=1 |] L1 :... :F'“' oI 1
TM | == 1 W - . .'.'_-' |
= ! | LJ S
L - i o
| L .o ¥ —-11 i1l i &
| _-q____‘_———-—_________‘___ g] nal :If'_‘.
| _ - . . - o g
—ﬁ__ . \ |
= — p e N AL T N |
o . - : | e .
L] " 2 = ¥ /

magazine -l [LER T "

I

S,
<

By and for the Java community

[

_
B

#’.]l T =t =i
[= i

i
Quik;

5
=
f
|

- A
e : B oemmmas | =

LT

] :j_%""[i‘i r} g;%.?sl n

LOMBOK: JDEFERRED'S - DATABASE 1 . BEST PF
ANNOTATIONS FOR ASYNC EVENT '« ACCESSWITH _F

CLEANER CODE MANAGEMENT STREAMS ~ DESIGN

ORACLE.COM/JAVAMAGAZINE

ORACLE

http://www.oracle.com/javamagazine

//table of contents /

0

“ .
=
1]
LB
aik
i}

i 3%
|

HEIL,

1
Hun
wELE

"]

ﬁﬁlﬂ;ﬁ
o
Efee
L
Lats
H-BEEETE
S He

| B

By Josh Juneau

Add Lombok to your project and get rid of most of your

boilerplate code.

COVER ART BY PEDRO MURTEIRA

03

From the Editor

Writing your own annotations? Be
circumspect in your design.

05
Events
Upcoming Java conferences and events

16

JDEFERRED: SIMPLE
HANDLING OF PROMISES

AND FUTURES
By Andrés Almiray

Asynchronous operations
without the headaches

22

JSOUP HTML

PARSING LIBRARY
By Mert Caliskan

Easily parse HTML, extract
specified elements, validate

structure, and sanitize content.

PROJECTLOMBOK:.. -
CLEAN, CONCISE COBE=

34

Databases

Database Actions Using Java 8
Stream Syntax Instead of SQL
By Per Minborg

Speedment 3.0 enables Java developers
to stay in Java when writing database
applications.

ORACLE.COM/JAVAMAGAZINE /77777111111117777711111111777711111771777777/// MAY/JUNE 2017

42

Fix This

By Simon Roberts
Our latest code quiz

32

Java Proposals of Interest
JEP 262: Built-in Support for TIFF Files

28

DESIGNING AND
IMPLEMENTING

A LIBRARY
By Stephen Colebourne

The chief designer of Joda-
Time lays out best practices
for writing your own library.

47

User Groups
The Bangladesh JUG

48

Contact Us

Have a comment? Suggestion? Want to
submit an article proposal? Here’s how.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

EDITORIAL

Editor in Chief

Andrew Binstock
Managing Editor

Claire Breen

Copy Editors

Karen Perkins, Jim Donahue

Technical Reviewer
Stephen Chin

DESIGN

Senior Creative Director
Francisco G Delgadillo
Design Director

Richard Merchan

Senior Designer

Arianna Pucherelli

Designer
Jaime Ferrand

PUBLISHING
Publisher

Jennifer Hamilton +1.650.506.3794
Associate Publisher and Audience

Development Director
Karin Kinnear +1.650.506.1985

Audience Development Manager

Jennifer Kurtz

ADVERTISING SALES
Sales Director
Tom Cometa

Account Manager

Mark Makinney
Mailing-List Rentals

Contact your sales representative.

RESOURCES

ORACLE

UNIVERSITY

ORACLE

Certified Professional

Oracle Products

Senior Publication Designer +1.800.367.8674 (US/Canada)

Sheila Brennan

. . Oracle Services
Production Designer +1.888.283.0591 (US)
Kathy Cygnarowicz T
ARTICLE SUBMISSION

If you are interested in submitting an article, please email the editors.

SUBSCRIPTION INFORMATION
Subscriptions are complimentary for qualified individuals who complete the
subscription form.

MAGAZINE CUSTOMER SERVICE

You've Earned It

java@omeda.com Display Your Oracle Certification Digital Badge
PRIVACY

Oracle Publishing allows sharing of its mailing list with selected third parties. If you prefer

that your mailing address or email address not be included in this program, contact

Customer Service. ORACLE' ORACLE' ORACLE ORACLE

Copyright © 2017, Oracle and/or its affiliates. All Rights Reserved. No part of this publication may be reprinted or otherwise
reproduced without permission from the editors. JAVA MAGAZINE 1S PROVIDED ON AN “AS IS” BASIS. ORACLE EXPRESSLY
DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS OR IMPLIED. IN NO EVENT SHALL ORACLE BE LIABLE FOR ANY
DAMAGES OF ANY KIND ARISING FROM YOUR USE OF OR RELIANCE ON ANY INFORMATION PROVIDED HEREIN. Opinions ASSOCIATE PROFESSIONAL EXPERT MASTER SPECIALIST
expressed by authors, editors, and interviewees—even if they are Oracle employees—do not necessarily reflect the views of Oracle.
The information is intended to outline our general product direction. It is intended for information purposes only, and may not
be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied
upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s
products remains at the sole discretion of Oracle. Oracle and Java are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

Claim your certification badge and validate
your skills across all online platforms.

Java Magazine is published bimonthly and made available at no cost to qualified subscribers by
Oracle, 500 Oracle Parkway, MS OPL-3A, Redwood City, CA 94065-1600.

ORACLE.COM/AJAVAMAGAZINE /777111111111777771111111177771111171177777//// MAY/JUNE 2017

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:jennifer.hamilton%40oracle.com?subject=
mailto:karin.kinnear%40oracle.com?subject=
mailto:jennifer.s.kurtz%40oracle.com?subject=
mailto:thomas.cometa%40sbcglobal.net?subject=
mailto:markmakinney%40hotmail.com?subject=
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.sub-forms.com/dragon/init.do?site=ora6028_jfnew
mailto:java%40omeda.com?subject=
mailto:java%40omeda.com?subject=
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=861#badge-2

Keeping Annotations Useful

When designing annotations, be conservative and circumspect.

I n this issue, the lead feature is about a rightly
well-regarded library named Project Lombok.
This library enables you to avoid writing boiler-
plate code by using annotations. For example,

add @Data to a class and Lombok will generate the
getters and setters, plus other methods you’re
likely to want in a JavaBean-style data class—
toString() and so on. Lombok’s approach is
attractive to me—and to many developers—

in part because it’s useful, compact, and clear.

In addition, the project includes a tool called
“delombok,” which can remove the annotations
and insert the boilerplate code into your classes.
In this way, you can easily remove the dependency
on Lombok. The annotations are conservative in
their expression and their roles, and the project
has a clean, reversible implementation. Many more
annotations should follow this approach.

PHOTOGRAPH BY BOB ADLER/THE VERBATIM AGENCY

ORACLE.COM/JAVAMAGAZINE /77777111111117777711111111777711111771777777/// MAY/JUNE 2017

Annotations as they appear in Java itself
follow a similar understated model. Those anno-
tations, first unveiled in Java 5, were elegant
and concise and didn’t attempt to do too much:
@0verride and @Deprecated told you something
about the code, while @SuppressiWarnings told the
tools that you knew what you were doing. The
intent was that tools, especially IDEs, would use
these markers to issue warnings and reminders.
None of the annotations actually changed pro-
gram behavior. This conservative approach by
the Java language team continued in Java 7, when
@SafeVarargs was added, and in Java 8, when
@FunctionalInterface was delivered.

In addition to the qualities I’'ve already men-
tioned, these annotations are unambiguous. This
is a key and often overlooked aspect of annota-
tion design. In the quest for brevity, annotation

ORACLE"

Java in
the Cloud

Oracle Cloud delivers
high-performance and
battle-tested platform
and infrastructure services
for the most demanding

Java apps.

Oracle Cloud.
Built for modern app dev.
Built for you.

