
magazine

By and for the Java community

ORACLE.COM/JAVAMAGAZINE

MARCH/APRIL 2019 EXPANDED ISSUE

THE PROXY DESIGN PATTERN 53 | LOOP UNROLLING IN THE JVM 62 | QUIZ 81

JAVALIN 13 | MICRONAUT 23 | HELIDON 34

Fast services without all the baggage

9b

Lightweight
Frameworks

http://www.oracle.com/javamagazine

https://www.jetbrains.com/idea/specials/idea/idea.html?utm_source=javamagazine&utm_medium=cpc&utm_campaign=idea

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

02

//table of contents/

53
The Proxy Pattern
By Ian Darwin

A good solution when you
need to enable or mediate
access to objects, either
local or remote

62
Loop Unrolling
By Ben Evans and
Chris Newland

A complex JVM mech­
anism for reducing loop
iterations improves
performance but
can be thwarted by
inadvertent coding.

81
Fix This
By Simon Roberts
and Mikalai Zaikin

More intermediate
and advanced
test questions

OTHER FEATURES DEPARTMENTS

04
From the Editor
Size still matters.

07
Java Books
Review of Modern
Java in Action

08
Events
Upcoming Java
conferences and events

10
User Groups
Transylvania JUG

103
Contact Us
Have a comment?
Suggestion? Want
to submit an article
proposal? Here’s how.

COVER ART BY WES ROWELL

13
JAVALIN: A SIMPLE,
MODERN WEB
SERVER FRAMEWORK
By David Åse

Building web apps with a fast,
lightweight, unopinionated
framework that creates tiny
executables

23
BUILDING
MICROSERVICES
WITH MICRONAUT
By Jonas Havers

A lightweight framework
designed from the ground
up for microservices and
serverless computing

34
HELIDON: A SIMPLE
CLOUD NATIVE
FRAMEWORK
By Todd Sharp

Create container-friendly
microservices with a
minimum of code running
straight Java SE.

COVER FEATURES

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

03

EDITORIAL
Editor in Chief
Andrew Binstock
Senior Managing Editor
Leslie Steere
Copy Editors
Lea Anne Bantsari, Karen Perkins
Contributing Editors
Deirdre Blake, Simon Roberts,
Mikalai Zaikin
Technical Reviewer
Stephen Chin

DESIGN
Senior Creative Director
Francisco G Delgadillo
Design Director
Richard Merchán
Senior Designer
Arianna Pucherelli
Designer
Jaime Ferrand
Senior Publication Designer
Sheila Brennan
Production Designer
Kathy Cygnarowicz

PUBLISHING
Group Publisher
Karin Kinnear
Audience Development Manager
Jennifer Kurtz

ADVERTISING SALES
Tom Cometa
Mailing-List Rentals
Contact your sales representative.

RESOURCES
Oracle Products
+1.800.367.8674 (US/Canada)
Oracle Services
+1.888.283.0591 (US)

ARTICLE SUBMISSION
If you are interested in submitting an article, please email the editors.

SUBSCRIPTION INFORMATION
Subscriptions are complimentary for qualified individuals who complete the
subscription form.

MAGAZINE CUSTOMER SERVICE
java@omeda.com

PRIVACY
Oracle Publishing allows sharing of its mailing list with selected third parties. If you prefer
that your mailing address or email address not be included in this program, contact
Customer Service.

Copyright © 2019, Oracle and/or its affiliates. All Rights Reserved. No part of this publication may be reprinted or otherwise
reproduced without permission from the editors. JAVA MAGAZINE IS PROVIDED ON AN “AS IS” BASIS. ORACLE EXPRESSLY
DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS OR IMPLIED. IN NO EVENT SHALL ORACLE BE LIABLE FOR ANY
DAMAGES OF ANY KIND ARISING FROM YOUR USE OF OR RELIANCE ON ANY INFORMATION PROVIDED HEREIN. Opinions
expressed by authors, editors, and interviewees—even if they are Oracle employees—do not necessarily reflect the views of Oracle.
The following is intended to outline our general product direction. It is intended for information purposes only, and may not be
incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied
upon in making purchasing decisions. The development, release, timing, and pricing of any features or functionality described for
Oracle’s products may change and remains at the sole discretion of Oracle Corporation. Oracle and Java are registered trademarks
of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

Java Magazine is published bimonthly and made available at no cost to qualified subscribers by
Oracle, 500 Oracle Parkway, MS OPL-3A, Redwood City, CA 94065-1600.

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates.

cloud.oracle.com/java
or call 1.800.ORACLE.1

Same Java Runtime
Same Dev Tools
Same Standards
Same Architecture

…or Back to Your Data Center

Push a Button
Move Your Java Apps
to the Oracle Cloud

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:karin.kinnear%40oracle.com?subject=
mailto:jennifer.s.kurtz%40oracle.com?subject=
mailto:tom.cometa%40oracle.com?subject=
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.sub-forms.com/dragon/init.do?site=ora6028_jfnew
mailto:java%40omeda.com?subject=
mailto:java%40omeda.com?subject=
http://cloud.oracle.com/java

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

04

//from the editor/

PHOTOGRAPH BY BOB ADLER/GETTY IMAGES

We now live in an age in which servers can
host more than 1 TB of RAM and where

so-called spindle farms are populated with hard
drives weighing in at 12 TB or more of capacity. For
the average consumer, smartphones with 128 GB
of storage are no longer uncommon. You would
think with all this space (at amazingly low price
points) that we could finally let go of concerns
about the size of executable programs. But we
can’t. While the capacity has grown, the problem
of executable size remains frustratingly constant.

Take, for example, the theme of this issue:
lightweight frameworks. The three frameworks
we cover (Javalin, Micronaut, and Helidon) all
tout their small size, which is presented as a
proxy for speed and simplicity of programming.
But in fact, the main benefit of the small size
is to fit within the architectural metaphor of
microservices. Those microservices are univer-

sally deployed in containers, which themselves
were created in response to the considerable size
of virtual machines.

It’s important to note here that the argu-
ment for microservices is not the usual one: less
complexity. Microservices bring many benefits,
but it is far too early—in my opinion and that
of many others—to know whether in fact they
deliver an equivalent computing experience with
less complexity. If you ever have tried to locate
an intermittent bug in a microservices imple-
mentation, you have firsthand knowledge of the
complexity problem.

But returning to the question of size. The
size of executables has been an issue for pro-
grammers since the beginning of business com-
puting. Memory arrays for IBM computers in the
early 1960s cost $1 a byte (which would be $8.57 a
byte in today’s dollars). Because of this cost, most

Size Still Matters
Despite servers with terabytes of RAM, executable size still matters.

#developersrule

Start here:
developer.oracle.com

Oracle Cloud.
Built for modern app dev.
Built for you.

Oracle Cloud delivers
high-performance and
battle-tested platform
and infrastructure services
for the most demanding
Java apps.

Java in
the Cloud

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://developer.oracle.com

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

05

//from the editor/

development was done in assem-
bly language and programmers
had to be exceedingly knowl-
edgeable about the effect of their
code on the binary size. They
worked much like embedded
programmers—equally skilled at
coding and shoehorning.

Two decades later, the prob-
lem still existed but without such
tight strictures. For example,
UNIX workstations for much of
the 1980s and early 1990s were
considered top of the line if they
had 16 MB of RAM. And software
that used a lot of that memory
was heavily criticized because
it greatly slowed other opera-
tions. For example, emacs, the
editor upon which millions of
developers depended, was widely
mocked for its memory con-
sumption as being an acronym
for “eight megabytes and contin-
ually spooling.” The irony is that
today, no editor is small enough
to use only 8 MB of memory. In
those days, memory was a hard
limit—if you blew the limit, per-
formance crawled, or on some
systems, like the early Macs, the
system would simply hang.

Today, with hundreds of giga-
bytes of RAM on high-end work-
stations and servers, the limits

are soft. This is especially true in
the cloud, where servers of more
than 1 TB are commonly avail-
able. Executable size still matters,
though, because in a microser-
vice architecture, you could have
hundreds of instances of services
running in the same memory
space. In such a situation, you
want those instances to be small
so that the remaining RAM can
be dedicated to the data itself.
And if that data’s needs decline,
you want to be able to shrink
your memory usage to lower your
cloud infrastructure bill. So for
these soft reasons, economy of
resources and of spending, exe-
cutable size remains an impor-
tant aspect.

What is not entirely clear is
whether microservices do in fact
lower memory usage. Containers
hold duplicated code—both user
and system code. Run enough
containers and you are likely to
surpass the execution footprint of
the monolithic server that those
services aim to replace. However,
services deliver a greater scal-
ability that servers cannot match,
and this benefit alone might
offset the potential for excess
memory consumption.

But regardless of whether

your architecture reaches that
tipping point, you’ll always be
well served by true economy in
executable size.

Andrew Binstock, Editor in Chief
javamag_us@oracle.com

@platypusguy

Note: We did not publish a
January/February issue due to
being greatly tied up with a proj-
ect we have wanted to deliver
for a long time: a full website in
which Java Magazine articles are
presented in responsive HTML.
We expect to roll that out to you
around midyear and are con-
fident it will greatly improve
your experience.

#developersrule

developer.oracle.com

Trials. Downloads.
Tutorials. Start here:
developer.oracle.com

The Oracle Developer
Gateway is the best place
to jump-start your modern
cloud development skills
with free trials, downloads,
tutorials, documentation,
and more.

The Best
Resource
for Modern
Cloud Dev

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:javamag_us%40oracle.com?subject=
https://twitter.com/platypusguy
http://developer.oracle.com
http://developer.oracle.com
http://developer.oracle.com

Written by leading experts in Java, Oracle Press books offer the most
definitive, complete, and up-to-date coverage of Java available.

www.OraclePressBooks.com • @OraclePressAvailable in print and eBook formats.

Your Destination for Oracle and Java Expertise

Java: A Beginner’s Guide,
 7th Edition

Herb Schildt

Revised to cover Java SE 9, this book
gets you started programming
in Java right away. Free online

supplement covering key new features
in JDK 10 available for download on the
book’s page on OraclePressBooks.com

Java: The Complete Reference,
10th Edition

Herb Schildt

Updated for Java SE 9, this book shows
how to develop, compile, debug,

and run Java programs. Visit the book’s
page on OraclePressBooks.com
to download free supplements

on JDK’s key new features.

OCA Java SE 8
Programmer I Exam Guide

(Exam 1Z0-808)
Kathy Sierra, Bert Bates

Get complete coverage of all objectives for
Exam 1Z0-808. Electronic practice exams
include more than 200 questions that help

you prepare for this challenging test.

OCP Java SE 8
Programmer II Exam Guide

(Exam 1Z0-809)
Kathy Sierra, Bert Bates, Elisabeth Robson

Prepare for the OCP Exam 1Z0-809 with
this comprehensive guide which offers
every subject appearing on the exam.

Includes more than 350 practice questions.

http://www.oraclepressbooks.com

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

07

The new six-month cadence for
Java releases has become a real
quandary for the book industry.
It takes more than six months to
update a book, so if you’re origi-
nally targeting Java 11 in your new
volume, by the time it comes out
Java 12 will already be released—
with Java 13 imminent. This book
finds an innovative way to cover all
the versions since Java 8 by refer-
ring to them as “Modern Java.”
(The term modern was also used by
the C++ community several years
ago to refer to releases of C++ that
enabled strong typing through-
out. But use of the term there was
political—an indication that you
should abandon the former non-
modern ways of coding. Such is not
the case here.)

This book is the sequel to the
authors’ previous work, the well-
regarded Java 8 in Action. Whereas
that volume introduced lambdas
and how they might be used for
functional Java, this book more
deeply embraces functional Java

and shows how to use this flow
style of programming beneficially.
As you’d expect, the authors pay
thorough attention—across more
than 150 pages—to the effec-
tive use of lambdas and streams
together, including coverage of
refactoring, testing, and debug-
ging lambdas as well as a system-
atic review of most of the major
design patterns in which the
implementations are performed
using lambdas.

Any good work on functional
programming in Java needs to treat
reactive programming as well.
Modern Java in Action is the first
major book on Java to understand
this. It digs into reactive devel-
opment across 130 pages that are
filled with numerous demonstra-
tions of how to implement your
own reactive programming with
CompletableFuture—as well as how
to do the same with the RxJava
library. This functional/reactive
approach is the core of the volume,
although other post-Java 8 top-

ics are covered as well: modules,
improvements to the date and time
library, using Optionals, and so on.

The authors are well-known
experts (Urma has cowritten sev-
eral articles in Java Magazine), and
their style is engaging and lucid.
Their illustrations are deep and
avoid snippet-size examples by
exploring larger projects, such
as writing a DSL or creating an
asynchronous API and pipelining
its actions.

This book bears the same cover
as Java 8 in Action, which under-
scores that it is a second edition
of that volume. In my estimation,
the new material does indeed war-
rant the cost of the upgrade: the
sections on reactive programming
alone justify the price. For readers
not familiar with Urma, Fusco, and
Mycroft’s earlier volume, it is one
of the best books for getting a firm
grip on the cognitive load required
by the new features in Java 8 and
subsequent releases.
—Andrew Binstock

//java books/
MODERN JAVA IN ACTION
By Raoul-Gabriel Urma, Mario Fusco, and Alan Mycroft

http://www.oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.manning.com/books/modern-java-in-action

08

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

//events/

PHOTOGRAPH BY MATT KIEFFER / CC BY-ND 2.0

DevNexus
MARCH 6–8
ATLANTA, GEORGIA 
DevNexus is an international open source developer conference.
Its stated goal is to connect developers from all over the world,
provide affordable education, and promote open source values.
Session topics include building evolutionary architectures; design
patterns; becoming the first Java 11 certified developer; hands-on
cloud native Java with MicroProfile, Kubernetes, and Istio; Java
security; and a Spring 2.x workshop.

QCon London
MARCH 4–6, CONFERENCE
MARCH 7–8, WORKSHOPS
LONDON, ENGLAND
QCon is designed for technical
team leads, architects, engineer-
ing directors, and project man-
agers who influence innovation
in their teams. Topics include
evolution of Java and the JVM,
JavaScript frameworks, operation-
alizing microservices, advances
in FinTech security, and AI and
machine learning methods.

Twin Cities Software Symposium
MARCH 8–10
MINNEAPOLIS, MINNESOTA
Topics covered at this developer
conference include microservices
migration patterns, the evolution
of Java, migrating to Java modules,
and more. Speakers include author
Venkat Subramaniam, author and
Spring expert Craig Walls, and
author and software architect
Mark Richards.

ConFoo Montreal
MARCH 13–15
MONTREAL, CANADA
This multi-technology conference
for web developers promises 155
presentations and typically fea-
tures targeted sessions for Java

and JVM developers on topics such
as CI/CD, Spring, and cloud native
development.

Oracle Code Bengaluru
MARCH 15
BENGALURU, INDIA
Oracle Code is a free event aimed
at helping developers explore the
latest developer technologies,
practices, and trends and includes
educational sessions for develop-
ing software using technologies
such as containers, microservices,
machine learning, intelligent bots,
and blockchain.

JavaLand 2019
MARCH 19–21
BRÜHL, GERMANY
This annual conference features
sessions on subjects including
core Java and JVM languages,
microservices architecture, front-
end development, and much more.

Voxxed Days Zürich
MARCH 19
ZÜRICH, SWITZERLAND
Voxxed Days Zürich shares the
Devoxx philosophy that content
comes first; it draws internation-
ally renowned and local speakers
discussing topics such as cloud
development, containers, machine

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
https://devnexus.com
https://qconlondon.com
https://nofluffjuststuff.com/conference/minneapolis/2019/03/home
https://confoo.ca/en/yul2019
https://developer.oracle.com/code/bengaluru-march-2019
https://www.javaland.eu/en/home/
https://voxxeddays.com/zurich/

09

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

//events/

learning, and programming
languages. Scheduled speakers
include Venkat Subramaniam,
Lukas Eder, and Anton Arhipov.

Voxxed Days Bucharest
MARCH 20–22
BUCHAREST, ROMANIA
This developer conference brings
together in-demand speakers
and practitioners of popular open
source technologies and features
insights into topics such as Java,
infrastructure, real-world archi-
tectures, analytics, the modern
web, and programming languages.

O’Reilly Strata Data Conference
MARCH 25–26, TRAINING
AND TUTORIALS
MARCH 27–28, KEYNOTES
AND SESSIONS
SAN FRANCISCO, CALIFORNIA
Data science, machine learning,
and data engineering are the core
focus of Strata. Training courses
include hands-on data science
with Python, machine learning
in TensorFlow, and professional
Kafka development.

Desert Southwest Software
Symposium
MARCH 29–30
PHOENIX, ARIZONA
This No Fluff Just Stuff-hosted
conference will focus on the lat-
est technologies and best prac-

tices emerging in the Java and
JVM software development space.
Speakers are authors, consultants,
open source developers, and rec-
ognized industry experts.

Voxxed Days Milan
APRIL 13
MILAN, ITALY
This one-day developer confer-
ence will cover topics such as
cloud, big data, AI, robotics, Java,
security, and architecture. A key-
note will be delivered by Java
Champion Holly Cummins, who
leads IBM’s Open Liberty project.

O’Reilly Artificial Intelligence
Conference
APRIL 15–16, TRAINING
APRIL 16–18, KEYNOTES, SESSIONS,
AND TUTORIALS
NEW YORK, NEW YORK
This conference is devoted to the
latest developments and tech-
niques in AI, including special-
ized hardware for sensing, model
training, and model inference;
cloud and on-premises tools for
building AI applications online
and on the edge (including
mobile); new architectures and
pipelines; proven best practices
and detailed case studies; and
ethics and security guidelines.

Devoxx France
APRIL 17–19
PARIS, FRANCE
Devoxx France will take place at
the Palais des Congrès this year,
with an estimated 3,000 partici-
pants and 235 presentations and
hands-on labs focused on topics
including Java, alternative JVM
languages, architecture, IoT, and
cloud computing.

JAX 2019
MAY 6–10, CONFERENCE
MAY 7–9, EXPO
MAINZ, GERMANY
This year, JAX focuses especially
on Java Enterprise technologies,
the Spring ecosystem, JavaScript,
continuous delivery, and DevOps.
More than 200 internationally
renowned speakers will give prac-
tical and performance-oriented
lectures.

