
magazine

By and for the Java community

ORACLE.COM/JAVAMAGAZINE

MAY/JUNE 2018

LOCK ELISION IN THE JVM 74 | JAVA 10 var KEYWORD 63

COMMAND
PATTERN
IN DEPTH

15
JPA AND
HIBERNATE
PATTERNS

27
MAPPING DDD
TO JAVA EE

50
PRODUCER-CONSUMER
FOR HIGH-VOLUME
DATA IN JAVAFX

38
Design Patterns

http://www.oracle.com/javamagazine

Reload code changes instantly with JRebel

Would you rather be waiting... ...or coding

Don’t let Java redeploys slow you down

GET FREE TRIALTRY IT NOW!

https://zeroturnaround.com/software/jrebel/jrebelrocks/?utm_source=javamag&utm_medium=digital&utm_campaign=zt&utm_content=mayjune

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

02

63
var and Java 10’s Expanded
Type Inference
By Raoul-Gabriel Urma and
Richard Warburton

Best practices for using local
variable type inference

74
Lock Elision in the JVM
By Ben Evans and Chris Newland

How the compiler’s escape analysis
removes unnecessary locks

87
Fix This
By Simon Roberts and Mikalai Zaikin

Our latest quiz with questions that
test intermediate and advanced
knowledge of the language

27
DESIGN PATTERNS FOR
JPA AND HIBERNATE
By Thorben Janssen

Best practices for an efficient
and maintainable persistence
layer with JPA and Hibernate

38
PRODUCER-CONSUMER
IMPLEMENTATIONS IN
JAVAFX
By Sean M. Phillips

Graphing high volumes of
spiky data requires adaptations
to the traditional pattern.

50
USING DOMAIN-
DRIVEN DESIGN
WITH JAVA EE
By Sebastian Daschner

How to map DDD artifacts
to Java EE code

//table of contents /

THE COMMAND PATTERN IN DEPTH
By Ian F. Darwin

Packaging commands as objects and sending them to a receiver
enables a clean, loosely coupled design that’s easy to maintain.

COVER FEATURES

OTHER FEATURES DEPARTMENTS

05
From the Editor
A completely new JVM codebase heralds
a new generation of performance.

07
Letters
Java Web Start, containers, and
other reader concerns

09
Java Books
Review of Java by Comparison

10
Events
Upcoming Java conferences and events

86
User Groups
The Peru JUG

99
Contact Us
Have a comment? Suggestion? Want to
submit an article proposal? Here’s how.

COVER ART BY WES ROWELL

15

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

03

EDITORIAL
Editor in Chief
Andrew Binstock
Managing Editor
Claire Breen
Interim Managing Editor
Leslie Steere
Copy Editors
Lea Anne Bantsari, Karen Perkins
Contributing Editors
Simon Roberts, Mikalai Zaikin
Technical Reviewer
Stephen Chin

DESIGN
Senior Creative Director
Francisco G Delgadillo
Design Director
Richard Merchán
Senior Designer
Arianna Pucherelli
Designer
Jaime Ferrand
Senior Publication Designer
Sheila Brennan
Production Designer
Kathy Cygnarowicz

PUBLISHING
Group Publisher
Karin Kinnear
Audience Development Manager
Jennifer Kurtz

ADVERTISING SALES
Sales Director
Tom Cometa
Mailing-List Rentals
Contact your sales representative.

RESOURCES
Oracle Products
+1.800.367.8674 (US/Canada)
Oracle Services
+1.888.283.0591 (US)

ARTICLE SUBMISSION
If you are interested in submitting an article, please email the editors.

SUBSCRIPTION INFORMATION
Subscriptions are complimentary for qualified individuals who complete the
subscription form.

MAGAZINE CUSTOMER SERVICE
java@omeda.com

PRIVACY
Oracle Publishing allows sharing of its mailing list with selected third parties. If you prefer
that your mailing address or email address not be included in this program, contact
Customer Service.

Copyright © 2018, Oracle and/or its affiliates. All Rights Reserved. No part of this publication may be reprinted or otherwise
reproduced without permission from the editors. JAVA MAGAZINE IS PROVIDED ON AN “AS IS” BASIS. ORACLE EXPRESSLY
DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS OR IMPLIED. IN NO EVENT SHALL ORACLE BE LIABLE FOR ANY
DAMAGES OF ANY KIND ARISING FROM YOUR USE OF OR RELIANCE ON ANY INFORMATION PROVIDED HEREIN. Opinions
expressed by authors, editors, and interviewees—even if they are Oracle employees—do not necessarily reflect the views of Oracle.
The information is intended to outline our general product direction. It is intended for information purposes only, and may not
be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied
upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s
products remains at the sole discretion of Oracle. Oracle and Java are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

Java Magazine is published bimonthly and made available at no cost to qualified subscribers by
Oracle, 500 Oracle Parkway, MS OPL-3A, Redwood City, CA 94065-1600.

Certification
MATTERS

Experienced a Greater
Demand for Their Skills1

Received Positive Impact
on Professional Image2

Said Certification was a
Key Factor in Recent Raise1

Oracle University
Differentiate Yourself to Attract Employers

72%

64%

67%

Source: 1—Certification Magazine, Annual Salary Survey, January 2018 | 2—Pearson VUE, Value of IT Certification Survey, 2017.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:karin.kinnear%40oracle.com?subject=
mailto:jennifer.s.kurtz%40oracle.com?subject=
mailto:tom.cometa%40oracle.com?subject=
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.sub-forms.com/dragon/init.do?site=ora6028_jfnew
mailto:java%40omeda.com?subject=
mailto:java%40omeda.com?subject=
http://certification.oracle.com/

https://www.jetbrains.com/idea?utm_source=javamag&utm_medium=cpc&utm_campaign=idea2018

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

05

//from the editor /

PHOTOGRAPH BY BOB ADLER/THE VERBATIM AGENCY

Until the 2014 release of Java 8, a common
complaint you heard from outside the Java

community was that Java, the language, had
stalled. The JVM, by comparison, was widely
admired. But even though the JVM supported
numerous languages (which we’ve covered indi-
vidually in this magazine over the last four years),
Java was still its principal language and, well,
that was getting long in the tooth. Many of us
knew this point of view was exaggerated. The Java
team had widely and frequently communicated
the innovations it was working on and the wave
of innovations that would be coming after those.
Java 8 indeed disarmed critics who had claimed
that Java wasn’t keeping up with other languages.
And the changes in Java 9 and 10, as well as the
upcoming Java 11, are demonstrating the torrid
pace at which new features will be delivered. Java
remains either the #1 or #2 most widely used lan-

guage (depending on whose statistics you’re look-
ing at), which shows how effective the new fea-
tures have been in keeping the language relevant,
useful, and practical.

The many advances from the Java team
have made it easy to overlook other innovation
happening with the JVM. Notably, a small team
within Oracle called Oracle Labs has spent the last
few years researching ways to improve the JVM’s
performance and its ability to host other lan-
guages. In April, the group announced that a set
of new technologies had reached version 1.0 and
were now available for wider use. Among these
were GraalVM—a different take on the current
JVM—and the Truffle API, which facilitates port-
ing languages to Graal.

GraalVM is designed with two goals in mind:
performance and the ability to support many
languages. Let me start with the matter of lan-

The Vanguard of a New Generation of JVMs
Graal leads a new ecosystem of emerging JVM technologies that herald big benefits.

#developersrule

Start here:
developer.oracle.com

Oracle Cloud.
Built for modern app dev.
Built for you.

Oracle Cloud delivers
high-performance and
battle-tested platform
and infrastructure services
for the most demanding
Java apps.

Java in
the Cloud

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.graalvm.org/
http://developer.oracle.com

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

06

//from the editor /
guages. Out of the box, GraalVM
supports JavaScript, Python 3, R,
and Ruby. In addition, it can run
any code destined for the LLVM
back end. Today, this includes C
and C++, among other languages.

Looking just at the JavaScript
support, you can swap out the V8
virtual machine in Node.js and
replace it with GraalVM, and your
programs will run unchanged.
However, thanks to GraalVM’s
support for other languages, your
project can now run more than
JavaScript. For example, you can
define data structures in C or C++
and use them with JavaScript.
How cool is that?

A framework called Truffle
is available to facilitate using
GraalVM for execution of other
languages. A tutorial, includ-
ing instructions for implement-
ing a simplified language, is
available here.

The second key aspect of
GraalVM is the performance
improvement it delivers. Because
I have seen only a few bench-
marks, I am here relying on
information put out by the team
at Oracle Labs, in which they
tout the new ways they optimize
performance.

One of these ways is creat-
ing native binaries for Java and

JVM programs. They do this with
ahead-of-time (AOT) compila-
tion. AOT is a term that refers to
regular old compilation to native
binaries (as C, C++, Go, and Rust
do). To run, the programs use
some memory-management
and thread-scheduling abilities
of the Substrate VM, which is a
JVM-like virtual machine that
is itself compiled to native code.
In this sense, the Substrate VM
can be viewed as simply a run-
time library of functions needed
for execution. This native option
removes the JVM’s long startup
time. In addition, the code is not
interpreted at any point, provid-
ing further performance benefit.

Another path to reduced exe-
cution time is the use of more-
aggressive optimizations. For
example, GraalVM makes exten-
sive use of escape analysis—a
type of analysis that recognizes
certain data objects that can
be treated as if they were local
variables, resulting in far fewer
memory allocations. Ben Evans
and Chris Newland examined
escape analysis in considerable
detail in the previous issue. In
addition, GraalVM makes expan-
sive use of inline code, so that
many calls are now replaced by
direct execution. This optimiza-

tion is available for Java and the
languages discussed earlier.

GraalVM is an exciting proj-
ect—not only because it contin-
ues to expand the possibilities
of both Java and the JVM, but
because it appears to have a
genuine opportunity to deliver
on the quest of many language
infrastructure developers: a vir-
tual machine that runs all major
languages well.

Because of its importance
in advancing the Java platform
and because it is inherently such
interesting technology, we’ll be
covering GraalVM extensively in
future issues of the magazine.
But don’t wait for us: if you want
to start working with the tech-
nology now, go to the website,
download it, and try it out.

Andrew Binstock, Editor in Chief
javamag_us@oracle.com

@platypusguy

#developersrule

developer.oracle.com

Trials. Downloads.
Tutorials. Start here:
developer.oracle.com

The Oracle Developer
Gateway is the best place
to jump-start your modern
cloud development skills
with free trials, downloads,
tutorials, documentation,
and more.

The Best
Resource
for Modern
Cloud Dev

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://bit.ly/2K86GIE
http://www.javamagazine.mozaicreader.com/MarApr2018#&pageSet=73&page=0
https://www.graalvm.org/
mailto:javamag_us%40oracle.com?subject=
https://twitter.com/platypusguy
http://developer.oracle.com
http://developer.oracle.com

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

07

//letters to the editor /

Java Web Start
In the March/April issue of your magazine, I stum
bled on news of the upcoming absence of Java Web
Start from Java 11. Those of us who have used Java
Web Start for some time (in my case, 15 years or so)
to deploy application and configuration to company
desktops are really going to miss this technology. The
only real alternative that exists is IcedTea, and some
of the community suggestions are patently absurd—
my favorite is that “it’s time to rewrite those applica
tions in a JavaScript/HTML framework.” I hope Oracle
open sources Java Web Start and some group picks it
up and carries it forward (I’d certainly volunteer).

—Chris Hermansen

Editor Andrew Binstock responds: I checked with the Java
team, and they have no plans at present to open source
Java Web Start.

What Do Containers Contain?
In the March/April issue’s introductory page to the
Features section, you wrote “In many cases, con
tainers hold the entire application and all its depen
dencies; in other cases, only one service resides in
the container. This latter model, termed micro
services . . .” This is inaccurate. Containers always
hold an entire application and dependencies. That is
what Docker containers are designed for. You may
refer to Docker’s own documentation. In the sec
tion on containers, it states, “Containers are an
abstraction at the app layer that packages code and
dependencies together.”

—Deepak Vohra

Editor Andrew Binstock responds: This question might be
more of a terminological issue than anything else. A single
microservice can reside in a Docker container; likewise,
so can entire apps and apps that depend on microservices
running in other containers. In fact, decomposition of
monoliths into microservices requires precisely the abil-
ity to run services, rather than complete apps, in their
own containers.

Keys Rather Than Mice
I read Java Magazine soon after it comes out. One
thing that I find somewhat annoying is having to use
the mouse to click on the pageforward button. Many
interfaces like this have keyboard shortcuts for such
actions. I didn’t see any information about keyboard
shortcuts for this interface. Are there any?

—David Karr

Limited keyboard navigation is available in the issue
hosted online: The Enter key provides a zoom/unzoom
facility, and the arrow keys allow pagination when the
page is not zoomed.

Contact Us
We welcome comments, suggestions, grumbles,
kudos, article proposals, and chocolate chip cookies.
All but the last two might be edited for publication. If
your note is private, please indicate this in your mes
sage. Please write to us at javamag_us@oracle.com.
For other ways to reach us, see the last page of
this issue.

ORACLE.COM/JAVAMAGAZINE

magazine

By and for the Java community

GROOVY 3.0 61 | JVM ESCAPE ANALYSIS 73 | REST API WITH SPRING 81

CREATING
MICROSERVICES
WITH
MICROPROFILE
AND DOCKER

15
DEVOPS
PIPELINES
FOR
CONTAINERS

32
WOOKIEE:
MICROSERVICES
WITHOUT THE
CONFIG HASSLES

53
MIXING JAVA
MODULES
AND OSGi

42

MARCH/APRIL 2018

MICROSERVICES
and CONTAINERS

MARCH/APRIL 2018

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:javamag_us%40oracle.com?subject=

Written by leading experts in Java, Oracle Press books offer the most
definitive, complete, and up-to-date coverage of Java available.

www.OraclePressBooks.com • @OraclePressAvailable in print and eBook formats.

Your Destination for Oracle and Java Expertise

Java: A Beginner’s Guide,
 7th Edition

Herb Schildt

Revised to cover Java SE 9,
this book gets you started

programming in Java right away.

Java: The Complete
Reference,

10th Edition

Herb Schildt

Updated for Java SE 9, this book
shows how to develop, compile,
debug, and run Java programs.

OCA Java SE 8
Programmer I Exam Guide

(Exam 1Z0-808)

Kathy Sierra, Bert Bates

Get complete coverage of all
objectives for Exam 1Z0-808.

Electronic practice exam
questions are included.

Rapid Modernization
of Java

Applications

G. Venkat

Adopt a high-performance
enterprise Java application

modernization strategy.

http://www.oraclepressbooks.com

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

09

As code reviews have become the
norm in programming, rather than
a practice found only in vanguard
development organizations, it has
become apparent that the indus-
try lacks a way to name and refer
to corrections for poorly written
code. In this sense, code reviews
have needed the kind of termino-
logical advance provided by Martin
Fowler’s book, Refactoring, which
gave names to different ways to
remediate code (extract class, pull
up method, and so forth).

Java by Comparison aims to
fill that gap by specifying the
cures to 70 common Java pro-
gramming infelicities. Each less-
than-desirable coding choice is
explained across its own two-page
spread in clear, concise language
that any beginning or intermediate
developer will find approachable
and instructive.

The explanations start with an
example of the poor practice and
then spend much of the rest of the
time articulating why the practice

can lead to undesirable results. And
then, as you’d expect, the authors
show how to correctly write the
code. For this reason, the book
is invaluable in code reviews for
pointing out to programmers who
don’t understand why a particular
piece of their code, which works
and passes all tests, needs to be
rewritten. Instead of spending time
explaining the point, reviewers can
simply point programmers to the
appropriate entries in this book.

Some of the explanations
are of well-trod advice, such as
“avoid returning nulls” and “use
Java naming conventions.” Some
move up the complexity spectrum,
such as “parametrize [sic] your
tests” and “favor method refer-
ences over lambdas.” There are a
handful of even more-advanced
recommendations, such as “use
collect for terminating complex
streams.” And the authors have
included a small set of process-
oriented recommendations, such
as suggestions to use static analy-

sis, continuous integration, and so
forth, which don’t really fit here
and probably would have been bet-
ter replaced with other code-level
recommendations.

Books like this one are excel-
lent for their intended readers:
beginners and intermediate devel-
opers. In fact, beginners should
read the book cover to cover to
understand all the conventions
they need to bear in mind, whereas
intermediates can use the book
more as a reference volume. For
these roles, I can highly recom-
mend this slim volume, despite
occasional faulty English. (For
example, parentheses occasionally
are referred to as brackets.)