Start here:
developer.oracle.com

#developersrule

03

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://developer.oracle.com

//from the editor /

authors too often push the respon-
sibility of intelligibility onto
developers. Look no further than
the lack of coordination in basic
syntax. A prime offender here is
the family of not-null qualifiers.
@NotNull is such an annotation,
and so is @NonNull. This annota-
tion has a different meaning under
FindBugs. Likewise, @Nullable
means different things to the
Checker Framework and FindBugs.
This is not the way to go about
things. If you author annotations,
be clear and definitely avoid syn-
onyms and homonyms.

In comparison to these short,
pithy annotations, Java EE intro-
duced the extensive use of annota-
tions. Soon, a series of annotations
replaced code, and the nature of
enterprise programming thereby
changed. Java EE acquired a sort of
embedded syntax that straddled
descriptions and commands. The
advent of this style reinvigorated
Java EE by making it far easier
to code and by getting rid of the
heaviness of its forebears.

However, this advance inspired
legions of frameworks to use and
overuse annotations, many of
which were uninspired formula-
tions. They introduced complexity
without good enough documenta-
tion by which to navigate the code.

As the annotations became com-
plex markers for actions defined
elsewhere, you ended up chasing
your tail just to determine what the
code you had right before you actu-
ally did. This was less than entirely
fun, which brings me to the second
problem with many annotations:
insufficient documentation. Unless
the meaning is utterly transparent
(and even then, as the preceding
examples demonstrated), docu-
ment the annotation thoroughly,
especially in frameworks. Err on
the side of overcommunication.
Finally, I need to stress the
importance of making annota-
tions a sound proposition for the
developer and, by extension, the
developer’s team. In this regard,
I am leery of IDE vendors’ cre-
ation of their own proprietary
annotation systems. All IDEs do
this to some extent, but I’ll pick
an example from the one [use
most. Intelli] IDEA uses annota-
tions to deliver a minimal but
clever implementation of design
by contract (DbC)-style enforce-
ment of passed parameters and
return values. [applaud JetBrains
for providing a handy way to have
the IDE enforce method contracts
(and identify potential coding
errors that are inconsistent with
the contract requirements).

ORACLE.COM/JAVAMAGAZINE /77777111111117777711111111777711111771777777/// MAY/JUNE 2017

IntelliJ uses syntax like this:
@Contract(" , null -> null").

It means that the tagged method
accepts two parameters and
returns a null if the second param-
eter is null. Much as I like this
annotation, I feel uncomfortable
fully committing to it because it
creates a dependence on the IDE.
(Even though another IDE will skip
the annotation it doesn’t recognize,
I’ve now left an unused artifact in
my code that might create wasted
time for downstream developers
trying to understand its function.)
In addition, if my whole team is
not using the same IDE, then some
code won’t have these tests and my
hope of consistent DbC enforce-
ment is either compromised or
IDE-dependent.

Annotations are an important
part of programming in Java, and
their role is likely to expand. But
new annotations should be devised
with far greater circumspection
than in the past, named with care-
ful attention to predecessors, and
documented well, and they should
avoid the introduction of restric-
tive dependencies.

Andrew Binstock, Editor in Chief
javamag_us(@oracle.com
@platypusguy

ORACLE"

Get a Free
Trial to
Oracle Cloud

Experience modern,
open cloud development
with a free trial to Oracle
Cloud platform and
infrastructure services.

Get your free trial:
developer.oracle.com

developer.oracle.com

#developersrule

04

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://checkerframework.org/manual/#choosing-nullness-tool
mailto:javamag_us%40oracle.com?subject=
https://twitter.com/platypusguy
http://developer.oracle.com
http://developer.oracle.com

//events /

Devoxx Poland

KRAKOW, POLAND

JUNE 21-23

For three days, 100 Java Champions, evangelists, and thought leaders
inspire 2,500 developers from 20 different countries at this installment
of the popular Devoxx conferences. Tracks on server-side Java, cloud and
big data, JVM languages, web and HTML5, and more are on offer. Hacking
and networking round out the experience.

PHOTOGRAPH BY ZARNELL/GETTY IMAGES

ORACLE.COM/AJAVAMAGAZINE /7777111111117777711111111777711111111777777/// MAY/JUNE 2017

JEEConf

MAY 26-27

KIEV, UKRAINE

JEEConf is the largest Java con-
ference in Eastern Europe. The
annual conference focuses on
Java technologies for applica-

tion development. This year, it
offers five tracks and more than
50 speakers with an emphasis on
practical experience and devel-
opment of real projects. Topics
include modern approaches in the
development of distributed, highly
loaded, scalable enterprise sys-
tems with Java, among others.

jPrime

MAY 30-31

SOFIA, BULGARIA

jPrime is a relatively new con-
ference, with two days of talks
on Java, JVM languages, mobile
and web programming, and best
practices. The event is run by the
Bulgarian Java User Group and
provides opportunities for hack-
ing and networking.

GeekOut

JUNE 8-9

TALLINN, ESTONIA

This two-day Java developer con-
ference focuses on Java, the JVM,

programming languages and
methodologies, developer tooling,
solution architecture, and contin-
uous delivery. A product exhibi-
tion is included.

JBCN Conference

JUNE 19-21

BARCELONA, SPAIN

Hosted by the Barcelona Java
Users Group, this conference is
dedicated to Java and JVM devel-
opment. Share your knowledge
and experiences, and discover
how other developers are using
your favorite VM.

O’Reilly Fluent Conference

JUNE 19-20, TRAINING

JUNE 20-22, TUTORIALS

AND CONFERENCE

SAN JOSE, CALIFORNIA

Fluent offers practical train-

ing for building sites and apps
for the modern web. This event
is designed to appeal to applica-
tion, web, mobile, and interactive
developers, as well as engineers,
architects, and UI/UX designers.
Training days and tutorials round
out the conference experience.

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
http://devoxx.pl
http://jeeconf.com
http://jprime.io
https://2017.geekout.ee/
http://www.jbcnconf.com
http://conferences.oreilly.com/fluent/fl-ca

//events /

EclipseCon 2017

JUNE 20, “UNCONFERENCE”

JUNE 21-22, CONFERENCE
TOULOUSE, FRANCE

EclipseCon is all about the Eclipse
ecosystem. Contributors, adopt-
ers, extenders, service provid-
ers, consumers, and business and
research organizations gather to
share their expertise. The two-
day conference is preceded by an
“Unconference” gathering.

QCon New York

JUNE 26—28, CONFERENCE

JUNE 29—-30, WORKSHOPS

NEW YORK, NEW YORK

QCon is a practitioner-driven con-
ference for technical team leads,

PHOTOGRAPH BY CHRISTIAN REIMER/FLICKR

architects, engineering directors,
and project managers who influ-
ence innovation in their teams.
The conference covers many dif-
ferent developer topics, frequently
including entire Java tracks.

Java Forum

JULY 5, WORKSHOP

JULY 6, CONFERENCE

STUTTGART, GERMANY

Organized by the Stuttgart Java
User Group, Java Forum typically
draws more than 1,000 partici-
pants. A workshop for Java deci-
sion-makers takes place on July 5.
The broader forum will be held on
July 6, featuring 40 exhibitors and
including lectures, presentations,

ORACLE.COM/AJAVAMAGAZINE /7777111111117777711111111777711111111777777/// MAY/JUNE 2017

demos, and Birds of a Feather ses-
sions. (No English page available.)

The Developer’s Conference (TDC)
JULY T1-15

SAO PAULO, BRAZIL

TDC is one of Brazil’s largest con-
ferences for students, developers,
and IT professionals. Java-focused
content on topics such as IoT, UX
design, mobile development, and
functional programming are fea-
tured. (No English page available.)

JCrete

JULY 16-21

KOLYMBARI, GREECE

This loosely structured “uncon-
ference” involves morning ses-
sions discussing all things Java,
combined with afternoons spent
socializing, touring, and enjoy-
ing the local scene. There is also a
JCrete4Kids component for intro-
ducing youngsters to program-
ming and Java. Attendees often
bring their families.

UberConf

JULY 18-21

DENVER, COLORADO

UberConf 2017 will be held at the
Westin Westminster in down-
town Denver. Topics include

Java 8, microservice architectures,
Docker, cloud, security, Scala,
Groovy, Spring, Android, iOS,
NoSQL, and much more.

