")

 .setParameter("customer", customer)

 .getResultStream();

 return jobList.collect(Collectors.toList());

}

In the next scenario, shown below, I ind a List of jobs that pertain to pools of a particular

shape. In this instance, I return all jobs that match the shape passed in as a string. Similar to

the irst example, I irst return a stream of Job records. Next, I ilter the records based on the

customer’s pool shape. As can be seen, the resulting code is concise and very easy to read.

public List<Job> findByCustPoolShape(

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

52

//java ee 8 /

 String poolShape){

 Stream<Job> jobstream = em.createQuery(

 "select object(o) from Job o")

 .getResultStream();

 return jobstream.filter(

 c -> poolShape.equals(c.getCustomerId()

 .getPoolId().getShape()))

 .collect(Collectors.toList());

}

As I initially mentioned, it is important to be aware of performance in scenarios where lots

of data is returned. There are also circumstances in which streams are beneicial in querying

databases and others where they can cause performance degradation. A good rule of thumb is

that if the data can be queried within the con-

ines of a SQL query, it might make most sense

to do just that. Sometimes the beneits of using

the elegant stream syntax do not outweigh better

performance that can be gained using standard

SQL iltering.

Repeatable Annotation Support

When Java SE 8 was released, repeatable annotations became possible, letting the same annota-

tion be repeated on a declaration more than once. Some situations require the use of the same

annotation more than one time on a class or ield. For instance, there might be more than one

@SqlResultSetMapping annotation on a given entity class. In situations such as these, a container

annotation had to be used prior to repeatable annotation support. Not only do repeatable anno-

tations reduce the requirement to wrap a collection of the same annotations inside a container

annotation, but they can also make code easier to read.

Repeatable annotations became
possible, letting the same annotation be
repeated on a declaration more than once.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

53

//java ee 8 /

Here’s how they work: Behind the scenes, an annotation class implementation must be

marked with the @Repeatable meta-annotation to indicate that it can be utilized more than once.

The @Repeatable meta-annotation accepts the class type of the container annotation. For exam-

ple, the NamedQuery annotation class is now marked with the @Repeatable(NamedQueries.class)

annotation. In this way, the container annotation is still used, but you do not have to think

about it when using the same annotation on a declaration or class because @Repeatable abstracts

that detail away.

Here’s an example. If you wanted to add more than one @NamedQuery annotation to an entity

class in JPA 2.1, you had to encapsulate them inside the @NamedQueries annotation, as seen in

Listing 4.

Listing 4.

@Entity

@Table(name = "CUSTOMER")

@XmlRootElement

@NamedQueries({

 @NamedQuery(name = "Customer.findAll",

 query = "SELECT c FROM Customer c")

 , @NamedQuery(name = "Customer.findByCustomerId",

 query =

 "SELECT c FROM Customer c "

 + "WHERE c.customerId = :customerId")

 , @NamedQuery(name = "Customer.findByName",

 query = "SELECT c FROM Customer c "

 + "WHERE c.name = :name")

. . .)})

public class Customer implements Serializable {

. . .

}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

54

//java ee 8 /

However, in JPA 2.2 this is no longer the case. Because @NamedQuery is now a repeatable annota-

tion, it can be listed more than once in an entity class, as shown in Listing 5.

Listing 5.

@Entity

@Table(name = "CUSTOMER")

@XmlRootElement

@NamedQuery(name = "Customer.findAll",

 query = "SELECT c FROM Customer c")

@NamedQuery(name = "Customer.findByCustomerId",

 query = "SELECT c FROM Customer c "

 + "WHERE c.customerId = :customerId")

@NamedQuery(name = "Customer.findByName",

 query = "SELECT c FROM Customer c "

 + "WHERE c.name = :name")

. . .

public class Customer implements Serializable {

. . .

}

Table 1, on the next page, shows the repeatable annotations.

Conclusion

The JPA 2.2 release does not contain a large number of changes, but the enhancements it does

include are signiicant. At last, JPA is brought into alignment with Java SE 8, allowing developers

to make use of features such as the Date and Time API, streaming query results, and repeatable

annotations. This release also brings better alignment with CDI via the added capability to inject

CDI resources into attribute converters. Now that JPA 2.2 is part of Java EE 8 and it is available, I

think you’ll enjoy using it. </article>

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

55

//java ee 8 /

Josh Juneau works as an application developer, system analyst, and database administrator. He primarily

develops using Java and other JVM languages. He is a frequent contributor to Oracle Technology Network

and Java Magazine. Juneau has written several books on Java and Java EE for Apress, and he was a member

of the JCP Expert Group for JSR 372 and JSR 378. He is a member of the NetBeans Dream Team, a Java

Champion, and a regular voice on the Java Of Heap podcast.

Table 1.

T HE F OL L OW ING A NNO TAT ION S H AV E BEEN M A DE REP E ATA BL E BY T HE JPA 2. 2 REL E A S E :

ASSOCIATIONOVERRIDE

AT TRIBUTEOVERRIDE

CONVERT

JOINCOLUMN

MAPKEYJOINCOLUMN

NAMEDENTIT YGRAPH

NAMEDNATIVEQUERY

NAMEDQUERY

NAMEDSTOREDPROCEDUREQUERY

PERSISTENCECONTE XT

PERSISTENCEUNIT

PRIMARYKEYJOINCOLUMN

SECONDARY TABLE

SQLRESULTSE TMAPPING

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

56

//java ee /

E clipse MicroProile deines a reduced-size platform for developing microservices using the

power of Java EE. MicroProile 1.0 was irst released at JavaOne 2016 with four diferent

runtimes coming from these vendors: IBM, Payara, Tomitribe, and Red Hat. The names of the

runtimes were
■■ IBM WebSphere Liberty
■■ Payara MicroProile
■■ TomEE (from Tomitribe)
■■ WildFly Swarm (from Red Hat)

All runtimes contain the three core Java EE speciications, which are JAX-RS 2.0, Contexts and

Dependency Injection (CDI) 1.2, and JSON-P 1.0. The runtime is deined to be a very small subset

of the Java EE speciications, because the driver behind MicroProile is to provide a foundation

for building microservices-based architectures. This article assumes that you are familiar with

these speciications and have a basic understanding of them.

MicroProile 1.1 was released in August of this year, and it contains the inal version of

MicroProile-Conig 1.0. I’ll cover more on that in the following section.

MicroProile 1.2 was released just before this issue went to press, and version 2.0 is sched-

uled for next year. MicroProile 1.2 aligns with speciications from Java EE 7, and version 2.0 will

align with speciications from Java EE 8.

Eclipse MicroProile currently focuses on ive foundational concepts: coniguration, health

check, fault tolerance, metrics, and security. Taken together, these features should make a

 Eclipse MicroProfile: The Light
 Enterprise Java Option
Examining a Java EE architecture designed for microservices and

distributed applications

MERT ÇALIŞKAN

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

57

//java ee /

microservice implementation conigurable, resilient, robust, and secure. In this article, I provide

usage details for the APIs corresponding to these speciications. I expect you’ll like how well the

services address microservices issues and how straightforward the APIs are.

MicroProfile-Config

The MicroProile-Conig speciication provides the ability to separate the implementation from

its coniguration so that deployments of an artifact can behave diferently. It also enables modi-

ication of the coniguration of a microservice, for instance, in a dynamic way without the need

of repackaging or redeploying artifacts.

The MicroProile-Conig feature achieves this by aggregating the conigurations from many

diferent sources—such as system properties, environment variables, and the META-INF/

microprofile-config.properties ile or from custom ConfigSource implementations—and pres-

ents the complete coniguration as a single, merged view to the user.

The current available version of the API is 1.1. Its artifact can be retrieved via Maven, as

shown in Listing 1, with the dependency deinition. The artifact is already available in the cen-

tral Maven repository. It’s also worth mentioning that this API requires at least Java 8 in order to

run. Here is how to include it in a Maven-based project:

Listing 1.

<dependency>

 <groupId>org.eclipse.microprofile.config</groupId>

 <artifactId>microprofile-config-api</artifactId>

 <version>1.1</version>

</dependency>

<repositories>

Keep in mind that this refers just to the API, and it will be backed up by an implementation

coming from the MicroProile runtimes distributed via vendors. Let’s continue with code sam-

ples on how the API can be used.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

58

//java ee /

Conigurations can be easily injected with annotations, and I’ll show how a little later. But

they can also be obtained programmatically, as shown in Listing 2.