Devoxx UK
MAY 8–10
LONDON, ENGLAND
Devoxx UK invites developers
and architects to come together
and explore the latest technol-
ogy advancements. The confer-
ence offers more than 120 ses-
sions covering a range of topics,
including Java, cloud, big data,

PHOTOGRAPH BY MATT KIEFFER / CC BY-ND 2.0

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
https://voxxeddays.com/romania/
https://conferences.oreilly.com/strata/strata-ca
https://nofluffjuststuff.com/conference/phoenix/2019/03/register_early
https://nofluffjuststuff.com/conference/phoenix/2019/03/register_early
https://voxxeddays.com/milan/
https://conferences.oreilly.com/artificial-intelligence/ai-ny
https://conferences.oreilly.com/artificial-intelligence/ai-ny
http://www.devoxx.fr
https://jax.de/en/
http://www.devoxx.co.uk

10

//events/

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

AI, robotics, interesting pro-
gramming languages, security,
architecture, methodologies, and
developer culture.

jPrime
MAY 28–29
SOFIA, BULGARIA
jPrime is a conference with talks
on Java, various languages on the
JVM, mobile, web, and best prac-
tices. Its fourth edition, run by
the Bulgarian Java User Group,
will be held in the Sofia Event
Center and is backed by the big-
gest companies in the city. The
conference features a combination
of international speakers along
with presenters from Bulgaria and
the Balkans.

O’Reilly Velocity Conference
JUNE 10–11, TRAINING
JUNE 11–13, TUTORIALS, KEYNOTES,
AND SESSIONS
SAN JOSE, CALIFORNIA
New topics at the 11th annual
Velocity conference for web and
systems engineers include cloud,
cloud native, and infrastructure as
well as machine learning, AI, and
blockchain. There also will be ses-
sions devoted to serverless com-

puting, containers, Kubernetes,
microservices, DevOps, and
security.

ÜberConf
JULY 16–19
DENVER, COLORADO
This conference for software
developers and architects will
cover Java 12, Docker, cloud
native architecture, reactive
programming, JVM internals,
Apache Spark, distributed sys-
tems, Gradle, machine learning,
and more.

Are you hosting an upcoming
Java conference that you would
like to see included in this cal-
endar? Please send us a link
and a description of your event
at least 90 days in advance at
javamag_us@oracle.com. Other
ways to reach us appear on the
last page of this issue.

TRANSYLVANIA JUG
The Transylvania Java User
Group (TJUG) was founded
in Cluj Napoca, Romania, in
May 2008 at the initiative
of Gabriel “Gabi” Pop. Over
the past 10 years, the com-
munity has grown to more
than 1,000 members and
has organized more than 60
events. The audience and the
number of members present

at the events has steadily increased, bringing the average cur-
rent number of attendees for most of these gatherings to more
than 200 people. Recent meetings have hosted presentations
by Java luminaries such as Adam Bien, Venkat Subramaniam,
Peter Lawrey, Raoul-Gabriel Urma, and Richard Warburton—
all of whom have written for Java Magazine. The TJUG has also
hosted Romanian speakers, including Vlad Mihalcea and Victor
Rentea, whose presentations enjoyed considerable popular-
ity. In addition, some members of the community worked on a
Java Advent Calendar (one article for every day of Advent) dedi-
cated to the JVM ecosystem.

The TJUG is exploring ways to diversify its existing ros-
ter of events to grow the community and the expertise of the
individuals within it. New event types currently under con-
sideration include code katas, blitz talks every semester, and
workshops. In addition to all these activities, as of last year,
the TJUG became a community partner of Voxxed Days Cluj-
Napoca, the Voxxed conference in Romania.

To participate in the TJUG activities, check the upcoming
events on Meetup.

//user groups/

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
http://jprime.io
https://conferences.oreilly.com/velocity/vl-ca
https://uberconf.com/conference/denver/2019/07/home
mailto:javamag_us%40oracle.com?subject=
https://www.transylvania-jug.org
https://www.javaadvent.com/
https://romania.voxxeddays.com/cluj-napoca/2018-11-22/
https://romania.voxxeddays.com/cluj-napoca/2018-11-22/
https://www.meetup.com/Transylvania-Java-User-Group/

http://devoxx.com
http://voxxeddays.com

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

12

//lightweight frameworks/

The emergence of microservices as the new architecture for applications has led to a

fundamental change in the way we use frameworks. Previously, frameworks offered

an omnibus scaffolding that handled most needs of monolithic applications. But as

microservices have gained traction, applications now consist of orchestrated con-

tainers, each performing a single service. As such, those services require far less

scaffolding—favoring instead lightweight frameworks that provide basic connectivity and then

get out of the way.

In this issue, we examine three leading frameworks for microservices: Javalin (page 13),

which is a very lightweight, unopinionated Kotlin-based web framework; Micronaut (page 23),

which handles all feature injection at compile time and so loads extremely fast; and Helidon

(page 34), which is a cloud native framework that generates a pure Java SE JAR file that can be

run as a service or a complete app. Helidon comes in two flavors: a minimal framework and a

slightly heftier one for developers wanting additional services.

In addition to these articles, we continue with the final installment of our series on Java

design patterns—this time covering the Proxy pattern (page 53), with practical examples and cov-

erage of the rarely discussed dynamic proxy feature in a little-used corner of the Java language.

Ben Evans examines a common optimization in VMs, loop unrolling (page 62), and explains

the subtle reason why loops on the JVM will execute more slowly if they’re indexed by longs

rather than ints.

And of course we have our quiz—somewhat expanded for this issue (page 81)—and our book

review (page 7).

Running Fast and Light
Without All the Baggage

JAVALIN 13
MICRONAUT 23
HELIDON 34

ART BY WES ROWELL

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

13

//lightweight frameworks/

Javalin is a very lightweight web framework for Java 8 (and later) and Kotlin. It supports

modern features such as HTTP/2, WebSocket, and asynchronous requests. Javalin is servlet-

based, and its main goals are simplicity, a great developer experience, and first-class interoper-

ability between Java and Kotlin.

In this article, I explain what Javalin is and how easily it enables you to write web applica-

tions quickly. You’ll need some experience with the basics of web applications to follow along.

Many developers would say Javalin is a library rather than a framework. This is because in

Javalin, unlike in most frameworks, you never extend anything; it sets no requirements for your

application structure; and there are no annotations, no reflection, and no other magic—just

code. The “Hello World” example is just four lines and an import statement:

import io.javalin.Javalin;

public static void main(String[] args) {
 Javalin app = Javalin.create().start(7000);
 app.get("/", ctx -> ctx.result("Hello World"));
}

This snippet creates a new Javalin instance and starts it on port 7000. It then attaches a Handler

that is triggered by GET requests to the root path. You can build and package this application as

a JAR file. If you use Maven, just add this to your build:

Javalin: A Simple, Modern
Web Server Framework
Building web apps with a fast, lightweight, unopinionated framework
that creates tiny executables

DAVID ÅSE

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://javalin.io
https://javalin.io

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

14

//lightweight frameworks/

<dependency>
 <groupId>io.javalin</groupId>
 <artifactId>javalin</artifactId>
 <version>2.5.0</version>
</dependency>

Run the output JAR file like any other Java program (java -jar myjar.jar).

Getting Started
All Javalin programs require the creation of a Javalin instance (Javalin.create()), which creates

a web server to which you can attach Handler objects. The Handler interface has a single method,

handle, which is void and takes a Context as its only parameter. This Context contains everything

you need for operating on the HTTP request and response.

@FunctionalInterface
public interface Handler {
 void handle(Context ctx) throws Exception;
}

A Handler is attached to the Javalin instance with a verb and a path:

app.get("/hello-get", ctx -> ctx.result("Hello GET"));

Responses are set on the Context instance (ctx) through the ctx.result() method. As men-

tioned previously, the Context contains all the methods required to deal with both requests

and responses.

You could also write the previous code snippet by creating a class that implements Handler:

class MyGetHandler implements Handler {
 @Override

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

15

//lightweight frameworks/

 public void handle(Context ctx) {
 ctx.result("Hello GET")
 }
}

Then, you need to add an instance of MyGetHandler to the Javalin instance:

app.get("/hello-get", new MyGetHandler());

Although it’s possible to write Javalin applications this way, it’s recommended that you

use lambda syntax instead. If you need to split up your code, the best approach is to create

method references:

app.get("/hello-get", helloController::myGetHandler);

This approach makes it easier to group common functionality and puts fewer restrictions on

how you build your application. I’ll present more information on handlers later in this article.

Now let’s look at how to handle common operations with Javalin.

JSON responses. A common use case for Javalin is to serve a JSON object. This can be done eas-

ily by calling ctx.json(myObject):

app.get("/json", ctx -> ctx.json(myObject));

This code transforms myObject to JSON by using Javalin’s JSON plugin and sets the content type

of the response to application/json. The JSON plugin is fully configurable, so any JSON library

can be used with Javalin—be it Jackson, Gson, or another choice.

Note that Javalin defines two interfaces for mapping to and from JSON and includes a

Jackson implementation for both of these interfaces. But you’re free to provide your own imple-

mentation to replace the ones that ship with Javalin.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

16

//lightweight frameworks/

Handling input. All client input is available through the Context. You get parameters from

the path, the query string, or the request body. The request body can contain either the form

parameters or a string (usually JSON). Javalin handles all cases in a consistent way:

app.get("/:path-param", ctx -> {
 String qp = ctx.queryParam("query-param");
 String pp = ctx.pathParam("path-param");
 String fp = ctx.formParam("form-param");
 String body = ctx.body();
 MyObject mo = ctx.bodyAsClass(MyObject.class);
});

Getting input as a string is great for quick prototyping and debugging, but usually you’ll want a

specific type of object. For that, you can use the Validator class:

int index = ctx.validatedQueryParam("index").asInt().getOrThrow();

In this code, the call to getOrThrow() tells Javalin to convert the string to the specified type or

throw an exception. These exceptions are automatically mapped to standard HTTP responses,

and they provide helpful debug messages to the client. For example, if the index query-param is

abc, the client will be sent the following error:

Query parameter 'number' with value 'abc' is not a valid int

The Validator class also supports an asClass method that you can use to validate any type. This

enables you to do powerful things, such as validating two Instant types relative to each other:

Instant fromDate = ctx.validatedQueryParam("from")
 .asClass(Instant.class)
 .getOrThrow();

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

17

//lightweight frameworks/

Instant toDate = ctx.validatedQueryParam("to")
 .asClass(Instant.class)
 .check(to -> to.isAfter(fromDate), "'to' has to be after 'from'")
 .getOrThrow();

If you were to use asClass(UnfamiliarType.class), Javalin will ask you to register a converter for

that particular class.

Filters and mappers. Sometimes you need to apply the same logic for multiple endpoints, or

you need to handle errors in a consistent way. These kinds of problems are solved in Javalin by

filters and mappers. Just like HTTP endpoints, the filters in Javalin use the Handler interface.

Filters can be attached to the Javalin instance with or without specifying a path. For example:

app.before("/some-path", ctx -> {
 // runs before requests to /some-path
});

app.after(ctx -> {
 // runs after all requests
});

The before filters run before endpoint handlers. If you want to prevent an endpoint handler

from doing something in certain cases, you can throw an exception in a before filter. The after

filter runs after the endpoint handlers (even after exceptions have been handled).

Exception mappers. It’s common to throw exceptions when writing controllers for web

applications. If a resource is not found, or if a user isn’t authorized to view a resource, you

throw an exception and handle it elsewhere. Javalin has an exception mapper that lets you

map any exception, and it has a set of premapped exceptions for your convenience, such as

BadRequestResponse, NotFoundReponse, and UnauthorizedResponse. Like HTTP endpoint handlers

and filters, the exception mapper has access to the Context:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

18

//lightweight frameworks/

app.exception(NullPointerException.class, (exception, ctx) -> {
 // handle null pointers here
});

WebSocket. Javalin offers a high-level lambda-based WebSocket API:

app.ws("/websocket/:path", ws -> {
 ws.onConnect(session -> System.out.println("Connected"));
});

The ws object is a WsHandler and supports the most common WebSocket events:

onConnect(WsSession session)
onMessage(WsSession session, String msg)
onMessage(WsSession session, Byte[] msg, int offset, int length)
onClose(WsSession session, int statusCode, String reason)
onError(WsSession session, Throwable throwable)

The WsSession object contains methods for getting path-params and query-params, as well as

methods for sending data to the client.

Configuring the server. Javalin doesn’t require an application to run, because it runs on top of an

embedded Jetty server. Javalin provides several helpful configuration options, all of which are

programmatic (there are no configuration files). The following snippet shows some of the options:

Javalin.create()
 .contextPath("/context-path")
 .enableAutogeneratedEtags()
 .enableCorsForOrigin("*")
 .enableDebugLogging()
 .enableStaticFiles("/public")
 .start();

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://javalin.io/documentation#configuration

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

19

//lightweight frameworks/

If you need more control than what Javalin exposes through its configuration API, you can sup-

ply Javalin with your own Jetty Server object:

app.server(() -> {
 Server server = new Server(); //org.eclipse.jetty.server.Server
 // configure server
 return server;
});

You can use this option if you want to run Javalin on an HTTP/2 server. (The code required to set

up Jetty to run with HTTP/2 is too long to include in this article, but there is a working example

on GitHub.)

The process is similar for configuring a Jetty SessionHandler, and an extensive tutorial is

available on the Javalin website.

Advanced Concepts
Handler groups. When you build a larger application, you often end up with routes that share

the same path. For example, consider a standard CRUD API for users:

app.get("/users/", UserController::getAll)
app.post("/users/", UserController::create)
app.get("/users/:user-id", UserController::getOne)
app.patch("/users/:user-id", UserController::update)
app.delete("/users/:user-id", UserController::delete)

To reduce the amount of noise in these kinds of apps, Javalin has the concept of handler groups,

which define a block scope where the app object is the receiver and thereby allows you to write

tighter code:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/tipsy/javalin-http2-example
https://javalin.io/tutorials/jetty-session-handling-java
https://javalin.io/documentation#handler-groups

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

20

//lightweight frameworks/

app.routes {
 path("users") {
 get(UserController::getAll)
 post(UserController::create)
 path(":user-id") {
 get(UserController::getOne)
 patch(UserController::update)
 delete(UserController::delete)
 }
 }
}

Handler groups improve readability and significantly reduce the potential for programming

errors. Instead of repeating users five times and :user-id three times, each string is now used

only once. This eliminates the need to extract strings into variables, leaving the code more

readable and less error-prone.

Asynchronous responses. Asynchronous request handling is simple in Javalin. If you set the

Context result to be a CompletableFuture, Javalin will remove the request from the thread pool

and finish it asynchronously. This option improves performance by freeing up the thread pool

to deal with new requests instead of waiting for database calls or HTTP requests to finish.

Several libraries return CompletableFuture in Java, which makes things even simpler. Here is an

example using Java 11 and jasync-sql, a database driver for MySQL and PostgreSQL:

app.get("/", ctx -> {
 var futureResult =
 connection.sendPreparedStatement("select 0")
 .thenApply(...)
 ctx.result(futureResult);
});

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/jasync-sql/jasync-sql

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

21

//lightweight frameworks/

As you can see, there is no difference between an async handler and a blocking one, except for

the type of object you give to ctx.result().

Access management. Most production applications eventually need some sort of access man-

agement. Security is not something for which Javalin is responsible, but the framework does give

you the tools to easily create your own implementation. Every HTTP request in a Javalin applica-

tion is run through an AccessManager. The default implementation is to allow every request, so

developers are responsible for defining their own security. Consider the following snippet:

get("/secured", ctx -> ctx.result("!"), roles(MY_ROLE));

Here, the code defines a GET handler for the path "/secured" and attaches the role MY_ROLE

to it. So how do you get Javalin to respect this role? As with most other concepts in Javalin,

AccessManager is a functional interface:

app.accessManager((handler, ctx, permittedRoles) -> {
 handler.handle(ctx); // handle the request
});

The parameter permittedRoles is of type Set<Role>, and it contains the roles attached to the end-

point. If you have not attached any roles to your endpoint, you can ignore it. If you do have roles

attached to your endpoint, you can use it to determine whether the user should have access to

the endpoint:

app.accessManager((handler, ctx, permittedRoles) -> {
 if (permittedRoles.contains(getUserRole(ctx)) {
 handler.handle(ctx);
 } else {
 ctx.status(401);
 }
});

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

22

//lightweight frameworks/

There are no predefined roles in Javalin. The recommended approach is to create an enum that

implements Role, which is a marker interface—that is, an empty interface.

When to Use Javalin
Javalin is simple and unopinionated, which makes it a good choice if you need to get started

quickly. Its abstraction layer is thin, which makes it easy to understand what’s going on under

the hood. Javalin also is fast, serving 1.1 million requests per second (rps) in the October 2018

TechEmpower benchmarks, which is significantly faster than most heavier frameworks and

many lightweight frameworks.

Javalin works well with GraalVM (there’s a tutorial on the website). The final binary is only

22 MB (everything included) and starts instantly.

The simplicity of Javalin comes at a cost. Because Javalin does only web applications, devel-

opers need to solve database setup, dependency injection, command-line parsing, and other

important aspects of an application. The Javalin website has numerous tutorials that show how

to approach many of these tasks.

Conclusion
This article presents just a quick overview of Javalin’s functionality. As you can see, the scope

of Javalin is narrow and limited to the web layer. The codebase is small, and tests make up the

majority of it (6,000 out of 10,000 lines of code). If you’re interested in contributing, please visit

the project on GitHub. Otherwise, consider using Javalin for your projects, both commercial and

personal, whenever you need a fast, lightweight web framework. </article>

David Åse is a software engineer at Working Group Two, a telecommunications startup. He graduated from
the Norwegian University of Science and Technology with a master’s degree in computer science in 2014 and
immediately joined the open source project Spark Java. He is now an open source enthusiast and the creator
and maintainer of two popular open source Java projects: Javalin and j2html.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://bit.ly/2AKnYbZ
https://github.com/tipsy/javalin

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

23

//lightweight frameworks/

Micronaut is a microservices framework that is especially designed for the development

of modular, easy-to-test applications that embrace the 12-factor design orientation. It

can be used to build self-contained systems, microservices, and serverless functions as well as

command-line applications with Java, Kotlin, and Groovy on the JVM or on GraalVM.