JavaZone 2017

SEPTEMBER 12, WORKSHOPS
SEPTEMBER 13—-14, CONFERENCE
OSLO, NORWAY

JavaZone is a conference for

Java developers created by the
Norwegian Java User Group,
javaBin. The conference has existed
since 2001 and now consists of
around 200 speakers and 7 parallel
tracks over 2 days, plus an addi-
tional day of workshops before-
hand. You will be joined by approx-
imately 3,000 of your fellow Java
developers. Included in the ticket
price is a membership in javaBin.

NFJS Boston

SEPTEMBER 29—-0OCTOBER 1
BOSTON, MASSACHUSETTS

Since 2001, the No Fluff Just Stuff
(NEJS) Software Symposium Tour
has delivered more than 450
events with more than 70,000
attendees. This event in Boston
covers the latest trends within
the Java and JVM ecosystem,
DevOps, and agile development
environments.

06

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
https://www.eclipsecon.org/france2017
https://qconnewyork.com
http://www.java-forum-stuttgart.de/de/Home.html
http://www.thedevelopersconference.com.br/
http://www.jcrete.org
https://uberconf.com/conference/denver/2017/07/home
https://2017.javazone.no/tickets
https://nofluffjuststuff.com/home/main

//events /

JavaOne

OCTOBER 1-5

SAN FRANCISCO, CALIFORNIA
Whether you are a seasoned
coder or a new Java programmetr,
JavaOne is the ultimate source of
technical information and learn-
ing about Java. For five days, Java
developers gather from around
the world to talk about upcom-
ing releases of Java SE, Java EE,
and JavaFX; JVM languages; new
development tools; insights into
recent trends in programming;
and tutorials on numerous related
Java and JVM topics.

KotlinConf

NOVEMBER 2-3

SAN FRANCISCO, CALIFORNIA
KotlinConf is a JetBrains event
that provides two days of content
from Kotlin creators and commu-
nity members.

Devoxx

NOVEMBER 6-10

ANTWERP, BELGIUM

The largest gathering of Java
developers in Europe takes place
again this year in Antwerp.
Dozens of expert speakers deliver
hundreds of presentations on
Java and the JVM. Tracks include

server-side Java, cloud, big data,
and extensive coverage of Java 9.

QCon San Francisco

NOVEMBER 13—15, CONFERENCE
NOVEMBER 16—17, WORKSHOPS
SAN FRANCISCO, CALIFORNIA
Although the content has not
yet been announced, recent
QCon conferences have offered
several Java tracks along with
tracks related to web develop-
ment, DevOps, cloud computing,
and more.

Are you hosting an upcoming
Java conference that you would
like to see included in this cal-
endar? Please send us a link
and a description of your event
at least 90 days in advance at
javamag_us@oracle.com. Other
ways to reach us appear on the
last page of this issue.

ORACLE.COM/AJAVAMAGAZINE /7777111111117777711111111777711111111777777/// MAY/JUNE 2017

Oracle Code Events

Oracle Code is a free event for
developers to learn about the
latest development technologies,
practices, and trends, including
containers, microservices and API
applications, DevOps, databases,
open source, development tools and low-code platforms,
machine learning, Al, and chatbots. In addition, Oracle
Code includes educational sessions for developing soft-
ware in Java, Node.js, and other programming languages
and frameworks using Oracle Database, MySQL, and
NoSQL databases.

US AND CANADA
JUNE 22, Atlanta, Georgia

ASIA PACIFIC
JULY 14, Beijing, China

JULY 18, Sydney, Australia
EUROPE AND MIDDLE EAST AUGUST 4, Bangalore, India

MAY 23, Moscow, Russia
JUNE 6, Brussels, Belgium
JULY T1, Tel Aviv, Israel

AUGUST 30, Seoul, South
Korea

LATIN AMERICA
JUNE 27, Sdo Paulo, Brazil

JUNE 29, Mexico City, Mexico

07

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
https://www.oracle.com/javaone/index.html
https://kotlinconf.com/
https://devoxx.be/
https://qconsf.com/
mailto:javamag_us%40oracle.com?subject=
https://go.oracle.com/oraclecode-about

%’ddé’ Your Destination for Java Expertise
ress-

Written by leading Java experts, Oracle Press books offer the most definitive,
complete, and up-to-date coverage of Java available.

T
i AR

Raspberry Pi with Java: Introducing JavaFX & b i “iEsrebinhoh
Programming the = Programming S NaRe Hale s | iy il
Internet ﬂf Thjl'lﬂﬁ ”nT.i :r;l::l Pased Guidh id JaveEX Ninth Edjtfﬂ” e
Eimbedood Appiisation Devsioomad 1L frogramming Fusndarmntals Ciomisemanis Cireraga of Few Jova Largrape T

for Home and bciusing

Fotiied Funvsyors

Stajshen Ch 1 : Hi L
o i E Harbert Schildy O erbert Schilde m Robert Ligsn

Raspberry Pl with Java: Introducing JavaFX 8 Java: The Complete Reference, OCA Java SE 8 Programmer |

Programming the Programming Ninth Edition Study Guide (Exam 1Z0-808)

Internet of Things (loT) Herbert Schildt Herbert Schildt Edward Finegan, Robert Liguori
Stephen Chin, James Weaver Leam how to develop dynamic JavaFX Fully updated for Java SE 8, this Get complete coverage of all
Use Raspberry Pi with Java to create GUI applications quickly and easily. definitive guide explains how to objectives for Exam 1Z0-808.

innovative devices that power the develop, compile, debug, and run Electronic practice exam questions

internet of things. Java programs. are included.
Ovracle

Press

www.OraclePressBooks.com « % @OraclePress

Available in print and as eBooks

http://www.OraclePressBooks.com

LIBRARIES

Writing and Using Libraries

PROJECT LOMBOK 10 | JDEFERRED 16 | JSOUP 22 | WRITING YOUR OWN LIBRARY 28

n an age of frameworks, there still remains a supreme need for
libraries, those useful collections of classes and methods that

save us a huge amount of work. For all the words

reusability of object orientation (O0), it’s clear that code reuse has
been consistently successful only at the library level. It’s hard to
say whether that’s a failure of the promises of OO or whether those

promises were unlikely to ever deliver the hoped-fo

In Stephen Colebourne’s article (page 28), he gives
writing libraries of your own.
Colebourne is the author of the S
celebrated Joda-Time library, Ii
which was the standard non-JDK : II
time and date library prior to =:
Java SE 8. In the article, he gives I!
best practices for architecting the | o
library and shares guidelines he |
has learned along the way that
sometimes fly in the face of gen-
erally accepted programming pre-
cepts. Writing your own library?
Then start here.

We also examine three well-
designed libraries that provide
useful functionality but might
not be widely known. The first of
these is Project Lombok (page 10),

ORACLE.COM/UAVAMAGAZINE /7777111111117777711111111777711111771777777/// MAY/JUNE 2017

=ARE-SEn. in-im mm(

spilled on the

r reusability.

best practices for leads to considerably cleaner code.

i

LHEME Bae, gas
- T
BMEMSEEMigan.
O TTO o
Bl e
BENTRET | SArTREE
TPy o
SEIILN i
st H ¢
e i

-1

T T L =TI
0 e, M i 7

.5 A AT AR
il |
. 1 1
3 |

which uses annotations to greatly reduce the writing of boilerplate
code—leading to fewer keystrokes and much more readable code.
Andrés Almiray’s article on the JDeferred library (page 16) is a deep
dive into the concepts of futures and promises, which are techniques for
defining, invoking, and getting results from asynchronous operations.
The built-in Java classes for futures and promises work well but can be
difficult to program. JDeferred removes the difficulty and, like Lombok,

Finally, we revisit an article
we ran a year ago on jsoup
(page 22), which is one of the
finest ways of handling HTML:
parsing, scraping, manipulating,
and even generating it.

