
ORACLE.COM/JAVAMAGAZINE

magazine

By and for the Java community

JAVA 12’S SWITCH STATEMENT 52 | JAVA CARD 3.1 RELEASE 62 | QUIZ 68

GETTING
STARTED WITH
KUBERNETES

11
USING JLINK FOR
CONTAINERIZING
APPS

25
MAKING CLOUD
NATIVE APPS
FOR CONTAINERS
WITH GRAALVM

41
CONTAINERS

MAY/JUNE 2019

http://www.oracle.com/javamagazine

@Route("payments")
public class Payments extends SplitViewFrame {
 private Grid<Payment> grid;
 private ListDataProvider<Payment> dataProvider;
 private DetailsDrawer detailsDrawer;
 @Override
 protected void onAttach(AttachEvent attachEvent) {
 super.onAttach(attachEvent);
 initAppBar();
 setViewContent(createContent());
 setViewDetails(createDetailsDrawer());

THE EFFICIENT WAY TO BUILD
BUSINESS WEB APPS IN JAVA

Create Progressive Web Apps
with a familiar Java API

� Run on any device, in any browser, and at any resolution

� Create an appealing UI with a large collection of components

� Easily connect to existing Java backend code

Find out more at:

vaadin.com

https://vaadin.com/?utm_source=javamagazine&utm_medium=cpc&utm_campaign=v14launch&utm_term=pwa

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

02

//table of contents/

52
New switch
Expressions
in Java 12
By Raoul-Garbriel Urma
and Richard Warburton

A new preview feature
that makes switch
statements friendlier
and less error-prone

62
Java Card 3.1
Unveiled
By Nicolas Ponsini

The major new release
tunes this small
Java platform for IoT.

68
Fix This
By Simon Roberts
and Mikalai Zaikin

More intermediate
and advanced test
questions with
detailed explanations

OTHER FEATURES DEPARTMENTS

05
From the Editor
Java Magazine is
undergoing a major
transformation.
Here’s what’s coming!

06
Events
Upcoming Java
conferences and events

40
User Groups
The Connecticut JUG

93
Contact Us
Have a comment?
Suggestion? Want
to submit an article
proposal? Here’s how.

COVER ART BY I-HUA CHEN

11
GETTING STARTED
WITH KUBERNETES
By Jesse Butler

Automate deployment,
scaling, and management of
containerized applications
and services.

25
CONTAINERIZING
APPS WITH JLINK
By Nicolas Fränkel

Make use of a new JDK
utility to greatly facilitate
containerizing your apps.

41
GRAALVM: BUILD
NATIVE IMAGES FOR
CONTAINERS FROM
YOUR JAVA CODE
By Oleg Šelajev

Run Java apps as native
binaries, and get faster
startup times and lower
memory overhead for
your containers.

COVER FEATURES

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

03

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

EDITORIAL
Editor in Chief  Andrew Binstock
Senior Managing Editor  Kimberly Brinson
Copy Editors  Lea Anne Bantsari, Karen Perkins
Contributing Editors  Deirdre Blake, Simon Roberts, Mikalai Zaikin
Technical Reviewer  Stephen Chin

PUBLISHING
Group Publisher  Karin Kinnear

ADVERTISING SALES
Tom Cometa
Mailing-List Rentals Contact your sales representative.

RESOURCES
Oracle Products  +1.800.367.8674 (US/Canada)
Oracle Services  +1.888.283.0591 (US)

ARTICLE SUBMISSION
If you are interested in submitting an article, please email the editors.

SUBSCRIPTION INFORMATION
Subscriptions are complimentary for qualified individuals who complete the subscription form.

MAGAZINE CUSTOMER SERVICE
java@omeda.com

PRIVACY
Oracle Publishing allows sharing of its mailing list with selected third parties. If you prefer that your mailing address or email address not be included in this program,
contact Customer Service.

Copyright © 2019, Oracle and/or its affiliates. All Rights Reserved. No part of this publication may be reprinted or otherwise reproduced without permission from the editors. JAVA MAGAZINE IS PROVIDED ON AN “AS IS”
BASIS. ORACLE EXPRESSLY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS OR IMPLIED. IN NO EVENT SHALL ORACLE BE LIABLE FOR ANY DAMAGES OF ANY KIND ARISING FROM YOUR USE OF OR RELIANCE
ON ANY INFORMATION PROVIDED HEREIN. Opinions expressed by authors, editors, and interviewees—even if they are Oracle employees—do not necessarily reflect the views of Oracle. The following is intended to outline our
general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making
purchasing decisions. The development, release, timing, and pricing of any features or functionality described for Oracle’s products may change and remains at the sole discretion of Oracle Corporation. Oracle and Java are
registered trademarks of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

Java Magazine is published bimonthly and made available at no cost to qualified subscribers by Oracle, 500 Oracle Parkway, MS OPL-3A, Redwood City, CA 94065-1600.

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
mailto:karin.kinnear%40oracle.com?subject=
mailto:tom.cometa%40oracle.com?subject=
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.sub-forms.com/dragon/init.do?site=ora6028_jfnew
mailto:java%40omeda.com?subject=
mailto:java%40omeda.com?subject=

https://www.jetbrains.com/idea/specials/idea/idea.html?utm_source=javamagazine&utm_medium=cpc&utm_campaign=idea

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

05PHOTOGRAPH BY BOB ADLER/GETTY IMAGES

//from the editor/

In many domains that serve a large audience,
there is the view that “if no one is complain-

ing, it is because you’re irrelevant.” In program-
ming, this view is echoed in C++ inventor Bjarne
Stroustrup’s oft-quoted maxim, “There are only
two kinds of languages: the ones people com-
plain about and the ones nobody uses.” I’m not
a partisan of such a dismissive view. Complaints
should not be taken as validation nor dismissed
as irrelevant. Rather, they are useful conduits to
improvement. You will note that almost all my
emails and editorials as well as the back page of
this magazine solicit feedback, including criti-
cisms, because my team and I read this feedback
and actively use it to improve the magazine.

By far the most common critique we
receive concerns the difficulty of reading the

articles in the present hosted-PDF format.
The text is hard to read (especially on mobile
devices) and the flipping of pages back and
forth to study code is quite annoying. Although
we’ve improved the reading experience over
the years (look at one of our issues from several
years ago to see how much has changed), we’ve
not been able to create an entirely new reading
experience—until now! After much prepara-
tion, we’re announcing that Java Magazine will
be published in responsive HTML hosted on
a website. The design will make it far easier
to read both text and code on any device and
to scroll through an article rather than click
through page after page.

The new format will also enable us to post
content more frequently and link to it more

easily—helping you find articles in searches
and on social media. We will continue the sub-
scription model by sending you notifications
whenever an issue’s worth of content has been
posted and by providing benefits available only
to subscribers. I will give you more details once
the rollout is complete.

We hope you’ll enjoy this new platform
when it debuts this summer and, as always,
I hope you’ll send me suggestions and critiques
if you see ways to improve the experience.
Until then!

Andrew Binstock, Editor in Chief
javamag_us@oracle.com

@platypusguy

Improving the Reading Experience
After months of preparation, Java Magazine is moving to a new, responsive web format.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:javamag_us%40oracle.com?subject=
https://twitter.com/platypusguy

06

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

//events/

PHOTOGRAPH BY STEPHEN HUGHES/ALAMY STOCK PHOTO

JCrete
JULY 14–19
KOLYMBARI, GREECE
This loosely structured “unconference” involves morning ses-
sions discussing all things Java, combined with afternoons spent
socializing, touring, and enjoying the local scene. There is also a
JCrete4Kids component for introducing youngsters to program-
ming and Java on July 20. Attendees often bring their families.

GOTO
JUNE 17–20
AMSTERDAM, THE NETHERLANDS
The lead singer of the rock band
Iron Maiden is slated to give
the opening day keynote at this
enterprise software develop-
ment conference. Talks on REST
and API design, microservices,
migrating Spring Boot apps with
Kotlin, quantum computing, cloud
native architecture, and Java 11
are scheduled.

DeveloperWeek NYC
JUNE 17, HIRING MIXER
JUNE 19–20, HACKATHONS
JUNE 19–20, CONFERENCE
AND EXPO
More than 3000 developers,
DevOps professionals, and execu-
tives are expected to gather to
discuss app development, block-
chain, IoT, microservices, quan-
tum computing, AI, and more.

NFJS Central Ohio Software
Symposium
JUNE 21–23
COLUMBUS, OHIO
This conference focuses on the
latest technologies and best
practices emerging in the mod-
ern software development and

architecture space. Scheduled
topics include machine learn-
ing, the evolution of Java, and
microservices.

DWX Developer Week
JUNE 24–27
NUREMBERG, GERMANY
This software development con-
ference is customarily conducted
in German, but this year several
talks will be conducted in English.
Topics include artificial intelli-
gence, microservices, real-time
web application programming,
and enterprise-grade NodeJS.

QCon
JUNE 24–26, CONFERENCE
JUNE 27–28, WORKSHOPS
NEW YORK, NEW YORK
QCon New York is a conference
for senior software engineers and
architects in enterprise software
development. Topics this year
include modern Java, machine
learning for developers, data engi-
neering, and high-performance
computing.

JConf Dominicana 2019
JUNE 29
SANTIAGO, DOMINICAN REPUBLIC
JConf Dominicana is a community-

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
http://www.jcrete.org/
https://gotoams.nl
http://www.developerweek.com/NYC/
https://nofluffjuststuff.com/conference/columbus/2019/06/home
https://nofluffjuststuff.com/conference/columbus/2019/06/home
https://www.developer-week.de/en/
https://qconnewyork.com/
https://jconfdominicana.org

07

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

//events/

driven conference organized by
the Dominican Republic Java User
Group (Aka JavaDominicano). It
is designed to discuss the latest
about the Java ecosystem, includ-
ing alternatives JVM languages,
Web and Mobile development, and
newest Cloud tendencies.

JConf Colombia 2019
JULY 5-6
MEDELLIN, COLOMBIA
JConf Colombia is a Java technolo-
gies conference, organized by the
JUGs of Barranquilla, Bogota, Cali
and Medellin. Its goal is to help
developers, entrepreneurs and
companies to learn new tech-
nologies related with Java, Cloud
and Containers.

JConf Peru 2019
JULY 13
LIMA, PERU
JConf Peru is a conference orga-
nized by the Peru JUG, its goal is
to connect developers and com-
panies interested in Java-related
technologies. Local and interna-
tional speakers will share their
experiences with topics such as
Java and Jakarta EE.

OSCON
JULY 15–16, TRAINING
AND TUTORIALS
JULY 17–18, CONFERENCE
PORTLAND, OREGON
The O’Reilly Open Source Software
Conference (OSCON) returns with
tutorials on Java, AI assistants, and

cloud-native databases, as well as
talks on blockchain, data science,
and integrating security into mod-
ern software development.

ÜberConf
JULY 16–19
DENVER, COLORADO
This conference for software
developers and architects cov-
ers Java 12, Docker, cloud-native
architecture, reactive program-
ming, JVM internals, Apache
Spark, distributed systems, Gradle,
machine learning, and more.

Open Source Summit Japan
JULY 17–19
TOKYO, JAPAN
Software developers, program-
mers, open-source maintainers,
and IT professionals will gather
for keynotes and talks at this
conference hosted by the Linux
foundation.

NFJS Lone Star Software
Symposium
JULY 26–28
AUSTIN, TEXAS
This conference will focus on the
latest technologies and best prac-
tices emerging in the modern
software development and archi-

tecture space. Scheduled topics
include the evolution of Java, Java
Modules migration, and asyn-
chronous programming in Java.

O’Reilly Artificial Intelligence
Conference
SEPTEMBER 9–10, TRAINING
SEPTEMBER 10–12, CONFERENCE
AND TUTORIALS
SAN FRANCISCO, CALIFORNIA
This conference centers on learn-
ing how to implement AI in real
world projects. Topics include eth-
ics, cloud and on-premise tools,
new architectures and AI business
implementations.

JavaZone
SEPTEMBER 11–12
OSLO, NORWAY
JavaZone is a conference for Java
developers organized by javaBin,
the Norwegian Java User Group.
The conference has been run-
ning since 2001 and now consists
of around 200 speakers and seven
parallel tracks over two days. Last
year’s event drew 3,100 partici-
pants and 200 speakers.

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
http://www.jconfcolombia.org/
http://jconfperu.org
https://conferences.oreilly.com/oscon/oscon-or
https://uberconf.com/conference/denver/2019/07/home
https://events.linuxfoundation.org/events/open-source-summit-japan-2019/
https://nofluffjuststuff.com/conference/austin/2019/07/home
https://nofluffjuststuff.com/conference/austin/2019/07/home
https://conferences.oreilly.com/artificial-intelligence/ai-ca
https://conferences.oreilly.com/artificial-intelligence/ai-ca
https://2019.javazone.no

08

//events/

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

Strange Loop
SEPTEMBER 12–14
ST. LOUIS, MISSOURI
Strange Loop is a multidisci-
plinary conference that brings
together the developers and
thinkers building tomorrow’s
technology in fields such as
emerging languages, alterna-
tive databases, distributed sys-
tems, and security. Talks are
generally code-heavy and not
process-oriented.

Oracle CodeOne
SEPTEMBER 16–19
SAN FRANCISCO, CALIFORNIA
Tutorials, sessions, keynotes,
and hands-on labs will cover the
future of Java and other software
development concerns. There
will also be discussions on Go,
Rust, Python, JavaScript, SQL, R,
and more.

Java Forum Nord
SEPTEMBER 24
HANNOVER, GERMANY
Java Forum Nord is a one-day,
noncommercial conference

in northern Germany for Java
developers and decision makers.
Typically featuring more than 25
presentations in parallel tracks
and a diverse program, the event
also provides interesting net-
working opportunities.

JAX London
OCTOBER 7 AND 10, WORKSHOPS
OCTOBER 8–9, CONFERENCE
AND EXPO
LONDON, ENGLAND
JAX London is a four-day con-
ference for software engineers
and enterprise-level profession-
als, bringing together the world’s
leading innovators in the fields of
Java, microservices, continuous
delivery, and DevOps.

EclipseCon Europe
OCTOBER 21–24
LUDWIGSBURG, GERMANY
EclipseCon is the Eclipse
Foundation’s event for the entire
European Eclipse community.
The conference program includes
technical sessions on current
topics pertinent to developer
communities, such as modeling,
embedded systems, data analyt-
ics and data science, IoT, DevOps,
and more. The Eclipse Foundation

supports a community for individ-
uals and organizations who wish
to collaborate on commercially
friendly open source software,
and recently was given control of
development technologies and
project governance for Java EE.

O’Reilly Software Architecture
Conference
NOVEMBER 4–5, TRAINING
OCTOBER 5–7, CONFERENCE
AND TUTORIALS
LONDON, ENGLAND
For four days, expert practitio-
ners share new techniques and
approaches, proven best prac-
tices, and technical skills. Topics
include microservices, application
architecture, distributed systems,
domain-driven design, and more.

Are you hosting an upcoming
Java conference that you would
like to see included in this cal-
endar? Please send us a link
and a description of your event
at least 90 days in advance at
javamag_us@oracle.com. Other
ways to reach us appear on the
last page of this issue.

PHOTOGRAPH BY TODD VAN HOOSEAR/FLICKR

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
https://www.thestrangeloop.com/
https://www.oracle.com/code-one/
http://www.java-forum-nord.de/
https://jaxlondon.com/
https://www.eclipsecon.org/
https://conferences.oreilly.com/software-architecture/sa-eu
https://conferences.oreilly.com/software-architecture/sa-eu
mailto:javamag_us%40oracle.com?subject=

SINGAPORE 30-31 MAY
ATHENS 7-8 JUNE

LUXEMBOURG 20-21 JUNE
BANFF 20-21 SEPTEMBER

TICINO 5 OCTOBER
MICROSERVICES, PARIS 21-23 OCTOBER

CLUJ-NAPOCA 30-31 OCTOBER

POLAND 24-27 JUNE
UKRAINE 1-2 NOVEMBER
BELGIUM 4-8 NOVEMBER
MOROCCO 12-14 NOVEMBER

https://voxxeddays.com

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

10

//containers/

In the last few issues, we’ve presented extensive coverage of the cloud’s effects on soft-

ware development. In our previous issue, we explored the use of lightweight frameworks—

Javalin, Micronaut, and Helidon—to create microservices, which typically are deployed in

the cloud. In that issue’s article on Helidon, we also showed how to package a service into a

Docker container for deployment.