Listing 2.

public class ConfigUsageExample {

 public void useTheConfig() {

 Config config = ConfigProvider.getConfig();

 String baseUrl =

 config.getValue("server.base.url", String.class);

 invokeEndpoint(baseUrl);

 }

}

This coniguration can be overridden easily at runtime via a system property. For example, see

the snippet given in Listing 3, which overrides server.base.url:

Listing 3.

java -jar myservice.jar \

 -Dserver.base.url=http://another.server/endpoint

The coniguration can also be accessed via injection into your beans by using @Inject and

@ConfigProperty annotations, as shown in Listing 4.

Listing 4.

@ApplicationScoped

public class InjectedConfigUsageExample {

 @Inject

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

59

//java ee /

 @ConfigProperty(name="server.base.url")

 private String baseUrl;

 @Inject

 @ConfigProperty(name="server.port")

 private Optional<Integer> port;

}

The given property, server.base.url, must be deined in one of the provided coniguration

sources; a DeploymentException will be thrown if no deinition exists. On the other hand, the

server.port property is deined with Optional, so a DeploymentException will not occur if the

property is missing in the coniguration.

MicroProfile-FaultTolerance

The MicroProile-FaultTolerance speciication provides strategies for implementing resilient

applications. Its aim is to separate the execution logic from the execution itself by focusing on

features such as TimeOut, RetryPolicy, Fallback, CircuitBreaker, and Bulkhead. I will describe

each concept with code samples.

Timeout. This feature prevents the execution of a microservice from being unresponsive. It’s

vital to have a timeout value deined for a microservice, so that an alternative execution mecha-

nism can be applied (such as Fallback, RetryPolicy, CircuitBreaker, and so forth).

Methods annotated with @Timeout, as shown in Listing 5, will have the policy applied, and

if execution exceeds the given timeout value, a TimeoutException will be thrown. Annotations

can be used at the class level as well, in which case the timeout policy is applied to all methods

deined within that class.

Listing 5.

@Timeout(500) // timeout is 500 ms

public List<Recommendation> fetchRecommendations() {

 // Aggregate recommendations

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

60

//java ee /

}

It’s recommended that you use @Timeout together with @Asynchronous so that the microservice

can be executed in a separate thread and can therefore inish at any time.

RetryPolicy. This feature provides a retry policy to overcome problems with connectivity.

The @Retry annotation shown in Listing 6 can be applied at the method level or the class level.

Method-level deinitions will override class-level deinitions if both exist. In the given example,

the maximum retry count is 3, and the maximum duration is 10,000 milliseconds, which is 10

seconds. When the speciied duration is exceeded, no more retries will be performed regardless

of the retry count.

Listing 6.

@Retry(maxRetries = 3, maxDuration= 10000)

public void invokeService() {

 // invoke an external service

}

RetryPolicy can also be set for an exception, as shown in Listing 7. This is a convenient way of

handling exceptions while doing work on external resources such as I/O processing.

Listing 7.

@Retry(retryOn = {IOException.class})

public void readFile() {

 // ...

}

Fallback. This feature provides an alternative way to handle a failed execution. It will be invoked

once Timeout, RetryPolicy, or CircuitBreaker has failed according to its contract. Fallback deini-

tion for a method restricted with a timeout value and its handler implementation are shown in

Listing 8. If the execution of the service.retrieveAmount() method takes more than 3 seconds,

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

61

//java ee /

the handler will be executed and 42 will be returned as the amount.

Listing 8.

@Timeout(3000)

@Fallback(MyFallback.class)

Long getAmount() {

 return service.retrieveAmount();

}

public class MyFallback implements FallbackHandler<Long> {

 Long handle(ExecutionContext context) {

 return 42;

 }

}

CircuitBreaker. This feature prevents repeating failure scenarios, so that invocation of a

microservice fails as fast as possible. Listing 9 shows an example of a CircuitBreaker deinition

on a method call. CircuitBreaker can be used with Timeout, Fallback, Asynchronous, Bulkhead,

and RetryPolicy.

Listing 9.

@CircuitBreaker(successThreshold = 10,

 requestVolumeThreshold = 4,

 failureRatio=0.75,

 delay = 1000)

public void invokeService() {

 // invoke an external service

}

This CircuitBreaker speciies that the circuit will open, meaning that calls to the invokeService()

method will fail once three failures (requestVolumeThreshold x failureRatio) occur within the

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

62

//java ee /

last four consecutive invocations. The circuit will stay open for 1 second (delay) and then will

transit to a half-open state. This half-open state means that if at least one call to the ser-

vice fails, the circuit will remain open; otherwise, it needs 10 consecutive calls to succeed

(successThreshold) in order to transit to the closed state. The closed state is the default state,

meaning that method invocations work as expected with no failures.

Bulkhead. This feature limits the concurrent requests to a microservice in order to prevent a

system-wide failure. This can be thought of as a barrier between failing code execution and the

rest of the functioning part of the system.

It ofers either thread-pool isolation or semaphore isolation. Thread-pool isolation can be

done via the @Asynchronous annotation. The example in Listing 10 limits concurrent requests to 3

with a waiting queue size of 5. When the limit is reached, threads will be stored in the waiting

queue; and when the waiting queue reaches its limit, BulkheadException will be thrown.

Listing 10.

@Asynchronous

@Bulkhead(value = 3, waitingThreadQueue = 5)

public Future<Connection> acquireConnection() {

 Connection conn = createConnection();

 return CompletableFuture.completedFuture(conn);

}

An example of the semaphore-style bulkhead deinition is shown in Listing 11.

Listing 11.

@Bulkhead(value = 3)

public Future<Connection> acquireConnection() {

 Connection conn = createConnection();

 return CompletableFuture.completedFuture(conn);

}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

63

//java ee /

MicroProfile-HealthCheck

The MicroProile-HealthCheck speciication provides an API to diagnose a microservice’s

health, using a producer, and take measurements of its state. I hope MicroProile runtimes will

provide procedures for checking the health of the services, so let’s look at how a procedure is

implemented and the result of execution as the response.

Procedures need to implement the HealthCheck interface. They return an instance of

Response as the result. The implementation details are given in Listing 12.

Listing 12.

@FunctionalInterface

public interface HealthCheck {

 Response call();

}

public abstract class Response {

 public enum State { UP, DOWN }

 public abstract String getName();

 public abstract State getState();

 public abstract

 Optional<Map<String, Object>> getAttributes();

 ...

}

A sample implementation for a HealthCheck service is shown in Listing 13.

Listing 13.

public class SuccessfulCheck implements HealthCheck {

 @Override

 public Response call() {

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

64

//java ee /

 return Response.named("successful-check").up();

 }

}

Producers should provide an HTTP endpoint, but they can also support protocols such as TCP or

Java Management Extensions (JMX). Requests sent to a producer may be protocol-speciic, but

the response should be in JSON format mapped with a proper HTTP status code. Status codes

with their detailed explanations are shown in Table 1.

A sample JSON response is shown in Listing 14. Key-value pairs can be deined within the

data to provide as much as detail possible.

Listing 14.

{

 "outcome": "UP",

 "checks": [

 {

 "id": "diskCheck",

 "result": "UP",

 "data": {

 "disk.free.space": "20gb"

 }

 }

]

}

The MicroProile-HealthCheck speci-

ication can check on the amount of

heap being used, excessive garbage

collection, running out of disk space,

threads that are deadlocked, and so on.

S TAT U S C ODE DE S C RIP T ION

200 E XECUTION OF THE CHECK RESULTED IN A POSITIVE OUTCOME

204 NO HEALTH CHECK WAS INSTALLED WITHIN THE RUNTIME

503 E XECUTION OF THE CHECK RESULTED IN A NEGATIVE OUTCOME

500 E XECUTION OF THE CHECK CANNOT BE COMPLE TED DUE TO A PROBLEM

Table 1. Status codes

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

65

//java ee /

MicroProfile-Security

Security in a microservices-based architecture mostly resembles RESTful service security

methodologies. RESTful services are usually stateless; therefore, the security context will be

re-created on every request with the provided token from the client. The MicroProile-Security

speciication follows this token-based approach by employing JSON Web Tokens (JWTs) for

handling authentication and role-based authorization. An example of the JWT token format is

shown in Listing 15.

Listing 15.

{

 "iss":"https://server.example.com",

 "sub":"24400320",

 "preferred_username":"jdoe",

 "aud":"s6BhdRkqt3",

 "nonce":"n-0S6_WzA2Mj",

 "exp":1311281970,

 "iat":1311280970,

 "auth_time":1311280969,

 "realm_access":{
 "roles":[

 "role-in-realm",

 "user",

 "manager"

]

 },

 "resource_access":{

 "my-service":{

 "roles":[

 "role-in-my-service"

]

 }

The industry is shifting its course
from monolithic architectures
to more microservices-based models,
and new specifications in the Java EE
ecosystem are now on the horizon to
meet those needs.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

66

//java ee /

 }

}

In addition to the standard abilities of a JWT, the italicized lines in Listing 15 are add-ons deined

by the speciication. The username will be carried by the preferred_username claim, and the

granted roles of the realm will be carried by the realm_access claim. The resource_access claim

will deine the set of roles speciic to a service.