If libraries are not your favorite
topic, we have you covered with
a detailed discussion (page 34)
of how to use streaming syntax
rather than SQL when accessing
databases. In addition, we offer
our usual quiz (this time with the
inclusion of questions from the
entry-level exam), our calendar of
events, and other goodness. (Note
that our next issue will be a jumbo
special issue on Java 9.) Enjoy!

ART BY PEDRO MURTEIRA

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

NG

JUNEAU

Project Lombok:

Clean, Concise Code

Add Lombok to your project and get rid of most of your boilerplate code.

magine that you are coding a Java application and creating a

plain old Java object (POJO), a Java class with several private
fields that will require getter and setter methods to provide
access. How many lines of code will be needed to generate
getters and setters for each of the fields? Moreover, adding
a constructor and a toString() method will cause even more
lines of code and clutter. That is a lot of boilerplate code.
How about when you are utilizing Java objects that need to be
closed after use, so you need to code a finally block or use
try-with-resources to ensure that the object closing occurs?
Adding finally block boilerplate to close objects can add a
significant amount of clutter to your code.

Project Lombok is a mature library that reduces boiler-
plate code. The cases mentioned above cover just a few of
those where Project Lombok can be a great benefit. The library
replaces boilerplate code with easy-to-use annotations. In this
article, I examine several useful features that Project Lombok
provides—making code easier to read and less error-prone and
making developers more productive. Best of all, the library
works well with popular IDEs and provides a utility to “delom-
bok” your code by reverting—that is, adding back all the boiler-
plate that was removed when the annotations were added.

Check for Nulls

Let’s start with one of the most basic utilities that Lombok
has to offer. The @NonNull annotation, which should not be

ORACLE.COM/JAVAMAGAZINE /77777111111117777711111111777711111771777777/// MAY/JUNE 2017

confused with the Bean Validation annotation, can be used
to generate a null check on a setter field. The check throws a
NullPointerException if the annotated class field contains a
null value. Simply apply it to a field to enforce the rule:

@NonNull @Setter
private String employeeld;

This code generates the following code:

public id setEmployeeId(@NonNull final String employeeld)
{
if(employeeld == null) throw
new java.lang.NullPointerException("employeeId");
this.employeeld = employeeld;

Primitive parameters cannot be annotated with @NonNull. If
they are, a warning is issued and no null check is generated.

Concise Data Objects

Writing a POJO can be laborious, especially if there are many

fields. If you are developing a POJO, you should always pro-

vide private access directly to the class fields, while creating

accessor methods—getters and setters—to read from and

write to those fields. Although developing accessor methods

is easy, they generally are just boilerplate code. Lombok can 10

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://projectlombok.org/

//libraries /

take care of generating these methods if a field is annotated be taken care of by annotating a class with the @EqualsAnd
with @Cetter and @Setter. Therefore, the following two code HashCode and @ToString annotations, respectively. These
listings provide the exact same functionality. annotations cause Lombok to generate the respective meth-
Without Project Lombok: ods, and they are customizable so that you can specify field
exclusions and other factors. By default, any nonstatic or
private String columnName; nontransient fields are included in the logic that is used to
compose these methods. These annotations use the attribute
public String getColumnName(){ exclude to specify methods that should not be included in the
return this.columnName; logic. The callSuper attribute accepts a true or false, and it
} indicates whether to use the equals() method of the super-
public void setColumnName(String columnName){ class to verify equality. The following code demonstrates the
this.columnName = columnName; use of these annotations.
}
@EqualsAndHashCode
Using Project Lombok: @ToString(exclude={"columnLabel"})
public class ColumnBean {
@CGetter @Setter private String columnName; private BigDecimal id;
private String columnName;
As you can see, Lombok not only makes the code more con- private String columnlabel;
cise, but it also makes the code easier to read and less error- }

prone. These annotations also
accept an optional parameter
to designate the access level if
needed. More good news: @Getter
and @Setter respect the proper
naming conventions, so gener-
ated code for a Boolean field results
in accessor methods beginning
with is rather than get. If they are
applied at the class level, getters
and setters are generated for each
nonstatic field within the class.
In many cases, data objects

The @Data annotation can be used to apply functionality
behind all the annotations discussed thus far in this section.
That is, simply annotating a class with @Data causes Lombok
to generate getters and setters for each of the nonstatic class
fields and a class constructor, as well as the toString(),
equals(), and hashCode() methods. It also creates a con-
structor that accepts any final fields or those annotated
with @NonNull as arguments. Finally, it generates default
toString(), equals(), and hashCode() methods that take all
class fields and methods into consideration. This makes the
coding of a POJO very easy, and it is much the same as some
alternative languages, such as Groovy, that offer similar

also should contain the equals(), features. Listing 1 (all listings for this article can be found in
hashCode(), and toString() Java Magazine’s download section) shows the full Java code for
methods. This boilerplate can the POJO that is generated by the following code:

ORACLE.COM/JAVAMAGAZINE /77777111111117777711111111777711111771777777/// MAY/JUNE 2017

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://bitbucket.org/javamagazine/magdownloads/wiki/Home

@Data

public class ColumnBean {
@NonNull
private BigDecimal id;
@NonNull
private String columnName;
@NonNull
private String columnlLabel;

Note that if you create your own getters or setters, Lombok
does not generate the code even if the annotations are pres-
ent. This can be handy if you wish to develop a custom getter
or setter for one or more of the class fields.

If you are merely interested in having constructors
generated automatically, @A11ArgsConstructor and
@NoArgsConstructor might be of use. @A11ArgsConstructor
creates a constructor for the class using all the fields that
have been declared. If a field is added or removed from the
class, the generated constructor is revised to accommodate
this change. This behavior can be convenient for ensuring
that a class constructor always accepts values for each of the
class fields. The disadvantage of using this annotation is that
reordering the class fields causes the constructor arguments
to be reordered as well, which could introduce bugs if there
is code that depends upon the position of arguments when
generating the object. @NoArgsConstructor simply generates a
no-argument constructor.

The @Value annotation is similar to the @Data annotation,
but it generates an immutable class. The annotation is placed
at the class level, and it invokes the automatic generation of
getters for all private final fields. No setters are generated, and
the class is marked as final. Lastly, the toString(), equals(),
and hashCode() methods are generated, and a constructor is
generated that contains arguments for each of the fields.

I 11001777771111111177771711111777777 MAY/JUNE 2017

Can’t My IDE Do That?

You might be asking yourself, “Can’t my IDE already do that
sort of refactoring?” Most modern IDEs—such as NetBeans,
Eclipse, and IntelliJ—offer features such as encapsulation

of fields and auto-generation of code. These abilities are
great because they can significantly increase productivity.
However, these capabilities do not reduce code clutter, so
they can lead to refactoring down the road. Let’s say your Java
object has 10 fields. To conform to a JavaBean, it will contain
20 accessor methods (one getter and setter pair per field).
That’s a lot of clutter. Also, what happens when you decide to
change one of your field names? You’ll have to do some refac-
toring in order to change it cleanly. If you’re using Lombok,
you simply change the field name and move on with your life.

Builder Objects

Sometimes it is useful to have the ability to develop a builder
object, which allows objects to be constructed using a step-
by-step pattern with controlled construction. For example,
in some cases large objects require several fields to be popu-
lated, which can be problematic when such an object is
implemented via a constructor.

Lombok makes it simple to create builder objects in much
the same way that it enables easy POJO creation. Annotating
a class with @Builder produces a class that adheres to the
builder pattern—that is, an inner builder class is produced
that contains each of the class fields. (“Builder” is pre-
ceded by the name of the class. So a class named Foo has a
FooBuilder class generated.) The generated builder class con-
tains a “setter” method for each of the class fields, but the
names of the methods do not include the usual “set” prefix.
The methods themselves set the value that is passed into the
methods, and then they return the builder object. Listing 2 in
the downloadable code demonstrates a class that contains a
builder, and Listing 3 demonstrates the same object annotated
with @Builder.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

Several variations can be used with @Builder. For exam-
ple, the annotation can be placed on the class, on a construc-
tor, or on a method. Placing the annotation on a constructor
produces the same builder object shown in Listing 2, but it
generates methods for each of the constructor’s arguments in
the builder. This means that you can omit a class field from
the constructor, or you can choose to include a superclass
field in the constructor. The only way to include superclass
fields in a builder is for an object to contain a superclass.