In this issue, we continue the theme by examining how to build apps with containers in

mind and how to deploy containers. For straight Java apps, the jlink and jdeps tools are excel-

lent solutions for creating modularized, small, self-contained apps. We discuss how to use those

tools on page 25.

If very fast startup time is a concern, then consider the GraalVM platform. It is written in

Java but compiles Java code to an executable format. We’ve discussed GraalVM in past issues,

but this article focuses on the latest features and their use in creating small executables with

native-code startup speed. Finally, if you’re straddling the Dev and Ops sides of DevOps, you

surely have seen that most containers are managed with the open source Kubernetes platform.

In our lead feature, we give you a full introduction to Kubernetes and all the information you

need to start working with managing your containerized apps.

In addition, we explore what’s new in the recent release of Java 12, and we examine a major

upgrade to Java Card, which in all senses is the very smallest container for a Java app. In addi-

tion, we have our usual quiz and our events calendar. Finally, future issues of this magazine

will look materially different from what you’re used to. Please see the editorial in this issue for

details. Thank you!

A Developer’s Guide
to Containers

GETTING STARTED WITH
KUBERNETES 11
JLINK AND JDEPS FOR
SELF-CONTAINED JARS 25
GRAALVM FOR FAST
CONTAINER APPS 41

ART BY I-HUA CHEN

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://bit.ly/2WHI4MO
http://bit.ly/2Ywvlgx

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

11

//containers/

Today, monolithic applications are considered an antipattern and, for most use cases, the

cloud is the deployment platform of choice. These two changes equate to far more than

booting virtual machines on other people’s computers. Effectively leveraging the power and

scalability of the cloud means departing from yesterday’s monoliths and adopting new architec-

tures and development practices.

A microservices architecture is the emerging standard for delivering applications and ser-

vices in the cloud. Applications are broken down into loosely coupled discrete programs, each of

which has a specific responsibility. Adopting this sort of architecture allows teams to work more

independently as they push out their specific features—without being tied to a cumbersome

whole-organization roadmap. In addition, with discrete software components, testing can be

simplified and deployments streamlined.

Microservices adoption comes with its own set of challenges. Creating and deploying a few

services on a virtual machine is a first step, but how do you manage the full software lifecycle?

Container adoption has been primarily driven by this need. Using containers addresses several

concerns for a microservices architecture, such as the following:
■■ Application software is decoupled from the host environment, providing great portability.
■■ Containers are lightweight and fairly transparent, thereby enabling scalability.
■■ Software is packaged along with its dependencies.

Given these benefits, containers are an excellent choice for the packaging and deployment of

microservices. But containers are not magic. Under the covers, it’s all still software, and you

need a way to deploy, manage, and maintain your containers at scale. Where developers once

had a single monolith to monitor and maintain, they now might have dozens or hundreds of

Getting Started with Kubernetes
Automate the deployment, scaling, and management of containerized
applications and services.

JESSE BUTLER

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

12

//containers/

services. This is where Kubernetes comes into play.

Kubernetes is an open source platform for automating the deployment, scaling, and man-

agement of containerized applications and services. It was developed in response to the chal-

lenges of deploying and managing large fleets of containers at Google, which open sourced

the project and donated it to the Cloud Native Computing Foundation (CNCF). That foundation

fosters the cloud native computing ecosystem. Kubernetes was the first graduated project for

CNCF, and it became one of the fastest growing open source projects in history. Kubernetes now

has more than 2,300 contributors and has been widely adopted by companies large and small,

including half of the Fortune 100.

Getting Started with Kubernetes
How to get started? Kubernetes has a large ecosystem of supporting projects that have sprung

up around it. The landscape can be daunting, and looking for answers to simple questions

can lead you down a rabbit hole, which can easily make you feel like you’re woefully behind.

However, the first few steps down this path are simple, and from there you can explore more-

advanced concepts as your needs dictate. In this article, I demonstrate how to:
■■ Set up a local development environment with Docker and Kubernetes
■■ Create a simple Java microservice with Helidon
■■ Build the microservice into a container image with Docker
■■ Deploy the microservice on a local Kubernetes cluster
■■ Scale the microservice up and down on the cluster

To follow this tutorial, you will need to have some tools installed locally:
■■ Docker 18.02 or later
■■ Kubernetes 1.7.4 or later
■■ JDK 8 or later
■■ Maven 3.5 or later

You can install the latest version of each of these requirements on macOS, Linux, or Windows.

If you don’t have Docker installed already, refer to the Getting Started with Docker guide and

follow the instructions for your platform. You’ll want to be familiar with Docker basics.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.docker.com/get-started

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

13

//containers/

You can use any Kubernetes cluster available to you, but use Minikube to follow along with

this article. Minikube runs a single-node Kubernetes cluster inside a virtual machine on your

local system, giving you just enough to get

started. Follow the Minikube installation

documentation if you don’t have Minikube

installed already.

Now that you have Docker ready to go

and can spin up a local Kubernetes cluster

with Minikube, you will need an example microservice to work with. Inspired by the Helidon

article on microservices frameworks in the March/April issue of Java Magazine, I use Helidon in

this tutorial to create a simple microservice.

Build a Basic Microservice
Get started quickly with Helidon by creating a new project that uses the Helidon quickstart

Maven archetype. The following will get you up and running with a basic starter project:

$ mvn archetype:generate -DinteractiveMode=false \
 -DarchetypeGroupId=io.helidon.archetypes \
 -DarchetypeArtifactId=helidon-quickstart-se \
 -DarchetypeVersion=1.0.1 \
 -DgroupId=io.helidon.examples \
 -DartifactId=helidon-quickstart-se \
 -Dpackage=io.helidon.examples.quickstart.se

Change into the helidon-quickstart-se directory and build the service:

$ cd helidon-quickstart-se
$ mvn package

In Kubernetes, a service is an abstraction
that defines a way to access a pod or a set of pods.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
http://www.javamagazine.mozaicreader.com/MarchApril2019#&pageSet=34&page=0

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

14

//containers/

That’s it—you now have a working example of a microservice. The project will have built

an application JAR file for your sample microservice. Run it to check that everything is

working properly:

$ java -jar ./target/helidon-quickstart-se.jar
[DEBUG] (main) Using Console logging
2019.03.20 12:52:46 INFO io.helidon.webserver.NettyWebServer
Thread[nioEventLoopGroup-2-1,10,main]: Channel '@default'
started: [id: 0xbdfca94d, L:/0:0:0:0:0:0:0:0:8080]
WEB server is up! http://localhost:8080/greet

Use curl in another shell and put the service through its paces:

$ curl -X GET http://localhost:8080/greet
{"message":"Hello World!"}
$ curl -X GET http://localhost:8080/greet/Mary
{"message":"Hello Mary!"}
$ curl -X PUT -H "Content-Type: application/json" -d '{"greeting" : "Hola"}' /
http://localhost:8080/greet/greeting
$ curl -X GET http://localhost:8080/greet/Maria
{"message":"Hola Maria!"}

This isn’t a very exciting service, but it serves the purpose of an example to build a container

with. Before you carry on to Kubernetes, build a Docker image of your microservice. Helidon

provides an example Dockerfile; you can build your image simply via

docker build -t helidon-quickstart-se target

You can now see what Kubernetes can do for you.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

15

//containers/

Moving to Kubernetes
With Docker, you can build container images, create containers, and manage images and con-

tainers locally. Kubernetes comes into play when it is time to deploy containers in production

and at scale.

In Kubernetes, containers are deployed in groups of related containers called pods. A pod is

a deployable unit and may contain more than one container. For example, a pod might contain

two containers: one running a web server and the other being a logging service for the server.

Later, you will create a pod for your microservice and it will have just one container: an instance

of your helidon-quickstart-se image.

Part of the role of Kubernetes is to ensure your application services are up and running. You

describe what should be run and monitored by defining a deployment. Kubernetes will monitor

the health of pods within a deployment, and it will restart the containers within a pod if they

stop running. Deployments are the best way to deploy and scale pods on Kubernetes.

Let’s start by testing your local Kubernetes cluster with a simple example. First, to get your

local cluster spun up, invoke the minikube start command. This command provides a running

status of its progress. Wait for the completion message before moving on.

$ minikube start
 minikube v0.35.0 on darwin (amd64)
 ...
 Done! Thank you for using minikube!

The Minikube installation comes with kubectl, the primary interface to Kubernetes. Like the

Docker client, it is a powerful multipurpose tool for interacting with all aspects of your cluster

and the containers deployed to it.

Use kubectl create to create a simple deployment with a prebaked “hello world” example.

Then use kubectl get to show your deployment and the pods within it. You’ll see something

like this:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

16

//containers/

$ kubectl create deployment hello-node \
 --image=gcr.io/hello-minikube-zero-install/hello
deployment.apps/hello-node created
$ kubectl get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
hello-node 0/1 1 0 27s
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
hello-node-64c578bdf8-5b7jm 1/1 Running 0 10m

By default, Kubernetes assigns a pod an internal IP address that is accessible only from within

the cluster. To enable external access to the containers running within a pod, you will expose

the pod as a service. In Kubernetes, a service is an abstraction that defines a way to access a pod

or a set of pods.

Create a simple LoadBalancer service with kubectl expose. This will enable external access to

your service through a load balancer.

$ kubectl expose deployment hello-node --type=LoadBalancer --port=8080
service/hello-node exposed
$ kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
hello-node LoadBalancer 10.104.108.47 <pending> 8080:30631/TCP
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP

[The output includes other fields that are omitted to fit on this page. This is also true of some

subsequent output listings. —Ed.]

On a cloud provider or other managed Kubernetes platform, this action would result in the

allocation of a load balancer resource, and its IP address would be shown in the EXTERNAL-IP

column. In Minikube, use the service command, which will open a browser and show you that

the service is working:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

17

//containers/

$ minikube service hello-node

With your sanity test done, you can tear things down and clean up. To do this, use the kubectl

delete command:

$ kubectl delete service hello-node
service "hello-node" deleted
$ kubectl delete deployment hello-node
deployment.extensions "hello-node" deleted

Now that you have a local Kubernetes cluster and know that it is working, it’s time to put your

own image to work.

Deploying to Kubernetes
In the previous section, you created a simple deployment with the command-line arguments to

kubectl create. Typically, you’ll need to describe your deployments in more detail, and for that

you can pass a YAML file to kubectl. This step allows you to define all aspects of your Kubernetes

deployments. Another benefit of defining your deployments in YAML is that the files can be

kept in source control along with your other project source code.

The Helidon starter project includes some boilerplate configuration for both a deployment

and a service in the target/app.yaml file. Open this file in your favorite editor and let’s examine

its contents.

$ cat target/app.yaml
kind: Service
apiVersion: v1
metadata:
 name: helidon-quickstart-se
 labels:
 app: helidon-quickstart-se

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

18

//containers/

spec:
 type: NodePort
 selector:
 app: helidon-quickstart-se
 ports:
 - port: 8080
 targetPort: 8080
 name: http

kind: Deployment
apiVersion: extensions/v1beta1
metadata:
 name: helidon-quickstart-se
spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: helidon-quickstart-se
 version: v1
 spec:
 containers:
 - name: helidon-quickstart-se
 image: helidon-quickstart-se
 imagePullPolicy: IfNotPresent
 ports:
 - containerPort: 8080

This content might appear at first to be just a wall of metadata, but by reading through it, you

can see that it defines a deployment that will consist of a pod with a helidon-quickstart-se

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

19

//containers/

container in it and a service that makes it available externally. Notice the service uses an app by

the same name as the deployment’s app label.

Note the image name in the deployment specification calls for your local image name:

helidon-quickstart-se. When you deploy this in Kubernetes, the runtime will look for this

image locally first. You are using a local image, in that Docker is running on your local machine.

But the issue is that Minikube is running its own instance of Docker locally in its virtual

machine. The image you built earlier will not be found there.

Minikube has a handy solution for this issue: the docker-env command. This command

prints a set of shell environment variables that will direct a Docker client to use the Docker

server where Minikube is running. Simply invoke this command inside an eval on Linux, UNIX,

or Mac (consult the documentation for the Windows equivalent), and it will set the variables in

your current shell environment.

$ eval $(minikube docker-env)

Now when you invoke the docker client, it will connect to Docker running in the Minikube vir-

tual machine. Note that this will be configured only in your current shell session; it’s not a

permanent change.

Now you can build the image as you did above, but this time it will be built in Minikube’s

virtual machine, and the resulting image will be local to it:

$ docker build -t helidon-quickstart-se target
Sending build context to Docker daemon 5.877MB
Step 1/5 : FROM openjdk:8-jre-slim
8-jre-slim: Pulling from library/openjdk
f7e2b70d04ae: Pull complete
05d40fc3cf34: Pull complete
b235bdb95dc9: Pull complete
9a9ecf5ba38f: Pull complete
91327716c461: Pull complete

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

20

//containers/

Digest: sha256:...
Status: Downloaded newer image for openjdk:8-jre-slim
 ---> bafe4a0f3a02
Step 2/5 : RUN mkdir /app
 ---> Running in ec2d3dad6e73
Removing intermediate container ec2d3dad6e73
 ---> a091fb56d8c5
Step 3/5 : COPY libs /app/libs
 ---> a8a9ec8475ac
Step 4/5 : COPY helidon-quickstart-se.jar /app
 ---> b49c72bbfa4c
Step 5/5 : CMD ["java", "-jar", "/app/helidon-quickstart-se.jar"]
 ---> Running in 4a332d65a10d
Removing intermediate container 4a332d65a10d
 ---> 248aaf1a5246
Successfully built 248aaf1a5246
Successfully tagged helidon-quickstart-se:latest

With your image built local to your Kubernetes cluster, you can now create your deployment

and service:

$ kubectl create -f target/app.yaml
service/helidon-quickstart-se created
deployment.extensions/helidon-quickstart-se created

$ kubectl get pods
NAME READY STATUS RESTARTS
helidon-quickstart-se-786bd599ff-n874p 1/1 Running 0
$ kubectl get service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
helidon-quick... NodePort 10.100.20.26 <none> 8080:31803/TCP

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

21

//containers/

kubernetes ClusterIP 10.96.0.1 <none> 443/TCP

There is one last thing to note before you test your newly deployed Kubernetes service. Earlier,

you created a service with type LoadBalancer. You can access your pod through the service’s

external IP address, which is configured on a load balancer. This is one type of service pro-

viding external access to services running within your cluster. Another type is NodePort,

which this service is using. A node port exposes the service on a mapped port across all of the

cluster nodes.

Minikube once again comes through with a handy command. You can use the service com-

mand again, this time with the --url option to retrieve a service access URL. Invoke this com-

mand and then test your service with the URL it returns:

$ minikube service helidon-quickstart-se –url
http://192.168.99.101:31803
$ curl -X GET http://192.168.99.101:31803/greet
{"message":"Hello World!"}

You have now deployed a microservice to Kubernetes. Fantastic! Before you head off to do amaz-

ing things with containers, let’s examine a few more basics.

Keeping an Eye on Things
When you ran your service at the command line, you saw the output of the web server starting

up. This output is also captured by the container runtime and can be seen with the kubectl logs

command. If things don’t appear to be running correctly, this is a good place to check first.

$ kubectl logs helidon-quickstart-se-786bd599ff-n874p
[DEBUG] (main) Using Console logging
2019.03.23 01:00:53 INFO io.helidon.webserver.NettyWebServer
 Thread[nioEventLoopGroup-2-1,10,main]: Channel '@default'

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

22

//containers/

 started: [id: 0x9f01de18, L:/0.0.0.0:8080]
WEB server is up! http://localhost:8080/greet

This command is especially useful when you are doing development and working with a local

cluster. At scale, there are several ways to collect, store, and make use of log data. Open source

projects as well as fully automated commercial offerings exist, and an online search will show

many options to explore.

Scaling to Meet Demand
Suppose your service is part of an application and is responsible for saying “Hello” to users.

Your team anticipates a spike in use tomorrow, so you will scale up your service to handle more

users. Scaling your deployments up and down is a core feature of Kubernetes. To scale, simply

modify the number of replicas defined in your deployment specification and apply the changes

via kubectl apply.