However, I strongly suggest
getting the electronic version.
The hard-copy version (which is
my normal preference for refer-
ence works) is unusable because
the publisher printed the code in
gray on a gray background, making
it illegible in all but the brightest
light. —Andrew Binstock

//java books /
JAVA BY COMPARISON
By Simon Harrer, Jörg Lenhard, and Linus Dietz

http://www.oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.informit.com/store/refactoring-improving-the-design-of-existing-code-9780201485677
https://pragprog.com/book/javacomp/java-by-comparison

10

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

//events /

PHOTOGRAPH BY HTTPS://BESTPICKO.COM/

QCon
JUNE 25–26, WORKSHOPS
JUNE 27–29, CONFERENCE
NEW YORK, NEW YORK
QCon New York is a conference for senior software engineers
and architects in enterprise software development. Tracks this
year include “Modern Java Reloaded,” “Ethics in Computing,”
“Blockchain Enabled,” and “Container and Orchestration
Platforms in Action.”

J On The Beach
MAY 23–25
MÁLAGA, SPAIN
J On The Beach (JOTB) is an inter-
national workshop and conference
event for developers interested in
big data, JVM and .NET technolo-
gies, embedded and IoT develop-
ment, functional programming,
and data visualization.

Spring I/O
MAY 24–25
BARCELONA, SPAIN
Spring I/O focuses on the Spring
Framework ecosystem and is the
largest Spring-based conference
held in Europe.

DevOpsCon
MAY 28–31
BERLIN, GERMANY
This conference is divided into
tracks on business and culture;
cloud platforms and serverless
architecture; container technolo-
gies; continuous delivery; log-
ging, monitoring, and analyt-
ics; microservices; and security.
Sessions include “Become a Cloud-
Native: Java Development in the
Age of the Whale,” “Continuous
Integration and Continuous
Delivery for Microservices,” and

“Microservice Authentication and
Authorization.”

jPrime
MAY 29–30
SOFIA, BULGARIA
jPrime will feature two days of
talks on Java, JVM languages,
mobile and web programming,
and best practices. The event is
run by the Bulgarian Java User
Group and provides opportunities
for hacking and networking.

Riga Dev Days
MAY 29–31
RIGA, LATVIA
The biggest tech conference in
the Baltic States covers Java, .NET,
DevOps, cloud, software architec-
ture, and emerging technologies.

DevSum
MAY 30, WORKSHOPS
MAY 31–JUNE 1, CONFERENCE
STOCKHOLM, SWEDEN
DevSum focuses on the latest
trends and technologies in web
development, software archi-
tecture, AI and machine learn-
ing, programming languages,
cloud, and collaboration. This
year, the conference has added
Java coverage including two ses-

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
https://qconnewyork.com/
https://www.jonthebeach.com/
https://2018.springio.net/
https://devopsconference.de
https://jprime.io/
https://rigadevdays.lv/
http://www.devsum.se

11

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

//events /

sions on JDK 9 and 10 hosted by
Simon Ritter.

Shift
MAY 31–JUNE 1
SPLIT, CROATIA
More than 1,300 attendees are
expected at the seventh annual
Shift developer conference.
Scheduled highlights include
speakers from GitHub and Heroku
and workshops covering React,
React Native, Webpack, and
Symphony.

O’Reilly Fluent
JUNE 11–12, TRAINING
JUNE 12–14, TUTORIALS
AND CONFERENCE
SAN JOSE, CALIFORNIA
O’Reilly Fluent is devoted to prac-
tical training for building sites
and apps for the modern web.
This event is designed to appeal
to application, web, mobile, and
interactive developers, as well
as engineers, architects, and UI/
UX designers. It will be collocated
with O’Reilly’s Velocity confer-
ence for system engineers, appli-
cation developers, and DevOps
professionals.

EclipseCon France
JUNE 13–14
TOULOUSE, FRANCE
EclipseCon France is the Eclipse
Foundation’s event for the entire
European Eclipse community.
The conference program includes
technical sessions on current
topics pertinent to developer
communities, such as modeling,
embedded systems, data ana-
lytics and data science, IoT, and
DevOps. The Eclipse Foundation
supports a community for indi-
viduals and organizations who
wish to collaborate on com-
mercially friendly open source
software, and recently was given
control of development tech-
nologies and project governance
for Java EE. EclipseCon France
attendance qualifies for French
training credits.

GOTO
JUNE 18, WORKSHOPS
JUNE 19–20, CONFERENCE
AMSTERDAM, THE NETHERLANDS
This year’s GOTO software devel-
opment conference is devoted
to digital transformation, pri-
vacy, and security. Workshops
on advanced Kotlin and Java are
scheduled. Phil Zimmermann,

creator of Pretty Good Privacy, will
give the opening keynote.

JNation
JUNE 19
COIMBRA, PORTUGAL
Organized by the Coimbra
Java user group, JNation brings
together technology enthusiasts
from all over the world. Attendees
will enjoy a full roster of rock-star
speakers presenting on subjects
including Java and JVM-related
technologies, frameworks, tools,
programming languages, the
cloud, Internet of Things, and
much more.

DWX Developer Week 2018
JUNE 25–28
NUREMBERG, GERMANY
This software development con-
ference is conducted in German
and will feature talks on GPU
computing with Java, Kotlin, and
multithreaded JavaScript.

OSCON
JULY 16–17, TRAINING AND TUTORIALS
JULY 18–19, CONFERENCE
PORTLAND, OREGON
Groundbreaking open source proj-
ects, from blockchain to machine
learning frameworks, will be the

focus of the 20th annual OSCON
event. Live coding, emerging lan-
guages, evolutionary architecture,
and edge computing are among
the topics this year.

JCrete
JULY 22–28
KOLYMBARI, GREECE
This loosely structured “uncon-
ference” involves morning ses-
sions discussing all things Java,
combined with afternoons spent
socializing, touring, and enjoy-
ing the local scene. There is also a
JCrete4Kids component for intro-
ducing youngsters to program-
ming and Java. Attendees often
bring their families.

Java Forum Nord
SEPTEMBER 13
HANNOVER, GERMANY
Java Forum Nord is a one-day,
noncommercial conference
in northern Germany for Java
developers and decision mak-
ers. With more than 25 presen-
tations in parallel tracks and a
diverse program, the event also
provides interesting networking
opportunities.

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
https://shiftconf.co
https://conferences.oreilly.com/fluent/fl-ca
https://www.eclipsecon.org/france2018/
https://gotoams.nl/2018
https://jnation.pt
https://www.developer-week.de/
https://conferences.oreilly.com/oscon/oscon-or
http://www.jcrete.org/
http://www.java-forum-nord.de/

12

//events /

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

jDays
SEPTEMBER 24–25
GOTHENBURG, SWEDEN
jDays brings together software
engineers from around the world
to share their experiences in dif-
ferent areas such as Java, software
engineering, IoT, digital trends,
testing, agile methodologies,
and security.

Strange Loop
SEPTEMBER 26–28
ST. LOUIS, MISSOURI
Strange Loop is a multidisci-
plinary conference that brings
together the developers and
thinkers building tomorrow’s
technology in fields such as
emerging languages, alternative
databases, concurrency, distrib-
uted systems, and security. Talks
are generally code-heavy and not
process-oriented.

KotlinConf
OCTOBER 3, WORKSHOPS
OCTOBER 4-5, CONFERENCE
AMSTERDAM, THE NETHERLANDS
This is the principal conference
for the up-and-coming JVM lan-
guage, Kotlin. The schedule has
not yet been posted. However, last
year’s conference in San Francisco
was sold out, and this one will
probably be popular as well.

Oracle Code One
(formerly JavaOne)
OCTOBER 22–25
SAN FRANCISCO, CALIFORNIA
Oracle Code One (formerly
JavaOne) is the premier source of
technical information and learn-
ing about Java languages and
leading-edge technologies includ-
ing blockchain and artificial intel-
ligence. For four days, developers
from around the world will gather
to talk about all aspects of Java,
JVM languages, polyglot program-
ming, development tools, and
trends in technology including
cloud and containers. Tutorials on
related topics are offered.

DeveloperWeek Austin
NOVEMBER 6–8
AUSTIN, TEXAS
DeveloperWeek Austin will fea-
ture tracks devoted to JavaScript,
virtual reality development,
microservices, and artificial intel-
ligence development.

Devoxx Belgium 2018
NOVEMBER 12–16
ANTWERP, BELGIUM
The largest Java developer confer-
ence in Europe takes place again
in Antwerp, Belgium, with tracks
covering everything from Java, to
the mechanics of the JVM, to JVM

Oracle Code Events
Oracle Code is a free event for devel-
opers to learn about the latest pro-
gramming technologies, practices,
and trends. Learn from technical
experts, industry leaders, and other
developers in keynotes, sessions, and
hands-on labs. Experience cloud development technology in
the Code Lounge with workshops as well as other live, inter-
active experiences and demos.

MAY 30, London, England
JUNE 12, Berlin, Germany

JUNE 20, São Paulo, Brazil
JULY 3, Paris, France

language. The event is held in a
multiplex theater with code and
slides shown on giant screens.

Topconf Tallinn
NOVEMBER 20–22
TALLINN, ESTONIA
Topconf Tallinn is an international
software conference covering Java,
open source, agile development,
architecture, and new languages.

DevTernity
NOVEMBER 30–DECEMBER 1
RIGA, LATVIA
The DevTernity forum covers the
latest developments in coding,

architecture, operations, secu-
rity, leadership, and many other
IT topics. Venkat Subramaniam,
author of Programming Concurrency
on the JVM and Functional
Programming in Java, is slated
to speak.

Are you hosting an upcoming
Java conference that you would
like to see included in this cal-
endar? Please send us a link
and a description of your event
at least 90 days in advance at
javamag_us@oracle.com. Other
ways to reach us appear on the
last page of this issue.

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
http://www.jdays.se/
https://www.thestrangeloop.com/about.html
https://kotlinconf.com/
https://www.oracle.com/code-one/index.html
https://www.oracle.com/javaone/index.html
http://www.developerweek.com/Austin/
https://devoxx.be/
https://developer.oracle.com/code
https://www.topconf.com/conference/topconf-tallinn-2018
https://devternity.com
mailto:javamag_us%40oracle.com?subject=

http://devoxx.com
http://voxxeddays.com

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

14

//design patterns /

When design patterns first appeared in programming via the famous “Gang

of Four” book, they represented a breakthrough on two levels. The first was

that they provided a prescription for implementing solutions to basic pro-

gramming problems. In this sense, they defined best practices. They also

provided terminology for describing certain solutions: decorators, factories,

and singletons, among others.

In time, the term “patterns” expanded to cover more than the original 23 instances in that

seminal book. It came to refer to best practices for solving a common problem. As a result, the

use of patterns proliferated, and they now touch every aspect of computing.

In this issue, we launch a series of articles that dig deeply into the most

important Gang of Four patterns. Here we start with the Command pattern

(page 15) and look at multiple ways to implement it, including across dispa-

rate systems. We then look at patterns for using Hibernate and JPA (page 27)

and explore the producer-consumer pattern (page 38) as a way to handle

large sets of datapoints in JavaFX. Finally, we examine (page 50) how to map

domain-driven design (DDD) entities to Java EE.

Separate from patterns, we look at use of the var keyword (page 63)

introduced in Java 10. And we continue our deep dive into the inner work-

ings of the JVM (page 74) by examining how the Java compiler and the JVM

remove unneeded locks from threads—and how this explains why perfor-

mance between StringBuffer and StringBuilder varies so much. Enjoy!

Useful Patterns
and Best Practices

THE COMMAND PATTERN
IN DEPTH 15
JPA AND HIBERNATE
PATTERNS 27
HIGH-VOLUME PRODUCER-
CONSUMER IN JAVAFX 38
MAPPING DDD TO JAVA EE 50

ART BY WES ROWELL

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.informit.com/store/design-patterns-elements-of-reusable-object-oriented-9780201633610
http://www.informit.com/store/design-patterns-elements-of-reusable-object-oriented-9780201633610

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

15

//design patterns /

Orders. Commands. All developers are familiar with them in real life: one person’s request or

demand that another person perform (or not perform) some action is transmitted to another

person or persons. It works the same in software: one component’s request is transmitted to

another in the Command pattern. In this article, I explain how this pattern works and illustrate

it with several examples. I also demonstrate how it can be introduced when adding new func-

tionality and when cleaning up existing code.

A Familiar Example of the Command Pattern
The Command pattern is one of about two dozen patterns popularized in the book Design

Patterns: Elements of Reusable Object-Oriented Software by Gamma, Helm, Johnson, and Vlissides—

known more concisely as the “Gang of Four” book or even just the “GoF.” (Incidentally, a less

academic, more memorable read is Head-First Design Patterns by Bates, Sierra, Freeman, and

Robson. One other reference worthy of study is Refactoring to Patterns by Joshua Kerievsky.)

The Command pattern is not simply a method call (or “message” in the sense that Java’s

founders used that term). The request is packaged in some way, like putting a letter into an

envelope and getting the (old school) post office or courier to deliver it. In software, the request

can be packaged simply as executable code to be performed, it can be a string in some “little

language” devised for that purpose, or it can be anything that gets the message across.

Perhaps the most familiar example to Java developers is the ActionListener interface used

in Swing or the JavaServer Faces action handler bound to a submit button. Some code, which is

often loosely called the handler, is packaged up and associated with the JButton or other control,

to be acted upon when the user chooses to click the button.

The Command Pattern in Depth
Packaging commands as objects and sending them to a receiver enables a clean,
loosely coupled design that’s easy to maintain.

IAN F. DARWIN

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

16

//design patterns /

In this pattern (Figure 1), the button is called the invoker. The ActionListener implementation

is the Command pattern; it consists of the command or code that the application has sent to the

button. The object to act upon is called the receiver, because it receives the action. The receiver

may be passed as a constructor argument to the Command, or it may be implicit in the case of a

smaller application using a field in the main class as the receiver.

A Remote Sending Example
As another example, if you want to package some arbitrary code for execution in a different VM—

perhaps on a rebel spaceship far, far away—you could package it into an instance of Runnable. The

Runnable interface was designed for use in threading, but it’s a perfectly fine interface to use as a

Command interface: it has one method, no arguments, and a void return type. As my colleague

Chris Mawata says, “Use standard interfaces where they serve.”

To run a “hello, world” command on another VM, you could package it this way:

Runnable command = new Runnable() {
 public void run() {
 System.out.println("Hello, world.");
 }
};

Figure 1: Key players in the Command pattern, illustrated with ActionListener

<<Invoker>>
1 *JButton Ac tionListener

Application

App Code

main()
other()

creates creates and sets
on JButton

<<Command>> <<Receiver>>

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

17

//design patterns /

Nowadays, I’d probably write that as a lambda, like this:

Runnable command = () -> System.out.println("Hello, world.");

Then, assuming all the network plumbing has been set up, there might be a method such as

submit() to send a command to the server:

remoteConnection.submit(myCommand);

To make the code clearer, you could define Command as an interface that extends Runnable:

public interface Command extends Runnable, Serializable {
 // empty
}

Serializable is needed for some of the networking transports that might be used, such as

remote method invocation (RMI), and it costs nothing anyway. I’d simplify the code by instanti-

ating the lambda inline, as in the following:

remoteConnection.submit(() -> System.out.println("Hello, world."));

The code on the other end—the “server”—could implement this method in a simple fashion:

public void submit(Command c) {
 c.run();
}

Or, the server could put the command into a batch queue, run it in a thread pool (see java.util

.concurrent.Executor), or use any of several options. Either way, on the client side, you don’t

know and shouldn’t care. Of course, the Command interface could be changed to have arguments

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

18

//design patterns /

and a return type that is not void, and it could be an abstract class instead of an interface. I used

Runnable as a base just to get started.

The code in this Command object could perform arbitrary (and possibly malicious) actions

on the server, so the server should provide a SecurityManager and a policy file to control the

imported code.

All the code for this remote sending example is available in my GitHub site under

remotecommand. There are two subdirectories, server and client, with Maven and Eclipse files

and a README file showing how to

build and run each. If you’re not up to

speed on RMI, you might want to read

my Java RMI tutorial.

An Auction House Example
The Gang of Four book describes the Command object as holding a reference to the receiver; that is,

the object on which the work will be done. In a word processor, the receiver might be a Document

object. In an online auction house, it might be a Listing or Auction object. My demo implemen-

tation of the auction house scenario, called bidpay, is in my patterns-demos GitHub repository.

My scenario is so simplified from real life that you can bet it will forever be outbid on eBay, but

it’s developed enough to show some interesting aspects of the Command pattern.