The toBuilder attribute of the @Builder annotation
accepts true or false, and it can be used to designate whether
a toBuilder () method is included in the generated builder
object. This method copies the contents of an existing object
of the same type.

It is possible to treat one of the fields as a builder collec-
tion by annotating it with @Singular. This causes two adder
methods to be generated—one to add a single element and
another to add all elements. This annotation also causes a
clear() method to be generated, which clears the contents of
the collection.

Easy Cleanup
Lombok makes it easy to clean up resources as well. How
often have you either forgotten to close a resource or written
lots of boilerplate try-catch blocks to accommodate resource
closing? Thanks to the @Cleanup annotation, you no longer
need to worry about forgetting to release a resource.
Although the Java language now contains the try-with-
resources statement to help close resources, @Cleanup can
be a useful alternative in some cases, because it causes a
try-finally block to be generated around the subsequent
code, and then it calls the annotated resource’s close()
method. If the cleanup method for a given resource is not
named close(), the cleanup method name can be specified
with the annotation’s value attribute. Listing 4 in the down-
loadable code demonstrates a block of code that contains

I 11001777771111111177771711111777777 MAY/JUNE 2017

some lines to manually close the resource. Listing 5 demon-
strates the same block of code using @Cleanup.

It is important to note that in a case where code throws
an exception and then subsequent code invoked via @Cleanup
also throws an exception, the original exception will be hid-
den by the subsequently thrown exception.

Locking Safely

To ensure safety by having only one thread that can access a
specified method at a time, the method should be marked as
synchronized. Lombok supplies an even safer way to ensure
that only one thread can access a method at a time: the
@Synchronized annotation. This annotation can be used only
on static and instance methods, just like the synchronized
keyword. However, rather than locking on this, the annota-
tion locks on a private field named $lock for nonstatic
methods and on $LOCK for static methods. This field is auto-
generated if it does not already exist, or you can create it
yourself. You can also specify a different lock field by speci-
fying it as a parameter to @Synchronized. The following code
illustrates the use of @Synchronized:

@Synchronized
public static void hellolLombok(){
System.out.println("Lombok");

This solution can be a safer alternative to using the
synchronized keyword, because it allows you to lock on an
instance field rather than on this.

Effortless Logging

Most logging requires some declaration to set up a logger

within each class. This code is definitely repetitive boiler-

plate code. Lombok can take care of the logger declaration

if you place the @Log annotation (or an annotation pertain- 13

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ing to your choice of logging API) on any class that requires
logging capability.

For instance, if you wish to use a logging API—sayj,
Log4j 2—each class that uses the logger must declare some-
thing similar to the following:

public class ClassName(){
private static final org.apache.log4j.Logger log =
org.apache.log4j.Logger.getlLogger(ClassName.class);

// Use log variable as needed

}

Lombok makes it possible to do the following instead:

@Log4j2
public class ClassName(){

// Use log variable as needed

}

Listing 6 in the downloadable code shows an example using
Logs4j 2. The name of the logger will automatically be the
same as its containing class’ name. However, this can be
customized by specifying the topic attribute of the respec-
tive logging annotation. For a complete listing of supported
logging APIs, refer to the Lombok documentation and the
Lombok Javadoc.

Other Useful Items

There are several other useful features Lombok offers that

I haven’t yet covered. Let’s go through a couple of the most
highly used.

Informal declaration. The val keyword can be used in place of
an object type when you declare a local final variable, much
like the val keyword that you have seen in alternative lan-

I 11001777771111111177771711111777777 MAY/JUNE 2017

guages such as Groovy or Jython. Take the following code,
for instance:

final ArraylList<Job> myJobs = new ArraylList<Job>();

Using the val keyword, you can change the code to the
following:

val myJobs = new ArraylList<Job>();

There are some considerations for using the val keyword.
First, as mentioned previously, it marks the method declara-
tion as final. Therefore, if you later need to change the value
of the variable, using the val keyword is not possible. It also
does not work correctly in some IDEs, so if you are trying to
mark local variables as final in those IDEs, they are flagged
as errors.
Be sneaky with exceptions. There are occasions where excep-
tion handling can become a burden, and I’d argue that this
is typically the case when you are working with boilerplate
exceptions. Most of the time, Java allows you to easily see
where problems exist via the use of checked exceptions.
However, in those cases where checked exceptions are bur-
densome, you can easily hide them using Lombok.

The @SneakyThrows annotation can be placed on a method
to essentially “swallow” the exceptions, allowing you to
omit the try-catch block completely. The annotation allows
a method to handle all excep-
tions quietly, or you can specify
exactly which exceptions to

The delombok utility

ignore by passing the excep- can be aPPIIEd 0
tion classes to the annotation as yﬂur CUdE toconvert
attributes. Listing 7 in the down- CUdE that LSes Lombok

loadable code demonstrates the
use of @SneakyThrows specifying
which exceptions to swallow.

back to vanilla Java.

14

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://jnb.ociweb.com/jnb/jnbJan2010.html
https://projectlombok.org/api/index.html

[want to reiterate that this Lombok feature should be
used with caution, because it can become a real issue if too
many exceptions are ignored.

Lazy getters. It is possible to indicate that a field should have
a getter created once, and then the result should be cached
for subsequent invocations. This can be useful if your get-
ter method is expensive as far as performance goes. For
instance, if you need to populate a list from a database query,
or you need to access a web service to obtain the data for
your field on the first access, it might make sense to cache
the result for subsequent calls. To use this feature, a private
final variable must be generated and initialized with the
expensive expression. You can then annotate the field with
@Getter(lazy=true) to implement this functionality.

IDE compatibility. Lombok plays well with the major IDEs,

so simply including Lombok in your project and annotat-
ing accordingly typically does not generate errors in code or
cause errors when the generated methods are called. In fact,
in NetBeans the class Navigator is populated with the gen-
erated methods after annotations are placed and the code is
saved, even though the methods do not appear in the code.
Auto-completion works just as if the methods were typed into
the class, even when generated properties are accessed from
a web view in expression language.

Even more-concise Java EE. Over the past few years, Java EE
has been making good headway on becoming a very produc-
tive and concise platform. Those of you who recall the labo-
rious J2EE platform can certainly attest to the great number
of improvements that have been made. I was very happy to
learn that Lombok plays nicely with some Java EE APIs, such
as Java Persistence API (JPA). This means it is very easy to
develop constructs such as entity classes without writing all
the boilerplate, which makes the classes much more concise
and less error-prone. I’ve developed entire Java EE applica-
tions without any getters or setters in my entity classes, just

I 11001777771111111177771711111777777 MAY/JUNE 2017

by annotating them with @Data. I suggest you play around
with it and see what works best for you.

Use caution and roll back. As with the use of any library, there
are some caveats to keep in mind. This is especially true
when you are thinking about future maintenance or modifi-
cations to the codebase. Lombok generates code for you, but
that might cause a problem when it comes to refactoring. It
is difficult to refactor code that does not exist until compile

time, so be cautious with refactoring code that uses Lombok.

You also need to think about readability. Lombok annota-
tions might make troubleshooting a mystery for someone
who is not familiar with the library—and even for those
who are—if something such as @SneakyThrows is hiding
an exception.

Fortunately, Lombok makes it easy to roll back if you
need to. The delombok utility can be applied to your code to
convert code that uses Lombok back to vanilla Java. This util-
ity can be used via Ant or the command line.

Conclusion

The Lombok library was created to make Java an easier lan-
guage in which to code. It takes some of the most common
boilerplate headaches out of the developer’s task list. It can
be useful for making your code more concise, reducing the
chance for bugs, and speeding up development time. Try add-
ing Lombok to one of your applications and see how many
lines of code you can cut out. </article>

Josh Juneau (@javajuneau) is a Java Champion and a member of
the NetBeans Dream Team. He works as an application developer,
system analyst, and database administrator. He is a frequent con-
tributor to Oracle Technology Network and Java Magazine. Juneau
has written several books on Java and Java EE for Apress, and he
is a JCP Expert Group member for JSR 372 (JavaServer Faces
[UJSF] 2.3) and JSR 378 (Portlet 3.0 Bridge for JSF 2.2).