Edit your target/app.yaml file and apply the changes now. Start by scaling the number of

replicas up from one to five.

$ grep replicas target/app.yaml
replicas: 5
$ kubectl apply -f target/app.yaml
service/helidon-quickstart-se unchanged
deployment.extensions/helidon-quickstart-se configured

You should now see five pods deployed where there was only one before. Note that because

Kubernetes configuration is declarative, only the changes that are required are committed to

the cluster. In this case, four pods are added to the deployment.

$ kubectl get pods

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

23

//containers/

NAME READY STATUS RESTARTS
helidon-quickstart-se-786bd599ff-5gm29 1/1 Running 0
helidon-quickstart-se-786bd599ff-fkg8g 1/1 Running 0
helidon-quickstart-se-786bd599ff-g7945 1/1 Running 0
helidon-quickstart-se-786bd599ff-h6c5n 1/1 Running 0
helidon-quickstart-se-786bd599ff-n874p 1/1 Running 0

You can just as easily scale your deployment back down; once again edit your deployment

specification and apply the change:

$ grep replicas target/app.yaml
replicas: 2
$ kubectl apply -f target/app.yaml
service/helidon-quickstart-se unchanged
deployment.extensions/helidon-quickstart-se configured
$ kubectl get pods
NAME READY STATUS RESTARTS
helidon-quickstart-se-786bd599ff-h6c5n 1/1 Running 0
helidon-quickstart-se-786bd599ff-n874p 1/1 Running 0

There are more-advanced scaling features in Kubernetes, such as the Horizontal Pod Autoscaler,

as well as features in managed cloud platforms to automatically scale up node resources

on demand.

Next Steps
While it is beyond the scope of this article, there are several more-advanced Kubernetes fea-

tures that are now within your grasp. The Kubernetes documentation is a great resource to

start with.

When you are done working with your service, you can remove it from your cluster by using

kubectl delete:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://kubernetes.io/docs/home/

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

24

//containers/

$ kubectl delete service helidon-quickstart-se
service "helidon-quickstart-se" deleted
$ kubectl delete deployment helidon-quickstart-se
deployment.extensions "helidon-quickstart-se" deleted

Along with the extensive documentation, there are several free online training options to take

advantage of. The Kubernetes community is very welcoming and helpful as well. In addition,

a great source for learning, ideas, and support can be found in the Kubernetes Slack channel.

Issues and pull requests are always welcome in the project on GitHub.

Conclusion
Containers are a powerful abstraction for microservices deployment. They allow you to decouple

your service from the host environment, making it portable and scalable. As you can see from

this brief introduction, Kubernetes makes containers manageable at scale.

Of course, these examples are just the beginning. Dig into the documentation and learn

about more-advanced concepts. Welcome to Kubernetes development! </article>

Jesse Butler (@jlb13) is a cloud native advocate with Oracle Cloud Native Labs. He’s been working with con-
tainers for several years, first in Solaris and later in Linux. Most recently, he’s been focused on Kubernetes,
containers, serverless, and other cloud native technologies.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://slack.k8s.io/
https://github.com/kubernetes/kubernetes

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

25

//containers/

If you have tried working with Java modules, you might have realized that modularization is not

easy. The first hurdle might be modularizing your own application, but many issues are due to

the current state of modularization of third-party libraries. This is unfortunate, because once

an application is modularized, it can be distributed as a standalone executable with a trimmed-

down version of the JDK. In this era of containerization, that means small Docker images.

In this article, I explain how to use jlink, which is a command-line utility available since

Java 9, to create easy-to-containerize Java executables. I’ll start with a quick overview of mod-

ules. Then I’ll demonstrate how to use jlink to create standalone executables and how beneficial

jlink can be when used with Docker containers.

The complete source code and files for this article are available on GitHub. The source code

and configuration files for the larger project in this article can also be found on GitHub.

Modularization and jlink
A class A may make use of other classes such as java.util.List at compile time (the compiler

checks the dependency is available on the compiling classpath) or at runtime (in which case the

JRE tries to resolve the same dependency on the runtime classpath).

One issue that occurs is that the JRE delivers many classes; some of them might not be used

by the application, but they are bundled anyway. For example, application servers that run in

headless mode still bundle graphical packages such as javax.swing.

Another issue that arises from dependence on the JRE is how visibility is managed in Java.

For class A in package ch.frankel.a to be visible from class B in package ch.frankel.b, class

A must have public visibility. With that in mind, it’s impossible for third-party JAR librar-

ies to cleanly separate their API classes and their internal classes into different packages.

Containerizing Apps with jlink
A JDK utility greatly facilitates containerizing your applications.

NICOLAS FRÄNKEL

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/en/java/javase/11/tools/jlink.html
https://github.com/nfrankel/jlink-ground-up

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

26

//containers/

Historically, packages that were meant to be internal relied upon implicit naming, such as

ch.frankel.c.internal. However, there was no technical way to enforce this constraint.

Java 9 tried to address this problem by providing another way to manage visibility: modules.

There are several kinds of modules:
■■ System modules: These modules are provided by the JVM.
■■ Application modules: An application can be made into an application module by providing a

module-info class at its root.
■■ Automatic modules: By adding an Automatic-Module-Name entry in a JAR’s MANIFEST.MF, the

specified module will be treated as an automatic module.
■■ Unnamed module: A JAR that is not a system module, an application module, or an automatic

module is an unnamed module.

A Java 9 (or later) application that has been modular-

ized makes use of a module-info file located at the root.

This file is a manifest that contains the module name

and declares which module dependencies are required.

At runtime, the loader reads that manifest to load only

the modules that are necessary.

With this design, it’s possible to eliminate unnec-

essary modules that are part of the JDK, which is the

mission of jlink. As the official documentation states, “You can use the jlink tool to assemble

and optimize a set of modules and their dependencies into a custom runtime image.”

jlink enables you to use the underlying module configuration of an application to deliver a

custom JRE along with the application. Using the same mechanics, it also allows you to create

an executable out of the application, so the deliverable is completely self-sufficient and doesn’t

rely on the target system having a compatible JRE.

Laying the Foundation
Let’s examine jlink starting with the simplest possible application: Hello World. Here it is in all

its glory:

To reduce the overall size of an
image, you can take advantage of the
module system and distribute only the
required modules of the JDK.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

27

//containers/

//Main.java
public class Main {

 public static void main(String[] args) {
 System.out.println("Hello world");
 }
}

It is hard to argue that Docker is not the most popular container distribution channel nowadays.

To distribute this Hello World application, it would be a huge benefit to use Docker. Because my

intention is to both create a single Dockerfile and keep the final image as small as possible, a

multistage build is needed.

As a reminder, a multistage Docker build allows you to chain stages in such a way that a

later stage can reuse build results from previous stages. In addition, each stage can inherit from

different base images and you can name each stage, because it is easier to reference a stage

by name than by index. The main benefit of multistage builds is the ability to use the most

relevant image in each stage, so you can have the smallest resulting image at the end of the

build process.

Here’s an example Dockerfile showing how to create an image for Hello World by using

Maven. I assume the project has a Maven-compatible structure:

Dockerfile
FROM maven:3.6-jdk-12-alpine as build

WORKDIR /app

COPY pom.xml .
COPY src src

RUN mvn package

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

28

//containers/

FROM openjdk:12-alpine

COPY --from=build /app/target/jlink-ground-up-1.0-SNAPSHOT.jar \
 /app/target/jlink-ground-up.jar

ENTRYPOINT ["java", "-jar"]
CMD ["/app/target/jlink-ground-up.jar"]

In this file, the second line identifies the first stage of the multistage build, which uses a Maven

image and is labeled build. The mvn package command generates the JAR, using the default name

that is jlink-ground-up-1.0-SNAPSHOT.jar.

In the line that begins with FROM, you see the second and last stage of the build. That line

uses one of the smallest images possible, an Alpine distribution of Linux. There’s no Alpine

image for Java 11, but there is one for Java 12. Unfortunately, no JRE is available, only a JDK. The

COPY statement that’s next reuses the JAR file that is the output of the first stage.

Then, you create the image:

$ docker build -t jlink:1.0 .

The main issue with this approach is that the Docker image is huge, because it embeds the

whole JDK, even for a Hello World application. In fact, the size of the application is negligible

compared to the size of OpenJDK 12:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
openjdk 12-alpine 8f180304fad9 7 days ago 336MB
jlink 1.0 7c612235f308 About a minute ago 336MB

To reduce the overall size of an image, you can take advantage of the module system and dis-

tribute only the required modules of the JDK.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

29

//containers/

Distributing a Custom Launcher
The Hello World application is so simple that no module except java.base is required. This mod-

ule is automatically required, just as java.lang packages are implicitly imported.

To distribute a custom, smaller executable, the first step is to migrate the application to the

module system. As stated earlier, jlink can work only with modularized applications, because it

relies on the module-info file.

Because this app requires only the java.base module, creating a module-info.java module

descriptor is straightforward:

// module-info.java
module ch.frankel.jlink {
 exports ch.frankel.blog.jlink;
}

jlink’s main feature is to optimize an application to keep only the modules that will be used.

Furthermore, it can be used to create a standalone executable out of the optimized version of the

application. Because our app is now taking advantage of the module system, it becomes possible

to create this dedicated launcher.

However, jlink requires an existing JAR to work its magic:

$ mvn clean package

Everything is now set, so it’s time to use jlink. Be aware that like the java or javac commands,

jlink requires options to be specified. Here’s the command to create a custom executable for

Hello World:

$ jlink --add-modules ch.frankel.blog.jlink \
 --module-path ${JAVA_HOME}/jmods:target/jlink-ground-up-1.1.jar \
 --output target/jlink-image \
 --launcher hello=ch.frankel.jlink/ch.frankel.blog.jlink.Main

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

30

//containers/

Let’s examine the options.
■■ The first line defines the modules that are required

via their names. The module’s name of our applica-

tion should be set.
■■ The second line specifies the module path. While

pre-Java 9 applications use the classpath, module-

compatible applications use the module path. Just as

with the classpath, the module path references path elements to search for dependent mod-

ules. For now, the path to every module including those provided by the JDK and the JAR file,

must be referenced.
■■ The third line specifies the output folder.
■■ The final line specifies the entry point of the custom distribution. Its format consists of sev-

eral parts: the final executable name, an = sign, the module name, and a / followed by the fully

qualified class name of the Main class.

Once you have created the distribution, you can launch it using this command:

$ target/jlink-image/bin/hello

As expected, this command prints Hello world to standard out.

Just as before, the goal is to wrap this custom distribution in a Docker image. Let’s adapt the

Dockerfile accordingly, as follows:

FROM maven:3.6-jdk-12-alpine as build

WORKDIR /app
COPY pom.xml .
COPY src src
RUN mvn package && \
 jlink --add-modules ch.frankel.jlink \
 --module-path ${JAVA_HOME}/jmods:target/jlink-ground-up-1.1.jar \

The good news is that there’s
an existing Maven plugin to help
you declaratively manage the module
path: the ModiTect plugin.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

31

//containers/

 --output target/jlink-image \
 --launcher hello=ch.frankel.jlink/ch.frankel.blog.jlink.Main

FROM alpine:3.8

COPY --from=build /app/target/jlink-image /app
ENTRYPOINT ["/app/bin/hello"]

The next question is whether this extra step had any effect on the size of the resulting Docker

image. Let’s compare it with the previous build that was created without jlink:

REPOSITORY TAG IMAGE ID CREATED SIZE
jlink 1.0 7c612235f308 About a minute ago 336MB
jlink 1.1 e590fb6697e7 14 hours ago 53MB

Wow; that’s a whopping 283 MB savings from the previous unmodularized application! If 53 MB

seems a bit much for a Hello World application, remember that the distribution contains all the

power of the JVM, including the just-in-time (JIT) compiler and garbage collection management.

If necessary, pause to savor this victory, and when you are ready, proceed to the next section.

Industrializing the Generation of the Custom Launcher
The previous jlink command is verbose. Moreover, it will become more verbose when the num-

ber of module dependencies increases. The situation is quite similar to that of the Java compiler:

In day-to-day life, developers rarely invoke the compiler directly; instead they favor the use of

a build tool such as Maven. With Maven, dependencies are declared in the POM file, and the Java

compiler plugin manages the classpath for you. It would be very awkward to manage the class-

path manually at every compilation.

The good news is that there’s an existing Maven plugin to help you declaratively manage

the module path: the ModiTect plugin. I use this plugin in the rest of this article.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/moditect/moditect

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

32

//containers/

Among other features, the plugin offers a create-runtime-image goal that creates the

launcher. Here is a POM snippet that creates the custom launcher as described earlier but in a

repeatable way:

<plugin>
 <groupId>org.moditect</groupId>
 <artifactId>moditect-maven-plugin</artifactId>
 <version>1.0.0.Beta2</version>
 <executions>
 <execution>
 <id>create-runtime-image</id>
 <phase>package</phase> <!-- comment 1 -->
 <goals>
 <goal>create-runtime-image</goal> <!-- comment 2 -->
 </goals>
 <configuration>
 <modulePath> <!-- comment 3 -->
 <path> <!-- comment 4 -->
 ${project.build.directory}/${project.artifactId}-
 ${project.version}.${project.packaging}
 </path>
 </modulePath>
 <modules>
 <module>ch.frankel.jlink</module> <!-- comment 3 -->
 </modules>
 <launcher>
 <name>hello</name> <!-- comment 3 -->
 <module>
 ch.frankel.jlink/ch.frankel.blog.jlink.Main
 </module> <!-- comment 3 -->
 </launcher>

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

33

//containers/

 <outputDirectory>
 ${project.build.directory}/jlink-image
 </outputDirectory> <!-- comment 3 -->
 </configuration>
 </execution>
 </executions>
</plugin>

The line that contains comment 1 binds execution to the package phase. The line that contains

comment 2 calls the create-runtime-image goal. The lines that contain comment 3 will be translated

to a jlink command-line option. And the line that contains comment 4 is followed by two lines

that you should enter as a single line (including the hyphen); the two lines are shown separately

so they fit on the page.

Table 1 shows how the declarative configuration maps to the jlink command-line options:

With that information added to the POM, the Dockerfile can be simplified further:

Dockerfile
FROM maven:3.6-jdk-12-alpine as build

WORKDIR /app

X ML JL INK OP T ION
<modulePath> --module-path

<modules> --add-modules

<name> FIRST PART OF --launcher

<module> SECOND PART OF --launcher

<outputDirectory> --output

Table 1. How the configuration maps to the jlink options

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

34

//containers/

COPY pom.xml .
COPY src src
RUN mvn package

FROM alpine:3.8

COPY --from=build /app/target/jlink-image /app
ENTRYPOINT ["/app/bin/hello"]

At this point, you have a repeatable build process for creating custom distributions.

Adding Module Dependencies
Let’s beef up the application and improve the code. As you probably know, it’s unwise to use

System.out.println() statements: they are not configurable, so if they are used for debugging

purposes, they will be written even in production. Let’s replace this log statement with a call to

a proper logging framework.

As my logging framework, I will use the Simple Logging Facade for Java (SLF4J), which

is modularized. This choice requires me to add two dependencies: the API and a single

implementation.