In that implementation, Command is a top-level interface, and two implementing classes with

a Receiver field (the Auction object) are given: BidCommand and CancelCommand. Here is the former:

public class BidCommand implements Command {
 Auction receiver;
 double amount;
 Client bidder;
 public void execute() {
 receiver.bid(amount, bidder);
 }

One use of the Command pattern is packaging
Java code to tell a remote process what to do.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/IanDarwin/remotecommand
https://darwinsys.com/java/rmi
https://github.com/IanDarwin/patterns-demos/tree/master/src/main/java/behavioral/bidpay

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

19

//design patterns /

 // Obvious three-argument constructor not shown.
}

The intent is that the main program, BidPaySite, doesn’t need to know or care what the clients

are sending it. As long as the objects implement Command, it will be happy, and the Auction class

will receive what’s sent and process it.

public class BidPaySite {
 public void submitCommand(Command command) {
 // These could go into a queue to serialize them,
 // or you could make sure that all methods exposed
 // to the Command are thread-safe.
 // For now, just let the command do its thing:
 command.execute();
 }
 ...
}

There are times when you want multiple commands to execute as a single command (for exam-

ple, something like database transactions, or batching, or reducing network traffic on a remote

connection). You could create a CompositeCommand, which is created with an array or List of com-

mands. The execute method of a List implementation could be something like this:

class CompositeCommand implements Command {
 List<Command> commands;
 public void execute() {
 commands.forEach(Command::execute);
 }
 // Obvious one-argument constructor omitted
}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

20

//design patterns /

An Undo Stack Example
I’ve shown that one use of the Command pattern is packaging Java code to tell a remote process

what to do. A different use would be the undo stack in an editor or word processor. When you

request an operation such as “insert,” “move,” or “delete,” the editor program could create a

Command object representing the operation to be performed. This object would then be passed

to a “perform” method in the editor and, upon successful completion, it would be added to the

undo stack.

The stack could be implemented as a simple push-down stack of objects of the EditorCommand

type. When you request an undo operation, the top element is popped off the stack, and it is

passed to an “unperform” method in the editor, which removes the inserted text if the opera-

tion was an insertion, reinserts the deleted text if the operation was a deletion, and so on. In a

full implementation, you wouldn’t actually pop the undoable action and drop it after use; you

would keep it there for use by a redo command.

In adding base undo functionality into a simple line-editor called edj (also on my GitHub

site), I took a slightly simpler approach. To provide a degree of separation between the main

code and the “model” (here, the in-memory buffer-handling code), I built the editor from the

start with an interface called BufferPrims between the main code and the operations on the

buffer. These are primitive operations such as “add lines,” “delete lines,” and so on.

There are two versions of the code: BufferPrimsNoUndo and BufferPrimsWithUndo. In real life,

you probably don’t need these, so you might not even need the interface, but having them both

makes it easier to compare them to see all the changes. In the first version of the code, there

was no undo operation. So the first step was refactoring to include the undo capability in the

interface, and then have the no-undo implementation, shown next, just print a message:

public interface BufferPrims {
 void addLines(int start, List<String> newLines);
 void deleteLines(int start, int end);
 /** Print one or more lines */
 void printLines(int i, int j);

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/IanDarwin/edj
https://github.com/IanDarwin/edj

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

21

//design patterns /

 /** Undo the most recent operation */
 void undo();
}
public class BufferPrimsNoUndo extends AbstractBufferPrims {
 public void undo() {
 System.err.println("?Undo not written yet");
 }
 ...
}

Then, instead of writing code to decipher and reverse each command, I have the “with undo”

version of each low-level modify operation create and push an UndoableCommand object that con-

tains the exact code to undo the operation. For diagnostic purposes, I associate a String with

each Undoable, so the Undoable looks like this:

class UndoableCommand {
 public UndoableCommand(String name, Runnable r) {
 this.name = name;
 this.r = r;
 }
 String name;
 protected Runnable r;
}

The two constructor arguments provide all the information you could want, because the undo

actions can be simple (the undo of inserting a number of lines is just to delete the inserted range

of lines) or complex (the undo of deleting some lines must include all the text of the deleted

lines). For example, here is a slightly simplified look at addLines():

public void addLines(int startLnum, List<String> newLines) {

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

22

//design patterns /

 buffer.addAll(startLnum, newLines);
 current += newLines.size();
 pushUndo("add " + newLines.size() + " lines",
 () -> deleteLines(startLnum, startLnum + newLines.size()));
}

The pushUndo() method is simply a convenience routine that creates the UndoableCommand and

pushes it on the stack:

private void pushUndo(String name, Runnable r) {
 undoables.push(new UndoableCommand(name, r));
}

Now the undo implementation becomes trivial (error handling is omitted):

public void undo() {
 UndoableCommand undoable = undoables.pop();
 undoable.r.run();
}

Here is an example of the edj editor in action:

1. I run edj, telling it to start with the sample three-line file included with the source code.

2. The ,p command prints all the lines in memory; it’s short for 1,Np where N is the number of

lines in the buffer.

3. The 2d command deletes the second line.

4. I print the whole thing again to show that the deletion worked.

5. I invoke the newly added undo feature using the u command.

6. I print the buffer again to show that line 2 was miraculously restored by the u command.

7. I use the command q to quit.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

23

//design patterns /

$ edj 3lines.txt // 1
3L, 26C
,p // 2
Line One
Line Two
Line Three
2d // 3
,p // 4
Line One
Line Three
u // 5
,p // 6
Line One
Line Two
Line Three
q // 7
$

At this point, the undo operation in edj worked nicely. I had refactored the bottom layer made of

buffer primitives. But when I went to hook this code into the main line code of the editor, I was

reminded that that code is large and hoary. The main loop was something like this:

while ((line = in.readLine()) != null) {
 if (line.startsWith("e")) {
 // code to edit a new file
 } else if (line.startsWith("f") {
 // code to print or set filename
 } ...
 }
 // many more if/else statements, one per command
}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

24

//design patterns /

The book Refactoring to Patterns calls such code a conditional dispatcher, because it uses a con-

ditional statement (a long chain of if statements, but a switch is also common). There’s noth-

ing inherently wrong with writing code this way, but it can lead to really long methods that are

hard to read. You could extract each bit of code into a named method, but that leads to a lot of

method names. Ideally, for a couple of reasons, conditional dispatcher code is refactored to use

the Command pattern. One reason is if the code requires more flexibility. Another, as the book

says, is the following:

“Some conditional dispatchers become enormous and unwieldy as they evolve to handle

new requests or as their handler logic becomes ever more complex with new responsibilities.”

That is exactly a description of the line editor’s main loop: as more commands are

implemented, the size of the code in the if-else chain or switch statement will grow larger

without bound.

So I replaced the main loop with a table of Command implementations: an array, indexed

by the first letter of each command, is nice and simple. This approach also forced me to pro-

vide standardized parsing of the input lines, which up to now was done on demand in the vari-

ous sections. I introduced the ParsedLine class to hold the information about the input line and,

in fact, it is a form of Command object, because it describes what to do (but not how, and the

receiver is still implicitly this).

public class ParsedLine {
 char cmdLetter; // 'a' for append, 'd' for delete, etc.
 boolean startFound, commaFound, endFound;
 int startNum, endNum;
 String operands; // The rest of the line
 public String toString() {
 return String.format("%d,%d%c%s", startNum, endNum, cmdLetter,
 operands == null ? "" : (' ' + operands));
 }
}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

25

//design patterns /

The toString() method is used in this version for debugging, but in a GUI editor, it would appear

in the Undo menu item.

The executable Command objects—the actual code—are defined by the interface EditCommand:

public interface EditCommand {
 void execute(ParsedLine pl);
}

With that structure, I was able to trim the main loop to look like this (error checking omitted):

while ((line = in.readLine()) != null) {
 ParsedLine pl = LineParser.parse(line, buffHandler);
 EditCommand c = commands[pl.cmdLetter];
 c.execute(pl);
}

That is, I parse the line into a ParsedLine structure, use the command code from that to find the

executable EditCommand object, and invoke that. The array of EditCommand objects named commands

is initialized in a static block using assignments like this:

// d - delete lines
commands['d'] = pl -> {
 buffHandler.deleteLines(pl.startNum, pl.endNum);
};

In other words, each EditCommand is constructed as a lambda, passing the ParsedLine as a param-

eter to the execute method. As before, the receiver is implicitly the buffer handler.

I’ve described two uses of Command in my line editor. But most people don’t use line edi-

tors anymore; they use screen-based editors. And the Swing UI framework already has support

for undo operations. I have a simple notepad-style editor called TinyPad that uses this feature.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

26

//design patterns /

There isn’t room to dissect it here, but if you want to look at its code, check out this GitHub

repository. In the “before” version, a Document Listener was attached to the main (and only)

document, so that when the TextArea made any changes to the model, I’d be notified, and an

unsavedChanges boolean would be set to prompt for unsaved changes when exiting.

In the “after” version, I use Swing’s UndoableEditListener and UndoManager. To see how

all those pieces fit together, look at the code starting at // Set up Undo/Redo actions and the

Command objects UndoAction and RedoAction.

The GoF book says this: “A command can have a wide range of abilities. At one extreme,

it merely defines a binding between a receiver and the actions that carry out the request. At

the other extreme, it implements everything itself without delegating to a receiver at all…[in

between] are commands that have enough knowledge to find their receiver dynamically.”

In bidpay, the command has an explicit receiver and is little more than that binding. In edj,

there’s only one source file, so the document is available to all code and does not need to be

passed with the command. In TinyPad, the command—when coupled with the undo manager—

is smart enough to know its associated document internally.

Conclusion
The Command pattern isn’t just for undo stacks, of course. It’s good for remote execution (as

you saw in my first example) and for journaling in database-like systems and file systems to be

re-executed after a crash. A composite version can be used to implement database-style trans-

actions and batch processing.

The Command pattern is a good example of a general-purpose design pattern that has

many uses and, when applied properly, it will clarify your code and make it more readable and

maintainable. And that’s largely what this patterns business is all about. </article>

Ian Darwin (@Ian_Darwin) has done all kinds of things, from developing mainframe applications and desktop
publishing applications for UNIX and Windows, to a desktop database application in Java, to healthcare apps
in Java for Android. He’s the author of Java Cookbook and Android Cookbook (both from O’Reilly). He has also
written a few courses and taught many at Learning Tree International.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/IanDarwin/tinypad
https://github.com/IanDarwin/tinypad

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

27

//design patterns /

For the last several years, the Java Persistence API (JPA) specification (JSR 338) and its most

popular implementation, the Hibernate object relational mapping (ORM) framework, have

been widely used in Java software. They are used in Java EE, Jakarta EE, and Spring applications

to persist data in relational databases. So it’s no surprise that there are several well-established

patterns and design principles you can follow to build efficient and maintainable persistence

layers. In this article, I explain the reasons to use composition instead of inheritance, the repos-

itory and Data-Transfer Object (DTO) patterns, and the Open Session in View antipattern. These

are probably the most commonly used patterns and should be known by all experienced devel-

opers. To follow along, you’ll need familiarity with the concepts and terminology of database

access and JPA.

Let’s start with two structural patterns and principles that make your application easier to

understand and maintain: the Composition over Inheritance pattern and the Repository pattern.

Composition over Inheritance Pattern
As an experienced Java developer, you are probably aware of all the discussions about composi-

tion and inheritance. Over the years, the Java world reached the consensus that, in general, you

should prefer composition over inheritance for plain Java classes.

The consensus and all the arguments in favor of composition are also valid for JPA entity

classes. And in addition to that, there is another important reason you should prefer composi-

tion when you model your entities, which I’ll explain in a moment.

Design Patterns for JPA
and Hibernate
Best practices for an efficient and maintainable
persistence layer with JPA and Hibernate

THORBEN JANSSEN

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://jcp.org/en/jsr/detail?id=338

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

28

//design patterns /

Let’s start by noting that relational databases support only the concept of composition, but

not the concept of inheritance. Composition models a “has a” association as foreign key associ-

ations between one or more database tables. In your domain model, you can implement compo-

sition with an annotation that defines the type of association, such as @ManyToMany, @ManyToOne,

or @OneToMany and an attribute of the type List or Set or of the type of the associated entity. The

following code snippet shows an example of a simple many-to-one association between an

Employee and a Department entity:

@Entity
public class Employee {

 @ManyToOne
 @JoinColumn(name = "department_id")
 private Department department;

 ...
}

As you can see in this code, composition is not only well supported by relational databases but is

also easy to map in your domain model. This makes it a great choice.

Inheritance, on the other hand, models an “is a” association. This kind of association can’t

be modeled in a relational table model. That’s why the JPA specification defines a set of mapping

strategies that enable you to map an inheritance hierarchy to one or more relational database

tables. You can choose from the following:
■■ A mapped superclass strategy, which maps all subclasses as entities to their own, independent

database table without supporting polymorphic queries.
■■ A table-per-class strategy, which models all classes, including the superclass, as entities and

maps them to independent database tables. This strategy supports polymorphic queries.
■■ A joined strategy, which maps the specific attributes of each entity to its own database table

but does not include the attributes of the superclass. So, whenever you want to fetch one of

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.thoughts-on-java.org/complete-guide-inheritance-strategies-jpa-hibernate/
https://www.thoughts-on-java.org/complete-guide-inheritance-strategies-jpa-hibernate/

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

29

//design patterns /

the subentities, you need to join at least two tables: the one mapped by the superclass and the

one mapped by the subclass.
■■ A single-table strategy, which maps all entities to the same database table. This table has col-

umns for the attributes of all entities in the inheritance hierarchy.

You probably know from your own experience that bridging such a huge conceptual gap isn’t an

easy task and that it can’t be done perfectly.

Unfortunately, that’s also true for JPA’s inheritance mapping strategies. All four of them

have their advantages and disadvantages, but none of them provides an ideal solution. The

mapped superclass strategy doesn’t support polymorphic queries, which you would expect for a

full-featured mapping of an inheri-

tance hierarchy. The table-per-

class strategy supports polymorphic

queries, but these are very ineffi-

cient and most often too slow to be

used in complex applications. The

joined strategy always requires at

least one additional JOIN operation

to retrieve subentities. The single-

table strategy uses a simple and very efficient table model that doesn’t require any JOIN opera-

tions to retrieve an entity. But mapping all entities of the inheritance hierarchy to the same

database table also has a disadvantage. Some of the columns are mapped by only one subclass

and will be null for all records that are mapped to other classes of the inheritance hierarchy.

This strategy, therefore, does not permit not-null constraints on columns that are not mapped

by the superclass.

As you can see, composition does not introduce any additional mapping problems, but all

inheritance mapping strategies have their trade-offs. So, when you model your next entity, be

aware of these trade-offs and, if possible, avoid them by preferring composition over inheritance.

Some of the main reasons for the popularity
of the Open Session in View antipattern are
that it’s very easy to use and it doesn’t cause any problems
on small development systems or test systems.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

30

//design patterns /

Repository Pattern
The Repository pattern is a well-established pattern in enterprise applications. The repository

class contains all persistence-related code but no business logic. It provides methods to per-

sist, update, and remove an entity or methods that instantiate and execute specific queries. The

goal of this pattern is to separate your persistence-related code from your business code and to

improve the reusability of your persistence-related code. It also makes your business code easier

to read and write, because you can focus on solving business requirements instead of interacting

with a database.

If you’re using Spring Data or Apache DeltaSpike, you’re probably already familiar with the

Repository pattern. Both frameworks enable you to generate repositories easily for your entities.

They can generate the most common create, read, update, and delete (CRUD) operations and

custom queries based on interfaces and method signatures.

The following code snippet defines a repository by extending Spring Data’s CrudRepository

interface and adds a method to load Employee entities with a given last name. Spring Data’s

CrudRepository interface defines a set of methods for standard write operations, such as save,

delete, and read operations. Spring Data generates a class that implements this interface. So,

you don’t need to spend any additional effort to get the required functionality.

public interface EmployeeRepository
 extends CrudRepository <Employee, Long> {
 List<Employee> findByLastname(String lastname);
}

Apache’s DeltaSpike project provides you with similar functionality for Java EE and Jakarta EE

applications.

In addition to the previous structural patterns, there are also several query patterns and anti-

patterns that you should apply or avoid when you read your data from a relational database. I want

to focus on the two most popular ones: the Open Session in View antipattern and the DTO pattern.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

31

//design patterns /

Open Session in View Antipattern
Opening the Hibernate Session in your view layer is an antipattern that has been around for

years. Let’s start with a quick explanation. The general idea is simple: you open and close

Hibernate’s Session in the view layer instead of in the business layer of your application. That

enables you to trigger some business operations in your business layer and retrieve one or more

entities that you use to render the result in your view layer. During this rendering step, you

keep the Hibernate Session open so that Hibernate can load lazily initialized entity associations

without throwing a LazyInitializationException.