19

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

-

ALMIRAY

JDeferred: Simple Handling
of Promises and Futures

Asynchronous operations without the headaches

D evelopers are quite capable of dealing with events that
occur serially. However, we struggle with parallel and
delayed or deferred events. Fortunately, there are techniques
that can help to deal with delayed or deferred results. Principal
among these techniques are promises and futures, which are
the focus of this article, along with a library, JDeferred, that
greatly simplifies their use.

Wikipedia defines the key concept behind them as
an object that acts as a proxy for a result that’s initially
unknown. A future is a read-only placeholder view of a vari-
able; that is, its role is to contain a value and nothing more.
A promise is a writable, single-assignment container that
sets the value of the future. Promises may define an API that
can be used to react to a future’s state changes, such as the
value being resolved, the value being rejected due to an error
(expected or unexpected), or the cancelation of the computing
task. Let’s look at this in more detail.

Promises in Java

The standard Java library includes various implementations of

the future concept based on java.util.concurrent.Future<V>,

with one recent addition made in Java 8 named Completable

Future. This class delivers the following abilities:

= Obtain a value that might be calculated in an asynchronous
fashion.

ORACLE.COM/JAVAMAGAZINE /77777111111117777711111111777711111771777777/// MAY/JUNE 2017

» Register mutator functions that affect the calculated result,
when it is ready.

» Establish a chain of functions that accept the result, poten-
tially combining it with other results.

= Initialize a background task that computes the expected
result.

You can get started quickly with CompletableFuture (I refer to

this type as a promise from now on) by using a pair of factory

methods found in this type. You can create a promise that

returns no value by invoking the following:

CompletableFuture.runAsync(new Runnable() { ... });

This version allows you to define a task that performs some
computation, but the result is not important. What’s impor-
tant is whether the task was successfully completed or not.
You can attach a reaction, such as the following:

CompletableFuture<Void> promise =
CompletableFuture.runAsync(() -> ...);

promise.thenApply(result -> {
System.out.println("Task is finished!");

};

If you’re interested in the computed result, you must invoke a 16

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://en.wikipedia.org/wiki/Futures_and_promises
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

//libraries /

different factory method, one that takes a Supplier as argu-
ment, such as this:

CompletableFuture<String> promise =
CompletableFuture.runAsync(() -> "hello");

promise.thenApply(result -> {
System.out.println("Task result was

};

+ result);

Once you have a reference to a promise, you can decorate
it with further operations that can react to the result being
computed, to an exception being thrown during computation,
or to additional transformations to the returned value.

Now let’s say that you’ve been asked to display a list
of repositories using the name of an organization found on
GitHub. This requires you to invoke a REST API call, process
the results, and display them. Let’s further assume that the
code must be assembled as a JavaFX application. This last
requirement forces you to think about using the concept of a
promise, because the computation of the repository list must
be executed in a background thread, but the result must be
published inside the UI thread—that’s the general rule when
building interactive JavaFX applications. Stated otherwise,
any operation that’s not related to the UI (such as a net-
work call, in our case) must occur in a thread that’s not the
Ul thread; conversely, any operation that’s Ul related (such
as updating a widget’s properties) must occur inside the Ul
thread. I won’t get into the details of how the actual network
call is produced; however, the full working code can be found
on GitHub. The following snippet shows how to run the com-
putation in the background using a promise. In this project,
you’ll see that I inject some of the related resources:

public class GithubImpl implements Github {
@Inject private GithubAPI api;
@Inject private ExecutorService executorService;

ORACLE.COM/JAVAMAGAZINE /77777111111117777711111111777711111771777777/// MAY/JUNE 2017

@Override
public
CompletableFuture<List<Repository>> repositories(
final String organization) {
Supplier<List<Repository>> supplier = () -> {
Response<List<Repository>> r = null;
try {
r = api.repositories(organization).execute();
} catch (IOException e) {
throw new IllegalStateException(e);

}

if (r.isSuccessful()) {

return r.body();
}

throw new IllegalStateException(r.message());

};

return CompletableFuture.supplyAsync(supplier,
executorService);

The code shows the network
call being issued, using
execute(). If a communica-
tion problem or a parsing
error occurs, an I0Exception
is thrown. If the call was suc-
cessful, the parsed body is
returned; if it was not success-
ful, an IllegalStateException
is thrown. Finally, the promise
is created by specifying a tar-
get Executor. You might notice
in the previous snippet that I

17I

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/aalmiray/javatrove/tree/master/github-api-06

did not define an explicit exec-
utor. This is because the com-
mon ForkJoin pool is used if no
Executor is defined.

Now, let’s consume the
promised result. I’ll assume
there’s another component (a
controller, for example) whose
responsibility is to invoke the
service that was just defined
and populate a list with the
results. It also has the responsibility to display an error if an
exception occurs during the invocation of the service.

JDeferred allows you
to group callbacks

by responsibility,

thereby eliminating the
ordering problem with
CompletableFuture.

public class AppController {
@Inject private AppModel model;
@Inject private Github github;
@Inject private ApplicationEventBus eventBus;

public void loadRepositories() {
model.setState(RUNNING);
github.repositories(model.getOrganization())
.thenAccept(model.getRepositories()::addAll)
.exceptionally(t -> {
eventBus.publishAsync(new ThrowableEvent(t));
return null;
1)
.thenAccept(result -> model.setState(READY));
}
¥

I’ll shortly explain how the last line is executed. Let’s decon-
struct the code snippet above line by line. First, the control-
ler sets some state, which is used by the UI to disable further
actions until the computation is finished. Next, it invokes the
service and obtains a promise, repositories, described in

I 11001777771111111177771711111777777 MAY/JUNE 2017

the previous snippet. The promise allows the controller to set
further actions, such as processing the result—in this case,
adding the list of repositories to a model that is likely used
by the UI for display. It then handles any possible exceptions
that might have occurred during the execution of the service,
using the lambda in exceptionally(). Finally, it sets the state
again, regardless of success or failure, with the lambda in
thenAccept().

Caveats with Expectations

Pay close attention to the order of the steps used to process

the result supplied by the promise. If the steps are sequenced

in a different order, you’ll end up with different, and per-
haps unexpected, behavior. Let’s label the steps as SUCCESS,

FAILURE, ALWAYS. The current working order is thus:

SUCCESS, FAILURE, ALWAYS.

If you use a different sequence, it will produce different
results:

= ALWAYS, SUCCESS, FAILURE will not even compile,
because the ALWAYS changes the result type to Void as a
stand-in for the return from the lambda when a value is
not returned.

» SUCCESS, ALWAYS, FAILURE causes the Ul to remain dis-
abled if an error occurred, because the model state the Ul is
waiting on is never updated.

= FAILURE, SUCCESS, ALWAYS also causes the Ul to remain
disabled if an error occurred—again, because the state is
not updated.

So, you must be very vigilant regarding the order of actions

attached to this type of promise. There’s another inherent

problem in CompletableFuture: the fact that it is both a future
and a promise. Promises allow you to react in an asynchro-
nous fashion that is nonblocking. However, Future has one
particular method that is blocking in nature: get(). This
means you can turn a nonblocking scenario into a blocking
one at any time—even inadvertently, because it’s so common

18

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

to call get() on types that expose such a method (for exam-
ple, Optional).

You might ask, “What’s the big deal? As long as I don’t
call the get method, everything should be fine, right?” But
given that this type of promise is a future, there’s no guaran-
tee its get method won’t be called further down the stream
by another API that can handle futures. It would be much
better if this promise were not a future in the first place. The
next question might be, “What if wrap CompletableFuture
with a promise-only API?” Yes, that would work, but what
about switching to a ready-made promise library? I’'m talking
about JDeferred.

