
MARCH/APRIL 2017

JAVA 8 COMPACT PROFILES 56  |  GRADLE INTERNALS 60  |  MESSAGING WITH MQTT 46

UI Tools
SCRIPTING 
JAVAFX WITH 
FXML

17
MVC 1.0: BUILDING 
WITH THE MVC 
ARCHITECTURE

30
VISUAL DESIGN 
WITH SCENE 
BUILDER

24
WEB UI 
CONSTRUCTION 
WITH ORACLE JET

40

ORACLE.COM/JAVAMAGAZINE

magazine

By and for the Java community

http://www.oracle.com/javamagazine


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

01

//table of contents /

COVER ART BY BOB MORRIS

04
From the Editor
The demanding economic model for JVM 

languages to be successful means that 

few will ever be widely adopted.

06
Letters to the Editor
Comments, questions, suggestions, 

and kudos

09
Events
Upcoming Java conferences and events

14
Review
Review of Java 8 refactoring video

46
IoT
Simple Messaging with MQTT
By Gastón Hillar

Use the principal IoT messaging protocol 

to asynchronously send and receive data 

from devices—in this case, from drones.

56
The Road to Java 9
Exploring Compact Profiles
By Ben Evans

Need smaller executables? Migrate to 

Java 9. Can’t migrate? Then consider 

Java 8’s Compact Proiles.

60
Build
Gradle’s Java  
Library Management
By Peter Ledbrook

As builds become more complex— 

consider monolithic repos—library  

dependencies present a special  

challenge that build tools such as  

Gradle are working at solving.

66
Fix This
By Simon Roberts

Our latest code quiz

59
User Groups
Philly JUG 

65
Java Proposals of Interest
JSR 372: JSF 2.3

71
Contact Us
Have a comment? Suggestion?  

Want to submit an article proposal? 

Here’s how.

By Andrés Almiray

Gain greater lexibility in deining JavaFX UIs declaratively  

by exploiting the FXMLLoader mechanism.

24
SCENE BUILDER: THE 
JAVAFX UI DESIGN TOOL
By Johan Vos

The interactive UI design tool 

originally developed by Oracle 

continues to advance in the  

open source community.

30
MVC 1.0: A FRESH,  
NEW FRAMEWORK  
FOR ENTERPRISE APPS
By Josh Juneau

A look at a remarkably lexible 

framework that builds on JAX-RS

40
BUILDING BROWSER-
BASED UIs WITH  
ORACLE JET
By John Brock

Using Oracle’s open source  

JavaScript toolkit

//table of contents /

17
ENHANCED FXML USING  

THE FXMLLOADER

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  //////////////////////////////////////////  MARCH/APRIL 2017

02

EDITORIAL

Editor in Chief  
Andrew Binstock

Managing Editor 
Claire Breen

Copy Editors 
Karen Perkins, Jim Donahue

Technical Reviewer 
Stephen Chin

DESIGN

Senior Creative Director  
Francisco G Delgadillo

Design Director  
Richard Merchán

Senior Designer  
Arianna Pucherelli

Designer  
Jaime Ferrand

Senior Publication Designer  
Sheila Brennan 

Production Designer  
Kathy Cygnarowicz

PUBLISHING

Publisher  
Jennifer Hamilton +1.650.506.3794

Associate Publisher and Audience 
Development Director 
Karin Kinnear +1.650.506.1985

Audience Development Manager 
Jennifer Kurtz

ADVERTISING SALES

Sales Director 
Tom Cometa

Account Manager 
Mark Makinney

Mailing-List Rentals 
Contact your sales representative.

RESOURCES

Oracle Products  
+1.800.367.8674 (US/Canada)

Oracle Services  
+1.888.283.0591 (US)

ARTICLE SUBMISSION

If you are interested in submitting an article, please email the editors. 

SUBSCRIPTION INFORMATION 

Subscriptions are complimentary for qualified individuals who complete the  
subscription form. 

MAGAZINE CUSTOMER SERVICE

java@halldata.com Phone +1.847.763.9635

PRIVACY 

Oracle Publishing allows sharing of its mailing list with selected third parties. If you prefer 
that your mailing address or email address not be included in this program, contact  
Customer Service.

Copyright © 2017, Oracle and/or its affiliates. All Rights Reserved. No part of this publication may be reprinted or otherwise 

reproduced without permission from the editors. JAVA MAGAZINE IS PROVIDED ON AN “AS IS” BASIS. ORACLE EXPRESSLY 

DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS OR IMPLIED. IN NO EVENT SHALL ORACLE BE LIABLE FOR ANY 

DAMAGES OF ANY KIND ARISING FROM YOUR USE OF OR RELIANCE ON ANY INFORMATION PROVIDED HEREIN. Opinions 

expressed by authors, editors, and interviewees—even if they are Oracle employees—do not necessarily reflect the views of Oracle. 

The information is intended to outline our general product direction. It is intended for information purposes only, and may not 

be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied 

upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s 

products remains at the sole discretion of Oracle. Oracle and Java are registered trademarks of Oracle Corporation and/or its 

affiliates. Other names may be trademarks of their respective owners.

Java Magazine is published bimonthly and made available at no cost to qualified subscribers by 

Oracle, 500 Oracle Parkway, MS OPL-3A, Redwood City, CA 94065-1600. 

The brightest minds in 
  tech are coming to Austin.

Learn which open source models are right   
for all—or even part—of your business at OSCON.