Some of the main reasons for the popularity of this antipattern are that it’s very easy to use

and it doesn’t cause any problems on small development systems or test systems. That ben-

efit disappears when you deploy the application to production, where the initialization of these

associations requires lots of additional queries. This problem is known as the n+1 select issue.

You can avoid these problems by using the DTO pattern, which I explain in the next section,

or by controlling the Hibernate Session

inside your business layer.

The latter solution requires you to

initialize all required associations inside

your business layer. That becomes neces-

sary because the view layer can no longer

access the Hibernate Session because it is

already closed when the view layer starts

the rendering operations. Because of this, each access to an uninitialized association throws a

LazyInitializationException. The best way to avoid this exception is to initialize lazily fetched

associations in your business layer. JPA and Hibernate offer several options for doing that. Let’s

look at the two most popular ones:
■■ The use of a JOIN FETCH clause in a JPQL query
■■ The definition of a query-independent @NamedEntityGraph

Initialize associations with a JOIN FETCH clause. A JOIN FETCH clause is the easiest option for

initializing an association and is my recommendation for all use cases. You can use the JOIN

Use cases that require a few attributes
of multiple, associated entities are also
common reasons to use data transfer objects.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

32

//design patterns /

FETCH clause within a Java Persistence Query Language (JPQL) query or a CriteriaQuery. It tells

your persistence provider to not only join the tables of the two associated entities within your

query but also to initialize the association.

The following code snippet shows a simple JPQL query that fetches Department entities with

their associated Employee entities:

TypedQuery<Department> q = em.createQuery(
 "SELECT d FROM Department d LEFT JOIN FETCH d.employees", Department.class);

When you execute this query and activate Hibernate’s SQL query logging, the following SQL

statement is written to your log file:

18:25:08,666 DEBUG [org.hibernate.SQL] -
 select
 department0_.id as id1_0_0_,
 employees1_.id as id1_1_1_,
 department0_.name as name2_0_0_,
 department0_.version as version3_0_0_,
 employees1_.department_id as departme5_1_1_,
 employees1_.firstName as firstNam2_1_1_,
 employees1_.lastName as lastName3_1_1_,
 employees1_.version as version4_1_1_,
 employees1_.department_id as departme5_1_0__,
 employees1_.id as id1_1_0__
 from
 Department department0_
 left outer join
 Employee employees1_
 on department0_.id=employees1_.department_id

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.thoughts-on-java.org/jpql/

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

33

//design patterns /

As you can see, Hibernate not only selects the database columns mapped by the Department

entity but also selects all columns mapped by the Employee entity within the same query. That’s

a lot faster than executing an additional query to initialize the association for each selected

Department entity.

Initialize associations with a NamedEntityGraph. If you load an entity via the find method

of your EntityManager or if you’re looking for a reusable way to define the fetching behavior,

you can use a NamedEntityGraph. It was introduced in JPA 2.1 and provides an annotation-based

approach to define a graph of entities that will be fetched from the database.

Here’s a simple example of a NamedEntityGraph that fetches all Employee entities associated

with a Department entity:

@NamedEntityGraph (
 name = "graph.DepartmentEmployee",
 attributeNodes = @NamedAttributeNode("employees")
)

After you have defined your NamedEntityGraph, you can use a query hint to tell your persistence

provider to use it as a fetchgraph with your query or your call of the EntityManager.find method.

Map<String, Object> hints = new HashMap<>();
hints.put("javax.persistence.fetchgraph",
 em.getEntityGraph("graph.DepartmentEmployee"));
Department d = em.find(Department.class, 1L, hints);

The generated SQL statement is similar to the one generated for the previously explained

JPQL query.

18:25:35,150 DEBUG [org.hibernate.SQL] -
 select
 department0_.id as id1_0_0_,

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

34

//design patterns /

 department0_.name as name2_0_0_,
 department0_.version as version3_0_0_,
 employees1_.department_id as departme5_1_1_,
 employees1_.id as id1_1_1_,
 employees1_.id as id1_1_2_,
 employees1_.department_id as departme5_1_2_,
 employees1_.firstName as firstNam2_1_2_,
 employees1_.lastName as lastName3_1_2_,
 employees1_.version as version4_1_2_
 from
 Department department0_
 left outer join
 Employee employees1_
 on department0_.id=employees1_.department_id
 where
 department0_.id=?

Data Transfer Object Pattern
DTO is another well-known and often used design pattern. It introduces one or more classes to

model a data structure employed by a specific use case or by the API of your application. A DTO

is a simple Java class that aims to transfer and provide access to its data in the most efficient

way. The following code snippet shows an example of the EmployeeWithDepartment DTO, which

stores the first name and last name of the employee and the name of the department:

public class EmployeeWithDepartment {

 private String firstName;
 private String lastName;
 private String department;

 public EmployeeWithDepartment(String firstName, String lastName,

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

35

//design patterns /

 String department) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.department = department;
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String getDepartment() {
 return department;
 }

 public void setDepartment(String department) {
 this.department = department;
 }
}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

36

//design patterns /

After you’ve defined your DTO, you can use it as a projection in your JPQL, Criteria, and native

queries. JPA supports constructor expressions in JPQL and CriteriaQuery queries, and you can

use @SqlResultSetMapping to map the result of your native queries for each retrieved record. In all

cases, your persistence provider selects the specified database columns and calls the construc-

tor referenced in the constructor expression for each record of the result set.

The following code snippet shows an example of a JPQL query using a constructor expres-

sion. It consists of the keyword new followed by the fully referenced class name of the DTO and

one or more entity attributes that define the parameters.

TypedQuery<EmployeeWithDepartment> q = em
 .createQuery(
 "SELECT new "
 + "org.thoughts.on.java.model.EmployeeWithDepartment("
 + " e.firstName, e.lastName, e.department.name) "
 + "FROM Employee e WHERE e.id = :id", EmployeeWithDepartment.class);
q.setParameter("id", 1L);
q.getSingleResult();

As you have seen, you can easily map each record of your query result to a DTO. But when should

you use DTOs?

Reasons to use DTOs. If you implement and deploy your presentation and business layers inde-

pendently of each other (for example, a Java microservice with a REST API and a JavaScript front

end), you’ll want to create a stable API that doesn’t leak any internal information or design

decisions. This enables you to adapt your business layer to new requirements or to improve the

existing implementation without changing the API.

It also enables you to exclude some entity attributes from your API—for example, internal

attributes that shouldn’t be visible to any user or huge lists of associated entities. Especially in

REST APIs, it’s better to provide a link to another REST endpoint that provides you the requested

resources instead of including them in the returned JSON document.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.thoughts-on-java.org/result-set-mapping-constructor-result-mappings/

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

37

//design patterns /

Use cases that require a few attributes of multiple, associated entities are also common rea-

sons to use DTOs. You can, of course, load the entities with all their associations, but that is not

as efficient as selecting only the attributes that you need for your use case.

Disadvantages of DTOs. The DTO design pattern also has a few disadvantages. DTOs introduce

a lot of redundancy when they are identical to your entities. That creates additional effort when-

ever you need to change or remove one of these attributes.

And as you probably know from your own experience, it’s difficult to decouple the API of

CRUD use cases from the persistence layer. Even so, DTOs enable you to change your entities

without changing your API. Real-world projects show that if you change your entities, you most

often also need to change your DTOs. If you find yourself in a situation in which your DTO is

identical to your entity and you’re always changing both of them, you should consider removing

the DTO and using the entity instead.

Conclusion
Most Spring and Jakarta EE applications use JPA to implement their persistence layer. It’s no

surprise that you can choose from several well-established design patterns that help you to

implement a robust and efficient persistence layer.

In this article, I discussed why you should prefer composition over inheritance, looked at

the repository and DTO patterns, and compared two options for initializing lazily fetched asso-

ciations in the business layer to avoid the Open Session in View antipattern. These are just a

few of the most commonly used patterns. If you want to learn more about design patterns for

JPA and Hibernate, you should also take a look at transactional patterns, such as the Session per

Request pattern or the Conversation pattern. </article>

Thorben Janssen (@thjanssen123) is an independent consultant, a trainer, and the author of Hibernate Tips:
More than 70 solutions to common Hibernate problems. He has been working with Java and Java EE for more
than 15 years and is a member of the CDI 2.0 expert group (JSR 365). He writes about JPA, Hibernate, and
other persistence-related topics on his blog, Thoughts on Java.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://docs.jboss.org/hibernate/orm/5.2/userguide/html_single/Hibernate_User_Guide.html#session-per-request
http://docs.jboss.org/hibernate/orm/5.2/userguide/html_single/Hibernate_User_Guide.html#session-per-request
https://www.thoughts-on-java.org/unsychronized-persistencecontext-implement-conversations-jpa/
https://www.thoughts-on-java.org/hibernate-tips-book/
https://www.thoughts-on-java.org/hibernate-tips-book/
https://www.thoughts-on-java.org/

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

38

//design patterns /

Explanations of traditional design patterns for the Java programming language often ignore

the performance context of the implementation in favor of the elegance or purity of the

pattern. This choice typically is made to help accelerate the rate of understanding, leaving

implementation details to the software engineer. Often, however, the implementation details

become problematic and performance requirements become demanding. This is especially

true with graphical rendering applications, which are extremely computationally intensive by

nature. To squeeze out every last drop of performance, design patterns must be significantly

modified to fit within the underlying implementation paradigm.

Building visualizations in Java using the JavaFX API greatly helps with this effort. JavaFX

is implemented as a hardware-accelerated scene graph with a rich high-level API to allow even

beginner Java developers to make attractive graphical interfaces quickly. Experienced Java

developers will find that JavaFX enables implementations that can visualize tens of thousands of

data points in near real time. These implementations remain elegantly simple yet performant—

even when many other languages and frameworks would fail to perform adequately.

My profession as a software engineer for space-mission analysis applications requires a

large amount of complex data computations and, typically, visualizing a lot of data. JavaFX is

a highly effective technology to leverage for achieving visually informative interfaces. Careful

implementation patterns that balance both elegance and performance are necessary to increase

the data processing rates while maintaining the smooth visual user experience. These special-

ized patterns are hard for beginner and intermediate developers to implement—not because the

end result is supremely complex, but simply because the patterns are not quite standard.

 Producer-Consumer
Implementations in JavaFX
Graphing high volumes of spiky data requires adaptations to the traditional pattern.

SEAN M. PHILLIPS

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

39

//design patterns /

This article examines an advanced JavaFX design pattern that addresses a scenario in which

a large set of data points will be received in dense bursts. I refer to this as a high-density data

pattern. The data must be plotted onscreen as fast as possible to be prepared for the next burst.

The data is generated dynamically, and the user must see the visualization evolve graphically.

An elegant solution for these requirements would be a variant of the classic producer-

consumer thread pattern utilizing Java’s ConcurrentLinkedQueue. However, JavaFX uses a single

rendering thread, and any time spent rendering screen updates will block the application. So,

the base design pattern must be modified to minimize the time that code spends rendering

onscreen in order to preserve the desired visual effect. This type of specialized pattern, in addi-

tion to having a pleasing visual aspect, can be applicable to certain server-side problems as well.

To demonstrate the high-density pattern, I must first construct a test setup that will both

generate the data and render it. The code samples that follow were compiled using Java SE 8u161.

The entire listing was developed using NetBeans 8.2 and is available as a separate download

with this issue. You will need basic knowledge of JavaFX to follow along.

Demonstration of the High-Density Pattern
I’ll use a JavaFX Application class for execution and a Canvas node to visualize the data, as

shown below:

//Set up simple scene and layout for demonstration
canvas = new Canvas(1000, 1000);
BorderPane bp = new BorderPane(canvas);
bp.setBackground(
 new Background(
 new BackgroundFill(
 Color.BLACK, CornerRadii.EMPTY, Insets.EMPTY)));
Scene scene = new Scene(bp, Color.BLACK);

primaryStage.setTitle("Producer Consumer Canvas Example");

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://bitbucket.org/javamagazine/magdownloads/wiki/2018%20Articles

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

40

//design patterns /

primaryStage.setScene(scene);
primaryStage.show();

To simplify the example and to facilitate the data generation and rendering, I define a few global

variables; for example:

int setSize = 100000;

Here, setSize is the total number of objects generated by the producer thread with each burst.

The consumer thread must receive each burst of randomly generated data points, process it

asynchronously, and then visualize the points. To stress the various patterns in this article, I

will increase the size of the burst by increasing the setSize variable. An interesting follow-up to

this discussion would be connecting this variable to a JavaFX GUI control. Doing so would allow

the user to dynamically increase or decrease the stress created by my implementations.

To add some complexity to the example, I create a custom Object called PointPojo, which has

member fields for the x and y data coordinates. The PointPojo() constructor is smart enough to

implement a few interesting geometric equations for each field to make plotting the data inter-

esting. The data set exists within a numeric range unrelated to screen pixels. So, to graph the

data on screen, I must transform the data to a numeric range compatible with the screen.

Data values will range from -1.0 to 1.0, with a total range of 2.0 in both the x and y axes. By

predefining the possible data ranges using the following variables, the coordinate transforma-

tions are simplified later:

double totalMinX = -1.0;
double totalRangeX = 2.0;
double totalMinY = -1.0;
double totalRangeY = 2.0;

To assist with debugging the initial development and to assess performance effectiveness,

I need a timing metric for the different methods of the application. The downloadable listing

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

41

//design patterns /

provides an example method, printTotalTime(), which calculates elapsed time at the nanosec-

ond level using System.nanoTime(). The output should appear like this:

Total elapsed time: Total ns: 128000, 0:s:0:ms:128:us:0:ns

High-precision timing is an important nuance of graphical programming where even one addi-

tional millisecond (ms) of time is considered expensive. I will time my methods with the goal of

obtaining single-digit ms times.

For this design pattern, I want to both produce and consume a high volume of data, so I

need the producer-consumer interaction to support multiple threads executing asynchronously.

There are several ways to facilitate the data exchange between the producer and consumer

threads. Many beginner and intermediate examples of this pattern rely on the Java synchronized

keyword to implement an explicit locking pattern. Typically, these examples suggest that you

create methods that encapsulate access to a shared collection such as a List or Queue. In these

basic examples, the encapsulation methods are guarded by the synchronized keyword. This

approach creates a blocking implementation that is thread-safe. In a high-performance situ-

ation, though, I need to minimize the time spent blocking and managing access to shared

resources between threads. Rather than implementing a blocking thread-safe approach, I rec-

ommend using java.util.concurrent.ConcurrentLinkedQueue, which is a highly efficient non-

blocking collection that is thread-safe.

To simulate a long-running service or perpetual source of incoming data, I created an

asynchronous producer daemon thread using the javafx.concurrent.Task interface. This task,

shown in the following code, is an infinite loop that periodically creates a set of objects that

contain data.

//Define producing task to create and add data points to queue
Task<Void> producerTask = new Task<Void>() {
 @Override
 protected Void call() throws Exception {
 int count = 0; //track how many times I have produced data

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

42

//design patterns /

 //Produce data asynchronously forever
 while (true) {
 //wait until the data has been processed
 if (!pointQueue.isEmpty()) {
 Thread.sleep(0, 100); //Spin the thread a bit
 } else {
 //The queue is ready to be filled again
 System.out.println("Producer Task run: " + count);
 for (int i = 0; i < setSize; i++) {
 PointPojo p = new PointPojo();
 pointQueue.add(p);
 }
 count++;
 }
 }
 }
};

To execute my rendering approach, I now create an asynchronous consumer daemon thread—

again, using the javafx.concurrent.Task interface. The task, shown in the following code, is an

infinite loop that attempts to render points placed in the pointQueue by the producer thread as

fast as possible.

//Start consumer task for rendering the data
Task<Void> consumerTask = new Task<Void>() {
 @Override
 protected Void call() throws Exception {
 resetCanvas(); //randomize current canvas fill color
 //track sets of points that are plotted
 int plotCount = 0;
 while (true) {

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

43

//design patterns /

 //drawing in batches reduces thread contention
 long startTime = System.nanoTime();
 int batchSize = drawNext_SimplePolling();
 //int batchSize = drawNext_ArrayTransforms();
 printTotalTime(startTime);
 System.out.println("Drew batch size of " + batchSize);
 plotCount += batchSize;
 //little thread spin helps it animate
 //less than 15 ms can freeze graphics
 Thread.sleep(25);
 //if the set is plotted let's change the colors
 if (plotCount >= setSize) {
 resetCanvas();
 plotCount = 0;
 System.out.println("Reset Canvas");
 }
 }
 }
};

In this code, there are two custom method calls:

drawNext_SimplePolling and drawNext_ArrayTransforms.