Conclusion

The industry is shifting its course from monolithic architectures to more microservices-based

models, and new speciications in the Java EE ecosystem are now on the horizon to meet those

needs. Java EE has gone through a long path of releases in its 20 years of life. This has made it

mature enough to be the foundation for microservices and for the new speciications currently

emerging. Eclipse MicroProile uses core Java EE speciications, such as CDI and JAX-RS, as a

foundation to build emerging solutions for requirements that are shaping the microservices

ecosystem. The four speciications detailed in this article are just a beginning; additional speci-

ications have been drafted in the pipeline of the working group, and you’ll be hearing more

about them in the near future. </article>

[Update: As we went to press, Oracle announced that it had joined the MicroProile initiative. —Ed.]

Mert Çalişkan (@mertcal) is a Java Champion, a coauthor of PrimeFaces Cookbook (Packt Publishing, 2013)

and Beginning Spring (Wiley Publications, 2015), and a frequent contributor to Java Magazine. In addition, he

actively contributes to the Ankara JUG, the largest Java user group in Turkey. Çalişkan works as a developer on

Payara Server inside the Payara Foundation.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://microprofile.io/blog/2017/11/microprofile-welcomes-oracle

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

67

//inside the jvm /

In the irst part of this two-part series, I discussed four of Java’s ive method-invocation

opcodes. These are the bytecode representations of the standard forms of method invocation

used in Java 8 and Java 9.

This raises the question of how the ifth opcode, invokedynamic, enters the picture. The

short answer is that, as of Java 9, there is no direct support for invokedynamic in the Java lan-

guage. In fact, when invokedynamic was added to the runtime in Java 7, the javac compiler

would not emit the new bytecode under any circumstances whatsoever.

As of Java 8, invokedynamic is used as a primary implementation mechanism to provide

advanced platform features. One of the clearest and simplest examples of this use of the opcode

is in the implementation of lambda expressions. To follow along with the rest of this article,

you’ll need to have some familiarity with how the JVM invokes methods, or you’ll need to read

the irst article in this series.

Lambdas Are Object References

Before diving into how invokedynamic is used to enable lambdas, a brief reminder of what

lambdas actually are is in order. Java has only two types of values: primitive types (such as char,

int, and so on) and object references. Lambdas are obviously not primitive types, so they must

be object references. Consider this lambda:

public class LambdaExample {

Understanding Java Method
Invocation with Invokedynamic
The instruction added in Java 7 makes it possible to resolve method calls

dynamically at runtime.

PHOTOGRAPH BY JOHN BLYTHE

BEN EVANS

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.javamagazine.mozaicreader.com/SeptOct2017#&pageSet=43&page=0

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

68

//inside the jvm /

 private static final String HELLO = "Hello";

 public static void main(String[] args) throws Exception {

 Runnable r = () -> System.out.println(HELLO);

 Thread t = new Thread(r);

 t.start();

 t.join();

 }

}

The lambda expression on line 5 is assigned to a variable of type Runnable. This means that the

lambda evaluates to a reference to an object that has a type that is compatible with Runnable.

Essentially, this object’s type will be some subclass of Object that has deined one extra method

(and has no ields). The extra method is understood to be the run() method expected by the

Runnable interface.

Before Java 8, such an object was represented only by an instance of a concrete anony-

mous class that implemented Runnable. In fact, in the initial prototypes of Java 8 lambdas, inner

classes were used as the implementation technology.

The long-range future roadmap for the JVM could contain future versions where more-

sophisticated representations of lambdas could be possible. Fixing the representation to use

explicit inner classes would prevent a diferent representation being used by a future version

of the platform. This is undesirable and so, instead, Java 8 and Java 9 use a more sophisticated

technique than hardcoding inner classes. The bytecode for the previous lambda example is

as follows:

public static void main(java.lang.String[]) throws java.lang.Exception;

 Code:

 0: invokedynamic #2, 0 // InvokeDynamic

 // #0:run:()Ljava/lang/Runnable;

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

69

//inside the jvm /

 5: astore_1

 6: new #3 // class java/lang/Thread

 9: dup

 10: aload_1

 11: invokespecial #4 // Method java/lang/Thread."<init>":

 // (Ljava/lang/Runnable;)V

 14: astore_2

 15: aload_2

 16: invokevirtual #5 // Method java/lang/Thread.start:()V

 19: aload_2

 20: invokevirtual #6 // Method java/lang/Thread.join:()V

 23: return

The bytecode at ofset 0 indicates that some method is being called via invokedynamic, and the

return value of that call is placed upon the stack. The rest of the bytecode in the method is a

straightforward representation of the rest of the method.

How Invokedynamic Operates

At this point, I should discuss some of the details of the nature of invokedynamic and how the

opcode operates. When a class containing an invokedynamic instruction is loaded by the class

loader, the target of the method invocation is not known ahead of time. This design difers from

all other types of call sites in JVM bytecode.

For example, in the case of invokestatic and invokespecial sites, which I discussed in the

previous article, the exact implementation method (referred to as the call target) is known at

compile time. In the case of invokevirtual and invokeinterface, the call target is determined at

runtime. However, the target selection is subject to the constraints of the Java language inheri-

tance rules and type system. As a result, at least some call target information is known at com-

pile time.

In contrast, invokedynamic is far more lexible about which method will actually be called

when the opcode is dispatched. To allow for this lexibility, invokedynamic opcodes refer to a

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

70

//inside the jvm /

special attribute in the constant pool of the class that contains the dynamic invocation. This

attribute contains additional information to support the dynamic nature of the call, called boot-

strap methods (BSMs). These are a key part of invokedynamic, and every invokedynamic call

site has a constant pool entry for a corresponding BSM. To allow the association of a BSM to a

speciic invokedynamic call site, a new entry type, also called InvokeDynamic, has been added to

the class ile format as of Java 7.

The call site of the invokedynamic

instruction is said to be “unlaced” at class

loading time. The BSM is called to deter-

mine what method should actually be

called, and the resulting CallSite object

will then be “laced” into the call site.

In the simplest case, that of a

ConstantCallSite, as soon as the lookup

has been done once, it will not need to be repeated. Instead, the target of the call site will be

directly called on all future invocations without any further work. This means that the call

site is now stable and is, therefore, friendly to other JVM subsystems, such as the just-in-time

(JIT) compiler.

For this mechanism to work eiciently, the JDK must contain suitable types to represent the

call site, the BSMs, and other parts of the implementation. Java’s original core relection types

are capable of representing methods and types. However, the API dates from the very early days

of the Java platform and has several aspects that make it a less-than-ideal choice.

For example, relection predates both collections and generics. As a result, method sig-

natures are represented by Class[] in the Relection API. This can be cumbersome and error-

prone, and it is hampered by the verbose nature of Java’s array syntax. It is further complicated

by the need to manually box and unbox primitive types and to work around the possibility of

void methods.

One important diference between method
handles and relection is that lookup contexts
return only methods that were accessible from the
scope where the lookup object was created, which
means they are safe to use under all circumstances.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

71

//inside the jvm /

Method Handles to the Rescue

Instead of forcing the programmer to deal with these issues, Java 7 introduced a new API, called

MethodHandles, to represent the necessary abstractions. The core of this API is the package

java.lang.invoke and especially the class MethodHandle. Instances of this type provide the ability

to call a method, and they are directly executable. They are dynamically typed according to their

parameter and return types, which provides as much type safety as possible, given the dynamic

way in which they are used. The API is needed for invokedynamic, but it can also be used alone,

in which case it can be considered a modern, safe alternative to relection.

To get a handle for a method, the method

must be looked up via a lookup context. The usual

way to get a context is to call the static helper

method MethodHandles.lookup(). This method

returns a lookup context based on the currently

executing method. From this context, you can

obtain method handles by calling one of the

find*() methods (for example, findVirtual() or

findConstructor()).

One important diference between method handles and relection is that lookup contexts

return only methods that were accessible from the scope where the lookup object was cre-

ated. There is no way to subvert this and no equivalent of the setAccessible() back door that is

present in relection. This means that method handles are safe to use under all circumstances,

including using them with a security manager.

However, care must be taken, as the access control check has been moved to method-

lookup time. This means that a lookup context can hand out references to private methods that

were visible to the lookup, but are not necessarily visible at the time when the method handle

is invoked.