May 8 – 11, 2017
oscon.com

JAVA MAGAZINE READERS GET   

20% OFF WITH CODE JAVA

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:jennifer.hamilton%40oracle.com?subject=
mailto:karin.kinnear%40oracle.com?subject=
mailto:jennifer.s.kurtz%40oracle.com?subject=
mailto:thomas.cometa%40sbcglobal.net?subject=
mailto:markmakinney%40hotmail.com?subject=
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.sub-forms.com/dragon/init.do?site=ora6028_jfnew
mailto:java%40halldata.com?subject=
mailto:java%40halldata.com?subject=
https://conferences.oreilly.com/oscon/oscon-tx?cmp=mp-prog-confreg-home-ostx17_java


Performance-Focused Developer Tool lets you
see request breakdowns, IO queries, logs and exceptions 
without leaving the window or your webapp.

Real time insight,
faster apps14 DAY FREE TRIAL!

https://zeroturnaround.com/software/xrebel/trial/?utm_source=javamag&utm_medium=fullpage_banner_april&utm_campaign=xrebel


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

04

//from the editor / 

PHOTOGRAPH BY BOB ADLER/VERBATIM

For the last 18 months, we at Java Magazine 
have been covering all sorts of interesting JVM 

languages—from the well known to the obscure. 
There is no doubt we could continue doing this 
for another couple of years without covering the 
same language twice. That’s in many ways the 
glory of the JVM: it is a great platform for language 
back ends. 

The beneits of the JVM include performance, 
wide availability and familiarity, excellent tools, 
and thorough documentation. In addition, there’s 
a high level of conidence that the JVM will con-
tinue to be widely used, so languages that depend 
on it won’t suddenly need to ind a new platform 
(as those that targeted Adobe Flash, for example, 
were forced to do).

JVM languages generally fall into two major 
categories: those that are ports of existing lan-

guages (such as the JRuby port of Ruby and the 
Jython port of Python) and those that are built 
from the ground up for the JVM (Groovy, Kotlin, 
Scala, Golo, Fantom, and many others). Those in 
the latter group often position themselves as an 
improved alternative to Java the language. And 
indeed these languages do provide features or 
syntax that Java has not implemented—often 
for speciic reasons. Other times, the languages 
lead to Java’s adoption of features, in which case 
the Java team has the beneit of examining those 
implementations when formulating its own. That 
Oracle sees value in this dialogue is apparent 
in its longtime production of the JVM Language 
Summit at midyear, where JVM language design-
ers come together to compare notes among them-
selves and with the Java team members.

Because of our long coverage of JVM lan-

The Rise and Fall of JVM Languages
A viable business model is key to language adoption.

#developersrule

developer.oracle.com

Trials. Downloads.

Tutorials. Start here:

developer.oracle.com

The Oracle Developer 

Gateway is the best place 

to jump-start your modern 

cloud development skills 

with free trials, downloads,

tutorials, documentation, 

and more.

The Best 
Resource 
for Modern 
Cloud Dev

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://developer.oracle.com
http://developer.oracle.com


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

05

//from the editor / 

guages, I am occasionally asked 
which of them will become popu-
lar enough to “cross the chasm.” 
This term, which originated in 
Geofrey Moore’s book of the same 
name, refers to an increase in 
popularity that drives a technol-
ogy from the exclusive domain of 
visionaries and early adopters into 
the wider embrace of pragmatists 
and especially of businesses. I 
believe there are only three lan-
guages that are capable of this 
crossing or have already done so: 
Groovy, Scala, and Kotlin. 

Groovy found success as a 
quirky scripting language that 
has illed numerous niches where 
quick but expressive coding is 
needed. It is the scripting language 
for many testing frameworks and 
is used for writing build scripts 
in Gradle. It is also unique among 
the primary JVM languages (the 
three mentioned above plus Java) 
in that it did not require corporate 
sponsorship to become popular. 
(Even though Pivotal did support it 
for a few years, Groovy was popu-
lar long before Pivotal’s acquisi-
tion and has continued to be since 
Pivotal stopped sponsorship.) This 
is testament to the community 
skills of the project’s longtime 
leader, Guillaume Laforge.

Today, no language can hope 

to cross the chasm as Groovy did—
that is, without serious inancial 
backing. Writing a language is a 
very expensive proposition, as 
is promoting it. While originally 
an academic creation, Scala was 
backed by the startup Typesafe 
until the company realized—as 
Pivotal did with Groovy—that 
there is no revenue to be made 
in selling a new language. As a 
result, Typesafe changed its name 
to Lightbend and refocused on its 
nonlanguage products. The break 
from being the “Scala company” 
was so clean that the press release 
announcing the name change did 
not even mention the language in 
the body of the announcement. 
As I said, there’s just no money 
in languages.

Kotlin relies on a rather dif-
ferent model. The language was 
devised in part for JetBrains’ 
internal use. Its design is prag-
matic and aimed at helping the 
company reduce costs in develop-
ing its extensive line of developer 
tools. The beneits of developing 
and promoting Kotlin outweigh 
its costs and, crucially, JetBrains 
derives its income from products 
other than Kotlin. The costs, how-
ever, are signiicant. According to 
Andrey Breslav at JetBrains, more 
than two dozen full-time equiva-

lents are developing and promot-
ing Kotlin. 

In the process, Kotlin has 
morphed into more than just 
an eiciency tool for JetBrains. 
Its intensely pragmatic orienta-
tion has strongly resonated with 
a signiicant and active commu-
nity, which accelerates its move-
ment across the chasm. Kotlin 
thereby enables JetBrains to bring 
new developers into its tool eco-
system. But the growing user 
base also presents the company 
with the challenge that success-
ful languages often face: manag-
ing the demands of users versus 
the company’s own desires for 
the language. 