These methods can use different approaches to

process and render the data produced. I will start

with drawNext_SimplePolling and then switch to

drawNext_ArrayTransforms and compare the results.

Each execution of this Task produces a graphical view

similar to Figure 1, with each subsequent loop iteration

graphically drawing over the previous iteration. After

each data set is rendered, the fill color for the Canvas Figure 1: Sample output from the program

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

44

//design patterns /

is randomized, which helps visually indicate when each data set has been completely rendered.

Because the colors are random, sometimes subsequent renders will look similar and other times

not. An interesting upgrade to this example would be to connect the color scheme to a JavaFX

GUI control to allow the user to manipulate the colorations.

Recall the issue discussed earlier regarding transforming the data to screen space. Typically

with data visualization scenarios, the numeric range of the data will not be in a numeric range

that is workable for screen coordinates. For example, many data sets are normalized to a range

of less than 1.0 and often have negative values. To avoid using hardcoded scaling values, deter-

mine the minimum, maximum, and range of the data coordinates and transform them to the

screen (and, therefore, Canvas) coordinates using a method such as the following and the data

maxima and minima I defined earlier:

private double transformXToScreen(double x) {
 return (((x - totalMinX) * (canvas.getWidth() - radius))
 / totalRangeX) + radius;
}

For coordinate transformations of graphical renderings, I recommend simplifying your render-

ing code by separating the coordinate transformations into separate methods for both the x and

y axes. Placing these calculations in a separate method makes it easier to debug and profile the

application’s performance.

First Approach
In the consumer Task, I will investigate two small alternative patterns for retrieving and ren-

dering the data, each defined in separate methods. The first approach, which follows, is a simple

polling strategy that would look similar to a queue-based implementation:

 private int drawNext_SimplePolling() {
 int size = pointQueue.size();
 GraphicsContext g = canvas.getGraphicsContext2D();

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

45

//design patterns /

// Platform.runLater(() -> {
 while (!pointQueue.isEmpty()) {
 PointPojo point = pointQueue.poll();
 //coordinate transformation from data to canvas pixels
 double x = transformXToScreen(point.x);
 double y = transformYToScreen(point.y);
 //encourage the object to be garbage collected sooner
 point = null;
 g.fillOval(x, y, radius, radius);
 }
// });
 return size;
 }

This code features a commented call to Platform.runLater. For those unfamiliar with this fea-

ture, the JavaFX platform provides the runLater() interface as a blocking but thread-safe way

to run code and make changes to a JavaFX GUI. Any code placed inside a runLater block will be

executed in a Runnable thread. The Runnable will be executed at some point later by the JavaFX

platform, but we won’t have control over the timing. I will examine performance for both using

and not using runLater calls.

In this method, I continuously pull PointPojo objects from the concurrent queue using the

.poll() method until the queue is empty. After each .poll() call, I transform the data to screen

coordinates and render to the canvas using the fillOval(x, y, radius, radius) call. Without

using the runLater option, I achieve the following performance:

Total elapsed time: Total ns: 24242446, 0:s:24:ms:242:us:446:ns
Drew batch size of 64434

These numbers will fluctuate, of course, but they represent a median for time and points

processed within that time. However, at this pace and number of points, I quickly run into

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

46

//design patterns /

the problem with my rendering

requests, which are not thread-safe

by default. This code will quickly and

inevitably lock the JavaFX render-

ing thread due to its thread-unsafe

behavior. This can be somewhat mitigated by wrapping the while loop in the thread-safe

Platform.runLater() Runnable, which is commented out in the previous code. Doing so improves

the performance as follows:

Total elapsed time: Total ns: 497896, 0:s:0:ms:497:us:896:ns
Drew batch size of 56194

For a similar quantity of points, total execution time has shrunk from 24 ms to less than 1 ms.

Don’t be fooled though: this reduced time is deceptive because what I have done is handed the

workload to the JavaFX platform to manage and then execute at the next available rendering

pass. This approach takes much less time than the original approach without runLater(), but

now I am sending a large number of Runnables to the JavaFX platform for processing.

This solution scales well to the 10,000-point range. However, what if you want to add an

order of magnitude and make it 100,000 points? Given all the coordinate transform math and

other work being done, the time spent in each Runnable instance is too large. Further, given

the high frequency of data bursts, there are far too many Runnable instances being sent to the

JavaFX platform for processing. This pattern could potentially throw cryptic rendering excep-

tions, such as java.lang.InternalError: Unrecognized PGCanvas token: 64, when the underlying

JavaFX engine cannot keep up.

Second Approach
An alternative approach is a slight variation to the previous method. This implementation seeks

to do as little as possible in the blocking Platform.runLater() Runnable. The code for this is shown

toward the end of the following implementation of the drawNext_ArrayTransforms() method:

The important detail here is to perform the
coordinate transformations off the rendering thread.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

47

//design patterns /

private int drawNext_ArrayTransforms() {
 int size = pointQueue.size();
 GraphicsContext g = canvas.getGraphicsContext2D();
 //temporary arrays to hold the transformed canvas coordinates
 //Be sure to use primitive double type to minimize memory
 double[] xArray = new double[size];
 double[] yArray = new double[size];
 //loop across all available points by polling the concurrent queue
 for (int i = 0; i < size; i++) {
 PointPojo point = pointQueue.poll();
 //coordinate transformations stored in temporary arrays
 xArray[i] = transformXToScreen(point.x);
 yArray[i] = transformXToScreen(point.y);
 //encourage finalization of the object I polled
 point = null;
 }
 //Using arrays to hold transformed coordinates allows me
 //to use a runLater() thread while minimizing blocking time
 Platform.runLater(() -> {
 //The key is minimizing time spent in this blocking thread
 for (int i = 0; i < size; i++) {
 g.fillOval(xArray[i], yArray[i], radius, radius);
 }
 });
 return size;
}

You will notice that I use a for-loop to poll objects from the concurrent queue. I could have used

an iterator instead of the for-loop to process the available points. However, iterators take more

than an order of magnitude longer than a loop that calls poll(), because the JVM Hotspot has

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

48

//design patterns /

not yet “warmed up” to the iterator bytecode and so it is not JIT’ed but rather would be inter-

preting each command.

The important detail to mention here is that the code in this alternative method per-

forms the coordinate transformations off the rendering thread. Moving these time-expensive

calculations off the rendering thread minimizes the time spent blocking in the JavaFX ren-

dering thread. By minimizing the time spent in the JavaFX rendering thread, I reduce or

eliminate the chance that we will experience a threading exception. This approach can be

demonstrated by commenting out the drawNext_SimplePolling method and uncommenting the

drawNext_ArrayTransforms method featured in the Consumer thread code block and provided

with the downloadable listing. By transforming the coordinates outside the Platform.runLater

call, I remain asynchronous and thread-safe. Now the only work that must be done in the

blocking runLater is a simple loop of fillOval() calls, which perform the actual drawing onto

the Canvas object.

Making this change uses the slightly modified rendering pattern that minimizes the time

spent executing code in the JavaFX rendering thread. With this change made, and setting the

setSize variable to 100,000 points, I achieve the following performance:

Total elapsed time: Total ns: 3178141, 0:s:3:ms:178:us:141:ns
Drew batch size of 100000

I shifted the majority of the computation off the rendering thread (3 ms of work) and was able

to process and render all 100,000 points every single pass. This improvement means that the

pattern now does not risk freezing the rendering loop due to an unsafe thread operation. This

is a really amazing result, which maintains a fairly elegant solution with only a slight increase

in complexity. Note that this result was obtained using a nonparallel computing approach. The

consumer thread is not explicitly leveraging multiple cores if they are available. An interesting

extension would be to modify this pattern to explicitly perform the coordinate transformations

in parallel using all available cores.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

49

//design patterns /

This solution continues to scale up in a predictable manner. Adding another order of mag-

nitude, I am able to plot 1 million points without locking the rendering thread or having a ren-

dering exception thrown. The consumer thread on my machine tended to process points almost

as fast as the producer thread could add them to the ConcurrentLinkedQueue, creating a natural

pattern of rendering batches, as shown in Figure 2.

According to the console output, which was taken from the NetBeans IDE, typically 1 mil-

lion points could be processed and rendered in about 30 ms on my machine. This means about 30

frames of animation per second, which is faster than any human can discern. Excellent!

Conclusion
I have shown patterns for processing and visualizing a

large number of data points using JavaFX, including the

JavaFX Canvas class and the Platform.runLater() inter-

face. However, what I have really done is extend the

producer-consumer design pattern through a threaded

implementation that also takes into account the details

of a JavaFX visualization. Although it was specialized for

high performance, this example was reduced for the sake

of rapid understanding. However, you can use this JavaFX

design pattern as a kernel around which to build better

visual interfaces. </article>

Sean M. Phillips (@seanmiphillips) is a recently elected Java
Champion and a consulting software engineer with NASA and a.i.
solutions, an aerospace industry leader that provides solutions to
the USAF. His specialties are data analysis and visualization using
Java and JavaFX. He created the Deep Space Trajectory Explorer
software, which won a Duke’s Choice Award in 2017 and is used
for trajectory design to deep-space targets.Figure 2: Sample output from second approach

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

50

//design patterns /

Domain-driven design, as described in the book by Eric Evans, aims to construct software

models that represent an actual business domain as accurately as possible. It especially

focuses on the necessity of communicating with domain experts; sharing a common, ubiquitous

domain language; refining the understanding of the underlying domain model; and gradually

refactoring the model.

Domain-driven design (DDD) describes certain concepts, such as bounded contexts, aggre-

gates, and entities. Is it possible to implement the concepts with Java EE or the upcoming

Jakarta EE? Let’s examine these concepts and see how the programming model of modern

Java EE enables developers to craft proper domain models, starting with some basic definitions.

Bounded Contexts
Bounded contexts enclose the meanings and responsibilities of some part of the domain. A

specific domain entity contained in a bounded context could be a customer, for example. The

boundaries, responsibilities, and possible overlaps of bounded contexts are defined in a context

map of the system.

In the model of microservices, a bounded context would typically result in a single deploy-

able application.

Domain Entities
Entities represent the business domain entities. An important feature of domain entities is that they

are identifiable by their nature. For entities, it matters “which” entity object is being referred to.

Using Domain-Driven Design
with Java EE
How to map DDD artifacts to Java EE code

SEBASTIAN DASCHNER

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.informit.com/store/domain-driven-design-tackling-complexity-in-the-heart-9780321125217

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

51

//design patterns /

Let’s take an example of an instrument craft shop. A crafted instrument is an identifiable

entity, implemented as a plain Java class. In Java EE, it’s especially interesting to see how the

entities are persisted to the database via Java Persistence API (JPA).

The examples I’ll use are from a music-instrument craft shop application. In the following

code, the JPA annotation @Entity is used to map identifiable domain entities to the database. JPA

requires that the entity define an identifier, mapped by @Id.

@Entity
public class ElectricGuitar {

 @Id
 private long id;

 private Model model;

 public long getId() {
 return id;
 }

 public void setId(long id) {
 this.id = id;
 }

 public Model getModel() {
 return model;
 }

 public void setModel(Model model) {
 this.model = model;
 }
}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

52

//design patterns /

The instrument model is a value object (discussed next), which is mapped as an embedded

JPA property.

Value Objects
Value objects are business domain types that do not represent identifiable types but rather spe-

cific values. For these domain objects, it doesn’t matter which instance will be used inside the

business process. Examples of value objects are addresses, money values, or Java enums. Value

objects ideally are immutable and, therefore, reusable.

The model of an instrument is an example of a value object. Instrument models that are

defined by the same brand and name are identical and can be used interchangeably.

Value objects are mapped with JPA as embeddable objects—because entities are required

to define identifiers. The database table of the enclosing entity type (here, ElectricGuitar) will

inline all nontransient fields of the embeddable type (here, Model).

@Embeddable
public class Model {

 @Basic(optional = false)
 private String brand;

 @Basic(optional = false)
 private String name;

 protected Model() {
 // required by JPA
 }

 public Model(String brand, String name) {
 this.brand = brand;

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

53

//design patterns /

 this.name = name;
 }

 public String getBrand() {
 return brand;
 }

 public String getName() {
 return name;
 }

 @Override
 public boolean equals(Object o) {
 if (this == o) return true;
 if (o == null || getClass() != o.getClass()) return false;
 Model model = (Model) o;
 return Objects.equals(brand, model.brand)
 && Objects.equals(name, model.name);
 }

 @Override
 public int hashCode() {
 return Objects.hash(brand, name);
 }

 @Override
 public String toString() {
 return brand + ", " + name;
 }
}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

54

//design patterns /

Value objects typically implement equals and hashCode to ensure that identical instances are

recognized as such. You probably noticed that the model implementation is not completely

immutable. This is because of the requirement in the current JPA specification to define

no-argument constructors with at least protected visibility. Some mapping frameworks, such

as Hibernate, make it possible to further restrict the visibility by defining private no-argument

constructors. This step, however, is not fully compliant with the JPA standard and leads to

nonportable applications.

Services
Services are responsible for performing domain business logic that is not naturally part of an

entity or value object. They are entry points of the business use cases that manage and orches-

trate domain entities, and they hold together the separate steps of the business process.

In a Java EE world, services are implemented as managed beans—either Contexts and

Dependency Injection (CDI) beans or EJB beans. Services that serve as the entry point for busi-

ness use cases, sometimes called boundaries, are usually implemented as EJB beans. They

already comprise often-required cross-cutting concerns, such as transactions.

The InstrumentCraftShop service represents the use case boundary for creating new music

instruments:

@Stateless
public class InstrumentCraftShop {

 @Inject
 InstrumentMaker instrumentMaker;

 @PersistenceContext
 EntityManager entityManager;

 public ElectricGuitar craftInstrument() {
 ElectricGuitar instrument = instrumentMaker.build();

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

55

//design patterns /

 return entityManager.merge(instrument);
 }
}

The boundary services typically delegate complex domain logic to other services. These del-

egates, such as InstrumentMaker, are injected into the beans via dependency injection.

Aggregates
Aggregates represent more-complex domain entities that consist of multiple entities or value

objects. They are accessed and managed as a whole by a single root object to ensure integrity

and consistency.

In JPA, persistence operations are invoked on the root entity of an aggregate. The operations

cascade to the other entities of the aggregate.

In the following example, I examine a GuitarBody type, which will become part of an aggre-

gated electric guitar. The ElectricGuitar type represents the root entity of the aggregate. The

GuitarBody type is another entity in the instrument domain.

@Entity
public class GuitarBody {

 @Id
 private long id;

 @Enumerated(EnumType.STRING)
 @Basic(optional = false)
 private Material material;

 @Enumerated(EnumType.STRING)
 @Basic(optional = false)
 private Color color;

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

56

//design patterns /

 protected GuitarBody() {
 }

 public GuitarBody(Material material, Color color) {
 this.material = material;
 this.color = color;
 }

 public enum Material {
 MAPLE, MAHOGANY
 }

 public enum Color {
 BLACK, RED
 }
}

In this domain, electric guitars comprise a single guitar body (which, for reasons of traceability,

is identifiable).

The GuitarBody type is referenced in electric guitars and mapped appropriately via JPA. The

following shows an ElectricGuitar type that is enhanced for persistence:

@Entity
public class ElectricGuitar {

 // id, model, getters & setters from previous definition

 @OneToOne(cascade = CascadeType.ALL, optional = false)
 private GuitarBody body;

}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

57

//design patterns /

The cascading ALL relation causes all persistence operations that are invoked on the electric

guitar to be cascaded to the body and its potential relations, thus ensuring consistency of the

involved entities. ElectricGuitar represents an aggregate type.

Repositories
All the mentioned persistence operations need to be invoked somehow. In the same way,

domain entities need to be retrieved from a persistence provider in a consistent way.

DDD repositories are responsible for managing the persistence of domain entities. They

encapsulate this functionality in a self-sufficient and consistent way to keep the rest of the

domain model clear of persistence implementation details. Only entities that expose a unique

identity within the business domain are persisted and managed via repositories.

In Java EE and JPA, the provided EntityManager type fulfills this function already. It is used

to persist, retrieve, and manage domain objects that are defined as entities or object hierarchies

thereof. JPA’s constraint that entities are required to define an identifier property fits the idea

that DDD entities are identifiable within the business domain.

The entity manager is injected and used by services as follows:

@Stateless
public class InstrumentCraftShop {

 @Inject
 InstrumentMaker instrumentMaker;

 @PersistenceContext
 EntityManager entityManager;

 public ElectricGuitar craftInstrument() {
 ElectricGuitar instrument = instrumentMaker.build();
 return entityManager.merge(instrument);
 }

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

58

//design patterns /

 public ElectricGuitar retrieveInstrument(long identifier) {
 return entityManager.find(ElectricGuitar.class,
 identifier);
 }
}

Factories
Creating domain objects might involve more-complex logic than just calling a constructor. To

address this, DDD uses factories. The idea is to encapsulate the creation of complex objects into

separate methods or classes.