Introducing JDeferred
[Deferred is a library that delivers the concept of promises.
It is inspired by JQuery and Android Deferred Object. It is
designed to be compatible with JDK 1.6 and later. Its APl is
very simple, but don’t be fooled by this simplicity—you can
build stable, well-behaved, readable code with it. Let’s revisit
the previous example using JDeferred. The full code is avail-
able on GitHub, if you want to study it in detail.

JDeferred can be added to your project with the following
Maven entries:

<dependency>
<groupId>org.jdeferred</groupId>
<artifactId>jdeferred-core</artifactId>
<version»1.2.5</version>

</dependency>

Or if you prefer Gradle, use this:
compile 'org.jdeferred:jdeferred-core:1.2.5'

JDeferred offers a basic type, org.jdeferred.Promise, that
can be used to register actions or callbacks. A Promise may

I 11001777771111111177771711111777777 MAY/JUNE 2017

return a value upon completion, throw an Object (any
Object—not just Throwable) if an error occurs, and return
intermediate results during computation. The last two
options are not possible with CompletableFuture. JDeferred
allows you to group callbacks by responsibility, thereby
eliminating the ordering problem discussed earlier with
CompletableFuture. Promises are usually created by another
component called the DeferredManager. In this way, the
library decouples the task-creation mechanism from the
promise itself, because these are two distinct concepts. Let’s
see how the implementation of the previous GitHub service
with JDeferred looks now.

public class GithubImpl implements Github {
@Inject private GithubAPI api;
@Inject private DeferredManager deferredManager;

@Override
public Promise<List<Repository>, Throwable, Void>
repositories(final String organization) {
return deferredManager.when(() -> {
Response<List<Repository>> r =
api.repositories(organization).execute();
if (r.isSuccessful())
{ return r.body(); }
throw new IllegalStateException(r.message());

1)
¥
¥

The code above is functionally equivalent to the code exam-
ined earlier, but it is considerably cleaner. Tasks executed in
this way benefit from automatic error handling performed

by DeferredManager. This is why you don’t need to explicitly

handle communication and parsing errors like you did before.

These errors set the promise state to failed, and they are

19

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://jdeferred.org/
https://github.com/aalmiray/javatrove/tree/master/github-api-01

//libraries /

recorded in such a way that the fail-
ure callbacks will receive them.

This example does not produce
any intermediate result, which is why
the third argument to Promise is set
to Void.

Now, consuming the promise
can be done in the following way:

public class AppController {
@Inject private AppModel model;
@Inject private Github github;
@Inject private ApplicationEventBus eventBus;

public void loadRepositories() {
model.setState(RUNNING);
github.repositories(model.getOrganization())
.done(model.getRepositories()::addAll)
fail(t ->
eventBus.publishAsync(new ThrowableEvent(t)))
.always((state, resolved, rejected) ->
model.setState(READY));

The controller performs the same functions as before, but
the code is considerably cleaner. You can define the SUCCESS,
FAILURE, ALWAYS callbacks in any order you deem neces-
sary for this particular case. Finally, there’s no way to force
the promise to wait in a blocking manner for the result to be
delivered; the API simply won’t allow it.

If you want, you can also switch to a more manual imple-
mentation for producing the promise, using DeferredObject.
This type allows you to set the computed or rejected value, as
well as publish intermediate results if needed. If you’ve ever
used the SwingWorker API, then you know how this behavior

ORACLE.COM/JAVAMAGAZINE /77777111111117777711111111777711111771777777/// MAY/JUNE 2017

plays out—the key difference being that notifications sent by
DeferredObject are sent in the background thread whereas
SwingWorker sends them inside the Ul thread. Here’s how
DeferredObject can be used to manually set a promised result
or trigger a failure:

public class GithubImpl implements Github {
@Inject private GithubAPI api;
@Inject private ExecutorService executorService;

@Override
public Promise<lList<Repository>, Throwable, Void>
repositories(final String organization) {
Deferred<List<Repository>, Throwable, Void> d =
new DeferredObject<>();
executorService.submit(() -> {
Response<List<Repository>> r = null;
try {
r = api.repositories(organization).execute();
} catch (IOException e) {
d.reject(e);
return;
}
if (r.isSuccessful()) { d.resolve(r.body()); }
d.reject(new IllegalStateException(r.message()));
IOk
return d.promise();
}
}

This time, you must handle any communication and pars-
ing errors, as well as explicitly schedule the background task
using an Executor or similar means. This particular usage of
DeferredObject comes in handy when writing tests, because
you can resolve or reject a promise at any time. The following
test case shows exactly how such a scenario (that is, writing

20I

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

tests) can be implemented using a combination of JDeferred,
Mockito, and dependency injection:

@RunWith(JukitoRunner.class)

public class AppControllerTest {
@Inject private AppController controller;
@Inject private AppModel model;

@Test
public void happyPath(Github github) {
// given:

Collection<Repository> rs =
TestHelper.createSampleRepositories();
Promise<List<Repository>, Throwable, Void> p =
new DeferredObject<List<Repository>,

Throwable, Void>().resolve(rs);
when(github.repositories("foo")).thenReturn(p);

// when:
model.setOrganization("foo");
controller.loadRepositories();

// then:

assertThat(model.getRepositories(), hasSize(3));
assertThat(model.getRepositories(), equalTo(rs));
verify(github, only()).repositories("foo");

Here we can see how DeferredObject is used to set up an
expected result alongside a mocked instance of the Github
class. This particular test checks the happy path in which
everything works as expected. You could set up a failing path
by invoking rejected() instead, checking that the expected
exception occurred.

ORACLE.COM/JAVAMAGAZINE /77777111111117777711111111777711111771777777/// MAY/JUNE 2017

Conclusion
Promises enable you to handle computed results in a deferred
or asynchronous manner. Java 8 provides a type named
CompletableFuture that can be used as a promise. It allows
handling of results; transforming results into further values;
combining a result with other results; and handling excep-
tional cases when errors occur.

However, you must pay attention to the order in which
actions are attached to such a promise. Also, it’s possible
to block such a promise at any time by simply invoking the
get() method. JDeferred implements a simpler API that
delivers the same capabilities without the drawbacks. It also
allows you to publish intermediate results at any time during
the background computation. Examples of this latter behav-
ior can be seen in this code on GitHub. </article>

Andrés Almiray is a Java and Groovy developer and a Java
Champion with more than 17 years of experience in software de-
sign and development. He has been involved in web and desktop
application development since the early days of Java. He is a true
believer in open source and has participated in popular projects
such as Groovy, JMatter, Asciidoctor, and others. He is the found-
ing member and current project lead of the Griffon framework and
the specification lead for JSR 377.

learn more

JDeferred library

tutorial on futures, promises, and JDeferred

Java 8 CompletableFuture (Javadoc)

tutorial on Java 8 CompletableFuture

21

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/aalmiray/javatrove/tree/master/github-api-02
http://jdeferred.org/
http://www.hascode.com/2015/09/using-deferred-objects-and-promises-with-java-8-and-jdeferred/
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
http://www.baeldung.com/java-completablefuture

CALISKAN

jsoup HTML Parsing Library

Easily parse HTML, extract specified elements, validate structure, and sanitize content.

T oday, enterprise Java web application developers use
HTML in every aspect of a project. This work is made dif-

ficult at times because parsing HTML content is a tedious task.

Doing so without a parser framework is a most undesirable
chore. Fortunately, there are a handful of Java-based HTML
parsers publicly available. In this article, I will focus on one of
my favorites, jsoup, which was first released as open source in
January 2010. It has been under active development since then
by Jonathan Hedley, and the code uses the liberal MIT license.