The Micronaut project was begun in 2017 by Object Computing, Inc.—the same team that

developed the Grails framework, which recently celebrated its 10th anniversary. In late May

2018, the Micronaut project was published under Apache License 2, and Micronaut 1.0 GA was

released in October 2018.

Opinionated Framework
Micronaut joins a series of frameworks such as Spring Boot, Grails, Jakarta EE, and MicroProfile

that follow an opinionated approach using an annotation-driven programming model that

enables fast results. The popularity of these frameworks in the Java community—according to

the largest survey ever of Java developers (question 17)—is a testament to the fact that devel-

opers overwhelmingly prefer an opinionated framework—that is, one that provides autocon-

figurations with reasonable defaults and support for different technologies without requiring

developers to put all the pieces together from various components. This programming model

distinguishes Micronaut and the others from unopinionated frameworks such as Ratpack,

Spark, Vert.x, and Javalin.

The goals for Micronaut were to create a framework that is designed from the ground up for

Building Microservices
with Micronaut
A lightweight framework designed from the ground up
for microservices and serverless computing

JONAS HAVERS

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://micronaut.io/
http://micronaut.io/
https://scs-architecture.org/
http://www.javamagazine.mozaicreader.com/NovemberDecember2018#&pageSet=27&page=0

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

24

//lightweight frameworks/

microservices and serverless computing. Micronaut focuses on—and optimizes for—the follow-

ing aspects of applications for the JVM:
■■ Fast application startup time
■■ Low runtime memory footprint
■■ Minimal use of reflection and proxies
■■ Few external dependencies
■■ Simple and fast application tests

To meet these goals, the team performed an analysis of the Spring and Grails frameworks and

the challenges of using them to develop microservice applications today. Both of those frame-

works were launched at a time when monolithic applications predominated, which is why their

design was different.

The problem with most of today’s monolithic Java frameworks that provide a large set

of out-of-the-box features is that they come with performance and memory-consumption

compromises.

One of Micronaut’s primary differences from these frameworks is that it performs depen-

dency injection, aspect-oriented programming (AOP) proxying, and configuration manage-

ment at compile time. Micronaut processes annotation metadata into ASM-generated code that

is used to glue components together. The JVM JIT compiler additionally optimizes the generated

bytecode. Other frameworks use reflection to perform these tasks at runtime—generally in the

application startup phase—producing runtime annotation metadata and storing the informa-

tion in memory. Micronaut does not use the Java Reflection API. Instead, it uses a trio of tech-

nologies: the Annotation Processor API for Java, the Kapt Kotlin compiler plugin for annotation

processors, and the Groovy AST transformations for metaprogramming. Scala is not supported

at the time of this writing.

With Micronaut, the startup time and memory consumption of applications are not tied to the

size of the codebase. Other reflection-based inversion-of-control frameworks scan the classpath

and then load and cache the reflection metadata for each field, method, and constructor. This can

create significant overhead. In addition, the more reflection-based microservices are in operation,

the more resources they need and the greater the operational costs.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://asm.ow2.io/
https://docs.oracle.com/javase/8/docs/api/javax/annotation/processing/Processor.html

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

25

//lightweight frameworks/

In comparison, Micronaut’s ahead-of-time (AoT) compilation makes it possible to pack-

age a minimum Micronaut application in a 10 MB JAR file that can be run with a heap of 10 MB

maximum size while enjoying a startup time of about one second. For developers, this benefit is

most noticeable during development and the execution of integration tests. Moreover, the fast

startup and low memory consumption is a huge advantage for running cloud functions, which is

why Micronaut is particularly suitable for the development of serverless applications.

Features
Micronaut has many features that are tailor-made for microservices, including the following:

Reactive streams. Micronaut supports any framework that implements the Reactive Streams

standard, including RxJava and Reactor. Web-based nonblocking reactivity is enabled by using

Netty. Reactive programming is integral to the design of Micronaut, which consistently sup-

ports reactive types to allow efficient use of system resources. For example, Micronaut pro-

vides its own service-discover client implementation for Consul that uses Micronaut’s reactive

HTTP client—while the majority of existing Consul and Eureka clients provide only blocking

access. Also included in the framework are reactive database drivers for SQL databases, such as

PostgreSQL, and NoSQL databases, including Neo4j, Redis, MongoDB, and Cassandra.

Cloud native features. Micronaut offers the typical features that you’d expect from a cloud

native microservice framework. These include resilience mechanisms (retryables, fallbacks,

circuit breakers), service discovery, client-side load balancing, distributed tracing, configuration

sharing, and so forth. Default implementations and alternative libraries can be easily integrated

into applications by declaring compile-time dependencies from the Micronaut ecosystem and

runtime external dependencies. These features are covered in the Micronaut documentation.

Message-driven microservices. Message-driven microservices can be easily implemented

with Micronaut’s support for Kafka by using the compile-time AOP annotations @KafkaClient,

@KafkaListener, @Topic, @Body, @Header, and @KafkaKey and a few lines of YAML configuration.

Equivalent support is planned for RabbitMQ.

Serverless functions. Micronaut provides support for the development, testing, and deploy-

ment of serverless functions for AWS Lambda and any framework-as-a-service (FaaS) system,

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.consul.io/
https://github.com/Netflix/eureka
https://docs.micronaut.io/latest/guide/index.html#cloud

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

26

//lightweight frameworks/

such as OpenFaaS and Fn, that supports running functions in the form of containers. Registered

functions can be addressed by using a configured service-discovery service (Consul, Eureka,

Kubernetes, Google Cloud Platform, or Amazon Route 53). They can be accessed easily using a

@FunctionClient-annotated client and tested in isolation or via an HTTP server.

OpenAPI documentation. API documentation can be done using OpenAPI (or Swagger). Micronaut

creates a Swagger 2.x-compliant YAML file at compile time, which is based on regular Micronaut

annotations and Javadoc comments. The YAML file can then be added to the application as a

static resource and imported into the Swagger user interface.

GraalVM-ready. Due to its AoT compilation, a Micronaut application can be compiled into a

native GraalVM image, which further reduces the already-short startup time of a Micronaut

application. With a native GraalVM image, startup time drops from about one second to fewer

than 100 milliseconds. The memory consumption of about 60 MB for a regular Java app drops to

roughly 20 MB for the native process. You can find more information about using GraalVM with

Micronaut in the Micronaut Guide.

Getting Started with the Micronaut CLI
Micronaut offers a CLI application. After installing the Micronaut CLI with SDKman, you can

generate project setups from the console. You can also use the CLI to create basic (web) applica-

tions, command-line applications, serverless functions, and federations (that is, services that

share a profile and its features). Features (such as database drivers) can be applied in the CLI,

which will add the dependencies to the project and to templates for code and configuration. You

can find the complete list of such features online.

Once a project has been created, singleton beans, scheduled jobs, HTTP clients, and control-

lers as well as WebSocket clients and servers can be scaffolded (see Listing 1).

Listing 1. Micronaut CLI capabilities
$ mn -h
Usage: mn [-hnvVx] [COMMAND]
Micronaut CLI command line interface for generating projects and services.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.micronaut.io/latest/guide/index.html#graal
http://guides.micronaut.io/micronaut-cli/guide/index.html
https://sdkman.io/
https://docs.micronaut.io/latest/guide/index.html#features

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

27

//lightweight frameworks/

Commonly used commands are:
 create-app NAME
 create-cli-app NAME
 create-federation NAME --services SERVICE_NAME[,SERVICE_NAME]...
 create-function NAME

Options:
 -h, --help Show this help message and exit.
 -n, --plain-output Use plain text instead of ANSI colors and styles.
 -v, --verbose Create verbose output.
 -V, --version Print version information and exit.
 -x, --stacktrace Show full stack trace when exceptions occur.

Commands:
 create-app Creates an application
 create-cli-app Creates a command line application
 create-federation Creates a federation of services
 create-function Creates a serverless function application
 create-profile Creates a profile
 help Prints help information for a specific command
 list-profiles Lists the available profiles
 profile-info Display information about a given profile

The Micronaut CLI provides autocompletion and help information in its interactive mode, which

provides a smooth user experience.

Hands-on Exercise: Creating a Catalog Service for Books
To illustrate the development of a simple Micronaut application, I will create a catalog service

for books. You can find the complete codebase on Github, but I will highlight the important

parts here.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/JonasHavers/book-catalog

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

28

//lightweight frameworks/

I start by running the Micronaut CLI’s create-app command in the console (see Listing 2).

Listing 2. Creating a book-catalog project via the CLI
$ mn create-app catalogservice.book-catalog --features mongo-reactive
| Generating Java project...
| Application created at .../github.com/JonasHavers/book-catalog

[Note: A | at the start of a line indicates screen output from the command. —Ed.]

This command creates a Gradle project (by default) called book-catalog in a folder with the

same name. The base package, catalogservice, is created too. The project structure also con-

tains an Application.java class with the main method for starting the application, an applica-

tion configuration file called application.yml, a logback.xml file for logging via Logback, and a

Dockerfile for building an application Docker image that uses Java 8 (as of Micronaut 1.0.3). To

make the project ready for Java 11, I changed the base image in the Dockerfile to a JDK 11 image.

The feature mongo-reactive, which is set via the features option, adds the required depen-

dencies to make use of the MongoDB reactive driver. It also configures a default MongoDB con-

nection URI in the application.yml file with default values for the host and port.

To access configuration values in general, such as the database name with the key mongodb-

.database, I can use type-safe configuration and validation with Micronaut. That includes ref-

erencing and binding configuration values (@Value) at compile time, type-safe mappings to

beans by declaring a class annotated with @ConfigurationProperties, validation of properties in

Hibernate Validator (for example, @NotNull, @Size, @Min, and @Max), bean factory configurations

(@Configuration), and conditional beans (@Requires) with Bean Validation 2.

Now, I can make use of the CLI to scaffold some parts of the application. I create @Singleton

beans for the books repository and an HTTP API controller (see Listing 3). There are various

annotations for the creation of beans with different scopes (@Singleton, @Prototype, @Refreshable,

and so on). These are supported for the different forms of dependency injection with the

annotations from JSR 330. Bean injection via the constructor can even be done without the

@Inject annotation.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.micronaut.io/latest/guide/index.html#scopes
https://www.jcp.org/en/jsr/detail?id=330

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

29

//lightweight frameworks/

Listing 3. Creating use-case and repository beans and a web controller via the CLI
$ cd book-catalog/
$ mn
| Starting interactive mode
| Enter a command name to run. Use TAB for completion:
mn> create-bean catalogservice.application.FindBooksUseCase
| Rendered template Bean.java to destination
src/main/java/catalogservice/application/FindBooksUseCase.java
mn> create-bean catalogservice.adapter.mongodb.MongoBooksRepository
| Rendered template Bean.java to destination
src/main/java/catalogservice/adapter/mongodb/MongoBooksRepository.java
mn> create-controller catalogservice.adapter.web.BooksApiController
| Rendered template Controller.java to destination
src/main/java/catalogservice/adapter/web/BooksApiController.java

[Note: Screen ouput that does not start with a | is continued from the previous line. —Ed.]

Controllers take an RFC-6570 URI template for their @Controller and @Get, @Post, and other

mappings. I added a MongoClient dependency to the MongoBooksRepository constructor and

implemented the port adapter method to fulfill the purpose of the FindBooksUseCase.

Let’s look at an API test. In an integration test inside the BooksApiControllerTest class (see

Listing 4), I send a GET request to the API controller with Micronaut’s RxHttpClient, which will

access the use case that will then access the database through the repository to return the

books data.

Listing 4. Implementing an API test in the BooksApiControllerTest
@Test
public void shouldReturnAllBooks() throws Exception {
 try (EmbeddedServer server = ApplicationContext
 .run(EmbeddedServer.class)) {
 try (RxHttpClient client = RxHttpClient.create(server.getURL())){
 // given

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

30

//lightweight frameworks/

 HttpRequest<?> request = HttpRequest
.GET("/api/books/");

 // when
 HttpResponse<?> response = client

.toBlocking()

.exchange(request, Argument.of(List.class, Book.class));
 // then
 HttpStatus responseStatus = response.status();
 assertEquals(HttpStatus.OK, responseStatus);
 // ...
 }
 }
}

If the MongoDB server is not available on the configured port for the test environment, an

embedded MongoDB will be bootstrapped and made available for testing. Alternatively, I can

replace the MongoBooksRepository with a test stub. To do this, I need to create another bean that

acts as the stub implementation (see Listing 5).

Listing 5. Creating a bean for a books repository test stub
$ mn create-bean catalogservice.adapter.test.StubBooksRepository
| Rendered template Bean.java to destination
src/main/java/catalogservice/adapter/test/StubBooksRepository.java

In Listing 6, I add the @Replaces annotation to define the bean I want to replace as well as the

@Requires annotation with the Environment.TEST value to replace the MongoBooksRepository with

the StubBooksRepository when I run the application with the test profile.

Listing 6. Creating a bean as a test stub for the books repository
@Singleton
@Replaces(bean = MongoBooksRepository.class)

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

31

//lightweight frameworks/

@Requires(env = Environment.TEST)
public class StubBooksRepository ...

I could create other use cases that can be invoked through the API controller and make use of

the repository.

To showcase another feature, I want to display the books by using a view. To do this, I can

add another controller, BooksViewController (see Listing 7).

Listing 7. Creating the BooksViewController
$ mn create-controller catalogservice.adapter.web.BooksViewController
| Rendered template Controller.java to destination
src/main/java/catalogservice/adapter/web/BooksViewController.java
| Rendered template ControllerTest.java to destination
src/test/java/catalogservice/adapter/web/BooksViewControllerTest.java

Although Micronaut is primarily designed for the exchange of pure data (that is, in JSON for-

mat), the template engines Thymeleaf, Velocity, and Handlebars are supported for server-side

view rendering. The rendering itself is done in the I/O thread pool to avoid blocking the Netty

event loop. For this example, I will choose Handlebars.

After creating the controller class with the corresponding CLI command in Listing 7, I edit

its source file. I use an instance of Micronaut’s ModelAndView class to render a view template with

dynamic data as in Listing 8. You might be familiar with the ModelAndView class from the Spring

Web MVC framework. I could have used an HttpResponse or my own data transfer object (DTO)

class as a return value, thus requiring me to specify the view name as the value of the @View

annotation. To stay in the reactive loop, the return value is encapsulated in a reactive type, in

this case an instance of io.reactivex.Single.

Listing 8. Implementing the BooksViewController
@Controller("/")
@RequiredArgsConstructor

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

32

//lightweight frameworks/

public class BooksViewController {
 private final FindBooksUseCase findBooksUseCase;
 @Get
 @View
 public Single<ModelAndView> booksView() {
 return findBooksUseCase.invoke()
 .toList()
 .map(bookList -> {
 Map<String, ?> model = Map.of(
 "books", bookList,
 "numberOfBooks", bookList.size()
);
 return new ModelAndView("booksView", model);
 });
 }
}

For this example to work, I need to add Project Lombok to the project as well as the Handlebars

library (see Listing 9). By default, the Handlebars renderer will process the booksView.hbs tem-

plate file from the directory src/main/resources/views/.

Listing 9. Adding Project Lombok and Handlebars to build.gradle
compileOnly "org.projectlombok:lombok:1.18.4" // added
annotationProcessor "org.projectlombok:lombok:1.18.4" // added
annotationProcessor "io.micronaut:micronaut-inject-java"
…
runtime "com.github.jknack:handlebars:4.1.2" // added

What’s Next?
I could now add configurations to communicate in a microservices architecture. I could use

authentication strategies such as Basic Auth, Session, LDAP, and JSON Web Tokens to secure

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

33

//lightweight frameworks/

the service. I could also implement use cases that require WebSockets or server-sent events by

using Micronaut’s Event API.

In addition, I could dive into managing and monitoring with restrictable endpoints as well

as publishing metrics with the Micrometer library to supported services such as Atlas, Graphite,

Prometheus, and StatsD. But I will leave all that to you and your curiosity. In the Micronaut

guide, which I have frequently referenced in this article, you will find all the nitty-gritty details

for doing these things.

Conclusion
Due to its consistent focus on cloud native computing and the reactive paradigm, Micronaut is

particularly suitable for the development of microservices and serverless functions, but it is

universally applicable as well. The already-fast startup time of about one second for a Micronaut

application can be reduced further by using GraalVM instead of the JVM.

Micronaut is worthy of serious consideration for enterprise applications. If you have

an existing Spring Boot application, you can try out Micronaut for Spring to benefit from

Micronaut’s AoT compilation.

To learn more about Micronaut, take a look at the official Micronaut guide to familiarize

yourself with all the features. There are also official guides for different topics and projects,

which are accompanied by code examples. In addition, the examples repository contains a com-

plete pet store application that has been implemented as a federated microservice architecture.

Whatever path you choose, I believe you’ll find Micronaut to be a useful lightweight but power-

ful framework for cloud apps and microservices. </article>

Jonas Havers (@JonasHavers) is a freelance full-stack software engineer and lecturer on software engineer-
ing from Germany. He develops web applications predominantly in ecommerce projects with a mix of Java,
Kotlin, Groovy, TypeScript, and JavaScript. He is also an advocate for remote work, and he and blogs frequently.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.micronaut.io/latest/api/io/micronaut/http/sse/Event.html
http://micrometer.io
https://github.com/Netflix/atlas/wiki
https://graphiteapp.org
https://prometheus.io
https://github.com/etsy/statsd
https://docs.micronaut.io/latest/guide/index.html
https://docs.micronaut.io/latest/guide/index.html
https://objectcomputing.com/news/2018/11/13/spring-boot-micronaut-ahead-time-compilation
http://guides.micronaut.io/
https://github.com/micronaut-projects/micronaut-examples

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

34

//lightweight frameworks/

For a good portion of the internet’s early years, web applications were “monolithic.” That is,

they were single, self-contained applications that encapsulated the entire API and front-end

display code. Business logic, validation, data retrieval and manipulation, persistence, security,

and the UI were all wrapped up in a single bundle and deployed on application or web servers,

such as Tomcat, Apache, or Microsoft IIS. This approach worked, and still works, but it leads to

challenges as your application grows in scope, among them the following:
■■ Deployment: Checking out source code, compiling, testing, bundling, and deploying monoliths

takes a long time.
■■ Dependencies, frameworks, and language: Choices and versions are locked in for the entire

application, which leads to difficulties in upgrading when new versions are released.
■■ Single point of failure: Monoliths are brittle; if the web server goes down, the whole

application is down.
■■ Scaling: The application must be scaled in its entirety—even if only a single portion of the

application is the cause of increased load.