Because economics support 
Kotlin’s evolution and JetBrains’ 
longstanding knowledge of devel-
opers will help it work with the 
community, I expect that within 
the next few years Kotlin will 
fully cross the chasm and emerge 
as a—or possibly the—primary 
non-Java JVM language, so prov-
ing yet again the robustness of the 
JVM ecosystem.

Andrew Binstock, Editor in Chief

javamag_us@oracle.com

@platypusguy
#developersrule

developer.oracle.com

Get on the list

for event updates:
go.oracle.com/oraclecoderoadshow

Step up to modern cloud 

development. At the 

Oracle Code roadshow, 

expert developers lead 

labs and sessions on PaaS, 

Java, mobile, and more.

Level Up at
Oracle Code

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://en.wikipedia.org/wiki/Crossing_the_Chasm
https://en.wikipedia.org/wiki/Crossing_the_Chasm
https://www.lightbend.com/company/news/typesafe-changes-name-to-lightbend
https://en.wikipedia.org/wiki/Full-time_equivalent
https://en.wikipedia.org/wiki/Full-time_equivalent
mailto:javamag_us%40oracle.com?subject=
https://twitter.com/platypusguy
http://developer.oracle.com
http://go.oracle.com/oraclecoderoadshow


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

06

//letters to the editor / 

JavaScript in Java Magazine

We received more than 30 replies to our request in the 

January/February issue (“The Polyglot Future”) for com-

ments about regular coverage of JavaScript. The replies 

boiled down to three principal points of view, as articulated 

in the following three notes.

Lots of It!

Yes, please include a regular column on JavaScript. It 
can be arbitrarily large!

I have been a Java programmer for 16 years. Two 
years ago, I landed in a job that required client-side 
JavaScript coding. After a frustrating six months, I 
learned to respect JavaScript: it is a language and an 
ecosystem capable of producing quality software and 
fantastic tooling.

Despite seeing the elegance of libraries and per-
formance of runtimes like Node, I am wondering how 
“large”-scale development is possible with a language 
that does not have interfaces, like Java has.

I feel really curious to learn how Java program-
mers with a similar mindset ind their place in a 
world without interfaces and without a threading API 
(another topic that fascinates me).

—Csaba Koncz

Some JavaScript, Please

My irst thought after reading your editorial was, “I’d 
read it, but I don’t know how much other JVM devel-
opers want to hear about the JavaScript ecosystem.” 
But the more I think about it, the more I think it 
would be a disservice not to cover JavaScript. There’s a 
ine line between focusing on one thing and pretend-
ing everything else doesn’t exist.

That’s especially true when JVM-focused lan-

guages are compiling to JavaScript. It has been exactly 
two years since Scala.js went from a science proj-
ect to something the Scala community is actively 
promoting. And Kotlin is gunning to be both a Java 
replacement and a TypeScript replacement, which 
has meant making Kotlin’s type system able to 
impersonate JavaScript.

I’m not an Android developer, but my wife is an 
iOS developer who works closely with Android and 
web developers to keep their code in sync. Naturally 
they use JavaScript on all three platforms, and I’ve 
suggested they look into React Native to help unify 
the codebase. React is something you could cover 
without even mentioning JavaScript.

If anything, the argument against covering 
JavaScript is that there’s just too much to do it justice. 
It seems that every time you dip your toe in, some 
new framework has taken over. Blink and you miss it.

I’d be fascinated to see a deep dive comparing the 
tradeofs between JITs from HotSpot, Dalvik, and the 
various JavaScript JITs. But maybe that’s just me. 

—David Leppik

No JavaScript at All

I suggest “Absolutely None” for the introduction of 
other programming languages in Java Magazine. At 
the same time, I suggest another magazine that cov-
ers the polyglot issues discussed in the editorial, with 
topics involving basic and advanced programming 
integrated with some database, such as Oracle and 
MySQL, as well as other programming languages.

—Marcos André Pisching
Professor de Informática no Campus Lages do IFSC

Brazil

JANUARY/FEBRUARY 2017

LOCAL-VARIABLE TYPE INFERENCE 60  |  SCALA 47  |  BLOCKCHAIN 36  

TOOLS

ORACLE.COM/JAVAMAGAZINE

magazine

By and for the Java community

POLYGLOT: 

MOVING MAVEN 

PAST XML

17
BUILD YOUR OWN 

JVM DEBUGGING 

TOOLS

29
INSIDE THE 

ARCHITECTURE 

OF BUILD TOOLS

22

JANUARY/FEBRUARY 2017

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.javamagazine.mozaicreader.com/JanFeb2017#&pageSet=3&page=0


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

07

//letters to the editor / 

Editor Andrew Binstock responds: “All told, the responses 

were more than 75 percent in favor of inclusion of 

JavaScript on a regular basis. Based on this, we’ll begin 

regular coverage of it in the next few issues. In the mean-

time, a JavaScript article that was scheduled long ago is 

included in this issue. As we move forward, we’ll be care-

ful to keep in mind the recommendation of reader William 

McKenzie, who upon reassurance that JavaScript would not 

come to dominate the content, kindly replied: ‘That sounds 

appropriate to me. I love [Java Magazine] and don’t want 

it to lose itself.’”

Blockchain Blockage

I liked the article “Blockchain: Using Cryptocurrency 
with Java,” in the January/February 2017 issue, but on 
page 44 the call of the method

Greeter.deploy(web3j, credentials, 

    BigInteger.ZERO, new Utf8String("...")) 

is not complete because you need to set the gasLimit. 
What is the value of the gasLimit when the gasPrice 
is set to zero?