To do that, add the following to the POM file:

<dependencies>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 <version>1.8.0-beta2</version>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-simple</artifactId>

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.slf4j.org/

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

35

//containers/

 <version>1.8.0-beta2</version>
 <scope>runtime</scope>
 </dependency>
</dependencies>

And update the module-info.java file:

module ch.frankel.jlink {
 requires org.slf4j;
 exports ch.frankel.blog.jlink;
}

To use jlink, you also need to add SLF4J to the --module-path, as follows:

<configuration>
 <modulePath>
 <path> <!--enter the next two lines as a single line -->
 ${project.build.directory}/${project.artifactId}-
 ${project.version}.${project.packaging}
 </path>
 <path> <!--enter the next two lines as a single line -->
 ${settings.localRepository}/org/slf4j/slf4j-api/
 1.8.0-beta2/slf4j-api-1.8.0-beta2.jar
 </path>
 </modulePath>
</configuration>

As the number of dependencies grows, this approach can quickly become tedious. It’s easy to

forget a dependency, and it’s cumbersome to upgrade the version number in the <dependencies>

section and here as well.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

36

//containers/

A better alternative is to copy every dependency into a dedicated directory, and use that

directory as a part of the module path. The following code shows how you can configure the

build process in the POM file to automatically do that during each run:

<plugin>
 <artifactId>maven-dependency-plugin</artifactId>
 <version>3.1.1</version>
 <executions>
 <execution>
 <id>copy</id>
 <phase>package</phase>
 <goals>
 <goal>copy-dependencies</goal>
 </goals>
 <configuration>
 <outputDirectory>
 ${project.build.directory}/modules
 </outputDirectory>
 </configuration>
 </execution>
 </executions>
</plugin>

Note that you can configure the module path once and for all, as follows, because every depen-

dency will be copied to the modules folder:

<modulePath>
 <path> <!--enter the next two lines as a single line -->
 ${project.build.directory}/${project.artifactId}-
 ${project.version}.${project.packaging}
 </path>

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

37

//containers/

 <path>${project.build.directory}/modules</path>
</modulePath>

Adding Nonmodule Dependencies
Unfortunately, jlink works only with modules and it will fail if not all dependencies are mod-

ules. The only way to fix that is to craft a custom module-info.java file, compile it, and update

the dependent JAR with it. You can use the jdeps utility, which is part of the JDK, to determine

the contents of the module file, namely the dependencies that need to be declared.

Here’s an example usage:

$ jdeps --generate-module-info \
 . \
 $M2_REPO/org.apache…/commons-lang3-3.8.1.jar

The first line specifies that jdeps should generate the module-info.java file, the second line

is the output directory, and the third line is the target JAR file to be analyzed. [The path was

shortened to fit the page. —Ed.]

This command generates the following file:

module org.apache.commons.lang3 {
 requires transitive java.desktop;

 exports org.apache.commons.lang3;
 exports org.apache.commons.lang3.arch;
 exports org.apache.commons.lang3.builder;
 exports org.apache.commons.lang3.concurrent;
 exports org.apache.commons.lang3.event;
 exports org.apache.commons.lang3.exception;
 exports org.apache.commons.lang3.math;
 exports org.apache.commons.lang3.mutable;

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/9/tools/jdeps.htm

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

38

//containers/

 exports org.apache.commons.lang3.reflect;
 exports org.apache.commons.lang3.text;
 exports org.apache.commons.lang3.text.translate;
 exports org.apache.commons.lang3.time;
 exports org.apache.commons.lang3.tuple;
}

Note that the folder’s name is not randomly chosen: It’s taken from the Automatic-Module-Name

attribute in the JAR’s manifest. This design allows a JAR to have a stable module name. If the

attribute is missing, the module system will automatically infer a module name based on the

JAR’s name, which might not be suitable.

jdeps doesn’t handle the compilation, but the ModiTect plugin provides a goal for achieving

that. Let’s update the POM file accordingly:

<plugin>
 <groupId>org.moditect</groupId>
 <artifactId>moditect-maven-plugin</artifactId>
 <version>1.0.0.Beta2</version>
 <executions>
 <execution>
 <id>add-module-info</id>
 <phase>package</phase> <!-- comment 1 -->
 <goals>
 <goal>add-module-info</goal> <!-- comment 2 -->
 </goals>
 <configuration>
 <outputDirectory>
 ${project.build.directory}/modules
 </outputDirectory>
 <modules>
 <module>

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

39

//containers/

 <artifact> <!-- comment 3 -->
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-lang3</artifactId>
 </artifact>
 <moduleInfo> <!-- comment 4 -->
 <name>org.apache.commons.lang3</name>
 </moduleInfo>
 </module>
 </modules>
 <overwriteExistingFiles>true</overwriteExistingFiles>
 </configuration>
 </execution>
</plugin>

In this file, the line with comment 1 binds plugin execution to the package phase; the line with

comment 2 calls the add-module-info goal; the section that starts with the line that has comment 3

specifies the target dependency to update; and the section that starts with the line that has

comment 4 shows that in the additional module information section, only the name is required.

The build process now modularizes the commons-lang3 dependency. This snippet is compat-

ible with the previous snippet, so every dependency is copied to the modules folder, and it will be

overwritten by the modularized JAR if it’s not a module already.

The commons-lang3 dependency is simple in two regards: It has an Automatic-Module-Name in

its manifest and it has no external dependencies. For that reason, it’s pretty easy to make use of it.

If you were to replace commons-lang3 with the Guava library, for example, you would simply

change the library name in the plugin. However, jdeps would explore the whole dependency

tree and all of Guava’s dependencies would need to be modularized as well, just as Guava itself

would. This configuration would be quite verbose, but unfortunately it would be necessary. I’ve

posted a copy of the pom.xml file.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://bit.ly/2Int832

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

40

//containers/

Conclusion
In this article, I used jlink to create a custom

launcher for a simple application. As we saw,

jlink enables you to create launchers that con-

tain only the required modules. To use jlink, an

application itself must be modularized.

At that point, the complexity of the process

depends on the compatibility of dependencies

regarding modularization. If dependencies are

modules themselves, all is straightforward. If

not, they need to be transformed into modules

before going further. Fortunately, the ModiTect

plugin offers such a feature.

I hope that this article will help you to cre-

ate smaller distributions of your apps, suitable

for containerization. </article>

Nicolas Fränkel (@nicolas_frankel) has many years of
experience consulting for various customers in a wide
range of contexts. Usually he works with the Java/
Java EE and Spring technologies, and he also focuses
on interests such as rich internet applications, test-
ing, continuous integration and continuous delivery,
and DevOps. He currently works for Exoscale and has
authored several books on programming and testing.

THE CONNECTICUT JUG
The Connecticut Java User
Group is a technical commu-
nity of more than 500 mem-
bers that holds monthly
meetings for Java software
developers, engineers, man-
agers, software architects,
and computer science stu-
dents across the state of
Connecticut. Members work
in many industries, includ-

ing insurance, financial services, aerospace, and defense.
The Connecticut JUG was founded in 1999 by a group of

employees from Computer Sciences Corporation (CSC). Initially,
the JUG was a special interest group of the Connecticut Object
Oriented Users Group (COOUG), which was the oldest object-
oriented user group. COOUG had several thousand members
and regularly attracted internationally known speakers. The
Connecticut JUG continued to thrive after the dissolution of
COOUG in the mid 2000s.

In October 2008, the Connecticut JUG organized its first
conference. More than 110 developers from companies around
the greater Hartford area attended the event, which featured
two concurrent sessions and exhibits from local companies.

The Connecticut JUG meets monthly throughout the year
in Hartford to discuss Java-related topics. Meeting information
is posted to Meetup, Twitter, and soon to an upcoming website
for the JUG, which at press time was in the process of migra-
tion. The JUG is currently sponsored by NEOS, a data science
company based in Hartford.

//user groups/

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.meetup.com/Connecticut-Java-Users-Group/
https://twitter.com/ctjava?lang=en
https://ctjava.org

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

41

//containers/

G raalVM is a high-performance virtual machine for running programs in different lan-

guages. Currently, it supports JVM languages such as Java, Scala, Kotlin, and Groovy. It also

supports JavaScript and Node.js, Ruby, R, Python, and the native languages that use LLVM. It’s

a very versatile project. However, one GraalVM capability is perhaps the most exciting for cloud

deployments and the containers world. GraalVM can compile the JVM bytecode to the native

executable or a shared library ahead of time in a way in which the resulting binary does not

depend on the JVM for the execution.

This executable can be placed as a standalone application in a container and started really,

really fast. Besides the quick startup time, GraalVM native images have low runtime memory

overhead, which makes them even more attractive for use in the cloud.

Getting Started
Let’s start at the beginning and create a GraalVM native image from an example application.

First, you need a GraalVM distribution; download one from the GraalVM website. Both the com-

munity edition and the enterprise edition can create native images.

Unpack the archive and set $GRAALVM_HOME to point to the GraalVM directory; you can also

point $GRAALVM_HOME/bin (or $GRAALVM_HOME/Contents/Home/bin on macOS) to the path for conve-

nience. Once this is done, the utility for producing native images, called native-image, is avail-

able to you. Check the setup with $GRAALVM_HOME/bin/native-image --version.

GraalVM: Native Images
in Containers
Put Java apps into containers, run them as native apps, and get
faster startup times and lower memory overhead.

OLEG ŠELAJEV

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://graalvm.org

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

42

//containers/

Let’s use GraalVM on a small example application. Clone https://github.com/graalvm/

graalvm-demos/ and navigate to the native-list-dir directory. There you’ll find the ListDir.java

class, which is a simple utility that traverses the filesystem and prints some information about

what it finds. The code is straightforward:

public class ListDir { public static void main(String[] args)
 throws java.io.IOException {
 String root = ".";
 if(args.length > 0) {
 root = args[0];
 }
 System.out.println("Walking path: " + Paths.get(root));
 long[] size = {0};
 long[] count = {0};
 try (Stream<Path> paths = Files.walk(Paths.get(root))) {
 paths.filter(Files::isRegularFile).forEach((Path p) -> {
 File f = p.toFile();
 size[0] += f.length();
 count[0] += 1;
 });
 }
 System.out.println("Total: " +
 count[0] + " files, total size = " + size[0] + " bytes");
}

Compile this code to a .class file, because native-image operates on the bytecode level, which

allows it to support other JVM languages, too.

After running javac ListDir.java, run native-image ListDir.

You also can use native-image on a collection of JAR files; you just need to specify the class-

path and the main class for the executable. The native-image utility will analyze your appli-

cation, statically determine which other classes it uses (both in your dependencies and the

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

43

//containers/

JDK library), and create a map of reach-

able classes and method calls. It does this

analysis statically and depends on a “closed

universe” premise—making sure that all

bytecode files ever to be executed in the

resulting executable are present at the

native image generation time.

Moments after the analysis, you can

find a listdir file. For me, on macOS, it’s a

native macOS executable. It is linked to the operating system libraries directly without the JVM.

The file itself is a few megabytes. It contains the sample program compiled ahead of time

and the JDK classes it uses, such as the java.lang classes or Exception classes, which can be

thrown at any time. However, even with all the required classes, the size of these native exe-

cutables is often smaller than the full distribution of the JDK that would otherwise be needed to

run the program.

Let’s run the Java version and the native binary and then time the execution using the UNIX

time command in the Java directory:

$ time java ListDir
Walking path: .
Total: 7 files, total size = 8366834 bytes
java ListDir 0.22s user 0.06s system 51% cpu 0.555 total

Now let’s run the Graal native implementation:

$ time ./listdir
Walking path: .
Total: 7 files, total size = 8366834 bytes
./listdir 0.00s user 0.00s system 66% cpu 0.011 total

One important feature of GraalVM
native images is that the generation process
can evaluate the static initializers of classes at
generation time and store the preinitialized data
structures in the resulting image heap.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

44

//containers/

You can see they produce the same result, and although the time of the Java version isn’t

bad, the time used by the native image version is almost zero.

One important feature of GraalVM native images is that the generation process can evaluate

the static initializers of classes at generation time and store the preinitialized data structures in

the resulting image heap. It’s a configurable option, but it’s useful for shaving off the last milli

seconds of startup time.

This design, however, poses an interesting challenge for native images: What if the pro-

gram you try to compile ahead of time uses production instance initialization in the class ini-

tializers, for example, creating thread pools, opening files, or mapping memory? It would not

make any sense to perform these actions during the image generation phase, which usually

won’t be done in the production environment but on a continuous integration server, for exam-

ple. The native-image utility will back down and refuse to compile your app if class initializers

perform actions that don’t make sense at image generation time. And you’d need to configure

which classes should be initialized at runtime by using the --delay-class-initialization-to-

runtime=classname,list option.

Handling Special Cases
There are a few more things that require configuration at native image generation time. The

most obvious is, perhaps, reflection. Java code can inspect the class data, load additional classes,

or invoke methods using the Reflection API. Because the Reflection API allows fully dynamic

access to the classes and objects, static analysis cannot resolve all classes that must be included

in the native image. This doesn’t mean GraalVM native images cannot process any code that

uses reflection. You just need to list ahead of time the classes and methods that will be used

reflectively. The format of the configuration is a JSON file listing the classes and the files.

Imagine you have two classes like the following, where one calls into the other via reflection:

package org.example;
class ReflectionTarget {

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

45

//containers/

 public String greet();
}

and

import java.lang.reflect.Method;
public class Main {

 public static void main(String[] args) throws Exception {
 System.out.println(
 getResult(Class.forName("org.example.ReflectionTarget")));
 }
 private static Object getResult(Class<?> klass) throws Exception {
 Method method = klass.getDeclaredMethod("greet");
 return method.invoke(
 klass.getDeclaredConstructor().newInstance());
 }
}

To compile them as a native image, you provide the following JSON file and specify it on the

command line using the -H:ReflectionConfigurationFiles= command-line parameter:

[
 {
 "name" : "org.example.ReflectionTarget",
 "methods" : [
 {
 "name" : "<init>",
 "parameterTypes" : []
 },
 {

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

46

//containers/

 "name" : "greet",
 "parameterTypes" : []
 }
 }
]

This file specifies which classes, methods, and constructors will be accessed reflectively. In a

similar manner, you would typically need to configure Java Native Interface (JNI) access if the

application you are compiling to a native image uses JNI.

You might imagine that providing such a configuration could become annoying, especially

if the code that uses reflection is not yours but comes from a dependency. In such a case, you

can use the configuration javaagent that GraalVM provides. Run your application with the agent

attached, and it will record all uses of reflection, JNI, and anything else that you need to config-

ure for the native image:

$ /path/to/graalvm/bin/java \
 -agentlib:native-image-agent=trace-output=/path/to/trace-file.json

You can run it multiple times, producing different trace files to ensure that all relevant code

paths are executed at least once and the native-image utility has the full picture of the code you

want to run.

You can run the tracing agent when you execute tests. Tests usually cover the most impor-

tant code path. (If not, perhaps you should correct that first.) When traces are collected, you can

turn them into a native-image configuration file:

$ native-image --tool:native-image-configure
$ native-image-configure process-trace \
 --output-dir=/path/to/config-dir/ /path/to/trace-file.json

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

47

//containers/

The commands above will process the trace file and output the required configuration JSON

files: jni-config.json, reflect-config.json, proxy-config.json, and resource-config.json.

After this preparation, using the generated configuration is pretty straightforward. The fol-

lowing command would take the configuration into account:

$ native-image -H:ConfigurationFileDirectories=/path/to/config-dir/

Another important configuration option to know is the --allow-incomplete-classpath option.

Java applications often check for the existence of a class on the classpath and behave differently

based on its availability. The classic example of such behavior is perhaps the logging configura-

tion, which might state that if the logback library classes are available, then configure logback;

otherwise, check for log4j2 and configure it if it’s available; if it’s not, then fall back to log4j,

and so on. How can native-image—which requires that all the classes be present for the analy-

sis and which eagerly follows all the code paths—deal with such code? The answer is simple:

By default, it currently refuses to compile code that uses this pattern, but if you explicitly say

that an incomplete classpath is not a problem, it can compile the code without including those

code paths.

There are plenty of configurable options that influence the behavior of the native-image

generation, such as the ones we looked at earlier. As a developer, you have access to all the con-

figurations that can make GraalVM native images successfully process more programs.

Performance
Let’s consider the performance of native images. You saw in the earlier example that a native

image can start in milliseconds. What about its throughput capabilities? After all, you know

that just-in-time (JIT) compilers typically target peak performance rather than the speed of the

startup or warm-up. Native images are not sluggish, but a warmed-up JIT compiler would be

preferable performance-wise for long-running workloads. With this in mind, let’s take a look at

a sample Netty-based web service application.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/cstancu/netty-native-demo

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

48

//containers/

First, build and produce the native image binary with the following commands:

$ mvn clean package
$ native-image -jar target/netty-svm-httpserver-full.jar \
 -H:ReflectionConfigurationResources=\
netty_reflection_config.json \
 -H:Name=netty-svm-http-server \
 --delay-class-initialization-to-runtime=\
io.netty.handler.codec.http.HttpObjectEncoder \
 -Dio.netty.noUnsafe=true

Now you can start the native file and check how fast it works for a single request and for

some load.