If the creation of domain objects is tightly coupled to existing objects in the domain, it

makes sense to define factories as methods of domain types. For the instrument craft shop

example, I’ll create some music instances based on instruments. I define a Music value object:

public class Music {

 private final String description;

 public Music(String description) {
 this.description = description;
 }

 public String getDescription() {
 return description;
 }

The creation of the value object is tightly bound to an instrument type and will, therefore, be

placed as a method of the domain object type. The same holds true if the creation requires

information about the actual instance that is contained in its properties.

public class ElectricGuitar {

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

59

//design patterns /

 // ...

 public Music play() {
 return new Music("Let's rock!");
 }
}

CDI producers are another way to implement factories that are less coupled to specific domain

objects. The CDI producer method or field exposes the instances, which are then injected into

managed beans. The CDI producer, therefore, represents a factory.

Domain Events
Domain events occur during the execution of the business logic. They comprise semantics that

are specific to the domain and usually emerge from the business use cases. Examples of domain

event types are InstrumentCrafted or ArticlePurchased.

Domain events are implemented as value objects that contain the information associ-

ated with the event. In Java, you usually create domain events as immutable plain old Java

objects. Because events already happened in the past, they shouldn’t change later on. The

ElectricGuitarCrafted type represents a domain event, implemented as regular Java object:

public class ElectricGuitarCrafted {

 private final Instant instant;
 private final Model model;

 public ElectricGuitarCrafted(Model model) {
 this.model = model;
 instant = Instant.now();
 }

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

60

//design patterns /

 // getters
}

Java EE ships with functionality that allows you to fire and observe events with loose coupling,

namely CDI events. CDI events are fired during the execution of the business logic:

@Stateless
public class InstrumentCraftShop {

 @Inject
 InstrumentMaker instrumentMaker;

 @Inject
 Event<ElectricGuitarCrafted> instrumentCreated;

 @PersistenceContext
 EntityManager entityManager;

 public ElectricGuitar craftInstrument() {
 ElectricGuitar instrument = instrumentMaker.build();

 instrumentCreated.fire(
 new ElectricGuitarCrafted(instrument.getModel()));

 return entityManager.merge(instrument);
 }

 // retrieveInstrument() ...
}

CDI’s Event<T> type is injected into managed beans and is used to fire any defined events, such

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

61

//design patterns /

as ElectricGuitarCrafted. The event will be handled in a CDI observer method, decoupled from

the rest of the business logic:

public class CraftedBrandRecorder {

 public void onCraftedInstrument(
 @Observes ElectricGuitarCrafted event) {
 Model model = event.getModel();
 System.out.println(
 "new instrument crafted for model: " + model);
 }
}

Since the introduction of Java EE 8, it has been possible to handle events asynchronously,

directly via CDI by using the Event#fireAsyncmethod and the @ObservesAsync annotation. The

event handling is then executed in a separate thread.

Conclusion
Modern Java EE makes it possible to develop enterprise applications with a focus on the busi-

ness logic. The technology doesn’t set many constraints on the domain logic, as it did in J2EE.

Domain classes don’t have to extend or implement specific Java EE types. The easiest approach

is to write the business logic in plain Java. The technical cross-cutting concerns are configured

via annotations.

The flexibility of the CDI and JPA specifications enable developers to focus on what adds

value to the application: the business logic. Note that Jakarta EE will be based on Java EE 8, so

the concepts and ideas behind it and demonstrated here will hold true in the future. </article>

Sebastian Daschner (@DaschnerS) is a Java Champion, consultant, author, and trainer. He wrote the book
Architecting Modern Java EE Applications, and he serves in the JAX-RS, JSON-P, and Config Expert groups.
He also collaborates on multiple open source projects and is a double JavaOne Rockstar.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

Register Now
Oracle Code is BACK! | 1-Day, Free Event

developer.oracle.com/code
Coming to a city near you:

• DevOps, Containers, Microservices, and APIs

• MySQL, NoSQL, Oracle, and Open Source Databases

• Development Tools and Low Code Platforms

• Open Source Technologies

• Machine Learning, AI, and Chatbots

Explore the Latest Developer Trends:

https://developer.oracle.com/code
https://developer.oracle.com/code

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

63

//java 10 /

Java 10 introduced a new shiny language feature called local variable type inference. Its prin-

cipal goal is to reduce boilerplate and enhance code readability. It enables you to replace the

type in a local variable declaration with the keyword var—the compiler fills in the appropriate

type from the variable initializer. For example, this code:

Map<User, List<String>> userChannels = new HashMap<>();

can be rewritten in Java 10 as:

var userChannels = new HashMap<User, List<String>>();

In addition to concision, this inference of the type provides several advantages, which we

explore in this article. Let’s look at a more involved example:

Path path = Paths.get("src/web.log");
try (Stream<String> lines = Files.lines(path)){
 long warningCount =
 lines.filter(line -> line.contains("WARNING"))
 .count();
 System.out.println(
 "Found " + warningCount + " warnings in the log file");
} catch (IOException e) {

var and Java 10’s Expanded
Type Inference
Best practices for using local variable type inference

RAOUL-GABRIEL URMA

RICHARD WARBURTON

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

64

//java 10 /

 e.printStackTrace();
}

can be refactored as follows in Java 10:

var path = Paths.get("src/web.log");
try (var lines = Files.lines(path)){
 var warningCount =
 lines.filter(line -> line.contains("WARNING"))
 .count();
 System.out.println(
 "Found " + warningCount + " warnings in the log file");
} catch (IOException e) {
 e.printStackTrace();
}

Each expression in this code still has a static type (that is, the declared type of a value),

as follows:
■■ The local variable path is of type Path.
■■ The variable lines is of type Stream<String>.
■■ The variable warningCount is of type long.

This means that assigning a value of a different type will fail. For example, the reassignment in

the following code will produce a compilation error:

var warningCount = 5;
warningCount = "6";

| Error:
| incompatible types: java.lang.String cannot be converted to int
| warningCount = "6"

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

65

//java 10 /

There’s some small cause for concern with type inference. For example, given classes Car and

Bike that subclass a class Vehicle and given the declaration var v = new Car(); do you declare v

to have type Car or Vehicle?

Here, a simple explanation that the missing type is the type of the initializer (Car, in this

case) is perfectly clear, and it can be backed up with a statement that var may not be used when

there’s no initializer.

This means, however, that a later assignment of v = new Bike(); stops working. In other

words, polymorphic code doesn’t play nice with var.

Where Can’t You Use Local Variable Type Inference?
Where does local type inference not work? For starters, it only works with local variables. You

cannot use it with fields or in method signatures. For example, the following is not possible:

public long process(var list) { }

You cannot use local variable declarations without an explicit initialization. This means you

cannot just use the var syntax to declare a variable without a value.

The following

var x;

will return a compiler error:

| Error:
| cannot infer type for local variable x
| (cannot use 'var' on variable without initializer)
| var x;
| ^----^

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

66

//java 10 /

You cannot initialize a var variable to null either. Indeed, it is not clear what the type should be,

because it’s probably intended for later initialization.

| Error:
| cannot infer type for local variable x
| (variable initializer is 'null')
| var x = null;
| ^-----------^

You also cannot use var with lambda expressions, because they require an explicit target type.

The following assignment will fail:

var x = () -> {}

and generate this error message:

| Error:
| cannot infer type for local variable x
| (lambda expression needs an explicit target-type)
| var x = () -> {};
| ^---------------^

Weirdly, though, the following assignment is valid, because there is an explicit initializer on the

right side:

var list = new ArrayList<>();

What is the static type of list? The type of the variable inferred is ArrayList<Object>, which

is not particularly useful because you don’t benefit from generics. So, you might want to avoid

writing this type of assignment.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

67

//java 10 /

Type Inference with Nondenotable Types
Java has several nondenotable types—that is, types that can exist within your program, but for

which there’s no way to explicitly write out the name for the types. A good example of a nonde-

notable type is an anonymous class—you can add fields and methods to it, but you won’t be able

to write the name of the anonymous class in your Java code. The diamond operator can’t be used

with anonymous classes. var is less restricted and can be used to support some non denotable

types—specifically, anonymous classes and intersection types.

The var keyword also enables you to use anonymous classes more effectively and refer to

types that would otherwise be impossible to describe. Normally, if you create an anonymous

class, you can add fields to it, but you can’t refer to those fields elsewhere because they need to

be assigned back to a named type.

For example, the following code won’t compile, because the type of productInfo is an Object

and you can’t access fields name and total of an Object:

Object productInfo = new Object() {
 String name = "Apple";
 int total = 30;
};

System.out.println(
 "name = " + productInfo.name + ", total = " + productInfo.total);

With var, you can overcome this limitation. When you assign an anonymous class to a var typed

local variable, the compiler infers the type of the anonymous class, rather than the type of its

parent. This means that you can refer to fields declared in the anonymous class, as illustrated in

the following code:

var productInfo = new Object() {
 String name = "Apple";
 int total = 30;

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

68

//java 10 /

};

System.out.println(
 "name = " + productInfo.name + ", total = " + productInfo.total);

This capability might initially seem like an interesting piece of language trivia that has very

little use, but it can be handy in certain circumstances. Sometimes, for example, you want to

return a few values as an intermediate result inside some method. Normally, you would need to

create and maintain a new class for this purpose just to use it inside a single method. For exam-

ple, inside the Collectors.averagingDouble() implementation, a small array of double values is

used for this purpose.

There’s a better approach that you can take with var: using an anonymous class as a store

for intermediate values.

Consider a case where you have some products, each of which has a name, a stock count,

and a per-item monetary worth (that is, a value) associated with it. You want to calculate the

total cost for each item—in other words, the count multiplied by the value. If that were the only

piece of information you had, you could just map each product to its cost, but to do something

useful with the result, you would also want the product’s name.

The following is an example of how you can do that with var in Java 10:

var products = List.of(
 new Product(10, 3, "Apple"),
 new Product(5, 2, "Banana"),
 new Product(17, 5, "Pear"));
var productInfos = products
 .stream()
 .map(product -> new Object() {
 String name = product.getName();
 int total = product.getStock() * product.getValue();
 })

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

69

//java 10 /

 .collect(toList());
productInfos.forEach(prod -> System.out.println(
 "name = " + prod.name + ", total = " + prod.total));

This code outputs the following:

name = Apple, total = 30
name = Banana, total = 10
name = Pear, total = 85

Not all nondenotable types can be used with var. Anonymous classes and intersection types are

supported. However, wildcard captured types are not inferred so as to avoid even more-cryptic

wildcard-related error messages being presented to Java programmers. The goal of supporting

nondenotable types was to retain as much information as possible in the inferred type and allow

people to insert local variables and refactor more code. The original intent of this feature wasn’t

to write code like the previous code, but simply to solve the problem of how var should deal with

nondenotable types. Whether the use of var with nondenotable types will become niche trivia or

commonplace is hard to predict.

Recommendations
Type inference definitely reduces the amount of time it takes to write Java code, but what about

readability? Developers spend much more time reading source code than writing it, so you

should definitely be optimizing for ease of reading over ease of writing. The extent to which

var improves readability is subjective: some developers will hate var and some will love it. You

should always focus on what helps your teammates read your code. So, if they are happy reading

code with var, you should use it; otherwise, you should not.

Sometimes, including explicit types can impede readability. For example, when looping

over the entrySet of a Map, you need to regurgitate the type parameters on the Map.Entry object.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

70

//java 10 /

The following code is an example of looping over a Map from a country name to the names of the

cities within the country:

Map<String, List<String>> countryToCity = new HashMap<>();
// ...
for (Map.Entry<String, List<String>> citiesInCountry :
 countryToCity.entrySet()) {
 List<String> cities = citiesInCountry.getValue();
 // ...
}

You could rewrite the code above with var and reduce the repetition and boilerplate, as follows:

var countryToCity = new HashMap<String, List<String>>();
// ...
for (var citiesInCountry : countryToCity.entrySet()) {
 var cities = citiesInCountry.getValue();
 // ...
}

There isn’t just a readability advantage here, though—there’s also an advantage in terms of

maintaining the code.

For example, if you take similar code that has explicit types and replace the String repre-

senting the name of the city with a City class that could contain additional information about

the city, you need to rewrite all the code that is relying on that specific type being exposed.

Map<String, List<City>> countryToCity = new HashMap<>();
// ...
for (Map.Entry<String, List<City>> citiesInCountry :
 countryToCity.entrySet()) {

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

71

//java 10 /

 List<City> cities = citiesInCountry.getValue();
 // ...
}

However, if you had used the var keyword and type inference, you would need to alter the first

line of code, as follows, but you would not need to alter the other lines:

var countryToCity = new HashMap<String, List<City>>();
// ...
for (var citiesInCountry : countryToCity.entrySet()) {
 var cities = citiesInCountry.getValue();
 // ...
}

This example illustrates a key principle to follow when using var: Don’t optimize for ease of

writing or for ease of reading; optimize for ease of maintenance. If you optimize for ease of

maintenance, that should balance readability with the amount of code that needs to be changed

as your program evolves over time.

It would be foolhardy to claim that adding type inference is always a positive for your

code—sometimes having explicit types in code can help readability. This is particularly the

case when the type isn’t obvious from the expression that generates it. In the following code, it

would be better to have explicit types, because you don’t know from just reading the getCities()

method call what it is returning:

Map<String, List<City>> countryToCity = getCities();
var countryToCity = getCities();

This discussion leads to one final recommendation when it comes to readability and var: vari-

able names matter! Because var removes the ability of the reader of your code to guess at the

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

72

//java 10 /

code’s intent simply from the type of the variable, there is more of a burden on you as the

developer to provide good names for local variables. In theory, that’s something Java develop-

ers should already be doing. In practice, though, many readability problems in Java code aren’t

related to new language features, but rather to existing practices, such as variable naming.

Type Inference and IDEs
One commonly used feature that many IDEs provide is the ability to extract a local variable, and

in doing so they will infer the correct type of that variable and write it out for you. That fea-

ture has some overlap with the var keyword in Java 10. Both the IDE feature and var remove the

need to write out the type explicitly,

but they otherwise have different

trade-offs.

The extract-local feature gen-

erates a local variable with the full,

explicit type written out in your

code, whereas var removes the need

to have the explicit type written out in your code. So although they both have similar value in

terms of simplifying the writing of code, var alters readability in a way that the extract-local

feature does not. As mentioned before, var is mostly a readability benefit, but sometimes it can

be a hindrance.

Java Compared to Other Programming Languages
Java isn’t the only or even the first language to include type inference for variables. In fact, the

type inference introduced in Java 10 with var is a very limited and restricted form of type infer-

ence. It keeps the approach simple and also ensures that compiler errors related to var declara-

tions are restricted to a single statement, because the var inference algorithm looks only at the

expression being assigned to the variable in order to deduce the type.

In Java 11, to be released a mere six months
after Java 10, the var keyword will be allowed within
the parameters of a lambda expression.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

73

//java 10 /

Conclusion
var is a helpful addition to the Java language in terms of productivity and readability, but the fun

doesn’t stop there. Future versions of Java will continue the steady evolution and modernization

of the language. For example, in Java 11, to be released a mere six months after Java 10 and with

long-term support, the var keyword will be allowed within the parameters of a lambda expres-

sion. This is useful because it allows you to have a formal parameter whose type is inferred, but

onto which you can still add Java annotations, for example the following:

(@Nonnull var x, var y) -> x.process(y)

Other ideas that have been implemented in functional programming languages and are ready

for the mainstream will be working their way into future Java versions—for example, pattern

matching and value types. This doesn’t mean that these improvements will stop Java from

being the Java that developers know and love. It’ll just be more flexible, readable, and concise

than ever before. </article>

Raoul-Gabriel Urma (@raoulUK) is the CEO and cofounder of Cambridge Spark, a leading learning com-
munity for data scientists and developers in the UK. He is also chairman and cofounder of Cambridge Coding
Academy, a community of young coders and students. Urma is coauthor of the best-selling programming
book Java 8 in Action (Manning Publications, 2015). He holds a PhD in computer science from the University
of Cambridge.

Richard Warburton (@richardwarburto) is a software engineer, teacher, author, and Java Champion. He is
the author of the best-selling Java 8 Lambdas (O’Reilly Media, 2014) and helps developers learn via Iteratr
Learning and at Pluralsight. Warburton has delivered hundreds of talks and training courses. He holds a PhD
from the University of Warwick.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

74

//inside the jvm /

One of the optimizations made possible by escape analysis (EA)—an analysis done by the

compiler, which we discussed in detail in our previous article—is the removal of locks.