In order to solve the problems of representing method signatures, the MethodHandles API

also includes the MethodType class. This is a simple immutable type with some very useful prop-

erties. It does the following:

You can think of the invokedynamic
opcode as representing a call to some
sort of platform factory method for a
lambda expression.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/7/docs/api/java/lang/invoke/MethodHandle.html

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

72

//inside the jvm /

■■ Represents the type signature of a method
■■ Consists of the return type followed by the argument types
■■ Does not include the “receiver type” or name of the method
■■ Is designed to remove the Class[] problem from core relection

In addition, instances of it are immutable.

With this API, signatures of methods are represented as instances of MethodType, and there

is no need to create a new type to model each possible signature. New instances are created

from a simple factory method:

// toString()

MethodType mtToString =

 MethodType.methodType(String.class);

// A setter method

MethodType mtSetter =

 MethodType.methodType(void.class, Object.class);

// compare() from Comparator<String>

MethodType mtStringComparator =

 MethodType.methodType(int.class, String.class, String.class);

Once you have created a signature object, it can be used (along with a method name) to look up a

method handle, as in the following example to get a method handle on toString().

public MethodHandle getToStringHandle() {

 MethodHandle mh = null;

 MethodType mt = MethodType.methodType(String.class);

 MethodHandles.Lookup lk = MethodHandles.lookup();

 try {

 mh = lk.findVirtual(getClass(), "toString", mt);

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

73

//inside the jvm /

 } catch (NoSuchMethodException | IllegalAccessException mhx) {

 throw new AssertionError().initCause(mhx);

 }

 return mh;

}

The handle can then be invoked in a similar way to a relective call. A receiver object must

be supplied for instance methods, and the invocation code must deal with the possibility of a

coarse-grained exception.

MethodHandle mh = getToStringMH();

try {

 mh.invoke(this, null);

} catch (Throwable e) {

 e.printStackTrace();

}

The concept of a BSM should now be clear: when program control reaches an invokedynamic call

site for the irst time, the associated BSM is called. The BSM returns a call site object containing

a method handle to the method that will actually be bound into the call site. For this mecha-

nism to function correctly with static typing, the BSM must return a handle to a method of the

correct method signature.

To get back to the lambda expression example I gave earlier, you can think of the invoke-

dynamic opcode as representing a call to some sort of platform factory method for a lambda

expression. The actual body of the lambda has been transformed into a private static method on

the class where the lambda is deined.

 private static void lambda$main$0();

 Code:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

74

//inside the jvm /

 0: getstatic #7 // Field

 // java/lang/System.out:Ljava/io/PrintStream;

 3: ldc #9 // String Hello

 5: invokevirtual #10 // Method

 // java/io/PrintStream.println:

 // (Ljava/lang/String;)V

 8: return

The lambda factory will return an instance of some type that implements Runnable, and the

run() method of that type will call back to this private method when the lambda is executed.

Using javap -v to look inside the constant pool shows this entry:

 #2 = InvokeDynamic #0:#40 //

#0:run:()Ljava/lang/Runnable;

Looking at the BSM section of the class ile shows the factory that is being called:

BootstrapMethods:

 0: #37 REF_invokeStatic

java/lang/invoke/LambdaMetafactory.metafactory:(Ljava/lang/invoke/MethodH

andles$Lookup;Ljava/lang/String;Ljava/lang/invoke/MethodType;Ljava/lang/i

nvoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/invoke/MethodT

ype;)Ljava/lang/invoke/CallSite;

 Method arguments:

 #38 ()V

 #39 REF_invokeStatic optjava/LambdaExample.lambda$main$0:()V

 #38 ()V

This output refers to a static factory method, called metafactory(), on the LambdaMetafactory

implementation class in java.lang.invoke. This is a BSM that will create the linkage bytecode

at runtime, if the lambda is ever created. The metafactory code takes in a lookup object and the

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

75

//inside the jvm /

method types to ensure static type safety, along with a method handle pointing at the private

static method containing the lambda method body. It returns a callsite that will “lace in” the

lambda body if it is ever called.

public static CallSite metafactory(

 MethodHandles.Lookup caller,

 String invokedName,

 MethodType invokedType,

 MethodType samMethodType,

 MethodHandle implMethod,

 MethodType instantiatedMethodType)

 throws LambdaConversionException {

 AbstractValidatingLambdaMetafactory mf;

 mf = new InnerClassLambdaMetafactory(

 caller, invokedType,

 invokedName, samMethodType,

 implMethod, instantiatedMethodType,

 false, EMPTY_CLASS_ARRAY, EMPTY_MT_ARRAY);

 mf.validateMetafactoryArgs();

 return mf.buildCallSite();

}

The current implementation uses a private metafactory that will still create an inner class per

lambda, but the classes are dynamically created and are never written to disk. This means that

the implementation mechanism could change with a future release of Java, and any existing

lambdas will be able to take advantage of the new mechanism.

In Java 8 and Java 9, the implementation based on the InnerClassLambdaMetafactory class

makes use of a slightly modiied version of the ASM bytecode manipulation library that ships in

the package jdk.internal.org.objectweb.asm.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

76

//inside the jvm /

This implementation creates dynamic classes to represent the implementing type of

a lambda, while at the same time future-prooing the implementation and maintaining

JIT-friendliness.

It makes use of the simplest case—call sites that are looked up once and cannot change

thereafter. These are represented by instances of ConstantCallSite, which I discussed earlier.

More-complex cases are possible, including call sites that can change or even have semantics

similar to volatile variables. These cases are harder to handle and quickly become very complex,

but they provide the greatest amount of dynamic lexibility available to the platform.

The previous example of lambda expressions shows how the invokedynamic opcode relaxes

a key part of the static type system and makes lexible runtime dispatch possible.

Conclusion

While invokedynamic might not be a part of Java that most developers are exposed to very

often, the Java ecosystem has evolved signiicantly through its addition. Future versions of Java

may well introduce further advances in VM technology, and many of these techniques would be

impossible without the advent of invokedynamic and the reimagining of method execution that

it represents. </article>

Ben Evans (@kittylyst) is a Java Champion, tech fellow and founder at jClarity, an organizer for the London

Java Community (LJC), and a member of the Java SE/EE Executive Committee.

Demystifying invokedynamic, Part 1,

by Julien Ponge; Java Magazine,

January/February 2013 (PDF)

Demystifying invokedynamic, Part 2,

by Julien Ponge; Java Magazine,

May/June 2013 (PDF)

learn more

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://bit.ly/2zPfnWo
http://bit.ly/2zPfnWo
http://bit.ly/2zPfnWo
http://bit.ly/2zPfnWo
http://bit.ly/2zPfnWo
http://bit.ly/2zPfnWo

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

77

//java card /

Java Card is at its core a minimal subset of Java, enriched with features catering to the secu-

rity needs of secure elements. A secure element (SE) is a tamper-resistant hardware environ-

ment capable of securely hosting applications and their conidential and cryptographic data.

The most common SE is the one-chip secure microcontroller found in smartcards. New form

factors have started to emerge, though, from embedded SEs (a nonremovable secure micro-

controller soldered onto a device board) to new security designs embedded into general-purpose

chips. Figure 1 shows the kinds of SEs commonly deployed.

For any of these SEs, a set of common, critical requirements can be identiied:
■■ Security. Applications must factor in security attributes such as transaction atomicity, cryptog-

raphy support, signing an authentication of applications, application isolation, and a irewall.
■■ Certiiability. Customers require high-level security certiications according to internal secu-

rity assurance level standards such as Common Criteria and FIPS, as well as domain-speciic

certiications, for example, from government entities or payment organizations.
■■ Compactness. SEs are typically resource-constrained devices (CPU, memory, and bandwidth).

In particular, memory conigurations rarely exceed 1 MB of overall available memory, and

RAM speciications can be as low as 2 KB.
■■ Standards-based manageability. SE applications and stored credentials must be securely

managed and updated, according to open industry standards.

Java Card addresses these requirements, while retaining the openness and code portability

provided by Java.

An Introduction to Java Card
The smallest Java platform is one of the most widely distributed. See how

programming it is diferent from developing conventional apps.

NICOLAS PONSINI

FLORIAN TOURNIER

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

78

//java card /

The Java Card Ecosystem

The number of Java Card–based SEs has been growing steadily over the years, and Java Card is

now the most pervasive application platform in the world. It is estimated that more than 6 bil-

lion Java Card–based SEs are being deployed in 2017. The majority of those are smartcards (SIM

cards, banking cards, and ID cards). However, in recent years, there has been strong growth of

Java Card–based SEs embedded in mobile devices. New types of SEs are also being introduced in

edge devices for Internet of Things (IoT) networks.