For this test, I used the wrk2 benchmarking tool to generate the load and measure the

latencies of the responses from the service. On my MacBook I ran the following, which specifies

2 threads and 100 simultaneous connections to keep a stable request rate of 2,000 per second for

30 seconds:

$ wrk -t2 -c100 -d30s -R2000 http://localhost:8080/

Here are the results. I’ll first show the bytecode version of the Netty sample application and

then the native version.

Java bytecode version:

Running 30s test @ http://127.0.0.1:8080/
 2 threads and 100 connections
 Thread calibration: mean lat.: 1.386ms, sampling interval: 10ms
 Thread calibration: mean lat.: 1.362ms, sampling interval: 10ms
 Thread Stats Avg Stdev Max +/- Stdev
 Latency 1.30ms 573.88us 3.34ms 65.01%

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/giltene/wrk2

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

49

//containers/

 Req/Sec 1.05k 181.18 1.67k 78.84%
 59802 requests in 30.00s, 5.70MB read
Requests/sec: 1993.21
Transfer/sec: 194.65KB

Native image version, which produces a very similar result:

$ wrk -t2 -c100 -d30s -R2000 http://127.0.0.1:8080/
Running 30s test @ http://127.0.0.1:8080/
 2 threads and 100 connections
 Thread calibration: mean lat.: 1.196ms, sampling interval: 10ms
 Thread calibration: mean lat.: 2.788ms, sampling interval: 10ms
 Thread Stats Avg Stdev Max +/- Stdev
 Latency 1.43ms 715.90us 5.78ms 70.34%
 Req/Sec 1.07k 1.37k 5.55k 89.40%
 58898 requests in 30.01s, 5.62MB read
Requests/sec: 1962.88
Transfer/sec: 191.69KB

[Note the output for both results has been slightly truncated to fit the page. —Ed.]

This is not a rigorous benchmark, of course, but these numbers demonstrate that for a short

span, a native image can show similar performance to the JDK version of an application.

If you want even better throughput of native images, you can consider the Oracle GraalVM

enterprise version of GraalVM, which is a proprietary product and includes additional perfor-

mance enhancements. For native images, it includes profile-guided optimizations among

other optimizations, which means you can build an instrumented image, gather the profile data

by applying load, and then build the final image with performance optimizations that are tai-

lored to the application’s specific needs. This brings performance almost to the levels of the

warmed-up JIT.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

50

//containers/

Memory Consumption
Let’s talk about memory consumption. One of the typical complaints about using the JVM for

serverless workloads is that it takes quite a bit of memory, even for a one-off task such as pro-

cessing an individual request. (If you’re interested in how GraalVM native images perform in

that regard, the previous Netty application on my machine consumes 30 MB of memory total—

including the heap.)

A native image also has garbage collection. It runs your program and collects unused objects

at runtime to create the illusion of infinite memory. This is not new; any JVM does the same.

Moreover, the JVM usually offers you a choice of garbage collection algorithms tuned for low

latencies, minimal CPU consumption, or anything in between.

The garbage collector in native images is not the one you run in the JVM. Rather, it’s a spe-

cial implementation of a garbage collector written in Java that is a nonparallel generational

scavenger. For simplicity, you can think of it as a somewhat simpler implementation of the par-

allel garbage collector that is the default in JDK 8. It splits the heap into generations; new objects

are created in the so-called eden (see Figure 1) and then they are either collected or promoted to

the old generation.

Figure 1. Garbage collector in native images

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

51

//containers/

You can tune the garbage collector options for native images. Typically, you might want to

adjust the maximum heap size. You can configure it with the -Xmx command-line parameter. If

you’d like to better understand the garbage collector patterns of your native image, you can use

the -R:+PrintGC or -R:+VerboseGC flags to get a summary of the garbage collector information

before and after each collection. Native images often require less memory; one reason is that

they do not need or include the machinery to load new classes dynamically, store their metadata

for possible reflection, or compile them at runtime.

Conclusion
All in all, GraalVM native images offer a great opportunity to run Java applications in contain-

ers without loading the Java runtime. They also offer almost instantaneous startup and very low

runtime memory overhead. This can be very important for cloud deployments where you want

to autoscale your services or you have compute and memory constraints, such as in a function

as a service (FaaS) environment.

Native images are an experimental feature of GraalVM, and today you can find applica-

tions that won’t work with them out of the box. But many nontrivial apps work, and there are

frameworks that accept GraalVM native images as a deployment target to simplify their usage.

If you’re deploying your apps in containers and you value startup performance and low runtime

memory consumption, you’ll likely find GraalVM native images very useful. </article>

Oleg Šelajev (@shelajev) is a developer advocate at Oracle Labs working on GraalVM—the high-performance
embeddable polyglot virtual machine. He organizes the Virtual JUG (vJUG)—an online Java user group—and a
Google developers’ group (GDG) chapter in Tartu, Estonia. In 2017, he became a Java Champion.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

52

//java 12/

JDK 12 was released in March 2019. It’s the third release using the six-month release cycle

that was announced with the release of Java 9. What’s in store this time? This article focuses

on the new language feature available in preview mode: switch expressions. Our next article

will cover the changes in the JDK, including the garbage collectors G1 and Shenandoah.

Switch Expressions
For those who get excited about new language features, you are going to be pleased with Java 12,

which contains enhanced switch expressions. However, this feature is available only in pre-

view mode currently. This means that simply running the Java compiler as usual won’t work if

you use the new switch expression syntax. To enable this feature, you’ll need to use the flags

--enable-preview and --release 12 when you compile your code. To compile the code snippets in

this article, make sure you have JDK 12 installed and use the following command:

javac --enable-preview --release 12 Example.java

To run the generated class file, you’ll need to pass the --enable-preview flag to the Java launcher:

java --enable-preview Example

Before looking at the new feature, let’s review what preview mode is. According to the official

documentation, “A preview language or VM feature is a new feature of the Java SE Platform that

is fully specified, fully implemented, and yet impermanent. It is available in a JDK feature release

to provoke developer feedback based on real-world use; this may lead to it becoming permanent

New switch Expressions in Java 12
A new preview feature makes switch statements friendlier and less error-prone.

RAOUL-GABRIEL URMA

RICHARD WARBURTON

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

53

//java 12/

in a future Java SE Platform. In other words, it can still be refined or even removed.” [Emphasis

added. —Ed.]

So what’s wrong with the switch statement as you currently know it? There are four

improvements that we discuss: fall-through issue, compound form, exhaustiveness, and

expression form.

Fall-through issue. Let’s start with the fall-through behavior. In Java, you typically write a

switch as follows:

switch(event) {
 case PLAY:
 //do something
 break;
 case STOP:
 //do something
 break;
 default:
 //do something
 break;
}

Note all the break statements within each block that handles a specific case clause. The break

statement ensures that the next block in the switch statement is not executed. What happens

if you miss the break statement, though? Will the code still compile? Yes it will. As a quiz, try to

guess the console output of the following code:

var event = Event.PLAY;

switch (event) {
 case PLAY:
 System.out.println("PLAY event!");

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

54

//java 12/

 case STOP:
 System.out.println("STOP event");
 default:
 System.out.println("Unknown event");
}

The code prints the following:

PLAY event!
STOP event
Unknown event

This behavior in a switch is called fall through. As described in Oracle’s Java SE documenta-

tion, “All statements after the matching case label are executed in sequence, regardless of the

expression of subsequent case labels, until a break statement is encountered.”

The fall-through behavior can lead to subtle bugs when you simply forget to include a break

statement. Consequently, the behavior of the program could be incorrect. In fact, the Java com-

piler warns you of suspicious fall through if you

compile with -Xint:fallthrough. The issue is also

picked up by code checkers, such as Error Prone.

This issue is also mentioned in JDK

Enhancement Proposal (JEP) 325 as a motivation for

the enhanced form of switch: “The current design

of Java’s switch statement follows closely lan-

guages such as C and C++, and supports fall-through

semantics by default. Whilst this traditional control flow is often useful for writing low-level

code (such as parsers for binary encodings), as switch is used in higher-level contexts, its error-

prone nature starts to outweigh its flexibility.”

Now in Java 12 (with --enable-preview activated), there’s a new syntax for switch that has no

This new switch form uses the
lambda-style syntax introduced in
Java 8 consisting of the arrow between
the label and the code that returns a value.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://errorprone.info/bugpattern/FallThrough
http://openjdk.java.net/jeps/325
http://openjdk.java.net/jeps/325

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

55

//java 12/

fall through and, as a result, can help reduce the scope for bugs. Here’s how you’d refactor the

previous code to make use of this new switch form:

switch (event) {
 case PLAY -> System.out.println("PLAY event!");
 case STOP -> System.out.println("STOP event");
 default -> System.out.println("Unknown event");
};

This new switch form uses the lambda-style syntax introduced in Java 8 consisting of the arrow

between the label and the code that returns a value. Note that these are not actual lambda

expressions; it’s just that the syntax is lambda-like. You can use single-line expressions or

curly-braced blocks just as you can with the body of a lambda expression. Here’s an example

that shows the syntax of mixing single-line expressions and curly-braced blocks:

switch (event) {
 case PLAY -> {
 System.out.println("PLAY event!");
 counter++;
 }
 case STOP -> System.out.println("STOP event");
 default -> System.out.println("Unknown event");
};

Compound cases. Next is dealing with multiple case labels. Before Java 12, you could use only

one label for each case. For example, in the following code, despite the fact that the logic for

STOP and PAUSE is the same, you’d need to handle two separate cases unless you use fall through:

switch (event) {
 case PLAY:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

56

//java 12/

 System.out.println("User has triggered the play button");
 break;
 case STOP:
 System.out.println("User needs to relax");
 break;
 case PAUSE:
 System.out.println("User needs to relax");
 break;
}

A typical way to reduce the verbosity is to use the fall-through semantics of switch as follows:

switch (event) {
 case PLAY:
 System.out.println("User has triggered the play button");
 break;
 case STOP:
 case PAUSE:
 System.out.println("User needs to relax");
 break;
}

However, as discussed earlier, this style can lead to bugs because it’s not clear whether the break

statement is missing or intentional. If there were a way to specify that the handling is the same

for the cases STOP and PAUSE, that would provide more clarity. That’s exactly what is now possible

in Java 12. Using the arrow-syntax form, you can specify multiple case labels. The previous code

can be refactored like this:

switch (event) {
 case PLAY ->

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

57

//java 12/

 System.out.println("User has triggered the play button");
 case STOP, PAUSE ->
 System.out.println("User needs to relax");
};

In this code, the labels are simply listed consecutively. The code is now more concise and the

intent clear.

Exhaustiveness. Another benefit of the new switch form is exhaustiveness. This means that

when you use switch with an enum, the compiler checks that for any possible value there is a

matching switch label.

For example, if you have the following enum type:

public enum Event {
 PLAY, PAUSE, STOP
}

And you create a switch that covers some but not all the values, such as the following:

switch (event) {
 case PLAY -> System.out.println("User has triggered the play button");
 case STOP -> System.out.println("User needs to relax");
}; // compile error

Then, in Java 12, the compiler will generate this error:

error: the switch expression does not cover all possible input values.

This error is a useful reminder that a default clause is missing or that you’ve forgotten to deal

with all possible values.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

58

//java 12/

Expression form. The expression form is the other improvement of the old switch statement:

To understand what an “expression form” means, it’s worthwhile reviewing the difference

between a statement and an expression.

Statements are essentially “actions.” Expressions, however, are “requests” that produce a

value. Expressions are fundamental and simple to understand, which leads to better code com-

prehension and easier maintenance.

In Java, you can clearly see the distinction as it exists between an if statement and the ter-

nary operator, which is an expression. The following code highlights this difference.

String message = "";
if (condition) {
 message = "Hello!";
}
else {
 message = "Welcome!";
}

This code could be rewritten as the following expression:

String message = condition ? "Hello!" : "Welcome!";

Before Java 12, switch was a statement only. Now, though, you can also have switch expressions.

For example, take a look at this code that processes various user events:

String message = "No event to log";
switch (event) {
 case PLAY:
 message = "User has triggered the play button";
 break;
 case STOP:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

59

//java 12/

 message = "User needs a break";
 break;
}

This code can be written as a concise switch expression form that better indicates the intent

of the code:

var log = switch (event) {
 case PLAY -> "User has triggered the play button";
 case STOP -> "User needs a break";
 default -> "No event to log";
};

Note how the switch now returns a value—it’s an expression. This expression form for a switch

also gives you the ability to use a return statement within a case block. However, we recommend

extracting complex code logic into a private helper method with a meaningful name if you feel

that things are becoming difficult to understand. You can then simply call this method using

the expression-style syntax.

Toward Pattern Matching
You may be wondering what the motivation is for yet another language feature. Since Java 8,

functional programming has clearly influenced the evolution of Java:
■■ Java 8 brought lambda expressions and streams.
■■ ●Java 9 included the Flow API to support reactive streams.
■■ ●Java 10 introduced local variable type inference.

All these ideas have been available in functional programming languages such as Scala and

Haskell for a long time. So what’s the latest idea for Java? It’s (structural) pattern matching, which

should not be confused with regular expressions.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

60

//java 12/

Pattern matching, as it’s meant here, is the

idea that you test whether an object is of a par-

ticular structure before extracting certain parts of

that structure to do some processing. This is typi-

cally accomplished in Java by using a combination of

instanceof checks and cast expressions. A common

situation in which to do this is when you need to

write a parser for a domain-specific language. For example, the following code checks whether

an object is of a particular type before casting it so that information can be extracted from it.

if(o instanceof BinOp) {
 var binop = (BinOp) o;
 // use specific methods of the BinOp class
}
else if (o instanceof Number) {
 var number = (Number) o;
 // use specific methods of the Number class
}

Java doesn’t yet support a language feature to provide full pattern matching, but that is cur-

rently being discussed as a potential addition, as described in JEP 305.

As an initial step in that direction, Java 12 needed to enhance the switch functionality that

has existed since the first version of Java by making it an expression form. Through the intro-

duction of this new feature, Java augments the switch syntax to enable future enhancements.

Conclusion
Java 12 doesn’t bring any new language feature that you can readily use. However, it brings

switch expressions, which are available as a preview language feature. Switch expressions are

a helpful addition that will enable you to write code that is a bit more concise and less error-

Switch expressions are a helpful
addition that will enable you to write
code that is a bit more concise and less
error-prone.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://openjdk.java.net/jeps/305

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

61

//java 12/

prone. In particular, switch expressions provide four improvements: fall-through semantics,

compound form, exhaustiveness, and expression form. Finally, and perhaps more exciting, the

syntax available to switch has now become richer.

At the moment, in Java 12, the switch cases support only switching on enum, String,

byte, short, char, int, and their wrapper classes. However, in the future there may well

be more sophisticated forms and support for structural pattern matching on arbitrary

“switchable” types. </article>

Acknowledgments. The authors wish to thank Oracle’s Java langtools team for providing feed-

back on this article.

Raoul-Gabriel Urma (@raoulUK) is the CEO and cofounder of Cambridge Spark, a leading learning com-
munity for data scientists and developers in the UK. He is also chairman and cofounder of Cambridge Coding
Academy, a community of young coders and students. Urma is the lead author of the best-selling program-
ming book Modern Java in Action, (Manning 2018). He holds a PhD in computer science from the University
of Cambridge.

Richard Warburton (@richardwarburto) is a software engineer, teacher, author, and Java Champion. He is the
cofounder of Opsian.com and has a long-standing passion for improving Java performance. He’s worked as a
developer in HFT, static analysis, compilers, and network protocols. Warburton also is the author of the best-
selling Java 8 Lambdas (O’Reilly Media, 2014) and teaches via Iteratr Learning and at Pluralsight. He holds a
PhD in computer science from the University of Warwick.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

62

//java card/

With close to 6 billion Java Card–based devices deployed each year, Java Card is the leading

software platform for running security services on secure chips. These are used to pro-

tect smartphones, banking cards, government services, and other business needs.

Earlier this year, Oracle released Java Card 3.1—a major version of the Java Card specifica-

tions and the Java Card Development Kit. It is the most extensive update to the technology in

several years, and it introduces new features to address the IoT market and new secure-

elements hardware.

Two articles will detail the content of the 3.1 release. This first article presents the release

and focuses on its extensions and services for IoT. An upcoming article will cover features that

benefit payment, identity, and cellular connectivity markets.