This removal can take place when it can be proved that the object on which a lock is acquired

does not escape the local scope. Such a situation means that the object can be accessed only by

a single thread, so there is no need to exclude other threads from accessing it. Therefore, the

lock can be removed. This is known as lock elision, which is the topic of this article in our long-

running series on the mechanics of JVM operations.

An example of lock elision can be demonstrated using a well-known thread-safe class that

uses synchronized methods, java.lang.StringBuffer. StringBuffer was included in Java 1.0 to

allow more efficient concatenation of immutable string objects. Each of its append() methods is

synchronized to enable the string under construction to be created safely when multiple threads

are writing to the same StringBuffer object.

Many programs do not need this thread safety, so in Java 5 the java.lang.StringBuilder

class was introduced to provide an unsynchronized alternative to StringBuffer. Both classes

inherit from the package-private java.lang.AbstractStringBuilder and have very similar imple-

mentations of append().

The main difference is the synchronization behavior of StringBuffer:

@Override
public synchronized StringBuffer append(String str) {
 toStringCache = null;
 super.append(str);

Lock Elision in the JVM
How the compiler’s escape analysis removes unnecessary locks

BEN EVANS

CHRIS NEWLAND

BEN EVANS PHOTOGRAPH BY
JOHN BLYTHE, CHRIS NEWLAND
PHOTOGRAPH BY DAVID NEWLAND

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.javamagazine.mozaicreader.com/MarApr2018#&pageSet=73&page=0

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

75

//inside the jvm /

 return this;
}

Compare that to the StringBuilder form:

@Override
public StringBuilder append(String str) {
 super.append(str);
 return this;
}

A thread calling an append() method on a StringBuffer must acquire that object’s intrinsic

lock before entering the method, and it must release the lock upon exit. StringBuilder does

not need to do this work, so the class should outperform a StringBuffer—at least based on

first appearances.

After escape analysis was added to the HotSpot JVM, calls to synchronized methods on

objects such as StringBuffer can have their locks removed automatically. This is possible only

on objects that are created within the scope of a method and that can be shown not to escape.

Timing of Java operations is universally performed using the Java Microbenchmark Harness

(JMH). Let’s look at a JMH benchmark to see how modern JVMs can narrow the performance

difference by eliding the StringBuffer locks when it can be proven that only a single thread can

access the StringBuffer object:

@State(Scope.Thread)
@BenchmarkMode(Mode.Throughput)
@OutputTimeUnit(TimeUnit.SECONDS)
public class StringBufferLockElision {

 private static final String[] pieces =
 new String[]{"a", "b", "c", "d", "e"};

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oracle.com/technetwork/articles/java/architect-benchmarking-2266277.html

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

76

//inside the jvm /

 @Benchmark
 public String concatWithStringBuffer() {
 final StringBuffer buffer = new StringBuffer();

 for (String piece : pieces) {
 buffer.append(piece);
 }

 return buffer.toString();
 }

 @Benchmark
 public String concatWithStringBuilder() {
 StringBuilder builder = new StringBuilder();

 for (String piece : pieces) {
 builder.append(piece);
 }

 return builder.toString();
 }
}

Lock elision has been a very successful optimization and is enabled by default as of Java 8, but

it can be disabled using the -XX:-DoEscapeAnalysis VM switch, so that you can see the impact of

the optimization. With escape analysis enabled (the default), the performance of StringBuffer

and StringBuilder is almost identical. (The results are reported in operations per second. A

higher score indicates better performance.)

concatWithStringBuffer 16280252.994 ± 17K ops/s
concatWithStringBuilder 16479504.748 ± 34K ops/s

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

77

//inside the jvm /

As shown below, without escape analysis, the StringBuffer code is around 15% slower—and this

difference is due solely to the cost of locking on the append() method calls.

.concatWithStringBuffer 12385164.076 ± 58K ops/s

.concatWithStringBuilder 14570548.284 ± 55K ops/s

Lock Coarsening
The HotSpot JVM contains additional optimizations for locks that are not technically part of the

escape analysis subsystem but that also use analysis of scope to improve intrinsic lock perfor-

mance. When consecutive locks on the same object are encountered, the HotSpot JVM will check

whether it is possible to enlarge the locked region by combining the locked regions into a single,

larger region. This aggregation can eliminate some of the locking and unlocking overhead and

is called lock coarsening.

When the HotSpot JVM encounters a lock, it will search backward to try to find an unlock

operation on the same object. If a match is found, it will consider whether the two lock regions

can be joined and the paired unlock/lock actions removed.

Let’s look at a program with consecutive regions that are locked by the same object’s monitor:

public class CoarsenedLocks {
 public static void main(String[] args) {
 new CoarsenedLocks();
 }

 private java.util.Random random = new java.util.Random();
 private static final Object lock = new Object();

 public CoarsenedLocks()
 {
 long sum = 0;

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

78

//inside the jvm /

 for (int i = 0; i < 1_000_000; i++) {
 synchronized (lock) {
 sum += random.nextInt();
 }

 synchronized (lock) {
 sum -= random.nextInt();
 }
 }
 System.out.println(sum);
 }
}

The bytecode for this method is rather verbose and looks like this:

public optjava.CoarsenedLocks();
 descriptor: ()V
 flags: ACC_PUBLIC
 Code:
 stack=5, locals=5, args_size=1
 0: aload_0
 1: invokespecial #3 // Method java/lang/Object."<init>":()V
 4: aload_0
 5: lconst_0
 6: putfield #4 // Field sum:J
 9: iconst_0
 10: istore_1
 11: iload_1
 12: ldc #5 // int 1000000
 14: if_icmpge 73
 17: aload_0

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

79

//inside the jvm /

 18: dup
 19: astore_2
 20: monitorenter
 21: aload_0
 22: dup
 23: getfield #4 // Field sum:J
 26: lconst_1
 27: ladd
 28: putfield #4 // Field sum:J
 31: aload_2
 32: monitorexit
 33: goto 41
 36: astore_3
 37: aload_2
 38: monitorexit
 39: aload_3
 40: athrow
 41: aload_0
 42: dup
 43: astore_2
 44: monitorenter
 45: aload_0
 46: dup
 47: getfield #4 // Field sum:J
 50: lconst_1
 51: lsub
 52: putfield #4 // Field sum:J
 55: aload_2
 56: monitorexit
 57: goto 67
 60: astore 4

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

80

//inside the jvm /

 62: aload_2
 63: monitorexit
 64: aload 4
 66: athrow
 67: iinc 1, 1
 70: goto 11
 // Field java/lang/System.out:Ljava/io/PrintStream;
 73: getstatic #6
 76: aload_0
 77: getfield #4 // Field sum:J
 // Method java/io/PrintStream.println:(J)V
 80: invokevirtual #7
 83: return

[The comment lines near the end of the listing each refer to the succeeding line of output. —Ed.]

Recall that the relevant bytecodes for operating on intrinsic locks are monitorenter and

monitorexit.

In the bytecode, for each monitorenter instruction, there are two monitorexit instructions,

each taking a different execution path. This is because the first monitorexit releases the monitor

upon a normal exit from the locked region and the second monitorexit releases the lock upon an

abnormal exit from the region.

This set of bytecodes might look odd, because in the source code the only operation per-

formed within the synchronized region is an increment to a primitive int variable. This action

cannot throw an exception, but there is a possibility of an abnormal termination of the locked

region. (That can occur if the thread receives an InterruptedException if, for instance, the stop()

method were invoked on the executing thread. For this reason, there is a second path to ensure

the monitor is always released, even in the event that an unchecked exception is thrown. You

can read more about this in the JVM specification.) The lock coarsening optimization is enabled

by default but can be disabled using the VM switch -XX:-EliminateLocks.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

81

//inside the jvm /

Nested Locks
One synchronized block can be nested inside another, and it is perfectly possible for both blocks

to synchronize on the same object monitor. The HotSpot JVM is able to detect this case, which

we refer to as nested locks, and it can remove the inner locks. This removal is possible because a

thread will acquire the lock as it enters the outer block, and so will definitely still be holding it

when the thread tries to enter the inner block.

At the time of writing, the nested lock elimination in Java 8 appears to work only with locks

that are declared as static final or with locks on this.

The following example shows an inner lock that is eliminated when nested synchronized

blocks are encountered:

public class NestedLocks {
 public static void main(String[] args) {
 new NestedLocks();
 }

 private java.util.Random random = new java.util.Random();

 private static final Object lock = new Object();

 public NestedLocks()
 {
 long sum = 0;

 for (int i = 0; i < 1_000_000; i++) {
 synchronized (lock) {
 sum += random.nextInt();

 synchronized (lock) {
 sum -= random.nextInt();
 }

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

82

//inside the jvm /

 }
 }
 System.out.println(sum);
 }
}

The HotSpot JVM is able to eliminate the inner nested lock, so the code will effectively

become this:

for (int i = 0; i < 1_000_000; i++) {
 synchronized(lock) {
 sum += random.nextInt();

 sum -= random.nextInt();
 }
}

The nested lock optimization is enabled by default but can be disabled using the VM switch

-XX:-EliminateNestedLocks.

Arrays and Escape Analysis
Escape analysis, like other optimizations, is subject to trade-offs because every allocation not

made on the heap must happen somewhere on the stack or in CPU registers, both of which are

relatively scarce resources. One limitation in the HotSpot JVM is that by default, arrays of more

than 64 elements will not benefit from escape analysis. This size is controlled by the VM switch

-XX:EliminateAllocationArraySizeLimit=n, where n is the number of elements.

Consider a hot code path that contains a temporary array allocation to read from a buffer. If

the array does not escape the method scope, escape analysis should prevent the heap allocation.

However, if the array length is more than 64 elements (even if they are not all used), it must be

stored on the heap. This restores the heap allocation and defeats escape analysis for the array.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

83

//inside the jvm /

In the following JMH benchmark, the test methods allocate nonescaping arrays of 63, 64,

and 65 elements. (The array size of 63 is tested to ensure that 64 is not faster than 65 simply

because of memory alignment.)

In each test, only the first two array elements, a[0] and a[1], are used. Note, however, that

the limitation on escape analysis is dependent only on the array length, not on how many ele-

ments of the array are actually used.

@State(Scope.Thread)
@BenchmarkMode(Mode.Throughput)
@OutputTimeUnit(TimeUnit.SECONDS)
public class EscapeTestArraySize {

 private java.util.Random random = new java.util.Random();

 @Benchmark
 public long arraySize63() {
 int[] a = new int[63];

 a[0] = random.nextInt();
 a[1] = random.nextInt();

 return a[0] + a[1];
 }

 @Benchmark
 public long arraySize64() {
 int[] a = new int[64];

 a[0] = random.nextInt();
 a[1] = random.nextInt();

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

84

//inside the jvm /

 return a[0] + a[1];
 }

 @Benchmark
 public long arraySize65() {
 int[] a = new int[65];

 a[0] = random.nextInt();
 a[1] = random.nextInt();

 return a[0] + a[1];
 }
}

The results show a large drop in performance once the array allocation cannot benefit from the

escape analysis optimization. (Once again, the scores show operations per second, so higher

scores indicate better performance.)

EscapeTestArraySize.arraySize63 49824186.696 ± 9K ops/s
EscapeTestArraySize.arraySize64 49815447.849 ± 2K ops/s
EscapeTestArraySize.arraySize65 21115003.388 ± 34K ops/s

If you find that you need to allocate a larger array in hot code, you can instruct the VM to allow

larger arrays to be optimized. Running the benchmark again with a limit of 65 elements shows

that performance is restored.

Using this command line:

java -XX:EliminateAllocationArraySizeLimit=65 -jar target/benchmarks.jar

You get the following results:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

85

//inside the jvm /

EscapeTestArraySize.arraySize63 49814492.787 ± 2K ops/s
EscapeTestArraySize.arraySize64 49815595.566 ± 6K ops/s
EscapeTestArraySize.arraySize65 49818143.279 ± 2K ops/s

Notice the parity in the results.

Conclusion
This article and the previous one on escape analysis show some of the magic that occurs behind

the scenes in the HotSpot JVM. They also convey some of the complexity of the operations. Each

major release of Java tends to add new features to the JVM.

In fact, Oracle is investing in a new generation of compiler technology. Known as Graal, it is

a just-in-time (JIT) compiler that is pluggable, user-extensible, and written in Java. It is a major

effort within Project Metropolis, which aims to build as much of a runtime in Java as is practical.

The Graal compiler is an experimental addition to Java 10, as described in JEP 317. The prin-

cipal aim is to provide a way for developers and specialist platform owners to write their own JIT

compilers to meet their specific needs. Graal is a very amenable environment in which to intro-

duce and prototype optimization techniques.

This article and its predecessor described scope analysis that enables a variety of optimiza-

tion techniques. First among these is allocation elimination (that is, scalar replacement), but

related locking techniques were discussed as well. These are just some examples of JIT compila-

tion techniques that are present in the mature C2 compiler in the HotSpot JVM. Upcoming articles

will examine other techniques that the HotSpot JVM uses to improve code performance. </article>

Ben Evans (@kittylyst) is a Java Champion, a tech fellow and founder at jClarity, an organizer for the London
Java Community (LJC), and a member of the Java SE/EE Executive Committee.

Chris Newland (@chriswhocodes) is a Java Champion. He invented and still leads developers on the JITWatch
project, an open source log analyzer to visualize and inspect just-in-time compilation decisions made by the
HotSpot JVM.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/oracle/graal
http://openjdk.java.net/jeps/317

86

//user groups /

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

PERU JUG
The Peru Java User Group, PERUJUG,
was founded in March 2006. Since
then, the community has been orga-
nizing monthly meetups as well as
an annual conference called Java Day
Peru, in which Java Champions, JUG
leaders, and developers from around
the world participate.

Recent Java Day Peru topics, for
example, included “Agile, DevOps,
Cloud,” with Eddú Meléndez of Peru;

“Java EE with Apache TomEE,” with César Hernández from Guatemala;
“JMoordb NoSQL,” with Aristides Villarreal from Panama; “Front End
for Back-End Developers,” with José Díaz from Peru; and “API Design,”
with Jorge Vargas of Mexico. Thanks to the collaboration of different
JUGs and the promising initiative JEspañol (Java developers who speak
Spanish) that made the event possible, Java Day Peru was awarded a
Duke’s Choice award in 2017.

The current conference takes place in Lima, Peru, on June 30 at the
San Marcos University (UNMSM) and includes trending topics such as
microservices, serverless, DevOps, and microprofile.

Today, more than 1,500 JUG members participate in Peru’s Java
community. For communication outside meetings, PERUJUG uses
Facebook, Twitter (@perujug), Slack.perujug.org, and meetups to
spread news and knowledge. Please contact PERUJUG in advance if
you are a member of another JUG, a Java Champion, or a technology
evangelist coming to Peru, so that the group can host you and arrange
some conversations.

Join the World’s
Largest Developer

Community

 Download the latest software, tools,
and developer templates

Get exclusive access to hands-on
trainings and workshops

Grow your network with the Developer
Champion and Oracle ACE Programs

Publish your technical articles—and
get paid to share your expertise

ORACLE DEVELOPER COMMUNITY developer.oracle.com
Membership Is Free | Follow Us on Social:

@OracleDevs facebook.com/OracleDevs

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
http://joedayz.pe/javadayperu/2018
https://www.facebook.com/groups/perujug/about/
https://twitter.com/perujug
https://www.meetup.com/Peru-Java-User-Group/
http://developer.oracle.com/
http://www.twitter.com/OracleDevs
http://facebook.com/OracleDevs

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

87

//fix this /

If you’re a regular reader of this quiz, you know that these questions simulate the level of dif-

ficulty of two different certification tests. Those marked “intermediate” correspond to ques-

tions from the Oracle Certified Associate exam, which contains questions for a preliminary level

of certification. Questions marked “advanced” come from the 1Z0-809 Programmer II exam,

which is the certification test for developers who have been certified at a basic level of Java 8

programming knowledge and now are looking to demonstrate more-advanced expertise.

These questions rely on Java 8. We’ll begin covering later releases of Java in future columns,

of course, and we will make that transition quite clear when it occurs.

Question 1 (intermediate). The objective is to import other Java packages to make them acces-

sible in your code. Given the following code:

package sys;
// line n1
class Computer {
 public void handleOutput(Printer p) {
 printJob("Computer");
 }
}

And given this code:

package sys;
class Printer {

Quiz Yourself
More intermediate and advanced test questions

SIMON ROBERTS

MIKALAI ZAIKIN

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-808
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-809

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

88

//fix this /

 public static void printJob(String s) {
 System.out.println(s);
 }
}

Which is true?