There are certainly other challenges that come with monoliths, but these tend to be the ones

that cause the most pain to developers, project managers, and operations-minded folks. And for

a long time, everyone just dealt with them.

In part, because of those limitations, we’re now in the microservice era. This approach,

which uses individual services that typically serve a single, distinct purpose and usually are

Helidon: A Simple
Cloud Native Framework
Create container-friendly microservices with a minimum of
code running straight Java SE.

TODD SHARP

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

35

//lightweight frameworks/

deployed in some sort of container, is growing in popularity and adoption. It’s easy to see

why, too. Let’s briefly look at the issues I raised earlier and see how microservices address

each of them.
■■ Deployment: Each service can be tested, compiled, and deployed independently.
■■ Dependencies, frameworks, and language: Each service is free to use the language, frame-

work, dependencies, and versions as necessary and desired.
■■ Single point of failure: Each service is

typically deployed in a container and

managed by an orchestration tool,

which means outages can be isolated

and do not affect the entire application.
■■ Scaling: Services can be scaled inde-

pendently of one another, which means

the high-load services can scale up

while the lower-demand services

remain scaled down.

Microservices are not a silver bullet and they don’t solve all problems, but in many applications,

they make a lot of sense. Now that I’ve established the “why” when it comes to microservices,

let’s look at the “how.”

There are many microservice frameworks available right now, and although creating a new

one might seem misguided, that’s what Oracle has done with Project Helidon. You don’t need

to look much further than the framework name to understand Oracle’s reasons for creating it:

Helidon is a Greek word for the swallow—a small, highly maneuverable bird that fits naturally in

the clouds. With this in mind, Helidon’s creators strove to develop a lightweight set of libraries

that didn’t require an application server and could be used in Java SE applications.

Helidon comes in two flavors: SE and MP. Helidon SE is simple, lightweight, functional,

and reactive. It runs on an embedded Netty web server and falls into the microframework cat-

egory. It can be compared with Javalin and Micronaut (both of which are covered in this issue of

the magazine) or Spark Java. Helidon MP is a MicroProfile-based framework that uses familiar

You’ve done nothing more than run a few Maven
commands and launched the JAR file from the
command line, and you’ve obtained a fully
scaffolded, running application without
touching a single line of code.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://medium.com/oracledevs/helidon-takes-flight-fb7e9e390e9c

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

36

//lightweight frameworks/

annotations and components that Java EE/Jakarta EE developers should be familiar with, such

as JAX-RS/Jersey, JSON-P, and CDI. Think of Helidon MP in the same league as Open Liberty,

Payara, and Thorntail (formerly WildFly Swarm). Let’s take a look at Helidon, starting with

Helidon SE.

Getting Started with Helidon SE
There’s nothing worse than learning about a new tool and hitting a brick wall with a lack of

tools or documentation to get you started. That is not an issue here. To get started with Helidon

SE, make sure you’ve got a few prerequisites installed and ready to go: JDK 8 or later and Maven

3.5 or later. If you’re using Docker and Kubernetes, you’ll get some handy files generated to help

you create your containers and deploy them. To take advantage of that, make sure you also have

Docker 18.02 or later and Kubernetes 1.7.4 or later. (You can use Minikube or the Kubernetes sup-

port in Docker Desktop to run Kubernetes on your desktop.)

Verify your versions like so:

$ java --version
$ mvn --version
$ docker --version
$ kubectl version --short

Once you’ve met the prerequisites, it’s time to generate a project using the Helidon quickstart

Maven archetype. If you’re not familiar with archetypes, they are project templates that you can

use to scaffold out a basic starter project so you can quickly begin working with a framework.

Oracle provides two archetypes: one for Helidon SE and one for Helidon MP.

Here’s a basic example you can use from your favorite terminal to generate a Helidon SE

project:

$ mvn archetype:generate -DinteractiveMode=false \
 -DarchetypeGroupId=io.helidon.archetypes \
 -DarchetypeArtifactId=helidon-quickstart-se \

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://helidon.io/docs/latest/#/getting-started/02_base-example

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

37

//lightweight frameworks/

 -DarchetypeVersion=0.10.2 \
 -DgroupId=[io.helidon.examples] \
 -DartifactId=[quickstart-se] \
 -Dpackage=[io.helidon.examples.quickstart.se]

The archetype is documented at Maven Central, which is where you can always check the latest

released version to make sure it’s available to use. The items bracketed in the previous snippet

are project-specific, and you can edit them to apply to your project. Here’s an example I put

together for this article:

$ mvn archetype:generate -DinteractiveMode=false \
 -DarchetypeGroupId=io.helidon.archetypes \
 -DarchetypeArtifactId=helidon-quickstart-se \
 -DarchetypeVersion=0.10.2 \
 -DgroupId=codes.recursive \
 -DartifactId=helidon-se-demo \
 -Dpackage=codes.recursive.helidon.se.demo

Once complete, a fully scaffolded sample application is available in a new directory that matches

the value used for the artifactId. The example is complete and ready to run, so to see it in

action, you can compile the application with

$ mvn package

This command will run all the generated tests, build the application JAR file, and place that file

in the target/libs directory. Because the framework includes an embedded web server, you can

now run the application by using the following command:

$ java -jar target/helidon-se-demo.jar

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://search.maven.org/artifact/io.helidon.archetypes/helidon-quickstart-se/0.10.2/maven-archetype

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

38

//lightweight frameworks/

You’ll see the application start up and confirm that it’s running on port 8080:

[DEBUG] (main) Using Console logging
2018.10.18 14:34:10 INFO io.netty.util.internal.PlatformDependent Thread[main,5,main]:
Your platform does not provide complete low-level API for accessing direct buffers
reliably. Unless explicitly requested, heap buffer will always be preferred to avoid
potential system instability.
2018.10.18 14:34:10 INFO io.helidon.webserver.netty.NettyWebServer
Thread[nioEventLoopGroup-2-1,10,main]: Channel '@default' started:
[id: 0x3002c88a, L:/0:0:0:0:0:0:0:0:8080]
WEB server is up! http://localhost:8080

But trying to view the root path will result in an error, because the archetype doesn’t declare

a routing for the root path. Instead, go to http://localhost:8080/greet, and you’ll see a simple

“Hello World” message returned as JSON.

At this point, you’ve done nothing more than run a few Maven commands and launched

the JAR file from the command line, and you’ve obtained a fully scaffolded, running appli-

cation without touching a single line

of code. Obviously, you will need to dig

into the code at some point, but before

that, let’s see what Helidon provides for

Docker support.

Before moving forward, stop the

application by pressing Ctrl+C. Now look

inside the target directory, and you’ll notice a few extra files that were created when you

ran mvn package. You’ll see that Helidon has created both a Dockerfile for building a Docker

container from your application and an application.yaml file for creating a Kubernetes

deployment. The files themselves are basic, but they give you out of the box all you need to

run them.

Helidon MP and Helidon SE both provide
a low barrier to entry for teams looking to
adopt a new microservices framework.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

39

//lightweight frameworks/

Here’s the Dockerfile for the demo project (excluding the license information, for brevity):

FROM openjdk:8-jre-alpine

RUN mkdir /app
COPY libs /app/libs
COPY helidon-se-demo.jar /app

CMD ["java", "-jar", "/app/helidon-se-demo.jar"]

If this is the first time you’ve seen a Dockerfile, this file declares a base image on the first line.

In this case, I am using the openjdk image tagged with 8-jre-alpine, which includes the Java 8

JRE in a very lightweight image based on Alpine Linux. Two lines later, the Dockerfile creates

an app directory to store the application. The next line copies the output in the libs directory

into app/libs, and the following line copies the JAR file into the app directory. The final line tells

Docker to run the java jar command at startup, which launches the application.

Let’s test out this Dockerfile by running the following command from a terminal in the

project root directory:

$ docker build -t helidon-se-demo target

This instructs Docker to build an image tagged with helidon-se-demo, using the Dockerfile

located in the target directory. You should see output similar to the following after running the

docker build command:

Sending build context to Docker daemon 5.231MB
Step 1/5 : FROM openjdk:8-jre-alpine
 ---> 0fe3f0d1ee48
Step 2/5 : RUN mkdir /app
 ---> Using cache

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

40

//lightweight frameworks/

 ---> ab57483b1f76
Step 3/5 : COPY libs /app/libs
 ---> 6ac2b96f4b9b
Step 4/5 : COPY helidon-se-demo.jar /app
 ---> 7d2135433bcc
Step 5/5 : CMD ["java", "-jar", "/app/helidon-se-demo.jar"]
 ---> Running in 5ab71094a72f
Removing intermediate container 5ab71094a72f
 ---> 7e81289d5267
Successfully built 7e81289d5267
Successfully tagged helidon-se-demo:latest

To confirm all is well, run this command:

docker images helidon-se-demo

You’ll see a container file, helidon-se-demo, in your directory. My file from this demo is 88.2 MB.

To run this container, use the following command:

$ docker run -d -p 8080:8080 helidon-se-demo

The docker run command uses the -d switch to run the container in detached mode (in the

background) and exposes the container port using -p. The final part of the docker run command

tells Docker which image to run, which in this case is the image name helidon-se-demo that I

used in the docker build command.

To view the running containers on your system, execute this command:

$ docker ps -a

Alternatively, you can use a GUI tool such as Kitematic or Portainer. I’m partial to Portainer, so I

verified the running container with it, as shown in Figure 1.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://kitematic.com/
https://www.portainer.io/

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

41

//lightweight frameworks/

Of course, you could simply go to http:localhost:8080/greet again to confirm that the applica-

tion is running locally (only this time, it’s running via Docker).

Running on Kubernetes
Now that you’ve tested out Helidon’s Docker support, let’s see what the framework gives you

for Kubernetes support. First, kill the running Docker container (via either the command line

or the graphical interface of your choice). Then, take a look at the generated file located at

target/app.yaml. It contains the following:

kind: Service
apiVersion: v1
metadata:
 name: helidon-se-demo
 labels:
 app: helidon-se-demo

Figure 1. The Helidon application running in a container (see starred entry)

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

42

//lightweight frameworks/

spec:
 type: NodePort
 selector:
 app: helidon-se-demo
 ports:
 - port: 8080
 targetPort: 8080
 name: http

kind: Deployment
apiVersion: extensions/v1beta1
metadata:
 name: helidon-se-demo
spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: helidon-se-demo
 version: v1
 spec:
 containers:
 - name: helidon-se-demo
 image: helidon-se-demo
 imagePullPolicy: IfNotPresent
 ports:
 - containerPort: 8080

I won’t go over the details of this configuration file, but it gives you the ability to quickly deploy

the application to Kubernetes, which provides container management and orchestration. To

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

43

//lightweight frameworks/

deploy the application to a running Kubernetes cluster, enter the following command (again,

from the root of the project; otherwise, modify the path to app.yaml accordingly):

$ kubectl create -f target/app.yaml

Assuming everything was created properly, you’ll get a reply like this:

service/helidon-se-demo created
deployment.extensions/helidon-se-demo created

You can confirm the deployment with kubectl get deployments, and you can check the service

with kubectl get services:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
helidon-se-demo NodePort 10.105.215.173 <none> 8080:32700/TCP

[This line is slightly truncated to fit here. —Ed.] As you can see, the service is running on port

32700, which you can verify by visiting the service in the browser.

So far, you have scaffolded an application, built it into a Docker container, and deployed that

container to Kubernetes—and yet you have not written a single line of code.

Let’s switch gears and examine the code. Open up src/main/java/Main.java and take a look

at the startServer() method to see how Helidon SE initializes the built-in Netty web server:

protected static WebServer startServer() throws IOException {

 // load logging configuration
 LogManager.getLogManager().readConfiguration(
 Main.class.getResourceAsStream("/logging.properties"));

 // By default this will pick up application.yaml from

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

44

//lightweight frameworks/

 // the classpath
 Config config = Config.create();

 // Get web server config from the "server" section of
 // application.yaml
 ServerConfiguration serverConfig =
 ServerConfiguration.fromConfig(config.get("server"));

 WebServer server =
 WebServer.create(serverConfig, createRouting());

 // Start the server and print some info.
 server.start().thenAccept(ws -> {
 System.out.println(
 "WEB server is up! http://localhost:" + ws.port());
 });

 // Server threads are not demon. NO need to block. Just react.
 server.whenShutdown().thenRun(()
 -> System.out.println("WEB server is DOWN. Goodbye!"));

 return server;
}

The comments that are included when this code was generated do a fairly good job explaining

what’s going on here, but the following steps summarize what it’s doing:

1.	 Initializing logging: Grabbing the configuration from the generated application.yaml file

(additional application configuration variables can be added here)

2.	 Creating an instance of ServerConfiguration and passing it the host/port info from the

application configuration

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

45

//lightweight frameworks/

3.	 Creating and starting an instance of the WebServer and passing it the necessary routing info

returned from createRouting()

The createRouting() method registers any necessary services like this:

private static Routing createRouting() {
 return Routing.builder()
 .register(JsonSupport.get())
 .register("/greet", new GreetService())
 .build();
}

That’s where you register a single endpoint, "/greet", which points at the GreetService, which I

will break down here. You’ll notice a few class variables that use the Config class to obtain val-

ues from the application.yaml file I discussed earlier.

private static final Config CONFIG =
 Config.create().get("app");
private static String greeting =
 CONFIG.get("greeting").asString("Ciao");

The GreetService implements Service and overrides the update() method to define subpaths

under the /greet endpoint like this:

@Override
public final void update(final Routing.Rules rules) {
 rules
 .get("/", this::getDefaultMessage)
 .get("/{name}", this::getMessage)
 .put("/greeting/{greeting}", this::updateGreeting);
}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

46

//lightweight frameworks/

In this code, update() receives an instance of Routing.Rules, which has methods corresponding

to each HTTP verb—get(), post(), put(), head(), options(), and trace()—as well as some use-

ful methods such as any(), which acts as a catchall and can be used for things such as logging

and security.

I have registered three endpoints: /greet/, /greet/{name}, and /greet/greeting. Each

endpoint has a method reference pointing to a service method. Each service method registered

as an endpoint will receive two arguments: request and response. This design allows you to pull

arguments out of the request scope, such as headers and parameters, and to set elements such

as headers and body in the response. Here’s what the getDefaultMessage() method looks like:

private void getDefaultMessage(final ServerRequest request,
 final ServerResponse response) {
 String msg = String.format("%s %s!", greeting, "World");

 JsonObject returnObject = Json.createObjectBuilder()
 .add("message", msg)
 .build();
 response.send(returnObject);
}

It’s a bare-bones example, but it illustrates the basic structure of a service method. The

getMessage() method shows an example of a dynamic path parameter (the {name} element

within the path that was registered), which allows you to grab that value from the URL.

private void getMessage(final ServerRequest request,
 final ServerResponse response) {
 String name = request.path().param("name");
 String msg = String.format("%s %s!", greeting, name);

 JsonObject returnObject = Json.createObjectBuilder()

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://helidon.io/docs/latest/apidocs/io/helidon/webserver/Routing.Rules.html

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

47

//lightweight frameworks/

 .add("message", msg)
 .build();
 response.send(returnObject);
}

Calling http://localhost:8080/greet/todd would result in the expected output shown in Figure 2.

The updateGreeting() method, shown next, isn’t much different from getMessage(), but note

that it must be called with PUT instead of GET because I registered it that way in update().

private void updateGreeting(final ServerRequest request, final ServerResponse response)
{
 greeting = request.path().param("greeting");

 JsonObject returnObject = Json.createObjectBuilder()
 .add("greeting", greeting)
 .build();
 response.send(returnObject);
}

There’s much more to Helidon SE, from error handling and static content to metrics and health

Figure 2. Expected output

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

48

//lightweight frameworks/

support. I highly recommend reading the project documentation to learn about those features

and others.

Getting Started with Helidon MP
Helidon MP is the MicroProfile variant of Helidon. If you’ve been working with Java EE for any

amount of time, you’ll probably find that it looks pretty familiar. As I mentioned earlier, you’ll

see the usual things such as JAX-RS/Jersey, JSON-P, and CDI.