—Elton DePaula

Author Conor Svensson responds: “It’s best if you refer to 

the accompanying code in the GitHub repository. You can 

see the correct values to use at this link. If you have any 

further questions, you can also join the web3j community 

on Gitter to get assistance.”

Being Fair to Gradle Builds

In his article on build tools (“The Design and Con-
struction of Modern Build Tools”), in the January/
February 2017 issue, Cédric Beust wrote, “With Gradle, 
you need to manipulate multiple build.gradle iles 

that, in turn, refer to multiple settings.gradle iles.”
The only way you would be referring to multiple 

settings.gradle iles is if you’re working with mul-
tiple projects, even multiple multimodule projects. 
However, each project, whether a standalone project or 
a multi module project, only ever has a single settings 
.gradle ile.

In addition, the text makes it seem like this “new 
approach” of Kobalt is the only one that makes it pos-
sible to “deine multiple projects in one build ile.” 
This is also possible in Gradle, and it’s quite common.

I certainly think it’s likely that Kotlin is going  
to be the main scripting language for Gradle  
(Kobalt will likely contribute ideas for that), but it’s 
important to be accurate and fair in comparisons  
of existing procedures.

—David Michael Karr

Author Cédric Beust responds: “You are correct that most 

projects usually have one settings.gradle ile, but that ile is 
pretty much the only way to have multiple modules. Here 

is the typical way to do this from Gradle’s project itself.”

Contact Us

We welcome comments, suggestions, grumbles, kudos, 
article proposals, and chocolate chip cookies. All but 
the last two might be edited for publication. If your 
note is private, please indicate this in your message. 
Please write to us at javamag_us@oracle.com. For 
other ways to reach us, see the last page of this issue.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://bit.ly/2m1NORQ
https://gitter.im/web3j/web3j
http://www.javamagazine.mozaicreader.com/JanFeb2017#&pageSet=22&page=0
http://www.javamagazine.mozaicreader.com/JanFeb2017#&pageSet=22&page=0
http://bit.ly/2lOVeaY
mailto:javamag_us%40oracle?subject=


https://www.jetbrains.com/idea/specials/idea/idea.html?utm_source=javamagazine&utm_medium=banner&utm_content=capable-and-ergonomic&utm_campaign=idea


09

ORACLE.COM/JAVAMAGAZINE  //////////////////////////////////////////  MARCH/APRIL 2017

//events /

PHOTOGRAPH BY AMITH NAG PHOTOGRAPHY/GETTY IMAGES

GREAT INDIAN DEVELOPER SUMMIT 
APRIL 25–28 

BANGALORE, INDIA

The Great Indian Developer Summit (GIDS), now in its 10th year, ofers 
four days of content grouped by theme. April 26 focuses on Java and 
JVM languages. Other days focus on web, mobile, DevOps, and big data. 
Register for each day separately.

JavaLand
MARCH 28–30

BRÜHL, GERMANY

This annual conference fea-
tures more than 100 lectures 
on subjects such as core Java 
and JVM languages, enter-
prise Java and cloud tech-
nologies, IoT, front-end and 
mobile computing, and much 
more. Scheduled presenta-
tions include “Multiplexing 
and Server Push: HTTP/2 
in Java 9,” “The Dark and 
Light Side of JavaFX,” 
“JDK 8 Lambdas: Cool Code 
that Doesn’t Use Streams,” 
“Migrating to Java 9 Modules,” 
and “Java EE 8: Java EE 
Security API.”

O’Reilly Software  
Architecture Conference
APRIL 2–3, TRAINING

APRIL 3–5, TUTORIALS  

AND CONFERENCE

NEW YORK, NEW YORK

This event promises four 
days of in-depth professional 
training that covers software 
architecture fundamentals; 
real-world case studies; and 
the latest trends in technolo-

gies, frameworks, and tech-
niques. Past presentations 
have included “Introduction to 
Reactive Applications, Reactive 
Streams, and Options for the 
JVM,” as well as “Microservice 
Standardization.”

JAX DevOps
APRIL 3 AND 6, WORKSHOPS

APRIL 4 AND 5, CONFERENCE

LONDON, ENGLAND

This event for software 
experts features in-depth 
knowledge of the latest tech-
nologies and methodologies 
for lean businesses. The focus 
is on accelerated delivery 
cycles, faster changes in func-
tionality, and increased quality 
in delivery. Conference tracks 
include agile and company 
culture, cloud platforms, con-
tainer technologies, continu-
ous delivery and automation, 
microservices, and real-world 
case studies. The conference 
is preceded and followed by 
a day of workshops. There’s 
also a two-in-one conference 
package that provides free 
access to a parallel conference, 
JAX Finance.

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
http://www.developermarch.com/developersummit
http://www.javaland.eu/en/home/
http://conferences.oreilly.com/software-architecture/sa-ny
http://conferences.oreilly.com/software-architecture/sa-ny
https://devops.jaxlondon.com


10

//events /

ORACLE.COM/JAVAMAGAZINE  //////////////////////////////////////////  MARCH/APRIL 2017

and Oice,” examines all aspects 
of the smart home or oice: con-
trol of lighting, temperature con-
trol, appliances, and security locks 
for gates and doors. The Things 
Network—a global community 
whose mission is to build a global 
IoT data network—is hosting its 
popular hackathon at the confer-
ence again this year.