Applications using Java Card technology are multiple and vary greatly across vertical mar-

kets. Java Card is used for the following, among others:
■■ Identity, authentication, and access control

■■ Secure transactions, including contact and contactless payment

■■ Credential storage and content security

■■ Subscription management

■■ Device integrity check and device attestation

■■ Digital rights management (DRM)

Figure 1. Commonly deployed secure elements

Secure Microcontroller

Removable SE Telecom Identity Banking Healthcare

Mobile
payment

Embedded SE

Mobile
payment

IoT connectivity
and security

IoT connectivity
and security

TelecomIntegrated SE

1997 today

Other secure hardware options: Trusted execution environments (TEEs), secure
multipoint control units (MCUs), software environments

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

79

//java card /

End users of Java Card technology include mobile operators, inancial institutions, govern-

ments, mobile device makers, healthcare associations, enterprises, and transportation authori-

ties. Standards bodies such at ETSI, GlobalPlatform, ISO, and others leverage Java Card as part

of their speciications. Although the Java Card developer community is specialized and relies

on expertise that shares some DNA with the rest of Java, it is rapidly expanding. End users are

building in-house Java Card development expertise, and academics are increasingly contribut-

ing research and open source content.

Platform Evolution

Java Card was introduced in 1996. It was a pioneering concept at the time (it was the irst very

small Java framework—before Java ME was introduced), and it was also very incomplete (no vir-

tual machine [VM] speciication and only a basic cryptography framework). Subsequent versions

altered the architecture and augmented the APIs to the point that the modern Java Card frame-

work would be unrecognizable to users of that irst version.

A key contributor and promoter of that evolution has been the Java Card Forum (JCF). The

JCF was formed shortly after the initial release of Java Card and, according to its website, it is

“a collaboration of companies from the smart card, secure operating system, and secure silicon

industry, working together to promote and develop Java as the preferred programming language

for multi-application smart cards and secure devices.”

The JCF provides recommendations to Oracle for the evolution of the Java Card speciica-

tions. It has been instrumental in bringing key innovations to the platform. After version 2.0

started specifying the Java Card VM and runtime conditions, version 2.1 brought an interop-

erable ile format. Version 2.2 brought alignment with the European Telecommunications

Standards Institute (ETSI) and enabled contactless smartcards to be supported. Version 3.0

introduced two variants of the speciication (Classic and Connected), as well as broader cryptog-

raphy support. The JCF is now working with Oracle toward the deinition of version 3.1, which

will enable new use cases in the IoT space. It is slated for release in 2018.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://javacardforum.com/

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

80

//java card /

Inside Java Card

Oracle provides a wide range of components to develop Java Card applications, including specii-

cations, development tools, and security documentation.

Java Card specification. Figure 2 shows the Java Card development platform. As you can see,

the Java Card speciication contains three primary components that support application

development.

■■ The VM speciication for the Java Card platform provides the instruction set of the Java Card

VM, the supported subset of the Java language, and the ile formats used to install applets and

libraries into Java Card technology–enabled devices.

■■ The runtime environment (RE) speciication for the Java Card platform deines the necessary

behavior of the RE in any implementation of Java Card technology. The RE includes the imple-

mentation of the Java Card VM, the Java Card API classes, and runtime support services such

as the selection and deselection of applets.

■■ The API for the Java Card platform complements the Java Card RE speciication. It contains the

class deinitions to support the Java Card VM and the Java Card RE.

Java Card Development Kit. This freely available download includes a complete, standalone

development environment in which applications written for the Java Card platform can be

Figure 2. The Java Card development platform

Application

Java Card

Runtime Environment

Java Card Virtual Machine

Java Card

API

Application Application

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oracle.com/technetwork/java/embedded/javacard/downloads/index.html
http://www.oracle.com/technetwork/java/embedded/javacard/downloads/javacard-sdk-2043229.html

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

81

//java card /

developed. It also includes a complete Java Card simulator and integration with Eclipse, in order

to facilitate the testing of applications.

Java Card Protection Profile. The Java Card Protection Proile helps creators of products based

on Java Card to meet the security demands of banks, governments, and other card issuers for

security evaluations. It provides a modular set of security requirements designed speciically for

the characteristics of the Java Card platform. It reduces the time and cost for developers of Java

Card–based products to complete security evaluations using the Common Criteria for IT Security

Evaluation standard.

What Makes Java Card Development Unique?

There are two clichés to avoid prior to describing some Java Card speciicities.

The irst is that Java Card is just for smartcards. The word Card in Java Card is a misnomer.

A more accurate name (but with less marketing appeal) might be “Java for resource-constrained

devices to run securely Java technology–based applications.” While the Java Card framework

and runtime are security-oriented and designed to run on a secure SE with limited memory and

countermeasures against hardware attacks, other form factors are equally suited to run Java

Card in diferent markets. For example, Java Card is now the security framework for all kinds of

security devices.

The second cliché is that a knowledgeable Java developer is a Java Card developer. Even

skilled Java developers might be disconcerted by Java Card programming. While Java Card is a

Java subset, it has several additional speciicities such as object persistency and atomicity. As a

result, Java Card development has historically been the work of a dedicated crowd of specialists.

Developing a formally proven applet for long-lasting deployment and protection against soft-

ware and hardware attacks requires strong security skills. Anyone can play with the Java Card

Development Kit (and is encouraged to do so), but it can take time and experience to acquire the

necessary expertise to deploy an applet in the ield.

The remainder of this article explains key concepts that make Java Card unique compared

with other Java environments.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

82

//java card /

Java Language Subset

Java Card is a subset of the Java language (JDK 7). Next, I list the key supported and unsupported

language features.

Java Card–supported JVM features include
■■ Java’s object-oriented features such as classes, interfaces, inheritance, and exceptions as well

as packages

■■ Small primitive data types: boolean, byte, short, int (optional)

■■ One-dimensional arrays

■■ Some methods of Object and Throwable

■■ Classes

■■ The Garbage collector is optional and might or might not be present.

Java Card unsupported JVM features include
■■ Dynamic class loading

■■ The security manager

■■ Threads

■■ Cloning

■■ Large primitive data types (long, double float)

■■ Characters and strings

■■ Multidimensional arrays
■■ Keywords (native, synchronized, transient, volatile, and so on)

Java Card API

The following packages are the key libraries in the Java Card API.

java.io deines a subset of the java.io package that’s in the standard Java programming

language and consists of the java.io.IOException class to maintain a hierarchy of exceptions

identical to the standard Java programming language.

java.lang provides classes that are fundamental to the design of the Java Card technol-

ogy subset of the Java programming language. The classes in this package are derived from

java.lang in the standard Java programming language and represent the core functionality

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

83

//java card /

required by the Java Card VM. This core functionality is represented by the Object class, which

is the base class for all Java language classes, and the Throwable class, which is the base class for

the exception and runtime exception classes.

javacard.framework provides a framework of classes and interfaces for building, communi-

cating with, and working with Java Card technology–based applets. It deines core concepts of

Java Card such as the APDU (Application Protocol Data Unit) class, the Applet (Java Card applet)

class, the JCSystem (Java Card System) class, the PIN (Personal Identiication Number) interface,

and various Java Card–speciic exceptions.

javacard.security deines a security API that includes various types of keys and algorithms

for symmetric (AES) and asymmetric (RSA, ECC, DH, and so on) operations, message digests,

and signatures.

javacardx.crypto is an extension package that contains functionality, which may be sub-

ject to export controls, for implementing a security and cryptography framework on the Java

Card platform. The platform must support this optional package only if cryptographic encryp-

tion and decryption functionality is included in the implementation. It contains the Cipher

class and the KeyEncryption interface. Cipher provides methods for encrypting and decrypting

messages. KeyEncryption provides functionality that allows keys to be updated in a secure end-

to-end fashion.

javacardx.biometry and javacardx.biometry1toN are extension packages that contain func-

tionality for implementing biometric frameworks on the Java Card platform.

javacardx.external is an extension package that provides mechanisms to access memory

subsystems, which are not directly addressable by the Java Card RE on the Java Card platform.

For the sake of completeness, here is the list of the packages of the Java Card API:
■■ java.lang (subset)

■■ java.io (subset)

■■ javacard.framework

■■ javacard.framework.service

■■ javacard.security

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

84

//java card /

■■ javacardx.crypto

■■ javacardx.annotations

■■ javacardx.apdu

■■ javacardx.biometry

■■ javacardx.biometry1toN

■■ javacardx.external

■■ javacardx.framework.math

■■ javacardx.framework.string

■■ javacardx.framework.tlv

■■ javacardx.util

■■ javacardx.security

Virtual Machine Lifecycle and Persistence

The Java Card VM and related runtime conditions are unique aspects of the Java Card speciica-

tions. The VM is not executed as a process of a host operating system that can be ended. Rather,

it is executed forever and its lifetime is that of the host hardware, which means it will never be

terminated and its related applications and objects will not be automatically destroyed.