To get started quickly, use the Helidon MP archetype just like I did earlier with Helidon SE:

$ mvn archetype:generate -DinteractiveMode=false \
 -DarchetypeGroupId=io.helidon.archetypes \
 -DarchetypeArtifactId=helidon-quickstart-mp \
 -DarchetypeVersion=0.10.2 \
 -DgroupId=codes.recursive \
 -DartifactId=helidon-mp-demo \
 -Dpackage=codes.recursive.helidon.mp.demo

Take a look at the Main.java class, and you’ll see that it’s even easier than Helidon SE to get the

embedded web server running:

protected static Server startServer() throws IOException {

 // load logging configuration
 LogManager.getLogManager().readConfiguration(
 Main.class.getResourceAsStream("/logging.properties"));

 // Server will automatically pick up configuration from
 // microprofile-config.properties
 Server server = Server.create();
 server.start();

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://helidon.io/docs/latest/#/about/01_introduction

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

49

//lightweight frameworks/

 return server;
}

The application is defined in the GreetApplication class, which has a getClasses() method that

is used to register resources that represent routes in the application:

@ApplicationScoped
@ApplicationPath("/")
public class GreetApplication extends Application {

 @Override
 public Set<Class<?>> getClasses() {
 Set<Class<?>> set = new HashSet<>();
 set.add(GreetResource.class);
 return Collections.unmodifiableSet(set);
 }
}

The GreetResource in Helidon MP performs the same tasks as the GreetService from Helidon SE,

but instead of registering routes individually, you use annotations on the class and methods to

represent the endpoints, HTTP verbs, and content-type headers:

@Path("/greet")
@RequestScoped
public class GreetResource {

 private static String greeting = null;

 @Inject
 public GreetResource(@ConfigProperty(name = "app.greeting")
 final String greetingConfig) {

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

50

//lightweight frameworks/

 if (this.greeting == null) {
 this.greeting = greetingConfig;
 }
 }

 @Path("/")
 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public JsonObject getDefaultMessage() {
 String msg = String.format("%s %s!", greeting, "World");

 JsonObject returnObject = Json.createObjectBuilder()
 .add("message", msg)
 .build();
 return returnObject;
 }

 @Path("/{name}")
 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public JsonObject getMessage(@PathParam("name") final String name){
 String msg = String.format("%s %s!", greeting, name);

 JsonObject returnObject = Json.createObjectBuilder()
 .add("message", msg)
 .build();
 return returnObject;
 }

 @Path("/greeting/{greeting}")
 @PUT

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

51

//lightweight frameworks/

 @Produces(MediaType.APPLICATION_JSON)
 public JsonObject updateGreeting(@PathParam("greeting")
 final String newGreeting) {
 this.greeting = newGreeting;

 JsonObject returnObject = Json.createObjectBuilder()
 .add("greeting", this.greeting)
 .build();
 return returnObject;
 }
}

Conclusion
There are a few other differences between Helidon MP and Helidon SE, but both versions

provide a low barrier to entry for teams looking to adopt a new microservices framework.

Helidon is a versatile framework that will help your team quickly develop microservice appli-

cations. If containers aren’t your preference, you can choose to forgo them altogether and

deploy the JAR as you would any traditional JAR. But if your team has adopted containers,

the built-in support gives your team the ability to quickly deploy to any cloud-based or on-

premises Kubernetes cluster. Because Helidon is being developed by Oracle, the Helidon team

will continue developing the framework with some planned enhancements focused on inte-

grating applications with Oracle Cloud. If you’re currently hosting your applications in Oracle

Cloud, or you plan to migrate to it soon, Helidon might be the right framework for your next

microservices application. </article>

Todd Sharp is a developer advocate for Oracle focusing on Oracle Cloud. He has worked with dynamic JVM
languages and various JavaScript frameworks for more than 14 years, originally with ColdFusion and more
recently with Java/Groovy/Grails on the server side. He lives in the Appalachian mountains of north Georgia
(in the United States) with his wife and two children.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

Join the World’s Largest
Developer Community

ORACLE GROUNDBREAKERS developer.oracle.com
Membership Is Free | Follow Us on Social:

@groundbreakers facebook.com/OracleDevs

Oracle Groundbreakers
�Download the latest software, tools,
and developer templates

Get exclusive access to hands-on
trainings and workshops

Grow your network with the Groundbreaker
Ambassador and Oracle ACE Programs

Publish your technical articles—and
get paid to share your expertise

http://developer.oracle.com/

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

53

//design patterns/

A proxy is a stand-in for something else. Corporate shareholders appoint proxies to vote for

them at business meetings. Climate scientists use averaged temperature as a proxy for

having a thermometer in every square meter of the world. Developers use proxies to substitute

for objects that are remote, require protection, or otherwise need mediated access.

The basic approach is that a client object requests a service object of a given type from a third

party such as a factory, and what it gets is a proxy object that can stand in for, and usually pass

control to, the service object. This arrangement requires that the proxy implement the same

interface or extend the same class as the one that was requested, so the proxy can be assigned

to a variable of the correct type. For this set of examples, I’ll use a simple “inspirational quote of

the day” QuoteService interface with just two methods, which are used as follows:

// Normal use
System.out.println("The quote of the day is: " + quoteServer.getQuote());

// Admin use
quoteServer.addQuote("Only the educated are free -- Epictetus");

All the code samples for this article are in my GitHub repository.

In an application, I might use a factory method to obtain the instance of the server, instead

of calling the constructor directly. This step allows more flexibility, and it removes tight cou-

pling or dependence of the client code on a particular class implementing the interface.

QuoteService x = getQuoteService(); // Not = new QuoteServiceImpl();

The Proxy Pattern
A good solution when you need to enable or mediate access to objects,
either local or remote

IAN DARWIN

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/IanDarwin/patterns-demos/tree/master/src/main/java/structure/proxy

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

54

//design patterns/

The factory method might simply instantiate a fixed class. But more likely, it will use some con-

figuration to determine which implementation class to create (see the Factory patterns), or it

will wrap the known implementation class in a proxy object. I say “wrap” advisedly, because the

proxy’s main job is to mediate access to the target, so it must maintain a reference to the target.

For these demos, I will use a simple logging proxy, because it’s easy to see what the code is

doing. The implementation of the getQuoteService method might create and return a subclass

of the existing QuoteServerImpl implementation class, overriding its methods and adding some

functionality to the original. This example is short enough that I just use an anonymous class.

public static QuoteServer getQuoteServer() {
 final QuoteServer target = new QuoteServerImpl();
 QuoteServer proxy = new QuoteServer() {
 public String getQuote() {
 System.out.println("Calling getQuote()");
 return target.getQuote();
 }
 public void addQuote(String newQuote) {
 System.out.println("Calling addQuote()");
 target.addQuote(newQuote);
 }
 };
 return proxy;
}

This example shows a logging proxy where I know the class is being proxied. But it is, in fact,

tightly coupled to the target class. What if you want to apply proxying to a variety of classes?

Dynamic Proxy
Java SE provides a mechanism called dynamic proxy, which allows you to synthetically create a

proxy for a list of arbitrary interfaces—that is, you can set up a proxy at runtime instead of at

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/Proxy.html

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

55

//design patterns/

compile time. This capability has been around practically forever, since the days of Java 1.3. It

does require you to create an object that subclasses InvocationHandler. This object will act as the

go-between from the caller to the objects being proxied. You can think of the InvocationHandler

as basically being the proxy. In fact, if you print out the call stack in the target, using either

a debugger or new RuntimeException().printStackTrace(), you will see that other than some

reflection classes, the overall structure is basically the same as in Figure 1.

The InvocationHandler class contains a convenience method, newProxyInstance(ClassLoader,

Class<?>[], InvocationHandler), which, as the name says, gets you a proxy instance for the

interfaces given as class descriptors and the given InvocationHandler. The InvocationHandler

interface that you must implement has only one method in it, invoke:

public interface InvocationHandler {
 abstract Object invoke(Object obj,
 Method method, Object[] args) throws Throwable;
}

The arguments passed to your InvocationHandler’s invoke() method are the proxy object (which

the method often doesn’t need, but it’s there for the times you do), a java.lang.reflect.Method

Figure 1. Proxy pattern

Client

Factor y

Proxy Target

Inter face

Client requests target
from factor y; gets proxy

Client thinks it’s calling

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

56

//design patterns/

descriptor for the method being called, and the list of arguments being passed to that method.

Because the API has no way of knowing ahead of time what kinds of objects you will be using,

the parameters, the return, and the throws clause are written to be as general as possible, using

Object for the first two and Throwable for the third.

Note especially that unless there is a reason not to, the invoke() method of the Invocation-

Handler must do the actual invocation of the real target. This is the call to method.invoke() in

the middle of my demo handler’s invoke() method—the same name and the same arguments,

minus the method descriptor itself, which is the object on which you call invoke().

Here is a version of the logging proxy done as an InvocationHandler:

class MyInvocationHandler implements InvocationHandler {

 private Object target;

 public MyInvocationHandler(Object target) {
 super();
 this.target = target;
 }

 /**
 * Method that is called for every call into the proxy;
 * this must invoke the method on the real object.
 * This method demonstrates both logging and security checking.
 */
 public Object invoke(Object proxy, Method method, Object[] argList)
 throws Throwable {
 String name = method.getName() + "()";
 System.out.println("Proxy got request for " + name);
 // Could put security checking here
 Object ret = method.invoke(target, argList);

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

57

//design patterns/

 System.out.println("Proxy returned from " + name);
 return ret;
 }
}

Here is the getQuoteServer() method for the client program:

// from DynamicProxyDemo.java

public static QuoteServer getQuoteServer() {
 QuoteServer target = new QuoteServerImpl();
 InvocationHandler handler = new MyInvocationHandler(target);
 return (QuoteServer) Proxy.newProxyInstance(
 QuoteServer.class.getClassLoader(),
 new Class[] { QuoteServer.class }, handler);
}

If you examine the object returned from this method by calling getClass().getName() on it, you

can see that it is a synthetic class, as indicated by its generated name:

QuoteServer object is com.sun.proxy.$Proxy0

In my online example of dynamic proxy, in my version of the InvocationHandler, I added a few

lines as a proxy for real security protection. In place of the code comment “could put security

checking here,” I wrote this:

final String userName = System.getProperty("user.name");
if (name.startsWith("add") && !userName.equals("ian"))
 throw new SecurityException(
 "User " + userName + " not allowed to add quotes.");

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/IanDarwin/patterns-demos/blob/master/src/main/java/structure/proxy/DynamicProxyDemo.java

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

58

//design patterns/

The net result of all this coding is that we have a proxy made up of the dynamic proxy (class

$Proxy0 in this example) and the InvocationHandler. The dynamic proxy is generated for us, and

the InvocationHandler doesn’t need to know anything about the actual target, although in more

complicated cases it might.

Proxies for Remote Access
Here’s one last example from standard APIs: remote access. There’s a general term, remote

procedure call (RPC), for which there are dozens of examples throughout the history of networked

computing. The basic idea is that after some setup (such as getting an object from a factory), you

invoke an object by using what looks like a local method call, but the object is actually a network

proxy that communicates over the network to a peer proxy on the server side, which in turn

calls the real service; and the return value is passed back over the same channel. Older exam-

ples of RPC include Sun RPC, DCE RPC, and Microsoft Windows RPC. Standard Java APIs that use

the RPC paradigm include RMI, CORBA (which was removed from Java 11), JAX-RS, and JAX-WS.

There is not room here to give a full working example, but see my RMI tutorial online for

an example.

Proxies in Enterprise Java
The dynamic proxy mechanism works nicely for situations where you know the class or classes

to be proxied; however, the InvocationHandler itself does not need to be written in a target-

specific way. There are cases where you might not know the target class in advance, but you

still want to provide services to it. A common example from enterprise Java is the provision of

transactional control to business-tier objects controlling data access objects. Both Java EE (now

Jakarta) and the Spring Framework provide annotations that are normally placed on business-

tier classes and cause a proxy object to begin or join a transaction when a given method begins

executing. The proxy will either commit the transaction when the method returns normally or

roll it back if the method returns abnormally (for example, by throwing an exception). Here is

some pseudocode for a persistent shopping cart using this approach:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://medium.com/@idarwin/distributed-java-rmi-tutorial-b1347ed5cde0

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

59

//design patterns/

public class ShoppingService {
 private ShoppingCart cart;
 private Dao dao;

 @Transactional(TransactionType.REQUIRED)
 public void addToCart(Product p) {
 // do validation/calculation work here
 dao.saveCart(cart);
 }
 ...
}

The important thing to note is that, in this scheme, you don’t need to write the proxy or even know

its class name for common operations such as transactional control, because these common

proxies are provided by the enterprise framework (CDI/EJB or Spring) in response to the anno-

tations. Nor do you need to modify your code to use the proxy (other than annotating it), which

means you don’t have any runtime dependencies. This design makes the services and data lay-

ers easier to unit test (unit testing, after all, means testing each unit in isolation).

However, CDI and Spring give you the option to provide additional proxies of your own. For

example, the CDI mechanism supports a form of proxying that uses Interceptors that can be

applied to enterprise components via annotations (usually) or XML configuration.

Here is how a CDI implementation of the logging interceptor might be used in a business

method (the curly braces around the class descriptor remind you that it’s an array, in case you

want to apply multiple interceptors to the same method). This annotation also can be applied at

the class level.

@Interceptors({CdiLoggingInterceptor.class})
public void validateCredit() {
 // do some work here
}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

60

//design patterns/

Here is the code for the logging interceptor or proxy:

import javax.interceptor.AroundInvoke;
import javax.interceptor.Interceptor;
import javax.interceptor.InvocationContext;

/**
 * A logging interceptor for CDI.
 */
@Interceptor
public class CdiLoggingInterceptor {

 // @AroundInvoke applies to business method; there are
 // also annotations for constructors, timeouts, etc.
 @AroundInvoke
 public Object log(InvocationContext ctx) throws Throwable {
 Object[] parameters = ctx.getParameters();
 String firstArg = (parameters.length > 0) ?
 "First is: " + formatArg(parameters[0]) : "(empty)";
 String methodName = ctx.getMethod().getName();
 log(String.format("About to call %s with %d arg(s): %s",
 methodName, parameters.length, firstArg));
 Object o = ctx.proceed(); // The actual call!
 log("Returned " + format(o) + " from method " + methodName);
 return o;
 }
 ...
}

Unlike the dynamic proxy API, in this code a single parameter, an InvocationContext, is passed.

It contains the method descriptor, the arguments, and so on. The InvocationContext has a

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

61

//design patterns/

getMethod() call that returns the standard Method descriptor and a getParameters() call that pro-

vides the argument list if you want to examine or modify it. The format() and log() methods

aren’t shown here but are in the online source code. The context proceed() method takes the

place of the invoke() method.

You might think this approach is a Decorator rather than a Proxy because you are naming

the implementation class. However, as an advanced topic, CDI does allow you to use an interface

in the @Interceptors and resolve the implementation class at runtime by using other annota-

tions. See the official documentation for more details on the javax.interceptor package.

Proxy Versus Decorator
As I mentioned in a previous article on the Decorator pattern, Proxy and Decorator both allow

you to wrap extra functionality around an object, so the implementation code can look similar.

Although there is often overlap, the primary differences are:
■■ Proxy is primarily about mediating access, whereas Decorator is about adding functionality.
■■ Proxy is normally hidden from the client (by some kind of creational method), but the client is

aware that it is using a Decorator because it must do so explicitly.

Conclusion
Proxy is a good pattern when you need to control access to objects for any purpose, and it can be

used for a wide variety of purposes, including enforcing security restrictions, auditing method

calls and parameters, hiding the complexity of access (such as with remote objects), or trans-

parently adding behavior (such as logging). </article>

Ian Darwin (@Ian_Darwin) is a Java Champion who has done all kinds of development, from mainframe appli-
cations and desktop publishing applications for UNIX and Windows, to a desktop database application in Java,
to healthcare apps in Java for Android. He’s the author of Java Cookbook and Android Cookbook (both from
O’Reilly). He has also written a few courses and taught many at Learning Tree International.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javaee/7/api/javax/interceptor/package-summary.html#package.description
http://www.javamagazine.mozaicreader.com/NovemberDecember2018#&pageSet=67&page=0

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

62

//inside the jvm/

In previous articles in this series on the inner workings of the JVM, you have seen some of the

Java HotSpot VM’s just-in-time (JIT) compilation techniques, including escape analysis and

lock elision. In this article, we discuss another automatic optimization, known as loop unrolling.

This technique is used by the JIT compiler to make loops (such as Java’s for or while loops) exe-

cute faster.

Because we’ll be delving deep inside the JVM here, you will at times encounter C code and

even some assembly language for the purpose of illustration, so hold on to your hats!

Let’s start by considering the following piece of C code, which allocates space for 1 million

longs and fills the space with 1 million long random numbers:

int main(int argv, char** argc) {
 int MAX = 1000000;

 long* data = (long*)calloc(MAX, sizeof(long));

 for (int i = 0; i < MAX; i++) {
 data[i] = randomLong();
 }
}

C can be thought of as a high-level language, but is that really the case? On an Apple Macintosh,

the Clang compiler (with the -S switch to dump the assembly language in Intel format) produces

the following output for the previous code:
BEN EVANS PHOTOGRAPH BY
JOHN BLYTHE; CHRIS NEWLAND
PHOTOGRAPH BY DAVID NEWLAND

Loop Unrolling
An elaborate mechanism for reducing loop iterations improves performance
but can be thwarted by inadvertent coding.

BEN EVANS

CHRIS NEWLAND

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

63

//inside the jvm/

_main: ## @main
BB#0:
 pushq %rbp
 movq %rsp, %rbp
 subq $48, %rsp
 movl $8, %eax
 movl %eax, %ecx
 movl $0, -4(%rbp)
 movl %edi, -8(%rbp)
 movq %rsi, -16(%rbp)
 movl $1000000, -20(%rbp) ## imm = 0xF4240
 movslq -20(%rbp), %rdi
 movq %rcx, %rsi
 callq _calloc
 movq %rax, -32(%rbp)
 movl $0, -36(%rbp)
LBB1_1: ## =>This Inner Loop Header: Depth=1
 movl -36(%rbp), %eax
 cmpl -20(%rbp), %eax
 jge LBB1_4
BB#2: ## in Loop: Header=BB1_1 Depth=1
 callq _randomLong
 movslq -36(%rbp), %rcx
 movq -32(%rbp), %rdx
 movq %rax, (%rdx,%rcx,8)
BB#3: ## in Loop: Header=BB1_1 Depth=1
 movl -36(%rbp), %eax
 addl $1, %eax
 movl %eax, -36(%rbp)
 jmp LBB1_1
LBB1_4:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

64

//inside the jvm/

 movl -4(%rbp), %eax
 addq $48, %rsp
 popq %rbp
 retq

Looking at the code, you can see that there is one call to the calloc() function at the start and

only one call (per loop iteration) to the randomLong() function. There are two separate jumps, and

the produced machine code is essentially the same as that produced from the following variant

C code:

int main(int argv, char** argc) {
 int MAX = 1_000_000;

 long* data = (long*)calloc(MAX, sizeof(long));
 int i = 0;
 LOOP: if (i >= MAX)
 goto END;
 data[i] = randomLong();
 ++i;
 goto LOOP;
 END: return 0;
}

In the case of Java, the equivalent code would be something like this:

public class LoopUnroll {
 public static void main(String[] args) {
 int MAX = 1000000;

 long[] data = new long[MAX];
 java.util.Random random = new java.util.Random();

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

65

//inside the jvm/

 for (int i = 0; i < MAX; i++) {
 data[i] = random.nextLong();
 }
 }
}

When it is compiled into bytecode, the code becomes:

public static void main(java.lang.String[]);
 Code:
 0: ldc #2 // int 1000000
 2: istore_1
 3: iload_1
 4: newarray long
 6: astore_2
 7: new #3 // class java/util/Random
 10: dup
 11: invokespecial #4 // Method java/util/Random."<init>":()V
 14: astore_3
 15: iconst_0
 16: istore 4
 18: iload 4
 20: iload_1
 21: if_icmpge 38
 24: aload_2
 25: iload 4
 27: aload_3
 28: invokevirtual #5 // Method java/util/Random.nextLong:()J
 31: lastore
 32: iinc 4, 1
 35: goto 18
 38: return

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

66

//inside the jvm/

These programs are very similar in the overall shape of the code. They all perform one opera-

tion on the data array per loop. However, real processors have pipelines of upcoming instruc-

tions, so if the program keeps moving forward linearly, the pipeline can be used efficiently

because the next instruction to be executed is always immediately at hand.