Java Day Istanbul 2017
MAY 6

ISTANBUL, TURKEY

With the slogan “By developers, 
for developers,” this conference 
organized by the Istanbul Java 
User Group explores Java, web, 
mobile, big data, cloud, DevOps, 
and more. It also provides the 
opportunity for developers to 
network with tech companies 
and startups.

JAX 2017
MAY 9–11, CONFERENCE

MAY 8 AND 12, WORKSHOPS

MAINZ, GERMANY

More than 200 internationally 
renowned speakers give practical 
and performance-oriented lec-
tures on topics such as Java, Scala, 
Android, web technologies, agile 

development models, and DevOps. 
Workshops are ofered on the  
day preceding and the day follow-
ing the conference. (No English 
page available.)

Devoxx UK
MAY 11–12

LONDON, ENGLAND

Devoxx returns to the UK with a 
focus on Java, web, mobile, JVM 
languages, architecture, big data, 
and security. Attracting more than 
1,200 attendees, the conference 
includes more than 120 sessions, 
with 50-minute conference ses-
sions, three-hour hands-on labs, 
and many quickie presentations.

Riga Dev Days 2017
MAY 15–17

RIGA, LATVIA

The biggest tech conference in 
the Baltic States, this three-day 
event is a joint project of Google 
Developer Group Riga, Java User 
Group Latvia, and Oracle User 
Group Latvia. By and for software 
developers, Riga Dev Days focuses 
on the most-relevant topics and 
technologies for that audience 
with more than 50 sessions on 
Java, web, and cloud programming.

PHOTOGRAPH BY GUILHEM VELLUT/FLICKR

Devoxx France
APRIL 5, WORKSHOPS

APRIL 6–7, CONFERENCE

PARIS, FRANCE

Devoxx France presents work-
shops, tutorials, and keynotes 
from prestigious speakers, fol-
lowed by a cycle of eight mini 
conferences every 50 minutes. 
You can build your own calendar 
and follow the sessions as you 
wish. Founded by developers for 
developers, Devoxx France covers 

topics ranging from web security 
to cloud computing. (No English 
page available.)

IoT Tech Day 2017
APRIL 19 

UTRECHT, THE NETHERLANDS

Machine learning and AI, secu-
rity, wearables, and other smart 
technologies are among the top-
ics investigated in Europe’s big-
gest IoT-centered conference. One 
timely track, “Connected Living 

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
https://javaday.istanbul
https://jax.de/
http://www.devoxx.co.uk/
http://Rigadevdays.lv
http://www.devoxx.fr/
http://iottechday.nl


11

//events /

ORACLE.COM/JAVAMAGAZINE  //////////////////////////////////////////  MARCH/APRIL 2017

GeeCON 2017
MAY 17–19 

KRAKOW, POLAND

The GeeCON conference focuses 
on Java and JVM-based tech-
nologies, with special attention 
to dynamic languages such as 
Groovy and Ruby. More than 80 
conference sessions cover topics 
such as enterprise architectures, 
design patterns, distributed com-
puting, software craftsmanship, 
mobile, and more.

J On The Beach
MAY 17, WORKSHOPS

MAY 18–19, TALKS

MALAGA, SPAIN

JOTB is an international rendez-
vous for developers interested in 
big data technologies. JVM and 
.NET technologies, embedded and 
IoT development functional pro-
gramming, and data visualization 
will all be discussed. Scheduled 
speakers include longtime Java 
Champion Martin Thompson and 
Director of Developer Experience 
at Red Hat Edson Yanaga.

JEEConf
MAY 26–27

KIEV, UKRAINE

JEEConf is the largest Java con-

ference in Eastern Europe. The 
annual conference focuses on 
Java technologies for application 
development. This year ofers ive 
tracks and more than 50 speak-
ers with an emphasis on practical 
experience and development of 
real projects. Topics include mod-
ern approaches in the develop-
ment of distributed, highly loaded, 
scalable enterprise systems with 
Java, among others.

jPrime
MAY 30–31

SOFIA, BULGARIA

jPrime is a relatively new con-
ference, with two days of talks 
on Java, JVM languages, mobile 
and web programming, and best 
practices. The event is run by the 
Bulgarian Java User Group and 
provides opportunities for hack-
ing and networking.

O’Reilly Fluent Conference
JUNE 19–20, TRAINING

JUNE 20–22, TUTORIALS  

AND CONFERENCE

SAN JOSE, CALIFORNIA

Fluent ofers practical train-
ing for building sites and apps 
for the modern web. This event 
is designed to appeal to applica-

tion, web, mobile, and interactive 
developers, as well as engineers, 
architects, and UI/UX designers. 
Training days and tutorials round 
out the conference experience.

EclipseCon 2017
JUNE 20, “UNCONFERENCE”

JUNE 21–22, CONFERENCE

TOULOUSE, FRANCE

EclipseCon is all about the Eclipse 
ecosystem. Contributors, adopt-
ers, extenders, service provid-
ers, consumers, and business and 
research organizations gather to 
share their expertise. The two-
day conference is preceded by an 
“Unconference” gathering.

Devoxx Poland
JUNE 21–23

KRAKOW, POLAND

For three days, 100 Java Cham-
pions, evangelists, and thought 
leaders inspire 2,500 developers 
from 20 diferent countries at  
this installment of the popular 
Devoxx conferences. Tracks on 
server-side Java, cloud and big 
data, JVM languages, web and 
HTML5, and more are on ofer. 
Hacking and networking round 
out the experience.