A. The code compiles and executes without error as written.

B. The code compiles and executes without error if the following is added at line n1:
import static sys.Printer.printJob;

C. The code compiles and executes without error if the following is added at line n1:
import sys.Printer;

D. The code compiles and executes without error if the following is added at line n1:
import Printer.printJob;

E. The code compiles and executes without error if the following is added at line n1:
import sys.Printer.printJob;

Question 2 (intermediate). Given these classes:
public class Base {
 Base doStuff(int val){ return null; }
}

class Sub extends Base {
 @Override
 private Sub doStuff(int val) // line n1
 { return null; }
}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

89

//fix this /

Which of the following are true? Choose two.

A. The classes compile successfully as shown.

B. The classes would compile successfully if the method declaration at line 1 were changed

to this:
public Base doStuff(int val) throws RuntimeException

C. The classes would compile successfully if the method declaration at line 1 were changed

to this:
public Sub doStuff(int val)

D. The classes would compile successfully if the method declaration at line 1 were changed

to this:
Base doStuff(int val) throws Exception

E. The classes would compile successfully if the method declaration at line 1 were changed

to this:
private Base doStuff(int val)

Question 3 (advanced). Given this code:
abstract class Stuff {
 int x;
 public Stuff(int x) { this.x = x; }
 public Stuff() { this(18); }
 public abstract void doStuff();
}

Which of the following snippets (taken individually) compiles? Choose two.

A.
(new Stuff(9) {
 public void doStuff() {

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

90

//fix this /

 System.out.println("x is " + x);
}}).doStuff();

B.
(new Stuff() {
 public void doStuff() {
 System.out.println("x is " + x);
}}).doStuff();

C.
(new Stuff() {
 ()->System.out.println("x is " + x);
}).doStuff();

D.
Stuff s = ()->System.out.println("doStuff!");

Question 4 (advanced). The objective here is to use method references with streams. Given the

following code:
class Converter {
 Integer inc(Integer i) {
 return i + 1;
 }
}

And given this code:
List<Integer> ls = Arrays.asList(1,2,3);

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

91

//fix this /

Which code fragment will create a list of incremented integers?
A.

ls.stream().map(Converter::new::inc).collect(Collectors.toList());

B.
Converter c = new Converter();
ls.stream().map(c::inc).collect(Collectors.toList());

C.
ls.stream().map(Converter::inc).collect(Collectors.toList());

D.
ls.stream().map(i -> Converter::inc(i)).collect(Collectors.toList());

Answer 1. The correct answer is option B. This question investigates Java’s static import feature.

This feature, which was introduced in Java 1.5, allows static elements from one class to be used

by their unqualified, or “short,” names in another source file. For example, given an import of

the following form,

 import static java.lang.Math.PI;

a source file can simply refer to PI instead of, potentially repetitively, referring to Math.PI.

This feature can be particularly useful when the static elements that are being imported

have a meaning that is very well understood in the scope of the program, such that the mean-

ing doesn’t benefit from the scoping effect of using a class prefix. Clearly, referring to Math.PI is

Answers

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

92

//fix this /

cumbersome when compared with simply writing PI, and the longer form doesn’t improve read-

ability in any way; no one will be unsure what PI means. Of course, like any syntax feature that

shortens code, it should be used judiciously. If a static import hides helpful context, it might

make the code harder to understand, and in that case it should probably be avoided.

The syntax of a static import uses the two keywords, import static, in that order, followed

by the fully qualified class name and either the static element to be imported or the asterisk,

indicating that all static elements of the class are to be made available. Here are examples of

both approaches:

import static my.package.MyClass.member;

or

import static my.package.MyClass.*;

Notice that although this feature is called a static import, the syntax actually has the keywords

in the opposite order—that is, import static. Take care that this doesn’t cause you to trip in a

real exam situation.

Now, let’s consider the options. Option A suggests that the code compiles as written.

However, the printJob method is out of scope in the Computer class, and for the code presented

in the question, the compiler rejects printJob with a complaint along the lines of “cannot find

symbol.” Therefore, option A is incorrect.

Option B correctly applies the syntax rules just described, and it succeeds in making the

printJob method available by that short name. Option B is, therefore, the correct answer.

In option C, the suggested change constitutes a regular import of the Printer class. However,

there are two problems here. First, such an import is redundant, because the two classes are

in the same package and, therefore, they are visible to one another anyway. The second prob-

lem is that importing a class in the simple way does not make the static members available in

their unqualified form in the file that performs the import. Instead, a simple import means

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

93

//fix this /

that the imported class can be

used without its full qualifying

package prefix. So, whether it

is imported or not, the Computer

class would compile correctly if

the call to printJob had been qualified as Printer.printJob. However, the proposed change of

option C does not address the problem. Therefore, option C is incorrect.

Option D introduces an additional compilation error, without doing anything to repair the

original problem. In Java, any import statement must contain a fully qualified package name.

Other elements may be chained on that package name also. In this case, however, option D

declares an import path that starts at a class, instead of at a root package, and that’s an error

in itself. There’s another problem in option D, too, which is that the import is not of the static

variety. Nonstatic imports can import only a class (or, using the asterisk format, all the classes)

from a package. Given these two problems, it’s clear that option D is incorrect.

Option E attempts to use the nonstatic form of import. However, as just mentioned, such a

statement can import only classes, not elements from inside them. Only a static import is able

to import the contents of a class, rather than just the class itself. Because of this, option E is

also incorrect.

Answer 2. The correct answers are option B and option C. This question investigates the nature

of overriding and the syntactic requirements of the Java programming language. Essentially,

three types of variations are proposed: changes in accessibility, a change of return type, and

changes in the exception behavior of the method.

When a method overrides an existing method in a parent class or in another generalized form

(such as an interface declaration), the basic requirement is that the replacement method must

be a valid syntactic replacement for the original. This requirement is one aspect of the Liskov

Substitution Principle. Essentially, a specialized object (such as an instance of the Sub class in

this example) must be a proper substitute for the generalized object (an instance of the Base

class in this example). This is because you could write code like the following:

Nonstatic imports can import only a class (or, using
the asterisk format, all the classes) from a package.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

94

//fix this /

Base b = new Sub();

And, if you did, the compiler expects the object referred to by the variable b to behave

according to the rules defined for a Base object. The fact that the variable b actually refers to an

instance of Sub is allowed, but it must not cause surprises.

In the light of this background, let’s look at the three categories of change individually.

First, consider the accessibility of a method. The Base class gives default access to the

method doStuff. If an override makes the method more accessible, no surprises will arise; the

method will still be accessible in the places you expect it to be accessible. In fact, if you had a

reference of Sub type, the doStuff method would be more accessible, but that is fine too. The

thing referred to by the variable b lets you do what you expect to do. So making the method

public (or, generally, making an overriding method more accessible) is acceptable.

By contrast, making the method private would cause a problem. Using the variable b, you

expect to be able to invoke the method doStuff, but if the object to which b refers were actually

an instance of Sub, the invocation would be rejected by the Sub object, and it would fail at run-

time. This would definitely be a surprise and is, therefore, not acceptable. So the general rule is

that a method may be overridden by another method that is not less accessible. This rule is suf-

ficient to tell you that option A and option E are incorrect.

Considering exceptions, Java’s exception mechanism requires that any checked exception

that might be thrown by a method must be declared. This is required so that the compiler knows

about the exception and is able to verify that the caller of the method handles the exception

(either by using a catch block or by declaring that it, too, throws the exception). Imagine a situ-

ation based on the assignment shown in question 2 in which the overriding method in Sub

throws a checked exception. Code of the form b.doStuff() would be analyzed by the compiler,

using the information defined in the Base class. The compiler would decide that no checked

exceptions are possible, and it would not require the programmer to add a try/catch or any

other exception handling. However, given that the variable b actually refers to a Sub object, if

the overriding method did in fact throw a checked exception, the compiler would have been

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

95

//fix this /

cheated, and the rules of checked exceptions would have been bypassed. Because of this, an

overriding method (including methods that implement interface methods) is prohibited from

throwing checked exceptions that are not permitted for the base method. Based on this prohi-

bition, option D must be incorrect.

This rule, however, relates only to checked exceptions. Any piece of code might throw an

unchecked exception (a RuntimeException or an Error) and as such, while it’s unnecessary to

declare such exceptions, it’s also irrelevant whether they’re declared. Therefore, it’s permis-

sible to declare them on an overriding

method, even if the base method doesn’t

mention them.

The return of a method will often be

assigned to a variable, and the compiler,

of course, ensures that the assignment is

acceptable. Given that the doStuff method

in the Base class declares that it returns a Base object, that variable would have to accept assign-

ment from an object of Base type. Of course, if the method actually returns a Sub, that’s still

assignment-compatible with the Base type and, therefore, is permitted. Given that the return

type and accessibility have changed in acceptable ways, option C is correct.

There are some side notes on this assignment compatibility of overriding method return

types. First, this was not the case in the earliest versions of Java, so you will sometimes find

reference material that appears to contradict it. However, it’s been true for many years now.

Another side note is that this flexibility relates only to object type returns. Primitive val-

ues cannot be used in this way. The final side note is that this kind of type variation is called a

covariant return.

In option B, the overriding method is more accessible and—redundantly—declares throw-

ing a RuntimeException. These changes are OK, and no other changes are made. Therefore, option

B is correct.

It’s not possible to use a lambda to create a
concrete implementation of an abstract class, even
if it has exactly one abstract method.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

96

//fix this /

Answer 3. The correct answers are option A and option B. This question is essentially about

things you can’t do with lambda expressions. Both of the first two options successfully create

objects from anonymous inner classes that subclass the abstract class Stuff.

Although it might be more common to create anonymous classes that are constructed with

zero arguments, it’s entirely possible to use arguments in the construction process, provided

the parent class defines the target constructor. This requirement means that it’s not possible

to have constructor arguments for anonymous inner classes that are defined in terms of an

interface, because no “parent” constructors can exist in an interface. Therefore, only the zero-

argument form is possible. It’s also not possible to define an explicit constructor in the anony-

mous inner class itself. However, the code in both option A and option B interacts properly with

the available constructors of the Stuff parent class.

In fact, both option A and option B compile correctly and execute successfully, and the out-

put x is 9 for option A and 18 for option B. As a result, both option A and option B are correct.

Option C attempts to use a lambda expression to define the implementation of the abstract

method in the Stuff class. However, the syntax presented is entirely bogus, and option C

is incorrect.

Option D is more plausible than option C. However, it is only permissible to define lambda

expressions to satisfy the behavioral requirement of a functional interface. A functional inter-

face is one that has exactly one abstract method—and, of course, the class Stuff has exactly

one abstract method, which might make this option tempting. However, a functional interface

is an interface, and it’s not possible to use a lambda to create a concrete implementation of an

abstract class, even if it has exactly one abstract method. Therefore, option D is incorrect.

Answer 4. The correct answer is option B. This question investigates the method reference syn-

tax introduced with lambda expressions in Java 8. Method references are an alternative syntax

that addresses one of four situations that occur fairly frequently in lambda expressions.

Four forms are available. Table 1 shows how a lambda in the conventional “arrow” form may

be translated to or from the method reference form.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

97

//fix this /

Notice that in forms 1 through 3 in Table 1, the argument list of the lambda expression is

passed entirely unchanged to the argument list of the method call on the right of the arrow. In

form 4, this convention changes, but only slightly; the first argument to the lambda is used as

the this object on which the behavior is invoked, and any subsequent arguments are passed to

the argument list of the invoked method.

Four points should be emphasized about this translation and the argument-list handling

that goes with it. First, in no case does a method reference permit the arguments to be altered

in any way, whether by calculation or by changing their order.

Second, in forms 1 through 3, the syntax can be used with lambdas that implement inter-

face methods requiring any number of arguments, including zero arguments. In form 4, the

syntax is workable only if the interface method being implemented requires at least one argu-

ment, because the first argument becomes the this object for the method invocation on the

right of the lambda’s arrow. Clearly, you can’t say x.doStuff() unless you have an x.

Third, the argument list and the return type of the lambda or method reference form are

entirely mandated by the interface method that is being provided. For example, if the con-

text requires that the lambda provide a BiFunction<Fruit, Color, Ranking>, this demands that

the lambda take two arguments, a Fruit first and a Color second, and that it return a Ranking.

Method references do not bypass this standard rule; when you use them, you still must provide

behaviors that are suitable for the context.

Finally, the method reference syntax forms are very specific and cannot be altered in any

way. On the left of the double colon is some kind of object reference or class identity, and on the

F ORM C ON V EN T ION A L L A MBDA ME T HOD REF ERENC E F ORM

1 (a, …) -> SomeClass.aMethod(a, …) SomeClass::aMethod

2 (a, …) -> anObject.aMethod(a, …) anObject::aMethod

3 (a, …) -> new SomeClass(a, …) SomeClass::new

4 (a, …) -> a.aMethod(…) SomeClass::aMethod

Table 1: Four method reference forms for lambdas

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

98

//fix this /

right is a method name or the keyword new. An object identity can be any expression that results

in a single object, and a class name might be fully qualified. So sometimes there’s an expression

or package dot syntax on the left of the double colon, but none of these variations allows two

sets of double colons to be strung together in the way shown in option A. As a result, option A

is incorrect.

In option C, the form Converter::inc could match either a static method in the Converter

class or an instance method in that class, if the method is called inc. However, no such static

method exists, and, for the instance method form, the first argument to the lambda would have

to be of type Converter. However, in this stream code, the map operation requires a Function<T,U>

where T (the first argument to the lambda) is the type of the stream data. In this code, the

stream contains Integer objects, not Converter objects. As a result, you can determine that

option C is also incorrect.

Option D proposes a syntax that involves parentheses after the method name in the refer-

ence. No such syntax exists and, therefore, option D is incorrect.

In option B, everything works as needed. The map method requires a Function<T,U> where

T is the upstream data type (Integer, in this case) and U defines the downstream type after

the map operation (also Integer, in this case). Because c is an instance of Converter, the syn-

tax c::inc is of form 4. Therefore, it translates to x -> c.inc(x). This fits the required form

Function<Integer, Integer> and, therefore, option B is correct. </article>

Simon Roberts joined Sun Microsystems in time to teach Sun’s first Java classes in the UK. He created the
Sun Certified Java Programmer and Sun Certified Java Developer exams. He wrote several Java certification
guides and is currently a freelance educator who publishes recorded and live video training through Pearson
InformIT (available direct and through the O’Reilly Safari Books Online service). He remains involved with
Oracle’s Java certification projects.

Mikalai Zaikin is a lead Java developer at IBA IT Park in Minsk, Belarus. During his career, he has helped Oracle
with development of Java certification exams, and he has been a technical reviewer of several Java certifica-
tion books, including three editions of the famous Sun Certified Programmer for Java study guides by Kathy
Sierra and Bert Bates.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2018

99

//contact us /

Comments
We welcome your comments, correc
tions, opinions on topics we’ve covered,
and any other thoughts you feel impor
tant to share with us or our readers.
Unless you specifically tell us that your
correspondence is private, we reserve
the right to publish it in our Letters to
the Editor section.

Article Proposals
We welcome article proposals on all
topics regarding Java and other JVM
languages, as well as the JVM itself.
We also are interested in proposals for
articles on Java utilities (either open
source or those bundled with the JDK).

Finally, algorithms, unusual but useful
programming techniques, and most other
topics that hardcore Java programmers
would enjoy are of great interest to us,
too. Please contact us with your ideas
at javamag_us@oracle.com and we’ll
give you our thoughts on the topic and
send you our nifty writer guidelines,
which will give you more information
on preparing an article.

Customer Service
If you’re having trouble with your sub
scription, please contact the folks at
java@omeda.com, who will do what
ever they can to help.

Where?
Comments and article proposals should
be sent to our editor, Andrew Binstock,
at javamag_us@oracle.com.

While they will have no influence on our
decision whether to publish your article
or letter, cookies and edible treats will
be gratefully accepted by our staff at
Java Magazine, Oracle Corporation,
500 Oracle Parkway, MS OPL 3A3133,
Redwood Shores, CA 94065, USA.

 World’s shortest subscription form
 Download area for code and
other items

 Java Magazine in Japanese

magazine

By and for the Java community

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:javamag_us%40oracle.com?subject=
mailto:java%40omeda.com?subject=
mailto:javamag_us%40oracle.com?subject=
https://www.sub-forms.com/dragon/init.do?site=ora6028_jfnew
http://bit.ly/2b2tXeb
http://bit.ly/2b2tXeb
http://www.oracle.com/technetwork/jp/articles/java/overview/index.html