But, if a jump instruction is encountered, the benefit of the instruction pipeline is typically

lost, because the pipeline contents need to be dumped and reloaded from main memory with

new opcodes starting from the jumped-to

address. The performance penalty in such a

case will be similar to a cache miss—an addi-

tional fetch from main memory.

For a back branch—a jump to a previous

point—as seen in a for loop, the effect on

performance depends on the precise form of

the branch prediction algorithm provided by

the CPU. Section 3.4.1 of the Intel 64 and IA-32

Architectures Optimization Reference Manual [PDF] has details about branch prediction optimiza-

tion for the specific chips it covers.

However, in the case of Java programs, there is more to this story because of HotSpot’s JIT

compiler. The JIT compiler contains several optimizations that can produce very different com-

piled code under favorable circumstances.

In particular, there are optimizations for counted loops (for example, for loops) that use

an int, short, or char variable as the loop counter. The body of the loop is unrolled, and it is

replaced by multiple copies of the loop body, arranged one after the other. This reworking of the

loop reduces the number of back branches needed. In addition, it can generate a significant per-

formance improvement over the assembly language generated by the compiled C code, because

the instruction pipeline cache needs to be discarded less often.

Let’s examine some simple methods that execute loops in different ways. You can look at

the assembly language to spot when a loop has been unrolled so that several loop body opera-

tions can be executed within a single loop iteration.

Native code disassembly into readable
assembly language is performed directly
after the JIT thread emits the compiled method.
It is an expensive operation that should not be
used on production processes.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

67

//inside the jvm/

Before diving into the assembly language, we should note that the previous Java code

needs to be slightly modified for JIT compilation to take effect, because the HotSpot VM com-

piles only whole methods. Not only that, but methods are not compiled until they have been

executed in interpreted mode a certain number of times (typically 10,000 times for fully opti-

mized compilation) before the compiler considers them. Using only a single main() exactly as

shown would mean that JIT compilation would never be invoked and the optimization would not

be performed.

A Java method that is essentially equivalent to the earlier example and that you can use for

benchmarking is

private long intStride1()
{
 long sum = 0;
 for (int i = 0; i < MAX; i += 1)
 {
 sum += data[i];
 }
 return sum;
}

The example method performs summation of data fetched sequentially from an array, and then

it returns the total. This is similar to earlier examples, but we chose to return the total to ensure

that the JIT compiler does not combine loop unrolling with escape analysis to optimize even

further, which would obscure the effect of unrolling.

You can spot a key access pattern in the assembly language that helps you understand

what’s going on. It shows up as a triple consisting of [base, index, offset] made up of registers

and offsets, where
■■ base register contains the start address of data in the array
■■ index register contains the loop counter (which gets multiplied by the data type size)
■■ offset is used for offsetting each unrolled access

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.javamagazine.mozaicreader.com/MarApr2018/Default/73/0/3947345#&pageSet=73&page=0&contentItem=3947345

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

68

//inside the jvm/

The actual assembly language will look something like this:

add rbx, QWORD PTR [base register + index register * size + offset]

Considering an array of type long, let’s look at the conditions under which the loop will be

unrolled. Note that loop unrolling behavior can vary between HotSpot VM versions and is

dependent on the details of the CPU architecture, but the overall concept remains the same.

To get the disassembled native code produced by the JIT compilers, you will need a dis-

assembly library (the standard choice is hsdis, the HotSpot Disassembler), which you need to

install in the jre/lib directory of your Java installation.

hsdis can be built from the OpenJDK source code, and instructions for doing so can be found

in the JITWatch wiki. Alternatively, Oracle’s GraalVM project ships hsdis as part of the down-

loadable binaries—and the file can simply be copied from the GraalVM installation into the

main Java installation location.

Once you have installed hsdis, you need to instruct the VM to output the method’s

assembly language. To achieve this, you need to add some additional VM switches, including

-XX:+PrintAssembly.

Note that native code disassembly into readable assembly language is performed directly

after the JIT thread emits the compiled method. It is an expensive operation that can affect the

performance of your program and should not be used on production processes.

To see the disassembly in action, execute the program with the following VM switches,

which output the assembly language for just the named method:

java -XX:+UnlockDiagnosticVMOptions \
 -XX:-UseCompressedOops \
 -XX:PrintAssemblyOptions=intel \
 -XX:CompileCommand=print,javamag.lu.LoopUnrolling::intStride1 \
 javamag.lu.LoopUnrolling

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/AdoptOpenJDK/jitwatch/wiki

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

69

//inside the jvm/

This command produces the corresponding assembly language for an int loop counter with a

constant stride of 1.

Note that we use -XX:-UseCompressedOops here only to simplify the assembly language out-

put by switching off the arithmetic for pointer address compression. This saves some memory

usage in a 64-bit JVM, but we don’t recommend you do this in normal VM use. You can learn all

about compressed ordinary object pointers (oops) in the OpenJDK wiki.

The accumulating long sum is stored in the 64-bit register rbx. Each add instruction

loads the next value from the data array and adds it to rbx. The constant offset into the array

increases by 8 bytes (which is the size of a Java long primitive) with each load.

When the unrolled section branches back to the main loop start, the offset register will be

incremented by the amount of data processed in this loop iteration:

//==============================
// SETUP CODE
//==============================

// MOVE ADDRESS OF data ARRAY INTO rcx
0x00007f475d1109f7: mov rcx,QWORD PTR [rbp+0x18] ;*getfield data

// MOVE SIZE OF data ARRAY INTO edx
0x00007f475d1109fb: mov edx,DWORD PTR [rcx+0x10]

// MOVE MAX INTO r8d
0x00007f475d1109fe: mov r8d,DWORD PTR [rbp+0x10] ;*getfield MAX

// LOOP COUNTER IN r13d, COMPARE WITH MAX
0x00007f475d110a02: cmp r13d,r8d

// JUMP TO EXIT IF COUNTER >= MAX
0x00007f475d110a05: jge L0006

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://wiki.openjdk.java.net/display/HotSpot/CompressedOops

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

70

//inside the jvm/

0x00007f475d110a0b: mov r11d,r13d
0x00007f475d110a0e: inc r11d
0x00007f475d110a11: xor r9d,r9d
0x00007f475d110a14: cmp r11d,r9d
0x00007f475d110a17: cmovl r11d,r9d
0x00007f475d110a1b: cmp r11d,r8d
0x00007f475d110a1e: cmovg r11d,r8d

//==============================
// PRE-LOOP
//==============================

// ARRAY BOUNDS CHECK
 L0000: cmp r13d,edx
0x00007f475d110a25: jae L0007

// PERFORM A SINGLE ADDITION
0x00007f475d110a2b: add rbx,QWORD PTR [rcx+r13*8+0x18] ;*ladd

// INCREMENT THE LOOP COUNTER
0x00007f475d110a30: mov r9d,r13d
0x00007f475d110a33: inc r9d ;*iinc

// JUMP TO MAIN LOOP IF FINISHED PRE-LOOP
0x00007f475d110a36: cmp r9d,r11d
0x00007f475d110a39: jge L0001

// CHECK LOOP COUNTER AND BACK BRANCH IF NOT FINISHED
0x00007f475d110a3b: mov r13d,r9d
0x00007f475d110a3e: jmp L0000

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

71

//inside the jvm/

//==============================
// MAIN LOOP SETUP
//==============================
 L0001: cmp r8d,edx
0x00007f475d110a43: mov r10d,r8d
0x00007f475d110a46: cmovg r10d,edx
0x00007f475d110a4a: mov esi,r10d
0x00007f475d110a4d: add esi,0xfffffff9
0x00007f475d110a50: mov edi,0x80000000
0x00007f475d110a55: cmp r10d,esi
0x00007f475d110a58: cmovl esi,edi
0x00007f475d110a5b: cmp r9d,esi
0x00007f475d110a5e: jge L000a
0x00007f475d110a64: jmp L0003
0x00007f475d110a66: data16 nop WORD PTR [rax+rax*1+0x0]

//==============================
// MAIN LOOP START (UNROLLED SECTION)
// PERFORMS 8 ADDITIONS PER LOOP ITERATION
//==============================
 L0002: mov r9d,r13d
 L0003: add rbx,QWORD PTR [rcx+r9*8+0x18] ;*ladd
0x00007f475d110a78: movsxd r10,r9d
0x00007f475d110a7b: add rbx,QWORD PTR [rcx+r10*8+0x20] ;*ladd
0x00007f475d110a80: add rbx,QWORD PTR [rcx+r10*8+0x28] ;*ladd
0x00007f475d110a85: add rbx,QWORD PTR [rcx+r10*8+0x30] ;*ladd
0x00007f475d110a8a: add rbx,QWORD PTR [rcx+r10*8+0x38] ;*ladd
0x00007f475d110a8f: add rbx,QWORD PTR [rcx+r10*8+0x40] ;*ladd
0x00007f475d110a94: add rbx,QWORD PTR [rcx+r10*8+0x48] ;*ladd
0x00007f475d110a99: add rbx,QWORD PTR [rcx+r10*8+0x50] ;*ladd

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

72

//inside the jvm/

// INCREMENT LOOP COUNTER BY 8
0x00007f475d110a9e: mov r13d,r9d
0x00007f475d110aa1: add r13d,0x8 ;*iinc

// CHECK LOOP COUNTER AND BACK BRANCH IF NOT FINISHED
0x00007f475d110aa5: cmp r13d,esi
0x00007f475d110aa8: jl L0002
//==============================

0x00007f475d110aaa: add r9d,0x7 ;*iinc

// IF LOOP COUNTER >= MAX JUMP TO EXIT
 L0004: cmp r13d,r8d
0x00007f475d110ab1: jge L0009
0x00007f475d110ab3: nop

//==============================
// POST-LOOP
//==============================

// ARRAY BOUNDS CHECK
 L0005: cmp r13d,edx
0x00007f475d110ab7: jae L0007

// PERFORM A SINGLE ADDITION
0x00007f475d110ab9: add rbx,QWORD PTR [rcx+r13*8+0x18];*ladd

// INCREMENT THE LOOP COUNTER
0x00007f475d110abe: inc r13d ;*iinc

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

73

//inside the jvm/

// CHECK LOOP COUNTER AND BACK BRANCH IF NOT FINISHED
0x00007f475d110ac1: cmp r13d,r8d
0x00007f475d110ac4: jl L0005
//==============================

(To make things easier, we’ve included some comments in the assembly code so that the sepa-

rate sections are clear. For brevity, we show only one exit block, but usually there will be mul-

tiple exit blocks in the assembly language to handle the different ways the method can end. The

setup section is included for comparison to other operations later in this article.)

When the loop accesses the array, HotSpot VM eliminates array bounds checks by splitting

the loop into three sections:
■■ Pre-loop: This performs initial iterations with bounds checking.
■■ Main loop: The loop stride (the amount the loop counter

is increased on each iteration) is used to calculate the

maximum number of iterations that can be performed

without requiring a bounds check.
■■ Post-loop: This performs the remaining iterations with

bounds checking.

You can see the practical effect of this approach by look-

ing at the ratio of add operations to jumps. In the un-

optimized C case we examined earlier, this ratio was 1:1,

but the Java HotSpot VM’s JIT compiler has increased this ratio to 8:1, reducing the number of

jumps by 87% for this section. Because the effect of a jump is typically to consume from 2 to 300

cycles waiting for a refill of code from main memory, this improvement is potentially signifi-

cant. (To learn more about how the HotSpot VM eliminates bounds checks when iterating loop-

invariant arrays, see the online documentation.)

The HotSpot VM can also unroll loops with an int counter and a regular stride of 2 or 4. For

example, with a stride of 4, the body is unrolled 8 times and the address offset increases by

In Java 10, a more advanced
technique called loop strip
mining was introduced to further
balance the effects of safepoints on
throughput and latency.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://wiki.openjdk.java.net/display/HotSpot/RangeCheckElimination

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

74

//inside the jvm/

0x20 (32) bytes for each access. The compiler can also unroll loops with a counter of type short,

byte, or char, but not of type long, as we explain in the next section.

Safepoints
The Java code for a method with a long loop counter seems very similar to the int case:

private long longStride1()
{
 long sum = 0;
 for (long l = 0; l < MAX; l++)
 {
 sum += data[(int) l];
 }
 return sum;
}

However, with the loop counter of type long, the assembly language produced is completely

different from the setup section in the previous assembly language listing—no loop unrolling

occurs even with a constant stride of 1:

 // ARRAY LENGTH INTO r9d
 0x00007fefb0a4bb7b: mov r9d,DWORD PTR [r11+0x10]

 // JUMP TO END OF LOOP TO CHECK COUNTER AGAINST LIMIT
 0x00007fefb0a4bb7f: jmp 0x00007fefb0a4bb90

 // BACK BRANCH TARGET - SUM ACCUMULATES IN r14
 0x00007fefb0a4bb81: add r14,QWORD PTR [r11+r10*8+0x18]

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

75

//inside the jvm/

 // INCREMENT LOOP COUNTER IN rbx
 0x00007fefb0a4bb86: add rbx,0x1

 // SAFEPOINT POLL
 0x00007fefb0a4bb8a: test DWORD PTR [rip+0x9f39470],eax

 // IF LOOP COUNTER >= 1_000_000 THEN JUMP TO EXIT CODE
 0x00007fefb0a4bb90: cmp rbx,0xf4240
 0x00007fefb0a4bb97: jge 0x00007fefb0a4bbc9

 // MOVE LOW 32 BITS OF LOOP COUNTER INTO r10d
 0x00007fefb0a4bb99: mov r10d,ebx

 // ARRAY BOUNDS CHECK AND BRANCH BACK TO LOOP START
 0x00007fefb0a4bb9c: cmp r10d,r9d
 0x00007fefb0a4bb9f: jb 0x00007fefb0a4bb81

There is now only one add instruction per loop body iteration—the ratio of add to jump instruc-

tions is back to 1:1, and the benefit of loop unrolling has disappeared. Not only that, but a

safepoint poll has been added to the loop.

A safepoint is a place in code at which the executing thread knows that it has completed

all modifications to internal data structures (such as objects in the heap). It is an ideal time to

check and see whether the JVM needs to halt all threads executing Java code. By checking at

safepoints and safely suspending execution, application threads provide an opportunity for the

JVM to perform operations that might change memory layout and modify internal data struc-

tures, such as stop-the-world (STW) garbage collection.

In the case of interpreted code, a very natural location for safepoint checks already exists:

after a bytecode has finished executing and just before the next bytecode is executed.

The “in-between bytecodes” safepoint check for interpreted code is very useful, but in the

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

76

//inside the jvm/

case of JIT-compiled methods, additional checks must be synthesized and inserted into the code

emitted by the compiler.

Without these checks, a thread could continue to run while other threads had already

stopped at their safepoints. This could lead to a pathological VM state in which almost all appli-

cation threads are paused but some continue to run for a substantial amount of time.

HotSpot has several heuristics for inserting a safe-

point check into compiled code. The two most common are

just before a back branch (as in this case), and just after a

method has exited and before control returns to the caller.

However, the appearance of the safepoint check in the

example of a long counter also points out another feature of

the int counted loops: They do not contain safepoint checks.

This means that the entirety of an int counted loop (with

constant stride) will run without encountering any safepoint

checks, which may be a considerable length of time in extreme cases.

However, consider a loop with an int counter and a stride that is not constant, for example

one where the stride can be different on each method invocation:

private long intStrideVariable(int stride)
{
 long sum = 0;
 for (int i = 0; i < MAX; i += stride)
 {
 sum += data[i];
 }
 return sum;
}

This code will indeed force the JIT compiler to emit a safepoint check on each back branch.

As a virtual machine, Java
HotSpot VM has advanced
loop unrolling capabilities to
reduce or remove the overhead of
back branches.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

77

//inside the jvm/

If you are concerned about latency pauses introduced by long-running counted int loops

holding other threads at a safepoint until the loop completes, you can use the VM switch

-XX:+UseCountedLoopSafepoints. This option adds a safepoint check before the back branch of the

unrolled loop. So, in the long assembly code listing, the test would occur every eight additions.

As with every performance-related command-line switch, you should not activate it until

you have proved in a performance test that it will provide a significant benefit. Very few appli-

cations will see any benefit from activating this switch, so it should not be switched on blindly.

In Java 10, a more advanced technique called loop strip mining was introduced to further balance

the effects of safepoints on throughput and latency.

Let’s conclude by looking at a JMH benchmark to compare the performance of iterating the

same array using either an int counter or a long counter. As we explained earlier, the body of a

loop with a long counter will not be unrolled, and the loop will also contain a safepoint poll.

package optjava.jmh;

import org.openjdk.jmh.annotations.*;
import java.util.concurrent.TimeUnit;

@BenchmarkMode(Mode.Throughput)
@OutputTimeUnit(TimeUnit.SECONDS)
@State(Scope.Thread)
public class LoopUnrollingCounter
{
 private static final int MAX = 1_000_000;

 private long[] data = new long[MAX];

 @Setup
 public void createData()
 {

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

78

//inside the jvm/

 java.util.Random random = new java.util.Random();

 for (int i = 0; i < MAX; i++)
 {
 data[i] = random.nextLong();
 }
 }

 @Benchmark
 public long intStride1()
 {
 long sum = 0;
 for (int i = 0; i < MAX; i++)
 {
 sum += data[i];
 }
 return sum;
 }

 @Benchmark
 public long longStride1()
 {
 long sum = 0;
 for (long l = 0; l < MAX; l++)
 {
 sum += data[(int) l];
 }
 return sum;
 }
}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

79

//inside the jvm/

The output shows the following:

Benchmark Mode Cnt Score Error Units
LoopUnrollingCounter.intStride1 thrpt 200 2423.818 ± 2.547 ops/s
LoopUnrollingCounter.longStride1 thrpt 200 1469.833 ± 0.721 ops/s

This means that the loop with the int counter performs nearly 64% more operations per second.