QCon New York
JUNE 26–28, CONFERENCE

JUNE 29–30, WORKSHOPS

NEW YORK, NEW YORK

QCon is a practitioner-driven con-
ference for technical team leads, 
architects, engineering directors, 
and project managers who inlu-
ence innovation in their teams. 
The conference covers many dif-
ferent developer topics, frequently 
including entire Java tracks.

JCrete
JULY 16–21

KOLYMBARI, GREECE

This loosely structured “uncon-
ference” involves morning ses-
sions discussing all things Java, 
combined with afternoons spent 
socializing, touring, and enjoy-
ing the local scene. There is also a 
JCrete4Kids component for intro-
ducing youngsters to program-
ming and Java. Attendees often 
bring their families.

ÜberConf
JULY 18–21

DENVER, COLORADO

ÜberConf 2017 will be held at the 
Westin Westminster in down-
town Denver. Topics include 
Java 8, microservice architectures, 

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
https://2017.geecon.org/
http://jonthebeach.com
http://jeeconf.com
http://jprime.io
http://conferences.oreilly.com/fluent/fl-ca
https://www.eclipsecon.org/france2017/
http://devoxx.pl
https://qconnewyork.com
http://www.jcrete.org
https://uberconf.com/conference/denver/2017/07/home


12

//events /

ORACLE.COM/JAVAMAGAZINE  //////////////////////////////////////////  MARCH/APRIL 2017

Docker, cloud, security, Scala, 
Groovy, Spring, Android, iOS, 
NoSQL, and much more.

JavaZone 2017
SEPTEMBER 12, WORKSHOPS

SEPTEMBER 13–14, CONFERENCE

OSLO, NORWAY

JavaZone is a conference for 
Java developers created by the 
Norwegian Java User Group, 
javaBin. The conference has 
existed since 2001 and now con-
sists of around 200 speakers and 
7 parallel tracks over 2 days, plus 
an additional day of workshops 
beforehand. You will be joined by 
approximately 3,000 of your fel-
low Java developers. Included in 
the ticket price is a membership 
in javaBin.

NFJS Boston
SEPTEMBER 29–OCTOBER 1

BOSTON, MASSACHUSETTS

Since 2001, the No Fluf Just Stuf 
(NFJS) Software Symposium Tour 
has delivered more than 450 
events with more than 70,000 
attendees. This event in Boston 
covers the latest trends within 
the Java and JVM ecosystem, 
DevOps, and agile development 
environments.

JavaOne
OCTOBER 1–5

SAN FRANCISCO, CALIFORNIA

Whether you are a seasoned 
coder or a new Java programmer, 
JavaOne is the ultimate source of 
technical information and learn-
ing about Java. For ive days, Java 
developers gather from around 
the world to talk about upcom-
ing releases of Java SE, Java EE, 
and Java FX; JVM languages; new 
development tools; insights into 
recent trends in programming; 
and tutorials on numerous related 
Java and JVM topics.

Are you hosting an upcoming 
Java conference that you would 
like to see included in this cal-
endar? Please send us a link 
and a description of your event 
at least 90 days in advance at 
javamag_us@oracle.com. Other 
ways to reach us appear on the 
last page of this issue.

Oracle Code Events
Oracle Code is a free event for 
developers to learn about the  
latest development technologies, 
practices, and trends, including 
containers, microservices and API 
applications, DevOps, databases, 
open source, development tools and low-code platforms, 
machine learning, AI, and chatbots. In addition, Oracle 
Code includes educational sessions for developing soft-
ware in Java, Node.js, and other programming languages 
and frameworks using Oracle Database, MySQL, and 
NoSQL databases.

US AND CANADA
MARCH 27, Washington DC

APRIL 18, Toronto, Ontario, 
Canada

JUNE 22, Atlanta, Georgia

EUROPE AND MIDDLE EAST
APRIL 20, London, England

APRIL 24, Berlin, Germany

APRIL 28, Prague, Czech 
Republic

MAY 22, Moscow, Russia

JUNE 6, Brussels, Belgium

JULY 11, Tel Aviv, Israel

ASIA PACIFIC
MAY 10, New Delhi, India

MAY 18, Tokyo, Japan

JULY 14, Beijing, China

JULY 18, Sydney, Australia

AUGUST 4, Bangalore, India

AUGUST 30, Seoul, South 
Korea

LATIN AMERICA
JUNE 27, São Paulo, Brazil

JUNE 29, Mexico City, Mexico

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
https://2017.javazone.no/tickets
https://nofluffjuststuff.com/home/main
https://www.oracle.com/javaone/index.html
mailto:javamag_us%40oracle.com?subject=
https://go.oracle.com/oraclecode-about
https://go.oracle.com/oraclecode-washington?elqCampaignId=73163&src1=OW:MS:PT:&src2=oraclecode&sc=OW:MS:PT:oraclecode&pcode=WWMK161026P00046
https://developer.oracle.com/code/toronto
https://developer.oracle.com/code/toronto
https://developer.oracle.com/code/london
https://developer.oracle.com/code/berlin
https://developer.oracle.com/code/prague
https://developer.oracle.com/code/prague
https://developer.oracle.com/code/newdelhi


http://www.devoxx.co.uk


ORACLE.COM/JAVAMAGAZINE  //////////////////////////////////////////  MARCH/APRIL 2017

14

Although this column regularly 
focuses on books, in this issue we 
look at a training video sold com-
mercially by the InformIT divi-
sion of Pearson, the company 
behind Addison-Wesley and other 
respected imprints.

This video is a downloadable 
product (priced around US$100) that 
consists of DRM-free MP4 iles. All 
told, they represent several hours of 
high-quality instruction. I watched 
the videos on my desktop and 
opened the window to ill the screen 
so that I could read the code and see 
the changes easily.