Node

What It Is

jsoup can parse HTML files, input streams, URLSs, or even

strings. It eases data extraction from HTML by offering

Document Object Model (DOM) traversal methods and CSS

and jQuery-like selectors.

jsoup can manipulate the content: the HTML element

itself, its attributes, or its text. It updates older content based

on HTML 4.x to HTML5 or XHTML by converting deprecated

tags to new versions. It can also do cleanup based on whitelists,
tidy HTML output, and complete unbalanced tags
automagically. [will demonstrate these features

Attributes

with some working examples.

parentNode : Node
childNodes : List<Node>
attributes : Attributes
baseUri : String

attributes :
@®—— LinkedHashMap<String, Attribute>

All the examples in this article are based on
jsoup version 1.10.2, which is the latest available
version at the time of this writing. The complete

siblinglndex : int

S

source code for this article is available on GitHub.

The DOM and jsoup Essentials
DOM is the language-independent representa-

Element

DataNode TextNode Comment

XmlDeclaration

tion of the HTML documents, which defines

tag: Tag

text : String

the structure and the styling of the document.
Figure 1 shows the class diagram of jsoup frame-

T 1

Document

FormElement

Location : String

element : Elements

Figure 1. jsoup class diagram

ORACLE.COM/JAVAMAGAZINE /77777111111117777711111111777711111771777777/// MAY/JUNE 2017

work classes. Later, I’ll show you how they map
to the DOM elements.

The org.jsoup.nodes.Node abstract class is
the main element of jsoup. It represents a node
in the DOM tree, which could either be the docu-
ment itself, a text node, a comment, or an ele-

22

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://jsoup.org/
http://github.com/jhy/jsoup
http://github.com/mulderbaba/jsoup-examples

//libraries /

ment—that is, form elements—within the document. The
Node class refers to its parent node and knows all the parent’s
child nodes.

The Element class represents an HTML element, which
consists of a tag name, attributes, and child nodes. The
Attributes class is a container for the attributes of the HTML
elements and is composed within the Node class.

Getting Started

You can obtain the latest version of jsoup from Maven’s Cen-
tral Repository with the following dependency definition. The
current release will run on any version of Java since Java 5.

<dependency>
<groupId>org.jsoup</groupIld>
<artifactId>jsoup</artifactId>
<version>1.10.2</version>
</dependency>

Gradle users can retrieve the artifact with
org.jsoup:jsoup:1.10.2

The main access point class, org.jsoup.Jsoup, is the prin-
cipal way to use the functionality of jsoup. It provides base
methods that can parse an HTML document passed to it as a
file or an input stream, a string, or an HTML document pro-
vided through a URL. The example in Listing 1 parses HTML
text and outputs first the node name of the element and then
the HTML text owned by the element, as shown immediately
below the code.

Listing 1.
public class ExampleiMain {

static String htmlText = "<IDOCTYPE html>" +

ORACLE.COM/JAVAMAGAZINE /77777111111117777711111111777711111771777777/// MAY/JUNE 2017

" <html>" +
<head>" +

</head>" +
<body>" +

<title>Java Magazine</title>" +

" <h1>Hello World!</h1>" +

" </body>" +
"¢ /html>";

public static void main(String...

args) {

Document document = Jsoup.parse(htmlText);

Elements allElements =

document.getAllElements();
: allElements) {

for (Element element

System.out.println(element.nodeName()

+ + element.ownText());

The output is

#document

html

head

title Java Magazine
body

h1 Hello World!

Ways to select DOM elements. jsoup
provides several ways to iterate
through the parsed HTML elements
and find the requested ones. You
can use either the DOM-specific
getElementBy* methods or CSS and
jQuery-like selectors. I will demon-

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

strate both approaches by pars- Relain Blas

ing a web page and extracting all XuBin

links that have HTML <a> tags. David Blevins New!
e Joshua Bloch

The code in Listing 2 parses the David Bock

Java Champions bio page and Jonas Boneér

Bruno Bossola

extracts the link names for all T —
the Java Champions marked as Bill Burke*
“New!” (see Figure 2). c

The marking was done by Mert Caliskan New!

Mic hael Cannon-Brookes
Tasha Carl New!

adding a tag with text
New! right next to the link. So, I

will be check.mg for the content Figure 2. Part of the HTML
of the next-sibling element of page to be parsed
each link.

Listing 2.
public class Example2Main {

public static void main(String... args)
throws IOException {

Document document = Jsoup.connect(
"https://java.net/website/" +
"java-champions/bios.html")
.timeout(0).get();

Elements allElements =
document.getElementsByTag("a");
for (Element element : allElements) {
if ("New!".equals(
element.nextElementSibling()!=null
? element.nextElementSibling()
.ownText()
P) A
System.out.println(
element.ownText());

ORACLE.COM/JAVAMAGAZINE /77777111111117777711111111777711111771777777/// MAY/JUNE 2017

The same extraction of the links can also be done with selec-
tors, as shown in Listing 3. This code extracts the links that
start with href value #.

Listing 3.
public class Example3Main {

public static void main(String... args)
throws IOException {
Document document = Jsoup.connect
("https://java.net" +
" /website/java-champions/bios.html")
.timeout(0).get();
Elements allElements = document.select
"a[href*=#]");
for (Element element : allElements) {
if ("New!".equals(element
.nextElementSibling() != null
? element.nextElementSibling
().ownText() : "")) {
System.out.println(element
.ownText());

Selectors are powerful compared with DOM-specific methods.
They can be combined together to refine selection. In the
previous code examples, we are doing the New! text check by

24

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ourselves, which is trivial. The example in Listing 4 selects
the tag that contains the New! text, which resides after
a link that has an href starting with the value #. This really
shows the power of selectors.

Listing 4.
public class Example4Main {

public static void main(String... args)
throws IOException {
Document document = Jsoup.connect
("https://java.net" +
".website/java-champions/bios.html")
.timeout(0).get();
Elements allElements = document.select
("a[href*=#] ~ font:containsOwn" +
"(New!)");
for (Element element : allElements) {
System.out.println(element
.previousElementSibling()
.ownText());

Here, the selectors locate the tag as an element. I
then call the previousElementSibling() method on it, so as
to step one element back to the link. This select() method
is available in the Document, Element, and Elements classes.
Currently, jsoup does not support XPath queries on selectors.
More information about selectors is available at the jsoup site.
Traversing nodes. jsoup provides the org.jsoup.select
.NodeVisitor interface, which contains two methods: head()
and tail(). By implementing an anonymous class from that
interface and passing it as a parameter to the document
.traverse() method, it is possible to have a callback when

ORACLE.COM/JAVAMAGAZINE /77777111111117777711111111777711111771777777/// MAY/JUNE 2017

the node is first and last visited. The code in Listing 5 uses
this technique to traverse a simple HTML text and outputs all
node details.

Listing S.
public class Example5Main {

static String htmlText = "<IDOCTYPE html>" +
"<html>" +
"<head>" +
"<title>Java Magazine</title>" +
"</head>" +
"<body>" +
"<hi>Hello World!</h1>" +
"</body>" +
"</html>";

public static void main(String... args)
throws IOException {
Document document = Jsoup.parse(htmlText);

document.traverse(new NodeVisitor() {
public void head(Node node, int depth){
System.out.println("Node start: "
+ node.nodeName());

public void tail(Node node, int depth){

System.out.println("Node end: " +
node.nodeName());

1)

The output from this traversal is as follows:

29

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://jsoup.org/apidocs/org/jsoup/select/Selector.html

Node start: #document
Node start: #doctype
Node end: #doctype
Node start: html
Node start: head
Node start: title
Node start: #text
Node end: #text

Node end: title

Node end: head

Node start: body
Node start: hi

Node start: #text
Node end: #text

Node end: hi

Node end: body

Node end: html

Node end: #document

Parsing XML files. jsoup supports parsing of XML files with a
built-in XML parser. The example in Listing 6 parses an XML
text and outputs it with appropriate formatting. Note once
again how easily this is accomplished.

Listing 6.
public class ExamplebMain {

static String xml =
"<?xml version=\"1.0\"" +
"encoding=\"UTF8\"><entries><entry>" +
"<key>xxx</key>" +
"<value>yyy</value></entry>" +
"<entry><key>xxx</key>" +
"<value>zzz</value>" +
"</entry></entries></xml>";

ORACLE.COM/JAVAMAGAZINE /77777111111117777711111111777711111771777777/// MAY/JUNE 2017

publ