Conclusion
The HotSpot VM can perform more-complex loop unrolling optimizations—for example, on a

loop containing multiple exit points. In this case, the loop is unrolled, and each unrolled itera-

tion contains a test for the exit condition.

As a virtual machine, the HotSpot VM has advanced loop unrolling capabilities to reduce or

remove the overhead of back branches. However, the majority of Java programmers do not need

to know about this capability—it’s just one more transparent performance optimization that the

runtime provides. </article>

Ben Evans (@kittylyst) is a Java Champion, a tech fellow and founder at jClarity, an organizer for the London
Java Community (LJC), and a member of the Java SE/EE Executive Committee. He has written four books on
programming, including the recent Optimizing Java (O’Reilly).

Chris Newland (@chriswhocodes) is a Java Champion. He invented and still leads developers on the JITWatch
project, an open source log analyzer for visualizing and inspecting just-in-time compilation decisions made by
the HotSpot JVM.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

DEVELOP WITH THE
GLOBAL STANDARD

developer.oracle.com/java

1Developer
Choice
for the Cloud

#
12 Million Developers Run Java
21 Billion Cloud-Connected Java Virtual Machines
38 Billion Java Virtual Machines are in the Cloud

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates.

http://developer.oracle.com/java

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

81

//fix this/

If you’re a regular reader of this quiz, you know these questions simulate the level of difficulty

of two different certification tests. Those marked “intermediate” correspond to questions from

the Oracle Certified Associate exam, which contains questions for a preliminary level of certifi-

cation. Questions marked “advanced” come from the 1Z0-809 Programmer II exam, which is the

certification test for developers who have been certified at a basic level of Java 8 programming

knowledge and now are looking to demonstrate more-advanced expertise.

Question 1 (intermediate). The objective is to create methods with arguments and return

values, including overloaded methods. Given the following classes:

class GenericEngine { public String engType="GE-001"; }

class CombustionEngine extends GenericEngine {
 public String engType="CE-002"; }

class JetEngine extends CombustionEngine {
 public String engType="JE-003"; }

public class Car {
 public void setEngine(Object o) {
 System.out.print("I have unknown engine");
 }

 public void setEngine(GenericEngine ge) {

Answer 1
page 87

Quiz Yourself
More intermediate and advanced test questions

SIMON ROBERTS

MIKALAI ZAIKIN

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-808
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-809

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

82

//fix this/

 System.out.printf(
 "I have generic engine: %s", ge.engType);
 }

 public void setEngine(CombustionEngine ce) {
 System.out.printf(
 "I have combustion engine: %s", ce.engType);
 }
}

And this code fragment:

JetEngine e = new JetEngine();
new Car().setEngine(e);

What is the result? Choose one.

A.	 I have unknown engine

B.	 I have generic engine: GE-001

C.	 I have combustion engine: CE-002

D.	 I have generic engine: CE-002

E.	 I have combustion engine: JE-003

Question 2 (advanced). The objective is to use the Path interface to operate on files and direc-

tory paths. Given this code fragment:

Path defaultRoot =
 Paths.get(System.getProperty("user.dir")).getRoot();
Path path = Paths.get("tmp", "john", "..", "doe");
path = defaultRoot.resolve(path);
System.out.print(path.getName(2)); // line n1

Answer 2
page 90

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

83

//fix this/

Assume that the file system containing the current working directory has an empty directory,

tmp, in its root.

What is the result? Choose one.

A.	 john

B.	 ..

C.	 doe

D.	 Execution completes without exceptions, producing output that depends on the host

operating system.

E.	 An exception is thrown at line n1.

Question 3 (advanced). The objective is to create and use lambda expressions. Given the

following:

@FunctionalInterface // line n1
interface SwissKnife {
 default int compare(int i1, int i2) {
 return i1 - i2;
 }

 static void run() {
 System.out.println("Running !");
 }

 String welcomify(String name);
}

Which is true? Choose one.

A.	 The following code compiles:
SwissKnife sni = (int a, int b) -> a - b;

Answer 3
page 93

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

84

//fix this/

B.	 The following code compiles:
SwissKnife sni = () -> System.out.print("Running fast !");

C.	 The following code compiles:
SwissKnife sni = (a) -> "Welcome, " + a;

D.	 Compilation fails at line n1.

Question 4 (intermediate). The objective is to define the scope of variables. Given the following

two methods, which are declared in the same class:

public static float divide(float arg1, float arg2)
 throws ArithmeticException { // line n1
 return arg1/arg2;
}

public static void main(String[] args) {
 try {
 int arg1 = 10;
 int arg2 = 0;
 System.out.printf("Result: %f", divide(arg1, arg2));
 } catch (RuntimeException e) {
 System.out.printf(
 "Bad arguments: %d and %d", arg1, arg2); // line n2
 }
}

What is the result? Choose one.

A.	 Result: Infinity

B.	 Result: NaN

C.	 Bad arguments: 10 and 0

Answer 4
page 95

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

85

//fix this/

D.	 Compilation fails at line n1.

E.	 Compilation fails at line n2.

Question 5 (advanced). The objective is to create and manage date-based and time-based

events, including creating a combination of date and time in a single object using LocalDate,

LocalTime, LocalDateTime, Instant, Period, and Duration. A senior Java developer is traveling

from Chicago O’Hare (ORD) in the United States to Warsaw (WAW) in Poland. She is trying to

calculate the duration of the flight but thinks that Poland might be shifting to daylight saving

time on the weekend of her journey. The information printed on her ticket is as follows:

Depart Chicago O’Hare

Scheduled: March 24, 2018 5:30 PM (17:30)

Arrive Warsaw

Scheduled: March 25, 2018 9:35 AM (09:35)

She has written the following incomplete code:

ZonedDateTime ord =
 ZonedDateTime.of(2018, 3, 24, 17, 30, 0, 0,
 ZoneId.of("America/Chicago"));

ZonedDateTime waw =
 ZonedDateTime.of(2018, 3, 25, 9, 35, 0, 0,
 ZoneId.of("Europe/Warsaw"));

// line n1

System.out.print("Time in plane is: " + timeInPlane);

Answer 5
page 97

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

86

//fix this/

What code does she insert at line n1 to calculate the elapsed time expected between departure
and arrival? Choose one.

A.	 long timeInPlane = ChronoUnit.HOURS.between(ord, waw);

B.	 Period timeInPlane = Period.between(

 ord, ZoneId.of("America/Chicago"),

 waw, ZoneId.of("Europe/Warsaw"));

C.	 Period timeInPlane = Period.between(ord, waw);

D.	 Duration timeInPlane = Duration.between(ord, waw);

Question 6 (intermediate). The objective is to explain an object’s lifecycle (creation, dereference

by reassignment, and garbage collection). Given the following GCDemo class:

public class GCDemo {
 public static ArrayList<Object> l = new ArrayList<>();
 public void doIt() {
 HashMap<String, Object> m = new HashMap<>();
 Object o1 = new Object(); // line n1
 Object o2 = new Object();
 m.put("o1", o1);
 o1 = o2; // line n2
 o1 = null; // line n3
 l.add(m);
 m = null; // line n4
 System.gc();// line n5
 }
}

And given this code fragment:

GCDemo demo = new GCDemo();

Answer 6
page 99

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

87

//fix this/

demo.doIt();
demo = null; // line n6

When does the object created at line n1 become eligible for garbage collection?
A.	 At line n2

B.	 At line n3

C.	 At line n4

D.	 At line n5

E.	 At line n6

F.	 None of the above

Answer 1. The correct option is C. This question investigates how methods are selected for invo-

cation and also how variables are resolved. The relevant rules for overloaded methods and for

field access are documented in Java Language Specification sections 15.12.2 and 15.11.1.

The code fragment constructs a JetEngine and initializes a variable of that same type to

refer to the object. It then calls a setEngine method, using the variable as the argument. There

are three overloaded methods called setEngine, and although none of them takes an argument

of exactly the type JetEngine, the argument of each overload is a parent of JetEngine. Therefore,

any of them could accept the argument. But one method must be selected, and the compiler

performs that selection. The specification describes how the method is selected from the candi-

date overloads in as many as three stages.

The first stage (which happens to be where the decision is made in this example) is to try

to identify the target method based on the provided argument types, without using any auto-

boxing/unboxing or variable argument list-handling rules.

Answers

Question 1
page 81

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.12.2
https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.11.1

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

88

//fix this/

If the first stage were to fail, a second stage would look for a target method by applying

autoboxing/unboxing, and finally, the third stage would look for a match by applying variable

argument list-handling rules.

So, the first stage selects the “most specific” method based on the types of the parameters.

Java Language Specification section 15.12.2.5 says the following:

�If more than one member method is both accessible and applicable to a method invocation,

it is necessary to choose one to provide the descriptor for the run-time method dispatch.

The Java programming language uses the rule that the most specific method is chosen.

There’s a fairly long and detailed definition of “most specific” in the specification, but in

this context, it simply means “nearest to the actual argument type.” Given a JetEngine as an

actual parameter, the CombustionEngine is the “most specific” formal parameter type, and Object

is the least specific. Therefore (and given that no setEngine(JetEngine e) method is defined), the

compiler will generate code to invoke the setEngine(CombustionEngine ce) method.

In light of this discussion, you know that the output will start with the message I have

combustion engine. Consequently, options A, B, and D are incorrect.

Next, let’s consider which engine type message is printed. Each of three engine variants has

the same engType variable, and each subclass “hides” the parent’s class variable. This represents

highly dubious style, and this question illustrates fairly convincingly why it’s considered bad.

It might seem as if the three variables called engType are “overrides” in the same sense that

occurs in the definitions of methods with the same name in a hierarchy of classes; however,

this is not the case. A single instance of the JetEngine object actually contains three independent

variables called engType, each with different values and each visible from different scopes. Java

Language Specification section 15.11.1 states the following:

Note that only the type of the [p]rimary expression, not the class of the actual object

referred to at run time, is used in determining which field to use.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.12.2.5
https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.11.1

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

89

//fix this/

The “primary expression” is the part that comes before the last dot. In the following

setEngine method, that means the primary expression is сce, and its type is CombustionEngine.

Consequently, the engType variable that is printed is the one embedded in the CombustionEngine

part of the object, and that has the value CE-002. Because of this, you can see that option C is

correct and option E is incorrect:

public void setEngine(CombustionEngine ce) {
 System.out.printf("I have combustion engine: %s", ce.engType);
}

This behavior might be surprising, but the central point is that the late-binding effect applies

only to the invocation of a nonprivate, nonfinal instance method on an object, not to direct field

access. The behavior can perhaps be improved in several ways:
■■ You could render this behavior less surprising if you simply avoided using the same

variable name.
■■ You could change this behavior to print a more expected message if you avoided making direct

reference to the variable engType and instead invoked a method getType() and ensured that

this method is overridden in all three classes. However, this is a cumbersome solution, dupli-

cating an identical getType method in every class.
■■ Another possibility would be to have a single engType variable, defined in the base Generic-

Engine class. This variable is configured appropriately via a chain of constructors in the three

classes. The following example implements this approach by using a final field.

class GenericEngine {
 public final String engType;
 protected GenericEngine(String engType) {
 this.engType = engType; }
 public GenericEngine() { this("GE-001"); }
}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

90

//fix this/

class CombustionEngine extends GenericEngine {
 protected CombustionEngine(String engType) { super(engType); }
 public CombustionEngine() { this("CE-002"); }
}

class JetEngine extends CombustionEngine {
 protected JetEngine(String engType) { super(engType); }
 public JetEngine() { this("JE-003"); }
}

However, the best solution might be simply to avoid using class inheritance in this situation

entirely. If the protected constructor of the GenericEngine class in the last code block were made

public, that would allow all three engine types to be handled directly by that class. Of course,

there might be other constraints on a more complete design, but a common mantra in modern

software engineering is to “prefer delegation over inheritance.” Using delegation for code reuse

is an approach you should understand, but it’s more complex than can be discussed in the con-

text of this question.

Answer 2. The correct option is B. The Path class represents the idea of a path on the file

system—that is, an optional sequence of hierarchical directory names, perhaps ending in a

filename. A Path object itself is not directly linked with the physical file system. Such a connec-

tion is created when some action is taken using the Path—for example, listing the contents of a

directory or creating a file. The reason for avoiding such a hard connection is fairly compelling:

If you could use a Path only to represent something that already exists, a Path could not be used

in the process of creating a new directory or file.

Given this background, the question revolves around four inquiries. What do the Paths.get

operations do? What does the resolve operation do? Can you extract getName(2) from the path

after resolve has done its work? And if getName doesn’t throw an exception, what value does it

provide in this situation?

Question 2
page 82

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

91

//fix this/

You could be forgiven for wondering

what the first two lines do in general, and to

be fair, some of that code is beyond the scope

of the exam. That first line in particular is

likely beyond the scope of the real exam, but

we left it in to show how you can answer a

question even if you don’t necessarily have a

perfect understanding of everything. Given

that none of the options admits the possibility of code other than the last line failing in any

way, you can safely assume that these first lines compile and run without crashing. It’s also

reasonable—and accurate—to assume that this opening code does what it seems to suggest.

The first line extracts a Path object that represents the root of the file system that con-

tains the user’s current working directory. So, for example, if the current working directory is

C:\users\simon\javaprojects\examproj1, the extracted Path object represents C:\.

The second line extracts another Path—which is likely to be a relative path—representing

a path hierarchy that might be represented in a UNIX-like format as either tmp/john/../doe or

tmp/doe.

Which of those two relative paths do you get? From the perspective of Paths.get, the .. is

just an element of the path; it is not treated as anything special in the basic creation process.

Therefore, the effective path has four elements: tmp, john, .., and doe.

Why do you make the path this way rather than by simply specifying a String such as

tmp/john/../doe? The reason is that Java seeks to allow you to create platform-independent pro-

grams. It’s important to be able to describe and manipulate paths on a file system without hard-

coding things such as forward slashes or backslashes. Allowing a variable-length argument list

of Strings and joining them at runtime in whatever way is appropriate for the current execution

platform is much more flexible than defining literal strings with separators. You can access the

system property file.separator to find the local character if you want, but why bother? So yes,

this approach does work, and it looks as if it should. Therefore, option D is incorrect.

Java’s APIs give you the tools to work
with hierarchical directories without ever making
explicit literal references to root directories and
path separators.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

92

//fix this/

As a side note, in literal path strings, forward slashes (UNIX style) work properly on

Microsoft Windows-based JVMs, but backslashes (Windows style) fail on UNIX-based JVMs. The

flexibility on Windows JVMs is possible because a forward slash is not a legal character at the

operating system level in Windows paths or filenames. Therefore, if the JVM sees the forward

slash, it can safely swap that character for a backslash before handing the path to the Windows

system. But if a backslash shows up in a literal path string in UNIX, it’s a legal—if rather odd—

character in a UNIX pathname, so simply swapping would change a valid meaning.

This entire question of forward slashes and backslashes is made even more interesting

because there are other systems that use different path schemes entirely. On the OpenVMS oper-

ating system, local paths have a structure such as sys$disk:[dir.path.elements]myfile.txt;1.

Clearly, making simple assumptions about slashes would not work with this. The lesson here

is that Java’s APIs give you the tools to work with hierarchical directories without ever making

explicit literal references to root directories and path separators. Clearly, it’s a good habit to use

them, because it will protect your code if it’s ever run on unfamiliar operating systems.

The next question is what does resolve do? There are a couple of corner cases, but the most

commonly used behavior is the one used here. If the invocation path is not empty and the argu-

ment path is not absolute, the effect is to concatenate the two paths. As a result, this takes the

relative path (tmp/john/../doe in UNIX-like format) and anchors it to the root of the current file

system. Again in UNIX-like format, this becomes /tmp/john/../doe. Note that resolve still does

not eliminate the .. part; that is the job of the method normalize.

So, now you need to know whether getName(2) is successful and, if it is, what it returns.

It turns out that Path effectively treats the elements of a path (in this case tmp, john, .., and

doe) like a list with a zero-based indexing system. Further, the root part of the path is not

included in that list nor in its indexing scheme. Importantly, this exclusion of the root is con-

sistent even if the path were on a Windows system where this example would likely represent

C:\tmp\john\..\doe. So, in a platform-independent way, the indexing starts at zero with tmp (and

never with C:\ or something similar). This again shows that option D is incorrect.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

93

//fix this/

Further, you can see that the index 2 should be within the valid range, so option E is incor-

rect, because no exception is thrown. Further, you will get .. regardless of the host operating

system. This tells you that option B is correct and options A and C are both incorrect.

Answer 3. The correct option is C. In the functional programming style, functions can be argu-

ments and return values of other functions. Many languages support this idea directly, but most

object-oriented programming (OOP) languages allow passing only objects to and from functions

(and, of course, you usually call functions in your object system’s methods).

To address this seeming limitation, OOP design patterns (such as the Command pattern)

suggest creating an object (function or method—or whatever you want to call it) that contains

the desired behavior and passing that around. This works perfectly well, but the syntax tends

to be cumbersome, because all the “syntactic scaffolding” necessary to define a class, and then

create and instantiate an object from it, really has no immediate relevance to the point of the

source code—which is, in such a situation, simply to describe a function.