The VM and the created objects are used to represent application information that is persis-

tent and will survive a power loss. It is just stopped at that time; at the next reset, the VM starts

again and recovers its previous heap from persistent storage. This design is inherited from the

smartcard world where a transaction must survive a power loss, because the power source is

external and depends on a card acceptance device (CAD). CAD is used here to refer to both types

of card readers: the conventional card acceptance device for contacted I/O interfaces and the

proximity coupling device (PCD) for contactless interfaces.

Execution

The format of Java Card applications is a converted applet (CAP) ile, which ensures binary com-

patibility across Java Card platforms. A CAP ile contains an executable binary representation of

At the next reset, the VM starts again
and recovers its previous heap from
persistent storage.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

85

//java card /

the classes. Once Java programming language class

iles that make up a package of a Java Card applet

have been generated as for any other Java applica-

tion, they are preprocessed by a converter tool that

converts the package to a CAP ile. The converter

may also produce an export ile.

Because there is no class loader in Java Card, the VM interprets the code installed on the

platform by an installer on the platform. There are similarities between this process and a link-

ing process: export iles are used both to get information about packages that are imported by

an application before conversion or to output information about a package that may be used by

an application later after conversion. As an example, Java Card API packages are referenced in

an export ile used as input at the time that applet code is converted into a CAP ile.

The installer is a runtime mechanism to download and install CAP iles. The installer

receives the executable binary from a CAD installation program, writes the binary into the

smartcard memory, links it with the other classes on the card, and creates and initializes any

data structures used internally by the Java Card RE.

A runtime veriier is not required by the Java Card VM speciication. The veriication of the

bytecode of a CAP ile is performed of-VM by a veriier tool after the applet has been converted

into a CAP ile and before the installation of the corresponding applet. This process implies that

the path in between the veriication of the applet and its installation is secure: the integrity and

authenticity (usually also the conidentiality) of the CAP ile installed on the Java Card platform

must be guaranteed. This process does not prevent, in any way, performing some additional

veriication at runtime, but that additional action is implementation-dependent and not man-

dated by the speciication.

Figure 3 illustrates the development and deployment model for an applet.

Atomicity and Transactions

The Java Card platform guarantees that any update to a single persistent object ield or single

class ield will be atomic. In addition, the Java Card platform provides single-component

The Java Card platform guarantees
that any update to a single persistent object
field or single class field will be atomic.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

86

//java card /

atomicity for persistent arrays. That is, if a smartcard loses power during the update of a data

element (a ield in an object, class, or component of an array) that should be preserved across

CAD sessions, that data element will be restored to its previous value. Some methods also guar-

antee atomicity for block updates of multiple data elements. For example, the atomicity of the

Util.arrayCopy method guarantees that all bytes are correctly copied; otherwise, the destina-

tion array is restored to its previous byte values. An applet might not require atomicity for array

updates. The Util.arrayCopyNonAtomic method is provided for this.

An applet might need to atomically update several diferent ields or array components in

several diferent objects. Either all updates take place correctly and consistently or else all

ields and components are restored to their previous values. The Java Card platform supports

a transactional model in which an applet can designate the beginning of an atomic set of

updates with a call to the JCSystem.beginTransaction method. Each object update after this

point in the code is conditionally updated. The ield or array component appears to be updated

Figure 3. The applet development and deployment model

Java
Card API
JAR File

Java
Compiler

1 2

4

3

Applet
Class
Files

Java Card RE
On-Card
Installer

Packages
Export

Files

Packages
Export

Files

Java Card
Converter

Tool

O�-Card
Installer

Applet
CAP
File

Java Card
Verifier

ToolApplet
Java
Files

On-Card

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

87

//java card /

(reading the ield or array component back

yields its latest conditional value), but the

update is not yet committed. When the applet

calls JCSystem.commitTransaction, all condi-

tional updates are committed to persistent

storage. If power is lost or if some other sys-

tem failure occurs prior to the completion of

JCSystem.commitTransaction, all conditionally

updated ields or array components are restored to their previous values. If the applet encoun-

ters an internal problem or decides to cancel the transaction, it can programmatically undo

conditional updates by calling JCSystem.abortTransaction.

Applet Isolation and Firewall

A Java Card context is a protected object space associated with each applet package and Java Card

RE. All objects owned by an applet belong to the context of the applet’s package.

Any implementation of the Java Card RE supports isolation of contexts and applets. Isolation

means that one applet cannot access the ields or objects of an applet in another context unless

the other applet explicitly provides an interface for access.

A critical security feature of Java Card is the applet irewall. This technology is runtime-

enforced protection and is separate from the Java programming language protections, which

still apply to Java Card applets. They ensure that strong typing and protection attributes

are enforced.

Applet irewalls are always enforced in the Java Card VM. They enable the VM to automati-

cally perform additional security checks at runtime.

In addition, the Java Card RE maintains its own Java Card RE context. This context is much

like the context of an applet, but it has special system privileges so that it can perform operations

that are denied to applets contexts. Figure 4 illustrates security in a multiapplet architecture.

Isolation of applets is an important security feature, but it requires a mechanism to allow

applets to share objects in situations where there is a need to interoperate. The Java Card RE

The Java Card Forum is working to bring
to market a new version of the Java Card
specification that will address the IoT market
and new secure element form factors.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

88

//java card /

allows such sharing using the concept of shareable interface objects. These objects provide

the only way an applet can make its objects available for use by other applets. For more

information about using shareable interface objects, see the description of the interface

javacard.framework.Shareable.

The Client/Server APDU Model

The interface for communicating with a Java Card applet is a packet mechanism: application

protocol data units (APDUs). Related speciications are contained in the ISO 7816 Part 1 through

Part 6 documents. For the purpose of developing Java Card applets, the most relevant docu-

ment is ISO 00207816-4 (application level). Lower levels, such as physical levels, may vary—for

Figure 4. The security in multiapplet Java Card implementations

System Space

Java Card RE Context

System Firewall

Applet Space

Applet 1

Ap
pl

et
 F

ir
ew

al
l

Ap
pl

et
 F

ir
ew

al
l

Context B Context C

Applet 3

Applet 5

Applet 4

Applet 2

Context A

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

89

//java card /

example, serial port, I2C, and SPI for contacted I/O interfaces and ISO 1443 or SWP for contact-

less interfaces.

The communication model is a command-response model where a Java Card applet acts as

a server receiving requests from a client application running within the CAD (see Figure 5). The

Java Card VM processes one command at a time (there is no thread support), but the runtime

can manage diferent sessions with a given applet and diferent applets at the same time.

Deining the protocol supported by an applet entails deining the APDUs to process. This is

one of the irst steps (if not the irst step) to developing an applet.

The Application Model

All Java Card applications must extend the javacard.framework.Applet class. The following are

the typical methods to implement.

The applet constructor is invoked only once by the install() method. It serves to allocate

objects that will be used during the entire lifetime of the applet to ensure that the applet will

not lack memory.

The install() static method is invoked by the Java Card RE during the applet installation

process to create an instance of the applet. The applet should perform any necessary initial-

izations and must call one of the register() methods successfully to complete the installation

process. The register() method speciies the applet identiier (AID), as deined in ISO 7816-5, of

the applet to be used to select the applet later.

Figure 5. Java Card communication with outside devices

O�-Target
Host Side

Command
APDU

On-Target

Applet

Applet

Applet

Java Card RE

Response
APDU

CAD

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

90

//java card /

The select() method is invoked by the RE to inform an applet that it has been selected by a

CAD application willing to establish a session with it. It returns true to indicate that the applet

is ready to receive APDU commands.

The deselect() method is invoked by the RE to inform a selected applet that it has been

deselected. The applet might then perform session cleanup.

The process() method is invoked by the Java Card RE to process an incoming APDU com-

mand. The applet is expected to perform the requested action and provide response data, if

there is any, in return.

Conclusion

This article provided an overview of how Java Card works today. As you can see, the program-

ming is straightforward. It’s the security aspects that require experience and skill. Oracle and

its partners in the Java Card Forum are working to bring to market a new version of the Java

Card speciication, version 3.1, which will introduce functionality to address the IoT market and

new secure element form factors. It is intended for release in 2018 and will be the focus of a

follow-up article in Java Magazine. </article>

Nicolas Ponsini is a security solutions architect at Oracle. He is an expert in security, cryptography, IoT, and

Trusted Execution Environment and holds nine patents in related areas.