What Is Java Card 3.1?
Java Card enables secure elements, such as smartcards and other tamper-resistant security

chips, to host applications that employ Java technology. Java Card 3.1 is a major release updating

all the components for developing Java Card products and applications, including the Java Card

specifications and the development and compliance tools.

The specifications provide the basis for cross-platform and cross-vendor application

interoperability:
■■ The Virtual Machine Specification provides the instruction set of the Java Card Virtual

Machine, which is a supported subset of the Java language, and the file formats for installing

applications and libraries into Java Card devices.
■■ The Runtime Environment Specification defines the necessary behavior of the runtime environ-

ment in any implementation of the technology. The Java Card APIs complement the Java Card

Java Card 3.1 Unveiled
The major new release tunes the popular Java platform for IoT.

NICOLAS PONSINI

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.oracle.com/technetwork/java/embedded/javacard/overview/index.html

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

63

//java card/

Runtime Environment Specification and describe the framework exposed by the technology.
■■ The Java Card Platform Specification facilitates the development and deployment of secure

applications and introduces new functionality to support IoT security.

The Java Card Development Kit is a standalone environment for developing applications. It also

includes a simulator and integration with the Eclipse IDE to facilitate the testing. Both the Java

Card Platform Specification and the development kit are freely available to developers.

Oracle licenses a Java Card Reference Implementation and the Java Card Technology Com

patibility Kit (TCK) to its commercial customers. The TCK ensures application interoperability

for a Java Card implementation on a particular platform.

A key goal of version 3.1 is to ensure the availability of security services on a large range of

secure hardware, including smartcards, embedded chips, secure enclaves within microprocessor

units (MPUs) and microcontroller units (MCUs), and removable SIMs. It was designed to support

the growth of existing Java Card markets, such as payment, identity, and connectivity markets,

while enabling new IoT use cases with dedicated features. This article covers those features.

IoT Extensions
New features mirror the extended role that a Java Card secure element plays in a connected

device. Specifically, the features include a new extensible I/O model and a range of security

services to facilitate the design of new security applications. Let’s examine these.

Secure elements embedded within a device or integrated within the system on a chip (SoC)

of a device have recently been bringing security directly into the heart of devices. This enables

use cases that establish a direct channel between a secure element and device peripherals.

Making use of this capability requires specialized protocols at the application layer. To that

end, Java Card 3.1 introduces an I/O framework, including the javacardx.framework.event pack-

age and the javacardx.framework.nio package, that allows applications to have logical access to

device peripherals.

The javacardx.framework.event package is the base framework used by platform imple-

menters to extend their platform with specialized APIs defining new I/O protocols or interfaces

with peripherals. It contains:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

64

//java card/

■■ An EventSource that represents any peripheral or I/O interface in the device host or the secure

element itself. Sources of events could be, for example, a GPIO pin or port, a UART interface,

memory-mapped I/O, an I2C bus, a watchdog timer, and so on.
■■ An EventListener that enables code to handle peripheral or I/O events coming from a given

source. The specification provides the default base interface, which is extended by platform

implementers.
■■ An EventRegistry, which is a class used by applications to register listeners with a source

of events.

The javacardx.framework.nio package contains classes for parsing and extracting structured

information from raw data in an efficient way. These classes enable access to those data items

from the heap and also from external memory (such as from a peripheral).

Numerous use cases can benefit from this I/O framework. For example, a Java Card applica-

tion can directly read and verify fingerprint data from a biometric sensor. There is no need to

go through the host device to transfer data from the biometric sensor to the main processor of

the secure element, nor is there a need to tunnel data into application protocol data unit (APDU)

commands to overcome associated constraints such as bandwidth, timing, ordering, priorities,

execution context, and so on.

In IoT solutions, the enforcement of security policies can benefit from access to device

peripherals and from collection of their data for decision-making at the edge. For example, the

secure-element application in a smart meter could use localization or a motion sensor to detect

abnormal situations and react accordingly. The application could also be used to securely con-

figure attached peripherals and ensure the integrity of the control plane.

Security Services
Security services in Java Card 3.1 include the Certificate API, the Key Derivation API, the Mon

otonic Counter API, and the System Time API. Let’s look at these in more detail.

Certificate API. Cryptographic certificates are critical for security and serve as a basis in a pub-

lic key infrastructure (PKI) to establish trust between different entities. A notable example of a

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

65

//java card/

protocol using cryptographic certificates is the Transport Layer Security (TLS) protocol. Based on

certificate chains, a client (such as an IoT gateway) and a server (for example, an IoT cloud ser-

vice) can authenticate each other.

The javacardx.security.cert package is an efficient way to manage cryptographic certifi-

cates such as X.509 certificates for memory- and resource-constrained devices.

With Java Card’s Certificate API, it is possible to verify a certificate signature, select and

check some of its fields and extensions, and access its public key—without needing to create a

dedicated certificate object that is potentially useless in the future. You can also build a certifi-

cate object (for example, for root certificates) that will be reused later, while deciding on fields

and extensions that need to be associated with this certificate object and storing only useful

components of the certificate.

With these mechanisms, an application has an efficient way to verify a certificate chain,

check sensitive certificate fields, and keep track of trusted public keys.

Key Derivation API. Pseudorandom functions (PRFs) and key derivation functions (KDFs) are

widely used in cryptography to derive sensitive data such as a secret key. They make it possible

to stretch a secret or to derive multiple keys from it.

A typical usage is the derivation of a password to store a derived value without needing

to store the initial password value. Another common example is the derivation of the shared

secret established by a key-agreement operation in Diffie-Hellman (DH) or Elliptic-Curve Diffie

Hellman (ECDH) key exchange. Another example is the TLS handshake protocol, which uses a

PRF applied to a shared secret in between a client and a server to generate the cryptographic

block material used during a TLS session between the two peers.

Java Card 3.1 introduces the javacardx.security.derive package. Its class DerivationFunction

permits the management of both PRF and KDF algorithms, and it is easily extensible. Currently,

eight algorithms are proposed that enable support for the International Civil Aviation Organ

ization (ICAO) or TLS protocols, among others.

In addition, the Key Derivation API guarantees both the security of the derivation keys and

the derived keys by encapsulating them into trusted objects.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

66

//java card/

Monotonic Counter API. To prevent replay attacks, numerous security protocols use monotonic

counters, which are counters whose value can only increase. Once the value of a monotonic

counter has been used, the counter is incremented (typically by 1). Thus, if a counter value has

been attached to a given protocol payload at a certain time, it is guaranteed that the same coun-

ter value cannot be reused and attached to the same protocol payload later. This allows a third

party consuming the protocol payload to know whether it has already been used by checking

the counter value.

Device attestation (also known as remote attestation) is an example of a payload that needs to

be protected against replay attacks. A remote attestation is a signature of software measure-

ments running on a given device, and the attestation is sent to a third party. The third party can

check whether a device is running unaltered software and can make sure the attestation is cur-

rent and not replayed from the past.

External secure storage is another example requiring a monotonic counter. DRM licenses

or the number of PIN entry tries are typical sensitive data protected by a Java Card secure ele-

ment. In some hardware architectures, like the ones with an integrated secure element, such

sensitive data might be stored in the memory flash of the host device; that is, in storage exter-

nal to the secure element hardware itself. Thus, untrusted and rogue applications from the

device host might be able to save and restore later such sensitive data. In the case of a DRM

license, this risk would mean that access to a content item is granted an unlimited number of

times instead of the initial limited times granted originally. Hence, in addition to integrity and

confidentiality, the secure element must guarantee an anti-replay protection to sensitive data

stored in external secure storage.

The javacardx.security.util package and its MonotonicCounter class enable the creation and

management of multiple monotonic counters of up to 64 bits each. The Monotonic Counter API

guarantees the atomicity of the update of the counter value.

System Time API. Time stamping and time interval calculation are important security opera-

tions. Time stamps enable you to record or check the time at which an event occurred. Esti

mating a time interval allows you to limit the duration of a transaction, for instance.

Java Card 3.1 introduces the package javacardx.framework.time, which has two classes:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

67

//java card/

■■ SysTime serves to retrieve the uptime; that is, the time elapsed since system boot. It does not

require an internal clock.
■■ TimeDuration represents a time duration with microsecond resolution. Several operations, such

as comparisons and conversions as well as plus and minus operations, are supported.

Java Card’s System Time API can support a variety of use cases related to device security. For

example, consider an IoT device managing a temperature sensor in the chemical industry. This

monitoring system is critical and needs to react to unexpected temperature variations. With

the new I/O mechanism introduced in Java Card 3.1 and the System Time API, an application

has the ability to retrieve a temperature value securely and to assess the elapsed time since the

beginning of the measurement. If the time is too short or too long compared with the average

expected value, this is reported to the monitoring system, which will trigger corrective opera-

tions such as changing the sensor or checking for a corruption of the IoT device software.

Conclusion
In this article, I described the major new IoT-oriented features of Java Card 3.1 and I detailed

some of the related use cases in IoT security. For example, through trusted peripherals, Java

Card can secure the “last yard” between devices, gateways, and attached peripherals, enabling

trust and the exchange of sensitive data at the very edge. A secure channel can be established

between peripherals and security chips to allow out-of-band communication for sensitive data

(for example, biometric information or the provisioning of root-of-trust credentials).

Similarly, through device attestation, a Java Card secure element in an IoT device can sup-

port multiple proprietary or standard secure boot and device attestation mechanisms without

requiring a dedicated security chip. This enables a single secure chip to be used in multiple

attestation ecosystems and ensures compatibility with future standards.

In an upcoming article, I will describe the enhanced deployment model and core features as

well as cryptographic extensions proposed by the 3.1 release. </article>

Nicolas Ponsini is a security solutions architect at Oracle, where he works on Java and the Internet of Things.
He is an expert in security, cryptography, and IoT, and he owns 10 patents in related areas.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

68

//fix this/

If you’re a regular reader of this quiz, you know that these questions simulate the level of dif-

ficulty of two different certification tests. Those marked “intermediate” correspond to ques-

tions from the Oracle Certified Associate exam, which contains questions for a preliminary level

of certification. Questions marked “advanced” come from the 1Z0-809 Programmer II exam,

which is the certification test for developers who have been certified at a basic level of Java 8

programming knowledge and now are looking to demonstrate more-advanced expertise.

Question 1 (intermediate). The objective is to apply the static keyword to methods and fields.

Given the following classes:

public class Test {
 int result = -1;
}

public class CodeTest extends Test {
 public static void main(String[] args) {
 // line n1
 }
}

What two lines added independently at line n1 will make the code compile successfully?

Choose two.

A.	 result = 0;

B.	 this.result = 0;

Answer 1
page 74

Quiz Yourself
Try more intermediate and advanced test questions.

SIMON ROBERTS

MIKALAI ZAIKIN

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-808
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-809

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

69

//fix this/

C.	 super.result = 0;

D.	 new Test().result = 0;

E.	 new CodeTest().result = 0;

Question 2 (intermediate). The objective is to use abstract classes and interfaces. Given

the following:

interface Text {
 default String getContent() { return "Blank"; }
 void setContent(String txt);
 void spellCheck() throws Exception;
}

abstract class Prose {
 public abstract void setAuthor(String name);
 public void spellCheck() {
 System.out.print("Do generic prose spellcheck");
 }
}

Class Novel extends Prose implements Text {
 // line n1
}

Which two fragments added simultaneously at line n1 allow the following code to compile
and run? Choose two.

Novel n = new Novel();
n.spellCheck();

A.	 public void spellCheck() throws Exception { }

Answer 2
page 79

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

70

//fix this/

B.	 String getContent() { return "Novel"; }

C.	 public String getContent() { return "Novel"; }

D.	 public void setAuthor(String a) { }

E.	 public void setContent(String txt) { }

Question 3 (intermediate). The objective is to declare and initialize variables (including casting

of primitive data types). Given the following primitive variable declarations:

char c = '1';
int i = 2;
long l = 3L;
float f = 4.0F;
double d = 5.0D;

Which of the following compile? Choose two.

A.	 f = d;

B.	 l = f;

C.	 i = c;

D.	 f = l;

E.	 i = f;

Question 4 (advanced). The objective is to submit queries and read results from the database,

including creating statements, returning result sets, iterating through the results, and then

properly closing result sets, statements, and connections. Given the following WAREHOUSE table:

ID TITLE QUANTITY
——————————————————————————
0 Cell Phone 10
1 Computer 20
2 TV 30

Answer 3
page 81

Answer 4
page 87

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

71

//fix this/

And the following code fragment:

Connection conn = … // properly initialized connection
Statement stmt = conn.createStatement
(ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE);
ResultSet results = stmt.executeQuery("SELECT * FROM WAREHOUSE");
while (results.next()) {
 int id = results.getInt(1);
 if (id == 1) {
 results.updateInt(3, 15); // line n1
 results.next();
 break;
 }
}

results.previous(); // line n2
int qty = results.getInt(3);
System.out.print(qty);

Assume the database connection is properly initialized, any JDBC features used are supported by

the driver and database, and any modes not explicitly shown are default.

What is the result? Choose one.

A.	 Runtime exception at line n1

B.	 Runtime exception at line n2

C.	 15

D.	 20

Question 5 (advanced). The objective is to use java.util.concurrent collections and classes,

including CyclicBarrier and CopyOnWriteArrayList. Given the following CBTest class:

Answer 5
page 89

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

72

//fix this/

import static java.lang.System.out;
public class CBTest {

 private List<Integer> results =
 Collections.synchronizedList(new ArrayList<>());

 class Calculator extends Thread {
 CyclicBarrier cb;
 int param;
 Calculator(CyclicBarrier cb, int param) {
 this.cb = cb;
 this.param = param;
 }

 public void run() {
 try {
 results.add(param * param);
 cb.await();
 } catch (Exception e) {
 }
 }
 }

 void doCalculation() {
 // add your code here
 }

 public static void main(String[] args) {
 new CBTest().doCalculation();
 }
}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

73

//fix this/

Which code fragment when added to the doCalculation method independently will make the
code reliably print 13 to the console? Choose one.

A.	
CyclicBarrier cb = new CyclicBarrier(2, () -> {
 out.print(results.stream().mapToInt(v -> v.intValue()).sum());
 });
new Calculator(cb, 2).start();
new Calculator(cb, 3).start();

B.	
CyclicBarrier cb = new CyclicBarrier(2);
out.print(results.stream().mapToInt(v -> v.intValue()).sum());
new Calculator(cb, 2).start();
new Calculator(cb, 3).start();

C.	
CyclicBarrier cb = new CyclicBarrier(3);
new Calculator(cb, 2).start();
new Calculator(cb, 3).start();
cb.await();
out.print(results.stream().mapToInt(v -> v.intValue()).sum());

D.	
CyclicBarrier cb = new CyclicBarrier(2);
new Calculator(cb, 2).start();
new Calculator(cb, 3).start();
out.print(results.stream().mapToInt(v -> v.intValue()).sum());

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

74

//fix this/

Answer 1. The correct options are D and E. This question investigates a small part of the rules

by which names are resolved, the distinction between static and nonstatic variables, and access

to variables from a static context. Here, we present a simplified description of some of the rules

laid out in Java Language Specification sections 6 and 15. Our discussion will be nowhere near as

complete as those sections, in either scope or detail, but we aim to present a perspective that

has sufficient scope to answer this question and others like it. The approach presented is sound

as far as it goes, but it does have limitations. Undoubtedly some readers will have knowledge

way beyond the intended audience of this question, and they will likely be able to see exceptions

to this description.

Every variable in Java exists in a context. The same is true of methods, although this dis-

cussion will mostly focus on variables. That context can be a method, an object (an instance of a

particular class), or a class.

Variables declared inside methods have a method context and are often called either a

method-local variable or an automatic variable. This question isn’t really concerned with variables

in method contexts.

Variables declared inside classes—but outside of methods—are in either a class or an

instance context. If such variables carry the static modifier, they exist in a class context. If such

variables do not have the static modifier, they exist in an object context. With the object context,

a different variable that has the same name exists in every object of the same type. With the

class context, just one variable exists and it’s considered to be part of the class.

Given this, it’s perhaps not a surprise that to address any variable, the context in which it

exists must also be identified. This identification can always be done explicitly, but it is often

done implicitly.