To ameliorate this, Java 1.1 provided anonymous classes, which reduce the syntactic scaf-

folding a little, but more importantly allow the definition, instantiation, and usage to be done

all in the same place—for example, as a parameter to a method invocation. Passing an object

that implements SwissKnife might look like this when written using the anonymous syntax:

doStuffWithASwissKnife(new SwissKnife() {
 public String welcomify(String a) {
 return "Welcome, " + a;
 }
});

Note that while the anonymous syntax shown here is consistent with any version of Java from

1.1 onward, the static and default methods in the SwissKnife interface require at least Java 8.

As stated earlier, the behavior definition is colocated with the use, which is good, but the

syntax is still very cluttered.

Question 3
page 83

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

94

//fix this/

Java 8 addressed this clutter and, in specific situations, allows a better syntax, known as

lambdas. Lambdas are essentially expressions that define a class and instantiate an object

from that class, but they do it in a way that allows you to write code that addresses only the

definition of a single function. Because of this restriction of defining a single function, the

syntax can be used only to implement interfaces that have a single abstract method (SAM).

Java’s documentation generally refers to this type of interface as a functional interface, and

the annotation with the same name can be used to verify that an interface does indeed have

exactly one abstract method.

So, the SwissKnife interface is a functional interface, because it has a SAM named welcomify.

The other two methods provide implementations, so they are not abstract and don’t present a

problem for the lambda syntax rules. The job of the @FunctionalInterface annotation is to cause

a compiler error if it is attached to an interface that has zero abstract methods or more than

one. Because the code given compiles correctly, option D is incorrect.

By now, it might be clear that the relationship between an interface and a lambda expres-

sion that implements it centers on the SAM in that interface. The lambda provides an imple-

mentation for that method, and the lambda’s arguments and return type must match those of

the interface’s abstract method. By the way, the Java compiler’s ability to determine the appli-

cable type for a particular context is called type inferencing.

Therefore, a lambda that implements SwissKnife must take a single parameter of type

String, and it must return a String. The only matching lambda is option C, so C is the correct

answer. Options A and B are incorrect because their parameter lists do not match the require-

ment of the SwissKnife’s single abstract method.

As a side note, lambda expressions may include or omit the types of all their parameters; it

is probably better, in general, to omit parameter types and allow them to be inferred from the

context. However, in some situations, perhaps with overloaded methods, the target interface

might be ambiguous. In such a situation, providing the argument type might be necessary to

allow compilation to succeed. Sometimes, including the argument type might make a program

easier to read. Option A includes the argument types, but it fails because the argument list is

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

95

//fix this/

incorrect in type (int, rather than String) and in number (two instead of one), not because the

argument types are specified. For illustration, the following would also be correct:

SwissKnife sni = (String a) -> "Welcome, " + a;

Answer 4. The correct option is E. This is one of those uncomfortable questions. Because compi-

lation fails and in daily coding the problem would be reported immediately by the development

environment, it can seem like an unreasonable question to ask. But, exams are not daily cod-

ing; they attempt to probe your knowl-

edge. As such, a little care and attention

to detail should lead you to the right

answer and, in the process, allow you to

demonstrate an element of core knowl-

edge that is being legitimately tested.

If you’re still uneasy by the end of the

discussion, know that the exam creators try hard to limit the number of questions that fall into

this category, and the information in the question—specifically “fails at line n2”—should be

used to help you spot the right answer.

Let’s look at the question. The setup has all the hallmarks of being about the way Java per-

forms arithmetic and, in particular, how it handles division by zero—but it’s not. It’s about the

scope of variables.

In general, a local variable, such as arg1 and arg2 in this sample, is visible from the point of

declaration to the end of the immediately enclosing block; that’s the region bounded by curly

braces. As a result, arg1 and arg2 are not accessible in the catch block, and line n2 fails to com-

pile. This—along with the assurance that there’s only one correct answer—tells you that option

E is correct.

An important note is that the description of visibility just given isn’t complete and, there-

fore, isn’t fully correct. Formal parameters (such as the variables in the argument list of a

method) will be visible from the point of declaration to the end of the block that is associated

Question 4
page 84

Consider what happens if you perform a
division by zero. It turns out that it depends on the
type of the expression.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

96

//fix this/

with whatever those variables are formal parameters to. By way of examples, the variable args,

which is the formal parameter of the main method, is visible throughout the main method body.

The variable e, which is the formal parameter of the catch block, is visible throughout that catch

block. Similar rules apply to similar situations, including variables declared in the resources

section of a try-with-resources structure, and those declared in for loops.

So, you could fix this particular compilation error simply by moving the declarations of the

two variables further up in the source code so that they are directly above the try keyword. In

that case, the code would compile and run. Now, to make this question and its discussion more

interesting, consider what would happen if that were the case; after all, the distractors (the

wrong answers) were chosen to be at least tempting, which should be true of all multiple-choice

exam questions.

Perhaps the best starting point is to consider what happens if you perform a division by

zero. It turns out that it depends on the type of the expression. If an integer division expression

has zero in the divisor (the bottom part of a fraction), the code throws an ArithmeticError. In

practice, this means that both the divisor and the dividend (the top) must be of integral types;

if either has a floating-point type, the expression has a floating-point type, and no exceptions

are possible. In fact, floating-point expressions with division by zero produce one of three spe-

cial values: Infinity, -Infinity, and NaN (“Not a Number”). If the dividend is nonzero, and it has

the same sign as the zero divisor (floating-point arithmetic distinguishes positive and nega-

tive zero), you get Infinity. If the signs are different, you get -Infinity, and if both the dividend

and divisor are zero, you get NaN. We hope this information is interesting, but it’s not needed for

either of the Java exams. However, because the code could not possibly produce NaN, option B

must be incorrect.

The next consideration is that the variables arg1 and arg2 are declared as int, but the divide

method takes two float arguments. So, would this division be handled in floating-point or inte-

ger arithmetic format? The arguments are promoted to float for the method invocation, so a

floating-point expression is evaluated and, again, no exception will be thrown. That tells you

that option C cannot be correct, even if the scope problem were fixed. Also, from the previous

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

97

//fix this/

discussion, you can tell that if the variable scope issue were fixed and the code were compiled,

the output would be in the form of option A.

You could then ask, if the expression cannot throw an exception, is it an error that the

method declares an exception that will definitely not arise? The answer is no, and in fact, it’s a

general rule that methods are permitted to declare exceptions that they never throw. One rea-

son this is important is that overriding methods are not permitted to throw checked exceptions

that are not permissible from the method being overridden. On this basis, abstract methods

in interfaces regularly declare exceptions that, given that they have no implementation, they

obviously cannot throw. It’s also worth noting that ArithmeticException is an unchecked excep-

tion, so there’s never a requirement to declare it on any method. However, it’s also perfectly

permissible to do so, even if it’s unusual and not recommended style. From this, you can deter-

mine that line n1 does not cause a compilation error and option D is incorrect.

Answer 5. The correct answer is option D. In fact, the intrepid programmer is correct: Poland

did move its clocks forward an hour at 02:00 on the morning of March 25, 2018. However, the

passenger’s task is actually easy. The ZonedDateTime class specifically addresses the representa-

tion of not only time zone but also of legally prescribed changes of time, such as daylight saving

time. Consequently, the various

means of calculating the off-

set between two ZonedDateTime

objects take any such shifts into

account automatically.

Let’s review the options

and compare what they pro-

duce. Option A is incomplete; it

will print Time in plane is: 9 to the console, which is the correct number of full hours, but it

will entirely ignore the minutes. The departure time ends with 30 minutes and the arrival time

ends with 35 minutes, so the number of hours is not exact. If the arrival time were at the same

Question 5
page 85

Since Java 8 introduced the Date and Time API,
Java contains a database of all the historical daylight saving
time changes from governments around the world, and it is
updated with new information as it becomes available.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

98

//fix this/

number of minutes past the hour, the output might appear correct, but it would be by luck, not

because of technical validity. Consider also if our developer’s flight had been to India or another

country that has time zones that vary from those of other countries by an amount that is not a

whole numbers of hours. Because of this, option A is incorrect.

You might improve this option by rewriting the code like this, which would give a result

that is a bit “better”—9.083333333333334—although the format is not very helpful:

double timeInPlane =
 ChronoUnit.MINUTES.between(ord, waw) / 60.0;

The Period class measures time differences in days, months, and years, and its between method

accepts only two arguments, which must be LocalDate objects. Because of this, both options B

and C are incorrect.

Option D is correct; it accurately denotes the time spent in the plane, and it takes into

account the time zones the flight passes through and the daylight saving time change in Poland

that occurs midflight. The output is in the rather odd form PT9H5M. This cryptic presentation

specifies a “period of time of 9 hours and 5 minutes,” which is, in fact, the scheduled time for

the flight.

The PT part of the output is hardcoded in the Duration.toString() method, and as you might

expect, it’s possible to extract the hours, minutes, and so on for a nicer presentation. The Java

Date and Time API is very full featured, and it’s worth spending a little time browsing Oracle’s

tutorial on the topic as well as the Javadoc so you can get the best out of this powerful API.

As a side note, since Java 8 introduced the Date and Time API, Java contains a database of

all the historical daylight saving time changes from governments around the world, and it is

updated with new information as it becomes available.

There’s a final observation to make here about the nature of test questions and what you

need to answer them. While we were preparing this question, we pondered whether options B

and C were bad because they appeared to require rote learning of the API. Questions that test

the simple learning of facts, particularly facts that an IDE will tell you, are considered to be a

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

99

//fix this/

bad idea (although a few exist in the real test, and you’ll see many on the free sample tests that

are abundant on the web). However, we decided to keep these options because although they can

be rejected by rote knowledge, they are best answered from a position of understanding. So, let’s

explore how you would address options B and C from a position of understanding the API, rather

than from simple learning of that API’s contents.

It’s a key feature of the API as a whole that the Duration and Period classes represent differ-

ent concepts. Specifically, Duration represents “physics time” and Period represents a human-

calendar type of time in days—strictly in days, months, and years, but expressly without hours,

minutes, seconds, and the like. From that, it’s a simple deduction that Period cannot be appro-

priate to the task of extracting hours and minutes. Therefore, you can eliminate options B and C

immediately, without concern about whether the specific methods exist or not.

With a little luck, this persuades you that understanding will beat, or at least greatly aug-

ment, knowledge, even in a multiple-choice test.

Answer 6. The correct option is F. This question investigates how objects become eligible for

garbage collection and, at the risk of spoiling the story by giving away the outcome, one way

that memory leaks are possible in Java.

It turns out that the object created on line n1 never becomes eligible for garbage collection

unless a new value is written to the static variable l or the class GCDemo remains loaded in the

JVM. However, class unloading is not a topic of either the exams, so from an exam perspec-

tive, the object is effectively collectable only if more code is added. If the object never becomes

eligible for collection, the memory is simply reclaimed by the operating system after the JVM

process exits. But because the question never addresses when the JVM exits, and that is not an

option you can select, the correct answer is F: “None of the above.”

By the way, a while ago, the Oracle exams adopted a general policy of avoiding “None of the

above” and similar variations as options. However, because this rule has not always been in

place, we can’t be completely certain you won’t ever see it, and it suits the learning purpose of

this question to use it here.

Question 6
page 86

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

100

//fix this/

So, how does an object become

eligible for garbage collection? This

happens when there are no live ref-

erences to the object left in the pro-

gram. What does that mean? Well,

when the object of interest is cre-

ated on line n1, the variable o1 is assigned to point at it. The variable o1 is a reference (a refer-

ence is a kind of pointer, but one to which you cannot make arbitrary changes). In other words,

o1 is not the data; it’s how to find the data. Because o1 is a variable that the thread can use, it’s a

live reference and the object is not eligible for garbage collection, because the program can still

find the object.

Importantly, anytime you take a copy of the value of o1, you duplicate the instructions on

how to find the object (you don’t duplicate the data). For the sake of a colorful analogy, imagine

the object is buried treasure. If a pirate has a treasure map (a reference), he can find the treasure

and use it if he wants to. Further, if another pirate makes a copy of that treasure map, either

pirate can find the treasure. Now, if the first pirate’s map sinks with his ship, the second pirate

can still find the treasure and use it. But if all the copies of the map go down in sinking ships,

nobody can find the treasure. (The assumption is that the pirates don’t remember the map

details in their heads.) This is equivalent to the situation in which an object becomes eligible for

garbage collection.

Now, let’s get back to real life. The line right before line n2—m.put("o1", o1)—puts a copy

of the reference to the object into a Map (the data structure Map, not the pirate map, although the

analogy holds there, too). This means that the Map structure can be used to reach the object.

Next, line n2 overwrites the pointer value in o1 with the value of o2. This action, in effect,

turns the pirate map for finding the object into a pirate map for finding another object. But the

original object can still be reached by using the variable m. The variable m lets you find the Map

data structure, and the Map data structure still lets you find the original object. So, at this point,

the original object is still not lost and is not eligible for collection. That means that option A

is incorrect.

The garbage collector never makes anything
eligible for collection; all it ever does is collect things
that are already eligible.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

101

//fix this/

At line n3, the value of the o1 reference variable is changed again, but because it no longer

refers to the original object, that doesn’t change the picture. You still can reach the object, so

option B is also incorrect.

The next line (between lines n3 and n4) makes a copy of the reference value currently in

variable m. The copy is placed in the List referred to by the static variable l. That means that

you could follow the reference in l to find the Map (which at this point is still also referred to by

the variable m), and then from the Map you can find the object. So, you now have another route

for finding that object. Importantly, the variable l is static, so unlike method local variables m,

o1, and o2, which cease to exist when the method doIt returns to its caller, the variable l (that

is, the reference variable l, which is distinct from the List to which it refers) will not disappear

unless the class GCDemo is unloaded (or the JVM shuts down).

Next, line n4 nulls out the direct reference to the Map (that’s the variable m). But it’s still

possible to find the Map because you have the reference to it stored in the List from the previous

line. By following the chain from that List to the Map, and then from the Map to the object, you

can still reach the object. So, even now, the object is still reachable and still not eligible for gar-

bage collection. Therefore, option C is incorrect.

At line n5, the code invokes the System.gc() method, which encourages the garbage collec-

tor to invest some time cleaning up. This method has been the subject of much commentary

regarding why it might be best avoided, but that isn’t relevant here. The garbage collector never

makes anything eligible for collection; all it ever does is collect things that are already eligible.

As you saw, the object of interest wasn’t eligible on line n4, so the call on line n5 changes noth-

ing, and option D is also incorrect.

After the doIt method returns to its caller, the local variables o1, o2, and m cease to exist.

Those pirate maps go down with the sinking ship that is the doIt method. But the static variable

l in the GCDemo class still exists, it is still accessible, and the transitive series of references still

leads to the object. So, there is no change at this point.

Line n6 nulls out the reference demo that refers to an instance of the GCDemo class, inciden-

tally rendering that object eligible for collection. But the variable l that still lets you reach the

object is static, so unless something changes the value of l or the class GCDemo is unloaded, the

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

102

//fix this/

object remains reachable. From this you can see that option E is also incorrect and, by elimina-

tion, option F must be correct.

As we hinted at the start, this kind of behavior is a good candidate for creating a memory

leak. Of course, it’s possible this reference chain was kept deliberately, and there might be other

code that cleans up the List contents, and the contents of the Maps that are in that List, at inter-

vals. In that case, everything would be OK, but if this were overlooked, you would likely find

that the program consumes ever more memory as it runs, creating a memory leak.

What actions could you take to avoid having this become a memory leak? Several options

exist, and the right one depends on the real purpose of the code. Note that there are two poten-

tial leaks in the current code. Every call to doIt puts another Map into the List, and in that Map

there’s another Object. These instances of Map and Object must be kept under control. Actions

that might be involved in keeping memory allocation under control include the following:
■■ Explicitly removing object references from the Map(s)
■■ Explicitly removing Map references from the List
■■ Explicitly overwriting the value of the static variable l, perhaps with null </article>

Simon Roberts joined Sun Microsystems in time to teach Sun’s first Java classes in the UK. He created the
Sun Certified Java Programmer and Sun Certified Java Developer exams. He wrote several Java certification
guides and is currently a freelance educator who publishes recorded and live video training through Pearson
InformIT (available direct and through the O’Reilly Safari Books Online service). He remains involved with
Oracle’s Java certification projects.

Mikalai Zaikin is a lead Java developer at IBA IT Park in Minsk, Belarus. During his career, he has helped Oracle
with development of Java certification exams, and he has been a technical reviewer of several Java certifica-
tion books, including three editions of the famous Sun Certified Programmer for Java study guides by Kathy
Sierra and Bert Bates.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  /////////////////////   MARCH/APRIL 2019 EXPANDED ISSUE

103

//contact us/

Comments
We welcome your comments, corrections,
opinions on topics we’ve covered, and any
other thoughts you feel important to share
with us or our readers. Unless you specifi-
cally tell us that your correspondence is
private, we reserve the right to publish it in
our Letters to the Editor section.

Article Proposals
We welcome article proposals on all
topics regarding Java and other JVM
languages, as well as the JVM itself.
We also are interested in proposals for
articles on Java utilities (either open
source or those bundled with the JDK).
Finally, algorithms, unusual but useful

programming techniques, and most other
topics that hard-core Java programmers
would enjoy are of great interest to us,
too. Please contact us with your ideas
at javamag_us@oracle.com and we’ll
give you our thoughts on the topic and
send you our nifty writer guidelines,
which will give you more information
on preparing an article.

Customer Service
If you’re having trouble with your
subscription, please contact the folks
at java@omeda.com, who will do what-
ever they can to help.

Where?
Comments and article proposals should
be sent to our editor, Andrew Binstock,
at javamag_us@oracle.com.

While they will have no influence on our
decision whether to publish your article
or letter, cookies and edible treats will
be gratefully accepted by our staff at
Java Magazine, Oracle Corporation,
500 Oracle Parkway, MS OPL 3A-3133,
Redwood Shores, CA 94065, USA.

 World’s shortest subscription form
 Download area for code and
other items

 Java Magazine in Japanese

magazine

By and for the Java community

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:javamag_us%40oracle.com?subject=
mailto:java%40omeda.com?subject=
mailto:javamag_us%40oracle.com?subject=
https://www.sub-forms.com/dragon/init.do?site=ora6028_jfnew
http://bit.ly/2b2tXeb
http://bit.ly/2b2tXeb
http://www.oracle.com/technetwork/jp/articles/java/overview/index.html