Florian Tournier is senior director, development, at Oracle. He heads a team that builds and delivers Java

products for small devices and IoT security. He joined Oracle in 2010 as part of the Sun Microsystems acquisi-

tion, where he was heading Java ME and Java Card product management. Tournier holds a master’s degree in

management from HEC Paris and a computer science degree from the Ecole Centrale in Lyons.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

91

//ix this /

Before entering into my usual preamble about the quiz questions, let me share some correc-

tions and reinements. The irst, from Chris Noë, is that contrary to what I mentioned in

the answer for question 3 in the July/August issue, the newWatchService method in the FileSystem

class is not static. He’s right; it is a factory, but it’s not static—it’s an instance method.

Another reader, Robert Filman, noted that in my answer for question 4 of the same issue,

regarding how compilers might reorder the code, I suggested that reordering two particular

methods would not change the outcome of the code. I had created the methods with no

arguments, but I failed to state the idea that was in my head, which was that the methods

should have no side efects. If they have side efects, my assertion about reordering would be

unsound—indeed, compilers are unlikely to reorder method calls precisely because it’s too dif-

icult for them to know whether the methods have side efects. Compilers typically reorder

things they can see in their entirety—for example, two arithmetic expressions.

The discussion was intended to be illustrative, and it’s hard at times to strike the right bal-

ance between illing in all the details and getting to the point. (It’s possible that you think it

takes me too long to get to the point anyway!)

I very much welcome readers to write to me with concerns or questions. Everyone gains by

sharing in the discussion or correction. Email me care of Java Magazine at javamag_us@oracle.com.

If you’re a regular reader of this quiz, you know that these questions simulate the level of

diiculty of two diferent certiication tests. Those marked “intermediate” correspond to ques-

tions from the Oracle Certiied Associate exam, which contains questions for a preliminary level

of certiication. Questions marked “advanced” come from the 1Z0-809 Programmer II exam,

which is the certiication test for developers who have been certiied at a basic level of Java 8

programming knowledge and now are looking to demonstrate more-advanced expertise.

Quiz Yourself
Intermediate and advanced test questions

SIMON ROBERTS

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.javamagazine.mozaicreader.com/JulyAug2017/Twitter#&pageSet=47&page=0
mailto:javamag_us%40oracle.com?subject=
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-808
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-809

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

92

//ix this /

Let me re-emphasize that these questions rely on Java 8. I’ll begin covering Java 9 in future

columns, of course, and I will make that transition quite clear when it occurs.

Question 1 (intermediate). Given this code:

int a = 012; // line n1

int b = 12;

int c = Integer.parseInt("012", 10);

and these statements:

1. a == b

2. b == c

3. a == c

4. Line n1 causes a compilation error.

Which is true? Choose one.

A. 4 only

B. 1, 2, and 3

C. 1 only

D. 2 only

E. 3 only

Question 2 (intermediate). Given this fragment (shown with line numbers):
14: long i1 = 1234567890123456789;

15: short s1 = 99, s2 = 100, s3 = s1 + s2;

16: float pi = 3.14;

17: short s = 199;

Which is true? Choose one.

A. Lines 14 and 16 are correct, but lines 15 and 17 cause compilation to fail.

B. Lines 14 and 15 are correct, but lines 16 and 17 cause compilation to fail.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

93

//ix this /

C. Lines 15 and 17 are correct, but lines 14 and 16 cause compilation to fail.

D. Line 17 is correct, but lines 14, 15, and 16 cause compilation to fail.

E. Line 14 is correct, but lines 15, 16, and 17 cause compilation to fail.

Question 3 (advanced). Given that the following declaration has been properly initialized to

refer to a List implementation that contains multiple String objects, and that your intention is

to remove from the list all strings that start with *:
List<String> ls;

Which of the following are true? Choose two.

A. The items can properly be removed by using this code:
for (String s : ls) {

 if (s.startsWith("*")) ls.remove(s);

}

B. The items can properly be removed by using this code:
ls.forEach(s->{if (s.startsWith("*")) ls.remove(s);});

C. The items can properly be removed by using this code:
ListIterator<String> lis = ls.listIterator();

while (lis.hasNext()) {

 if (lis.next().startsWith("*")) lis.remove();

}

D. The items can properly be removed by using this code:
int last = ls.size();

for (int idx = 0; idx < last; idx++) {

 if (ls.get(idx).startsWith("*")) {

 ls.remove(idx);

 }

}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

94

//ix this /

E. Given the information available, it’s not possible to guarantee that the removal

will succeed.

Question 4 (advanced). Given the following code:
Optional

 .<String>ofNullable(null)

 .flatMap(x->x != null ? Optional.of("A") : Optional.of("B"))

 .map(String::toLowerCase)

 .ifPresent(System.out::println);

Which is true? Choose one.

A. The output is a.

B. The output is b.

C. Replacing the flatMap call with .orElseGet(()->Optional.of("C")) results in the output c.

D. The code runs but produces no output.

E. Replacing the call to flatMap with .map(x->x != null ? "A" : "B") results in the output b.

Question 1. The correct answer is option D. This question investigates an obscure corner of

Java’s numeric literal syntax. For reasons that are largely historical, Java supports the octal

(base-8) number system. In this system, you would count to 10 as “1, 2, 3, 4, 5, 6, 7, 10, 11, 12.”

The system uses only eight digits (0 through 7). After reaching 7, it sets the irst column to 0 and

increments the next column—going from 7 to 10 (pronounced “one-zero,” not “ten”)—in the

same way that the familiar base-10 system goes from 9 to 10. However, a critical diference is

Answers

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

95

//ix this /

that the digits 10 in octal represent one batch of eight and no extra units, whereas 10 in base-10

represents one batch of ten and no extra units.

Java source code indicates that the programmer is using octal by putting a leading zero

on the digit stream. In other words, the literal assignment in int a = 012 is actually assign-

ing a value of 10, not 12. That’s one batch of eight and two extra units. Importantly, however,

the compiler is completely happy with this format (see Java Language Speciication section

3.10.1). Therefore, option A, which suggests this assignment results in a compilation failure,

is incorrect.

The parseInt method takes an optional second parameter, which is the radix or, more

simply, the base of the representation. The single-argument overload of this method always

assumes a base-10 conversion. The two-argument overload used here will convert the text to

base-10, because I speciically provided a second argument. Therefore, the value of the variable

c will actually be 12.

Given that variable a contains the value 10 and both b and c contain 12, it’s clear that the

only true statement is b == c, which tells you that option D is the correct answer.

Question 2. The correct answer is option D. This question investigates Java’s casting and initial-

ization rules. These sometimes seem a bit inconsistent, but there’s actually sound logic to them.

On line 14, there’s an attempt to assign a literal value, 1234567890123456789, to a variable

of type long. The variable is big enough to hold a number that large, but unfortunately, the

expression on the right side of the assignment is taken to be an int expression. An int is not big

enough to hold that (it is limited to a little over +/- 2 x 109), so this line fails to compile.

You could ix this by appending the single letter L to the numeric literal, as shown below.

(Although it’s somewhat unusual for Java, the L is not case-sensitive in this situation, but it’s

generally a bad idea to use lowercase, because it looks too much like a 1 in many fonts.)

14: long i1 = 1234567890123456789L;

That suix tells the compiler it’s building a long literal, and then things work as expected.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

96

//ix this /

Notice also that adding a cast to the literal won’t work. An integer expression can be cast to a

long expression (although it’s not necessary to do so), but that doesn’t afect the type of the lit-

eral that forms the expression. So, line 14 fails to compile.

Line 15 attempts to declare and initialize three short values. The range of a short in Java is

-32,768 to +32,767 (that is the range of a 16-bit, two’s-complement binary number). Therefore,

it’s certainly possible to it 100, 99, and even 199 into the short. In fact, the irst two assign-

ments work successfully; the compiler works

out that the literal expressions 100 and 99

(which you saw above are of int type) will it

without loss of precision into the variables s1

and s2. However, the assignment of s3 does not

work. The problem here is that the compiler

sees an expression involving two short values

and the plus operator. All arithmetic is per-

formed using at least int-sized values and, therefore, the result of the add operation is an int-

sized value, not a short value. At that point, the compiler complains, because it cannot safely

take an unknown int value and assign it to a short unless you cast that value. (Of course, the

cast isn’t “safe,” but you’d be accepting responsibility for any problems.) Because of this, line 15

also fails to compile.

One way to make line 15 compile would be to add a cast:

15: short s1 = 99, s2 = 100, s3 = (short)(s1 + s2);

Interestingly, however, you could change the code so that the declarations of s1 and s2 are inal.

If you do that, the compiler recognizes that the value of the expression being assigned to s3

must be 199 (s1 + s2 becomes a constant expression at compile time), and the compiler is once

again willing to perform the assignment without complaint.