Question 1
page 68

Answers

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

75

//fix this/

If you have a class such as:

public class Car {
 public static int MAX_SPEED = 105;
 public int speed = 10;
}

And two objects created from this class:

Car c1 = new Car();
Car c2 = new Car();

Then the variable speed is an instance variable, and it must be referred to in the context of an

instance of the class Car. Therefore, provided the variables c1 and c2 are in scope, you can write

code in terms of c1.speed or c2.speed, but you cannot refer to Car.speed. This is because both c1

and c2 refer to contexts that contain a variable called speed, whereas the Car context does not.

It’s also worth noting that the contexts referred to by c1 and c2 each contain independent vari-

ables that simply share the same basic name. This, of course, allows you to model multiple cars

that each has its own speed.

By contrast, the variable MAX_SPEED exists in the context of the class Car. Therefore, the

proper way to refer to it is Car.MAX_SPEED. Perhaps unfortunately, because the compiler knows

that c1 and c2 are of the type Car, it’s also possible to refer to the exact same variable—that is,

Car.MAX_SPEED—as either c1.MAX_SPEED or c2.MAX_SPEED. The syntax of those latter two is widely

discouraged, but it is likely to show up on an exam precisely because it’s potentially confus-

ing and a competent programmer must not be confused by it. Notice that c1.MAX_SPEED and

c2.MAX_SPEED look like different variables, but they’re not; they’re just aliases for Car.MAX_SPEED,

and that ambiguity is a bad thing when it comes to creating understandable code.

In a few paragraphs, we’ll discuss the context called this. At the risk of getting ahead of

ourselves, know that if this exists, it too can be used as a prefix for a static variable. This is the

same as using an instance prefix, and it’s at least as ugly. If this paragraph confused you, ignore

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

76

//fix this/

it for now; keep going and revisit this paragraph after you’ve read the discussion on this that

comes later.

Up to this point, explicit contexts have been discussed. Implicit contexts and the meaning of

this and super, which bridge explicit and implicit contexts, also need to be considered.

Let’s start with implicit contexts. An implicit context means there’s no prefix in front of a

variable name. In this case, the compiler must work out where to find the variable from one of

three possible contexts.

First, the compiler checks if there’s a method local variable in scope with that name. If one

is found, that’s what’s accessed. Local variables always win.

If there’s no local variable, the compiler looks for class or instance variables, starting at the

most specific class definition and working up through the class hierarchy. Only one or the other

can possibly exist in one class declaration; otherwise, the code won’t compile.

If this search finds a static variable, that variable is used. Implicitly, the compiler has

determined that the context is that of the enclosing class.

However, if the search finds an instance variable, the context must be the value known as

this. However, this exists only in an instance (nonstatic) method. Instance methods must be

invoked with a context, and that context becomes the value of this inside the method. Consider

the following code fragment:

public class Car {
 private int speed;
 public void setSpeed(int s) {
 speed = s;
 }
}

And the following code:

Car c1 = new Car();
c1.setSpeed(55);

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

77

//fix this/

Inside the code of setSpeed, when the call to

c1.setSpeed(55) is executed, the object referred to by

the variable this is the same object that was referred

to by c1 at the moment of the call. That is, the con-

text of the method call is c1, and that same context

has been embedded inside this in that particular

method invocation.

Now, the use of an implicit context—the implicit use of this—makes sense only if there is

a value for this. And because that value comes from the instance prefix used for the method

invocation, it’s perhaps not a surprise that there is no value called this in a static method. As a

result, a static method cannot access an instance variable using the this prefix, either implic-

itly or explicitly.

As a side note, you could be forgiven for thinking that the ugly syntax mentioned above—

using an object prefix to invoke a static method—might create a this context in the static

method, but it does not. This is another reason the syntax is considered ugly and to be avoided.

When a static method is invoked in this way, the compiler simply takes the type of the variable

prefix and discards the value. Of course, the syntax used to call the method is not known at the

time the method is written, nor could you guarantee that all invocations would use this ugly

form. Therefore, the call format cannot sensibly affect what is or is not permitted inside the

method. The bottom line is that a static method does not have the use of this either implicitly

or explicitly.

Another note is that it’s common to hear people say “static methods cannot access

instance variables.” That’s not accurate; they absolutely can do so, provided they have an explicit

object context and that context is not this. (The normal rules of access control apply too; so, if

the variable in question is in an instance of another class, it can’t be private and it might need

to be public.)

Moving on, there’s a variation on the explicit context this, which is super. The super key-

word means “the object referred to by this, but viewed with the parent type.” Logically then,

if this doesn’t exist, neither does super. And if this exists (in other words, if you’re inside an

A static method cannot access an
instance variable using this prefix,
either implicitly or explicitly.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

78

//fix this/

instance method), this and super are equal in value, but different in type. The type of super is

the type of the immediate superclass of the type of this.

Now that you’ve reviewed the background, you should be in a good position to evaluate the

options and decide on the right answers.

The method that surrounds line n1 is a static method. Because of that, you know that

no this context is available—and neither is a super context. This fact is key in answering

this question.

The code of option A makes an unqualified reference to a variable called result. The com-

piler will look for a method local variable of that name but fail to find one. Because of that fail-

ure, the compiler proceeds to look for a static variable in the context of the class CodeTest but

again fails. Because the method is static, no this context is available, so the search in the class

CodeTest has failed. The search then repeats up the parent class hierarchy (in the class Test and

then in Object), but, of course, it fails again. Even though Test has a field called result, there’s

still no this context from which to access an instance. Therefore, the code fails to compile and

option A is incorrect.

As a side note, paying close attention to the way that search was just described reveals that

it’s possible to have a static variable and an instance variable with the same name in the same

object, but only if they are declared at different points in the hierarchy. Of course, it is probably

evident that this is very bad practice, because it will cause confusion that will make mainte-

nance harder. Just because syntax is legal doesn’t make it good.

In option B, the code tries to make explicit use of the this context. But the enclosing method

is still static, so no such context exists, the code cannot compile, and option B is also incorrect.

Option C trades the this explicit context for the super explicit context, but it was already

established that the code is in a static method, so neither this nor super contexts exist, and the

code also fails to compile. Therefore, option C is also incorrect.

In option D, the code creates an object of the type Test. This is successful, because the

class Test is accessible and the class has an accessible zero-argument constructor (that’s the

compiler-generated default constructor, in this case). This newly created object satisfies the

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

79

//fix this/

need for an explicit object context for the variable result, and the code compiles. Therefore,

option D is correct.

Option E does almost the same thing as option D, but it creates an instance of CodeTest

rather than the base class Test. What matters, however, is that the CodeTest object forms a con-

text that does contain a variable called result. Consequently, the code compiles, and option E is

also correct.

As a final note, let’s consider the accessibility of the variable result in this question. It’s not

specified explicitly and, therefore, it is the default—which means accessible from code within

the same package. The code shown doesn’t indicate a package, so how can you know if the

access succeeds? There are three considerations that might be applied here.

First, you could consider that you see all the code and, therefore, both classes are in the

default package. In this case, the access would succeed.

Second, see the exam guidelines and expand the “Review Exam Topics” section, which

explicitly states the following:

Missing package and import statements: If sample code does not include package or

import statements, and the question does not explicitly refer to these missing state-

ments, then assume that all sample code is in the same package, or import statements

exist to support them.

Third, there’s no possible way for the first three options (A, B, and C) to compile, but if you

assume that the two classes are in the same package, they could provide an answer that’s

believable. Given a question that requires two selections, along with two believable answers and

three impossible ones, you have no meaningful choice but to select the two believable ones.

Answer 2. The correct options are D and E. The class Novel does not carry the modifier abstract.

It is therefore a concrete class, and this requires that all the abstract methods it inherits,

whether directly or indirectly, must have concrete implementations or the code cannot compile.

Question 2
page 69

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-808

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

80

//fix this/

All the methods defined in an interface (in Java 8) are public, and they are abstract, default,

or static. Any method that is not explicitly marked as either default or static is abstract. This

means that the interface declares two abstract methods, which are setContent and spellCheck.

These, therefore, must be implemented before the Novel class satisfies the requirements

for being concrete. The interface additionally provides a default method called getContent.

Although this is not considered a concrete method, it is not abstract either, and it’s acceptable

for a class that claims to be a concrete implementation of this interface to have no mention of

this method.

At this point, you know that Novel must still provide or obtain concrete implementations for

setContent and spellCheck (and that these implementations must provide the correct argument

lists). Let’s move on and consider what the

abstract class brings to Novel.

The abstract class Prose declares one

abstract method, setAuthor. The Novel class

must obtain or provide a concrete implemen-

tation for this. At this point, you’re looking

for concrete implementations of three meth-

ods to satisfy the needs of Novel. However, Prose also provides a concrete implementation of

spellCheck, and the argument list exactly matches the same-named abstract method in the

interface. This method satisfactorily resolves the requirement that the Novel class obtain or

provide an implementation of the abstract spellCheck method declared in the interface. That

leaves you with a need for two concrete methods to be implemented in the Novel class. These

are setAuthor and setContent. These are the two answers in options D and E, which are the

correct answers.

Now, let’s explore why the incorrect answers are incorrect. Let’s start by considering

why option A is incorrect. The interface declares an abstract method spellCheck that throws

Exception in its signature. Is the spellCheck defined in the Prose class sufficient for this? It turns

out that, yes, it is. It’s completely OK for an implementation of an interface method to be

A related question is whether a
method that does not throw exceptions can
satisfy a requirement for a method that does.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

81

//fix this/

inherited from elsewhere in the class’s hierarchy, so the method can come from a parent class

or from a default method in another interface.

Another related question is whether a method that does not throw exceptions can satisfy

a requirement for a method that does. The answer to this, too, is yes. Just because a method

declares an exception does not mean it will throw the exception; it means only that it might.

Something that never actually throws the exception is OK. The converse, however, is not OK.

A concrete method that declares checked exceptions that are not declared (either exactly or

using a superclass) by an abstract method cannot correctly provide the implementation of that

abstract method.

Option B will not compile. The method that it attempts to override is declared (and given a

default implementation) in the interface, and even though no access modifier is provided, it is

implicitly public. An overriding method may not reduce the accessibility of the method it over-

rides. Given that the method declared in option B has default access, which is less accessible

than public access, compilation fails. Therefore, option B is incorrect.

A further observation on option B, from an exam-taking perspective, is that it’s not

necessary to make the code compile correctly. So even if it compiled, selecting it would “use up”

one of the two options that you can select, and because both options D and E are necessary, if

you chose option B, you’d end up missing one of the options that are required.

Finally, option C presents code that would compile but is not necessary. The method

getContent is already provided by the default implementation in the interface. And as with the

discussion on option B, if you selected option C, that would prevent you from selecting option D

or option E; therefore, you should not select option C and it is incorrect.

As a side note, in Java 9, it’s permissible to provide a private concrete method in an inter-

face. However, for abstract methods, the rules have not changed; they are always public. Keep in

mind that for the time being, the certification exams are still written for Java 8.

Answer 3. The correct options are C and D. Generally, Java permits assignments of primitive

types based on whether they’ll work reliably. Therefore, if the entire range of values that can

be represented by the type of a given expression can also be represented by the type of a given

Question 3
page 70

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

82

//fix this/

destination type, the assignment from the expression to the destination type is permitted. The

converse also applies: If an expression can represent values that are outside the range of the

type of a destination, such an assignment is rejected.

Let’s look at the ranges of the primitive types:

Some things should be pretty clear:
■■ boolean cannot be assigned to or from a numeric expression.
■■ For the main integer numeric types, assignment is possible from smaller to larger; that is,

from byte to short to int to long.
■■ For the floating-point types, assignment from float to double is possible.
■■ Assignment from any of the integer types to either of the floating point types looks good also.
■■ float and double do some magic to be able to store a vastly bigger range in the same amount

of storage.
■■ Perhaps a little surprising is the fact that assignment between short and char cannot be per-

formed in either direction. This is because a char can represent values greater than the maxi-

mum value of a short (65535 > 32767) and a short can represent negative values, which are not

representable by a char.

T Y P E EF F E C T I V E S T OR AGE R A NGE OF VA L UE S
boolean 1 BIT true AND false

byte 1 BY TE -128 TO +127

short 2 BY TES -32,768 TO +32,767

char 2 BY TES 0 TO 65,535

int 4 BY TES PLUS OR MINUS ABOUT 2 BILLION

long 8 BY TES PLUS OR MINUS ABOUT 9 * 1018

float 4 BY TES PLUS OR MINUS ABOUT 3.4 * 1038

double 8 BY TES PLUS OR MINUS 1.8 * 10308

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

83

//fix this/

These rules are more than sufficient to answer this question, although before we dive into the

answers, we’ll mention that the formal specification of these rules (and more) is described Java

Language Specification sections 5.1.2 and 5.1.3.

Let’s look at the options. Option A tries to assign a double value to a float. From our table,

it’s clear that the double can represent a much greater range than the float, so the assignment

is not permitted, compilation

fails, and you can conclude that

option A is incorrect.

Of course, you know that the

actual value stored in the double

is small enough to be represented

properly by the float and, in gen-

eral, if you are confident that the

value about to be assigned does not overflow the capacity of the destination, you can use a cast

to persuade the compiler to let you perform the assignment. In this case, the resulting code

would look like this:

f = (float)d;

However, no cast is included in the code shown, so this does not alter the fact that option A fails

to compile.

Option B tries to assign a float to a long, but it’s clear from the table that the range of val-

ues representable by a float vastly exceeds that of a long; therefore, the assignment is refused,

compilation fails, and option B is incorrect.

Note that the objection in option B is the loss of gross value, not the potential for loss of

precision. You just saw that the float can represent a much greater range than the long, and

because of that, the assignment is rejected. But imagine that you have a float that contains 3.14,

and you cast and assign that to a long. The result would be 3, and the fractional part would be

lost entirely. This, and some situations like it, might be called “loss of precision.” Although it’s

Assignments that might result in a completely
wrong value—based on the ranges representable by the
types—will be rejected by the compiler, but you can force
the compiler’s hand by using a cast.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/specs/jls/se8/html/jls-5.html#jls-5.1.2
https://docs.oracle.com/javase/specs/jls/se8/html/jls-5.html#jls-5.1.3

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

84

//fix this/

not evident or even possible here (because the float-to-long assignment—and, actually, assign-

ment of any Java floating-point primitive type to any Java integer primitive type—is always

rejected due to loss of range), you’ll see later that Java permits assignments that might simply

lose some precision.

Option C assigns a char value to an int. Every value that can be represented by a char can be

represented perfectly by an int. Therefore, the result is reliably accurate, the compiler permits

it, and option C is correct.

Option D assigns a long to a float. The range of a float is much greater than the range of a

long, and the compiler allows this. Therefore, option D is also correct. It might seem odd that a

long has 8 bytes of effective storage and a float has only 4 bytes. That might seem like option D

should be rejected. But again, the issue here relates to loss of precision, not loss of gross value.

This will be investigated further in a moment.

Option E attempts to assign a float to an int, but as the table shows, the range of a float

is vastly greater than that of an int and, therefore, the attempt is rejected by the compiler and

option E is incorrect.

At this point, you’ve seen that assignments that might result in a completely wrong value—

based on the ranges representable by the types—will be rejected by the compiler, but you can

force the compiler’s hand by using a cast. A cast operation is safe if you’re sure the value will fit.

You’ve also seen that an assignment that risks losing only precision, not gross value, is per-

mitted. The rules described in Java Language Specification sections 5.1.2 and 5.1.3 are concerned

with what’s permitted and what might happen, not with understanding the consequences. At

this point, you’ve not seen how an assignment could cause the issue raised here. So now let’s

look closer at it and as a side thought consider how a 4-byte float value can store a larger range

than an 8-byte long value.

It’s easy to understand losing the fractional part when you assign (through a cast) a float

to an int, but what does it mean to “lose precision” when you assign, for example, a long to a

float? The answer lies in how the float manages to have a wider range than the long, despite

using half the storage.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

85

//fix this/

Floating-point numbers in Java (in fact, in most computer languages) don’t actually count

“units” in the way that integer values do. Instead, they count in a variable chunk size. Although

it’s possible a value is counted in ones, it might be counted in sixteenths or five-hundred-and-

twelfths. This behavior is how these types of numbers handle fractions. But similarly, the num-

ber might be counted in chunks of two hundred and fifty-six. This is how these numbers can

have much greater ranges than might be expected.