The lecturer is Java Champion 
Trisha Gee, who is a frequent and 
well-respected speaker at confer-
ences. Here she presents a variety 
of refactorings that are available 
because of the innovations intro-
duced in Java 8. Gee focuses primar-
ily on lambdas, streams, Optionals, 
and several lesser features. To follow 
along, you will need to understand 
these features. The video is squarely 
aimed at intermediate to advanced 

developers, and if you don’t know 
the syntax for lambdas or under-
stand what functional interfaces are, 
you’ll quickly ind yourself stum-
bling as you try to follow along. In 
this sense, the video is tremen-
dously satisfying precisely because it 
avoids introductory material. That is, 
you must know Java 8 going in.

After presenting the refactor-
ings, Gee cleverly spends a signii-
cant amount of time assessing the 
performance impact of the code 
changes. She does this using the Java 
Microbenchmarking Harness (JMH) 
and shows that some but not all 
refactorings improve performance. 
It’s kind of a fascinating process 
to watch.

Despite the high production 
values of the video and Gee’s prac-
ticed delivery (she never stutters 
or repeats and easily moves back-
ward and forward through subjects 
to explain a given topic), the video 
has a few aspects that could bear 
improvement. At times Gee speaks 
very fast, which makes it hard to 

fully understand her point because 
you’re still trying to catch up with 
what she said 15 seconds ago. My 
other complaint is that Gee lets the 
IDE (IntelliJ) ind refactorings and 
implement them, so they’re too 
often done in the blink of an eye. 
She helpfully shows before and 
after code in some examples, but 
it would be easier to follow if we 
saw her make the changes manu-
ally rather than see code instantly 
transformed by a keystroke. In this 
regard, although Gee claims that 
all the refactorings are available in 
other IDEs, I found that some were 
not available in NetBeans. I did not 
verify Eclipse. 

Overall, my reservations are 
about details, not about content, 
which is uniformly highly instruc-
tive and full of immediately appli-
cable information. Gee has posted a 
less intense and shorter version of 
this video on YouTube, so you can 
sample the goods before buying  
this. I expect you’ll be as impressed 
as I am.—Andrew Binstock

//review /
REFACTORING TO MODERN JAVA: GETTING THE MOST FROM JAVA 8

(LiveLessons video)

By Trisha Gee

Pearson/InformIT LiveLessons

http://www.oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oracle.com/technetwork/articles/java/architect-benchmarking-2266277.html
http://bit.ly/2n8N7aG
http://bit.ly/2mqWxJZ
http://bit.ly/2mqWxJZ


http://www.OraclePressBooks.com


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

16
ART BY BOB MORRIS

D
epending on how your genes are wired, you either love build-
ing UIs or ind it to be the most annoying task in program-
ming—surpassing even ixing Aunt Thelma’s printer because, 
you know, you’re the computer wizard. Regardless of your 
view of UI development, there can be no denying the now 

paramount importance of the UI or, put more lavishly, the UX (that is, 
the user experience). Even the 
most jaded developers recognize 
the need for attractive apps with 
intuitive interfaces. As a result, 
most of us are now accustomed 
to designers sitting in on product 
and app creation and providing 
feedback and direction as the 
project unfolds.

Coding UIs used to be an awful 
chore, with endless minute 
adjustments having to be con-
stantly recoded. Fortunately, 
JavaFX greatly facilitated UI 
construction by scripting it with 
FXML, which is discussed in our 
irst article (page 17). Our sec-
ond article (page 24) explores 
the drag-and-drop design tool 
Scene Builder, which can generate 

FXML. Scene Builder was originally an Oracle tool that was released to open 
source and taken over by Gluon, which has been maintaining it ever since. 

Front ends to web applications have their own unique needs, and we 
cover those too in a pair of articles: one on MVC 1.0 (page 30), a web 
framework that at one time was considered for inclusion in Java EE 8, 
and another on a JavaScript toolkit, Oracle JET (page 40), which provides 

among many resources a large 
palette of useful controls with 
easy ways to wire them together.

If UIs are not your favorite 
topic, we have you covered with 
a detailed discussion (page 46) 
of using MQTT, one of the main 
messaging protocols in IoT. 
You’ll also ind an interesting 
dive (page 60) into how the up-
and-coming build tool Gradle 
uses libraries. And inally, we 
revisit a topic we’ve covered 
before: compact proiles in 
Java 8 (page 56). In addition, of 
course, we ofer our usual quiz—
this time with the inclusion of 
questions from the entry-level 
exam—as well as plenty of other 
goodness. Enjoy!

Building User Interfaces
UI TOOLS

SCRIPTING JAVAFX 17  |  DRAG-AND-DROP DESIGN 24  |  MVC 1.0 30  |  JAVASCRIPT UI WITH ORACLE JET 40

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

17

//ui tools /

The JavaFX UI toolkit delivers a refreshing and modern 
set of APIs that can be used to build desktop and mobile 

applications that target the JVM. Similar to its predecessor, 
Swing, JavaFX provides a standard widget set, as well as the 
means to extend this widget set with custom components  
and new behavior. 

JavaFX also adds new capabilities such as property bind-
ings, styling support via CSS, and a UI description format 
named FXML. As the name implies, it’s an XML-based format 
that enables developers to deine user interfaces in a declara-
tive way, as opposed to deining interfaces by procedural 
means—that is, by directly using the JavaFX APIs.