Line 16 might look simple enough, but it, too, fails to compile. The reason is that the literal

value 3.14 is a double expression, and attempting to assign this to a loat value will fail. The

The behavior of an iterator is unspecified
if the underlying collection is modified while the
iteration is in progress in any way other than by
calling this method.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

97

//ix this /

value isn’t too large for a loat, but it will likely lose precision, and that’s suicient reason for

the compiler to object. In this case, you can add the F suix to the literal, ensuring that the

literal expression is of type loat from the beginning. But unlike with the long value, you can

successfully add a cast in front of this one:

16: float pi = (float)3.14;

You might think this inconsistent given that line 14 could not be ixed by adding a cast. The dif-

ference is that in line 14, the literal expression was not valid, so an attempt to cast it would be

too late to ix it. However, in line 16, the literal is valid, so a cast can be applied to it, and in so

doing, you overcome the problem of assigning the value to the loat-sized variable. It’s probably

fair to suggest that the F suix, making the literal a loat-type expression, is the preferred style.

Line 17 compiles successfully. As I mentioned earlier, assigning a constant expression to a

variable that’s large enough for the actual value being assigned is permitted, even if the size of

the type of the constant expression (which is int) is too large for the type of the variable being

assigned. Given this, you can see that only line 17 compiles and option D is the correct answer.

Question 3. The correct answers are options C and E. This question investigates the rules

related to mutation of collections, particularly during iteration. In Java 8, there are several

ways to iterate over a list. These include using the enhanced for loop, the forEach method,

the ListIterator (and the simple Iterator that’s available on any Iterable), and a stream. As

a general rule, any of these “built-in” iteration mechanisms carry warnings that modifying

the data structure during the iteration is unsafe and likely (but not guaranteed) to result in a

ConcurrentModificationException being thrown.

One safe approach could be to use an external iteration, such as the one shown in option

D. However, the one shown in option D is fatally lawed, because it iterates through to a limit-

ing index (the last variable), which is extracted at the start of the iteration. Therefore, if any

items are removed, this code is guaranteed to iterate beyond the end of the list, and so option D

is incorrect.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

98

//ix this /

The other generally safe approach is that

the Iterator and ListIterator interfaces deine

a remove method. These methods are intended to

be able to remove the most recently seen element

from the structure being iterated. The code in

option C correctly uses this feature and, therefore,

option C is correct.

However, although the remove method and the style of its use in option C are generally

correct, the remove method is an optional operation, because the underlying list might be

immutable. This means that option E is also correct.

In fact, it’s the API documentation for the remove method of Iterator that tells you any other

kind of modiication is unsafe. It says, “The behavior of an iterator is unspeciied if the under-

lying collection is modiied while the iteration is in progress in any way other than by calling

this method.”

Of course, this notation doesn’t entirely explain why options A and B should be unsafe. The

answer lies in the underlying mechanisms of the enhanced for loop and the forEach method. As

you’ve probably guessed by now, they use the Iterator in their implementations. Java Language

Speciication section 14.14.2 describes how the enhanced for construction is translated into a

regular for loop and the Iterator is extracted and used. The API documentation for the Iterable

forEach method similarly describes the likely implementation of the forEach behavior in terms

of the Iterable. Given this, it’s clear that options A and B must also be incorrect.

Question 4. The correct answer is option D. This question investigates the essential behavior of

an Optional object. An Optional allows you to avoid passing null pointers around and the associ-

ated need to test for them frequently. Instead an Optional lets you pass a real object that wraps

another object that might or might not exist. The Optional allows you to avoid writing code like

the following:

String s = operationThatMightReturnNull();

An Optional lets you pass a real
object that wraps another object that
might or might not exist.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

99

//ix this /

if (s != null) {

 s = s.toLowerCase();

}

Instead, an Optional allows you to perform operations on the data that it wraps, creating a new

Optional as a result, but if the original Optional wrapped a null, the transformation is simply

skipped, thereby avoiding the clutter of checking for null in the caller. So, the above code would

be replaced with this:

Optional<String> os = operationThatReturnsOptionalString()

 .map(String::toLowerCase);

In this, the operationThatMightReturnNull has been rewritten to return an Optional directly. It

didn’t have to be; you could wrap it using Optional.ofNullable(operationThatMightReturnNull()),

but it’s cleaner this way and relects a more complete adoption of the Optional into the soft-

ware’s design.

The important thing is that if the initial function call returns an empty Optional—that is,

an Optional that wraps a nonexistent object—the operation speciied in the map call is never

called, and the result of the entire chain is an empty Optional.

Side note: Although as a rule the map call and similar operations return a new Optional

object, the class’s implementation appears to be smart about representing emptiness; it gen-

erally reuses the same underlying instance for every empty Optional. That’s not guaranteed

behavior (the API documentation warns against that assumption), but it’s a smart way to save

memory and has no other consequences, unless you do some strange and improbable things

with == operations without knowing about this singleton design.

The operation flatMap is essentially the same as a map, except that it’s used in situations

where the function that is provided as an argument returns the result of the flatMap directly

(that result is an Optional). Contrast this with the map operation, where the supplied function

returns data that will be wrapped by the map operation into an Optional that will be returned by

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

100

//ix this /

map. In other words, with a map operation, the supplied function creates the data—which might

be null—and leaves it to the map operation to wrap that in an Optional. With flatMap, the sup-

plied function takes responsibility for providing an Optional directly.

And now you have the essence of this question. Because the wrapped value in the question

is, in fact, null, the flatMap transformation is never executed. The empty Optional that is

returned from the flatMap is then used to invoke the map operation. Therefore, that map operation

also skips executing its transformation, for the same reason. Finally, the ifPresent method rec-

ognizes that the value is not present, so it does not invoke the println behavior in the Consumer

that is the argument to the ifPresent method. As a result, the code generates no output, and the

correct answer is option D.

For the reasons just outlined, option E, which suggests replacing the flatMap with a function-

ally equivalent map operation, would not change the outcome. Therefore, option E is incorrect.

And given that the call to flatMap is a distraction, it’s clear that both options A and B

are incorrect.

So, what about option C? This looks as if it would see the empty state of the object on which

it’s invoked and return a nonempty value. It would, but the problem here is that the return type

of the orElseGet must be the content type of the Optional on which it’s invoked. Therefore, it

would need to return a String to be compilable. It doesn’t, so it won’t compile, and option C must

be incorrect. However, if it did return a String instead of an Optional<String>, you’d still have a

problem, because then you’d be attempting to call the map operation on a String, and of course,

map is not deined as a String operation; it’s an operation in the Optional class. </article>

Simon Roberts joined Sun Microsystems in time to teach Sun’s irst Java classes in the UK. He created the

Sun Certiied Java Programmer and Sun Certiied Java Developer exams. He wrote several Java certiication

guides and is currently a freelance educator who publishes recorded and live video training through Pearson

InformIT (available direct and through the O’Reilly Safari Books Online service). He remains involved with

Oracle’s Java certiication projects.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2017

101

//contact us /

Comments
We welcome your comments, correc-

tions, opinions on topics we’ve covered,

and any other thoughts you feel impor-

tant to share with us or our readers.

Unless you speciically tell us that your

correspondence is private, we reserve

the right to publish it in our Letters to

the Editor section.

Article Proposals
We welcome article proposals on all

topics regarding Java and other JVM

languages, as well as the JVM itself.

We also are interested in proposals for

articles on Java utilities (either open

source or those bundled with the JDK).

Finally, algorithms, unusual but useful

programming techniques, and most other

topics that hard-core Java programmers

would enjoy are of great interest to us,

too. Please contact us with your ideas

at javamag_us@oracle.com and we’ll

give you our thoughts on the topic and

send you our nifty writer guidelines,

which will give you more information

on preparing an article.

Customer Service
If you’re having trouble with your sub-

scription, please contact the folks at

java@omeda.com, who will do what-

ever they can to help.

Where?
Comments and article proposals should

be sent to our editor, Andrew Binstock,

at javamag_us@oracle.com.

While it will have no inluence on our

decision whether to publish your article

or letter, cookies and edible treats will

be gratefully accepted by our staf at

Java Magazine, Oracle Corporation,

500 Oracle Parkway, MS OPL 3A-3133,

Redwood Shores, CA 94065, USA.

 World’s shortest subscription form

 Download area for code and

other items

 Java Magazine in Japanese

magazine

By and for the Java community

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:javamag_us%40oracle.com?subject=
mailto:java%40omeda.com?subject=
mailto:javamag_us%40oracle.com?subject=
https://www.sub-forms.com/dragon/init.do?site=ora6028_jfnew
http://bit.ly/2b2tXeb
http://bit.ly/2b2tXeb
http://www.oracle.com/technetwork/jp/articles/java/overview/index.html