In essence, the floating-point number’s storage is split into two parts. One part stores

the number of “chunks” (this is called the significand) and the other part indicates the size of

each chunk (this part is called the exponent). Wait—isn’t an exponent the thing after the E in a

number such as 3E+12? Yes, in effect, it is. When you write 3E+12, you’re saying “three chunks”

where each chunk is worth one followed by twelve zeros. You could equally say 314159E-5, which

would be the same as 3.14159 without having a “fraction” and with having only the information

that each unit (of which there are 314,159) has a value of a one-hundred-thousandth of 1.

With that background on the floating-point number representation, let’s get back to the

idea of loss of precision. It turns out that for a float value in Java, the significand (the “chunk

count”) uses 24 bits, which means that the largest value it can represent is 224, which is

16,777,216. Notice this is much less than the largest value of an int and very much less than

the upper limit for a long. If you try to use a float value to store a number bigger than this, the

chunk size must be increased. Initially the count is in twos, and then after 16,777,216 twos, the

count is by fours.

There are a couple of immediately demonstrable consequences to this. First, if you try to

assign to a float the literals 16,777,216; 16,777,217; 16,777,218; and 16,777,219, you see that it takes

on the values 16,777,216 (accurate); 16,777,216 (rounded down by one); 16,777,218 (correct); and

16,777,220 (rounded up by one). You can try this easily by casting the literals to float, and then

casting them back to ints, like this:

System.out.println((int)((float)(16777216)));
System.out.println((int)((float)(16777217)));

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

86

//fix this/

System.out.println((int)((float)(16777218)));
System.out.println((int)((float)(16777219)));

Another effect that is perhaps even more significant is what happens in this loop. Try to guess

how many times this prints incrementing. Then copy the following code and find out if you

were right.

float count = 33554432;
while (count < 33554435) {
 System.out.println("incrementing");
 count = count + 2;
}

Of course, double numbers have essentially the same behavior, although the boundary numbers

are different and, in fact, a double can accurately represent the full range of values of an int (it

has a 53-bit significand, which has much greater range than a 32-bit int).

The point here is that loss of precision means just that: When you assign an int to a float

or a long to either a float or a double, you might end up with an approximation of your original

number. And this approximation might have practical consequences for your code.

If you’re interested in more detail, Java (at least in strictfp mode) uses IEEE 754 floating-

point representations and a Wikipedia page provides more details.

This discussion is now complete, right? Well, no. Look back at that table of data type ranges.

The second column is entitled “effective storage.” Why is that significant? Why not simply use

the title “storage”? It’s significant because the storage space used for a variable isn’t specified by

the language or the virtual machine specification.

For example, on modern 64-bit processors, it’s possible that the machine cannot efficiently

address single bytes or perhaps even 4-byte words. In this situation, a particular implementa-

tion is free to allocate more storage than is strictly needed for the data.

What the specifications do mandate is that the integral data types must behave as if they

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://en.wikipedia.org/wiki/IEEE_754

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

87

//fix this/

are “two’s complement binary numbers” with the specified amount of storage. For floating-

point, the specification mandates that the behavior must be exactly compliant with the IEEE 754

specification only if the class or method carries the modifier strictfp. The bottom line is that

although the previous table describes what the numerical behavior will be, you cannot assume

that allocating 1,000 int variables will reliably allocate 4,000 bytes of memory. This discrep-

ancy can be even more startling with boolean values. It’s possible that an array of 64 booleans

might be packed into a single 8-byte word, but it’s also possible (though perhaps not very likely)

that each individual value might take 8 bytes. The reality is likely somewhere in between; but

crucially, neither the language specification nor the virtual machine specification mandate

this behavior.

Answer 4. The correct option is D. This question investigates several aspects of the behavior

and the use of result sets. One aspect is the operations that are permitted based on the configu-

ration of the statement that produces the result set. Another is the sequence of operations nec-

essary to update a table through a ResultSet.

The createStatement(...) method exists in three overloaded forms. The form used in this

question accepts two int parameters that define the “result set type” and the “concurrency,”

respectively.

The result set type parameter is selected from three possible values:
■■ ResultSet.TYPE_FORWARD_ONLY: This specifies that the result set may be traversed only in a

forward direction and traversed only once. (This is the default that’s implied if the zero-

argument overload createStatement() is used.)
■■ ResultSet.TYPE_SCROLL_INSENSITIVE: This specifies that the result set permits arbitrary tra-

versal, backward and forward, and absolute positioning. With this mode, if some other pro-

cess performs updates on the underlying table, they will not be visible through this result

set object.
■■ ResultSet.TYPE_SCROLL_SENSITIVE: This specifies the same traversal freedom of the previous

mode, but if data in the underlying database is updated during navigation, those changes will

be visible through this result set object.

Question 4
page 70

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

88

//fix this/

It is true that not all JDBC drivers support all types of result sets, but the question tells you to

assume that everything used is supported. Therefore, there’s no reason to expect the mode con-

figuration to cause a problem. And, as noted, the ResultSet.TYPE_SCROLL_SENSITIVE type permits

forward and reverse navigation through the result set, so line n2 can be expected to complete

without raising an exception. Because of this, you can see that option B is incorrect. (If the mode

had been configured as ResultSet.TYPE_FORWARD_ONLY, option B would have been correct.)

The second parameter passed into the createStatement(...) method defines the concurrency

type of the future result set. It may accept two values:
■■ ResultSet.CONCUR_READ_ONLY: This is the default mode (when you create a statement without

customization), and it allows only reading of the data from the result set.
■■ ResultSet.CONCUR_UPDATABLE: This allows updating of the database through the result set.

As with the previous parameter, in practice, a driver or database might not support the updat-

able concurrency mode, but the question specifies that you can assume all modes are supported.

Therefore, you can expect the update call at line n1 to complete without an exception. Because

of this, you can see that option A is incorrect. (Again, note that if the mode had been config-

ured as ResultSet.CONCUR_READ_ONLY, line n1 would throw a java.sql.SQLException exception, and

option A would have been correct.)

Having determined that the code runs successfully and, therefore, generates some output

from the print statement, let’s consider what will be printed. It seems clear that the program-

mer’s intention was that the output should be 15; however, it won’t be that because the code

fails to use the ResultSet object properly.

Often, when a row in a result set is updated, multiple individual fields are changed, and with

the result set, this must be done using multiple calls to updateXxx methods. If each of these calls

committed a change to the persistent storage, it would be expensive in terms of multiple writes

and it would unnecessarily create transactionally inconsistent partial changes. Because of this,

the updateXxx methods modify only the row data in memory—even though the connection is in

auto-commit mode—and the accumulated changes must be written to persistent storage under

the explicit control of the programmer. The process of updating a row through a result set is

completed by using a call to the updateRow() method on that result set, like this:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

89

//fix this/

results.updateRow();

If this call were included right after line n1, the change to the table would be persisted and the

result would be 15 (and, consequently, option C would have been correct).

However, in the absence of the call to updateRow(), the changes to the result set are not per-

sisted, and option C is incorrect. As a result, the output is 20 and option D is correct.

One final note is that in this question it does not matter whether you use ResultSet.TYPE_

SCROLL_INSENSITIVE or ResultSet.TYPE_SCROLL_SENSITIVE because the changes are not being per-

formed by another thread or process. With the question as written, no changes are made any-

way, and even with the addition of the call to updateRow(), the changes are visible to this result

set, because they’re made through it.

Answer 5. The correct option is A. This question investigates some of the core features of the

java.util.concurrent.CyclicBarrier class, including its purpose and use.

The CyclicBarrier class is a feature of the java.util.concurrent package and it provides

timing synchronization among threads, while also ensuring that data written by those threads

prior to the synchronization is visible among those threads (this is the so-called “happens-

before” relationship). These problems might otherwise have been addressed using the

synchronized, wait, and notify mechanisms, but they are generally considered low-level and

harder to use correctly.

If multiple threads are cooperating on a task, two problems must commonly be addressed.

(Note that other issues might exist, too). One problem is that the data written by one thread

must be read correctly by another thread when the data is needed. Another problem is that the

other thread must have an efficient means of knowing when the necessary data has been pre-

pared and is ready to be read. The major feature of the CyclicBarrier is to provide timing syn-

chronization using a barrier point.

The operation of the CyclicBarrier might be likened to a group of colleagues at a confer-

ence preparing to go to a presentation together. They get up in the morning and go about their

routines individually, getting ready for the presentation and their day. When they’re ready, they

Question 5
page 71

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

90

//fix this/

go to the lobby of the hotel they’re staying in and wait for the others. When all of the colleagues

are in the lobby, they all leave at once.

Similarly, a CyclicBarrier is constructed with a count of “parties” as an argument. In the

analogy, this represents the number of colleagues who plan to go to the presentation. In the real

system, this is the number of threads that need to synchronize their activities. When a thread

is ready, it calls the await() method on the CyclicBarrier (in the analogy, this is arriving in the

lobby). At this point, one of two behaviors occurs. Suppose the CyclicBarrier was constructed

with a “parties” count of 3. The first and second threads that call await() will be blocked. Being

blocked means their execution is suspended, using no CPU time, until some other occurrence

causes the blocking to end. When the third thread calls await(), the blocking of the two threads

that called await() before is ended, and all three threads are permitted to continue execution.

(This is the second behavior mentioned earlier.)

A second effect of the CyclicBarrier is that after the block is ended, data written by any

of the threads prior to calling await() will be visible (unless it is perhaps subsequently altered,

which can confuse the issue) by all the threads that called await() on this blocking cycle of this

CyclicBarrier. This is the happens-before relationship and it addresses the visibility problem.

After the threads are released, the CyclicBarrier can be reused for another synchronizing

operation—that’s why the class has cyclic in the name. Note that some other synchronization

tools in the java.util.concurrent API cannot be reused in this way.

The CyclicBarrier provides two constructors. Both require the number of parties (threads)

they are to control, but the second also introduces a new behavior called the barrier action:

public CyclicBarrier(int parties, Runnable barrierAction)

The barrier action defines an action that is executed when the barrier is tripped; that is, when

the last thread enters the barrier. This barrier action will be able to see the data writes by the

awaiting threads, and any writes by the barrier action will be visible to the threads after they

resume. The API documentation states, “Memory consistency effects: Actions in a thread prior

to calling await() happen-before actions that are part of the barrier action, which in turn happen-

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CyclicBarrier.html

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

91

//fix this/

before actions following a successful return from the corresponding await() in other threads.”

Now that you know what the CyclicBarrier does in general, let’s review the code. Each

of the options creates a CyclicBarrier and passes it to a thread (created from the Calculator

class). Each thread—or each calculator, if you prefer—performs a calculation and then adds the

result of that calculation to a thread-safe List that’s shared between the two threads. Note that

the ArrayList itself isn’t thread-safe, but the Collections.synchronizedList method creates a

thread-safe wrapper around it. After adding the result to the List, the calculator thread calls the

await() method on the CyclicBarrier. Subsequently, the intention is to pick up the data items

that have been added to the List and print their sum.

For this to work correctly, the summing operation must see all the data written by the cal-

culators and not occur until after the calculated values have been written. The code should

achieve this using the CyclicBarrier.

In option B, the attempt to calculate the sum and print the result precedes the construction

and start of the two calculator threads. As a result, option B is incorrect.

Option B might occasionally print the right answer; the situation is what’s called a race

condition. Although unlikely, it’s not impossible that the JVM might schedule its threads in a

way that the calculations are completed before the summing and printing starts. It’s also pos-

sible that the data written in this situation might become visible to the thread that performs the

summing and printing. However, it’s unlikely at best and certainly not reliable. The output is

most likely to be 0 (because the list is empty), but the values 4, 9, and 13 are all possible.

Option D is a variation of option B with swapped lines. Although this looks like the calcu-

lations might be executed before the summing and printing operations, the same uncertainty

exists. So, although this option is more likely than option B to print 13 on any given run, for the

same reasons, all the values are possible. Therefore, option D is incorrect.

Option C is almost correct, but not quite. The CyclicBarrier is created with a “parties” count

of three. Three calls to await are made, so the main thread would not proceed until the two cal-

culations are complete. The timing would be correct and the visibility issue would be correctly

addressed such that the last line of the option—the line that computes and prints the sum—

would work reliably if it were not for one remaining problem with the implementation shown.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

92

//fix this/

Blocking behaviors in the Java APIs are generally interruptible, and if they are interrupted,

they break out of their blocked state and throw an InterruptedException, which is a checked

exception. Because neither the code of option C nor the body of the doCalculation method into

which the code is inserted include code to address this exception, the option fails to compile.

In fact, the await() method throws another checked exception, BrokenBarrierException, and

this is also unhandled. However, while you might not know about the BrokenBarrierException,

you should definitely know about the InterruptedException because it’s a fundamental and

pervasive feature of Java’s thread management model. Because these checked exceptions are

unhandled and the code does not compile, option C is incorrect.

In option A, the CyclicBarrier is created with two “parties” (which will be the two calcu-

lator threads) and also with a barrier action. The barrier action is the lambda expression that

aggregates results from working parties. The two Calculator threads invoke await() after they

have written the result of their calculations to the list. This behavior ensures that both writes

have occurred before, and the data is visible to, the barrier action. Then, the barrier action is

invoked to perform the summing and printing. As a result, it’s guaranteed that both 4 and 9

are in the list before the summing and printing and that they are visible to that operation.

Consequently, the output must be 13, and you know that option A is correct. </article>

Simon Roberts joined Sun Microsystems in time to teach Sun’s first Java classes in the UK. He created the
Sun Certified Java Programmer and Sun Certified Java Developer exams. He wrote several Java certification
guides and is currently a freelance educator who publishes recorded and live video training through Pearson
InformIT (available direct and through the O’Reilly Safari Books Online service). He remains involved with
Oracle’s Java certification projects.

Mikalai Zaikin is a lead Java developer at IBA IT Park in Minsk, Belarus. During his career, he has helped Oracle
with development of Java certification exams, and he has been a technical reviewer of several Java certifica-
tion books, including three editions of the famous Sun Certified Programmer for Java study guides by Kathy
Sierra and Bert Bates.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2019

93

//contact us/

Comments
We welcome your comments, corrections,
opinions on topics we’ve covered, and any
other thoughts you feel important to share
with us or our readers. Unless you specifi-
cally tell us that your correspondence is
private, we reserve the right to publish it in
our Letters to the Editor section.

Article Proposals
We welcome article proposals on all
topics regarding Java and other JVM
languages, as well as the JVM itself.
We also are interested in proposals for
articles on Java utilities (either open
source or those bundled with the JDK).
Finally, algorithms, unusual but useful

programming techniques, and most other
topics that hard-core Java programmers
would enjoy are of great interest to us,
too. Please contact us with your ideas
at javamag_us@oracle.com and we’ll
give you our thoughts on the topic and
send you our nifty writer guidelines,
which will give you more information
on preparing an article.

Customer Service
If you’re having trouble with your
subscription, please contact the folks
at java@omeda.com, who will do what-
ever they can to help.

Where?
Comments and article proposals should
be sent to our editor, Andrew Binstock,
at javamag_us@oracle.com.

While they will have no influence on our
decision whether to publish your article
or letter, cookies and edible treats will
be gratefully accepted by our staff at
Java Magazine, Oracle Corporation,
500 Oracle Parkway, MS OPL 3A-3133,
Redwood Shores, CA 94065, USA.

 World’s shortest subscription form
 Download area for code and
other items

 Java Magazine in Japanese

magazine

By and for the Java community

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:javamag_us%40oracle.com?subject=
mailto:java%40omeda.com?subject=
mailto:javamag_us%40oracle.com?subject=
https://www.sub-forms.com/dragon/init.do?site=ora6028_jfnew
http://bit.ly/2b2tXeb
http://bit.ly/2b2tXeb
http://www.oracle.com/technetwork/jp/articles/java/overview/index.html

	Java_MJ19_pg01
	Java_MJ19_pg02
	Java_MJ19_pg03
	Java_MJ19_pg04
	Java_MJ19_pg05
	Java_MJ19_pg06-08
	Java_MJ19_pg09
	Java_MJ19_pg10
	Java_MJ19_pg11-24
	Java_MJ19_pg25-40
	Java_MJ19_pg41-51
	Java_MJ19_pg52-61
	Java_MJ19_pg62-67
	Java_MJ19_pg68-92
	Java_MJ19_pg93