The following beneits are some of the advantages of 
choosing FXML over the programmatic API:

■■ FXML is a hierarchical format. The JavaFX SceneGraph is also 
a hierarchical structure given that it represents the UI ele-
ments as a tree data structure. Every node in the SceneGraph 
relates to a graphical element, such as a button, label, or text 
ield. As a result, it is easier to visualize the component hier-
archy in FXML than in plain code.

■■ FXML can be created on the ly if need be, allowing 
dynamic UI elements to be added/created at speciic points 
during the application’s runtime.

■■ In many cases, writing FXML results in shorter UI deinitions.

You have probably seen FXML before, but in case you  
haven’t, here’s a quick sample. The following code snippet 
deines a grid in which six UI elements are placed in a  
two-column layout:

sample/app.fxml

<?xml version="1.0" encoding="UTF-8"?>

<?import javafx.scene.control.Button?>

<?import javafx.scene.control.Label?>

<?import javafx.scene.control.PasswordField?>

<?import javafx.scene.control.TextField?>

<?import javafx.scene.layout.GridPane?>

<GridPane>

  <Label text="Username:" 

    GridPane.columnIndex="0" GridPane.rowIndex="0"/>

  <TextField              

    GridPane.columnIndex="1" GridPane.rowIndex="0"/>

  <Label text="Password:" 

    GridPane.columnIndex="0" GridPane.rowIndex="1"/>

  <PasswordField          

    GridPane.columnIndex="1" GridPane.rowIndex="1"/>

  <Button text="Cancel"   

    GridPane.columnIndex="0" GridPane.rowIndex="2"/>

  <Button text="Login"    

ANDRÉS ALMIRAY

Enhanced FXML Using  
the FXMLLoader
Gain greater flexibility in defining JavaFX UIs declaratively by exploiting  
the FXML loader mechanism.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

18

//ui tools /

    GridPane.columnIndex="1" GridPane.rowIndex="2"/>

</GridPane>

Figure 1 shows how the application looks when running.
Note that, as in Java code, you must specify import state-

ments for the types that are used in the FXML ile. These 
import statements serve as a hint to the FXML loading 
mechanism that’s in charge of interpreting the declarative 
UI description and turning it into a proper SceneGraph with 
the UI elements in it. This loading mechanism is known as 
FXMLLoader. Using FXMLLoader is straightforward, as shown by 
the following code:

sample/App.java

package sample;

import javafx.application.Application;

import javafx.fxml.FXMLLoader;

import javafx.scene.Scene;

import javafx.stage.Stage;

import java.net.URL;

public class App extends Application{

    @Override

    public void start(Stage stage) throws Exception {

        URL fxml = getClass().getClassLoader() 

                    .getResource("sample/app.fxml");

        FXMLLoader fxmlLoader = new FXMLLoader(fxml);

        stage.setScene(new Scene(fxmlLoader.load()));

        stage.sizeToScene();

        stage.show();

    }

}

For now, you only need to tell FXMLLoader the location of the  
FXML resource that you want to load. It’s important to 
remember that the action of creating UI elements and attach-
ing them to the SceneGraph must happen inside the UI thread 
(known as the FX application thread). Bad things can happen 
when you do not follow this rule. Fortunately, the base type 
Application provides a basic lifecycle that ensures code can 
be called inside such a thread. In this particular case, the 
start method is guaranteed to be called inside the UI thread, 
which means everything is OK.

Node Properties

If you look closely at the FXML snippet in the irst example, 
you’ll see that the FXML nodes Label and Button deine a 
text attribute. This attribute is in turn mapped to a JavaBean 
property found in the matching type. Thus when FXMLLoader 
instantiates the irst Label it encounters, it sets the label’s 
text property to the exact value of the text attribute. In other 
words, it’s as if FXMLLoader invoked the following code on 
your behalf:

Label label = new Label();

label.setText("Username:");

// insert label into SceneGraph

That’s quite a short snippet, and this functionality doesn’t 
seem to be much of an advantage right now; however, take 
into consideration that UI elements may have several prop-

Figure 1. Login screen using FXML

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

19

//ui tools /

erties that you might want to set. As you continue to deine 
more nodes and attributes, the beneits of FXML will become 
apparent. It’s worth noting that the node type (Label, in this 
case) must deine properties matching the JavaBeans conven-
tion, resulting in a pair of methods that can be used to query 
(the getter) and mutate (the setter) the property. The property 
becomes invisible to FXMLLoader if either of these methods 
is missing. This should be your irst clue to understanding 
why a particular FXML snippet doesn’t work in the way you 
expect—it could be that the property you’re attempting to set 
is not a properly deined JavaBeans property.

You might also be wondering about the additional prop-
erties on all six elements that need to be speciied to use 
GridPane as a namespace. These properties do not exist on 
the target nodes themselves, yet they afect the nodes. You 
can verify the previous statement by changing the values of 
columnIndex and rowIndex; depending on the new values, you 
might end up with a funny layout. 

What’s going on then? As it turns out, these properties 
are deined by the GridPane class and not the target nodes. 
This is why the name of the class appears as a namespace. 
These two properties happen to be deined as static methods 
on the GridPane class, which means they are not JavaBeans 
properties per se, but part of a convention that FXML 
enables. As before, each property must have a getter and a 
setter pair of methods. Additionally each method must have 
the static modiier. One last part of the convention is that 
the methods must take the target node as their irst argu-
ment. This results in the following method deinitions found 
in GridPane:

public static void  

    setColumnIndex(Node node, int index);

public static int getColumnIndex(Node node);

public static void setRowIndex(Node node, int index);

public static int getRowIndex(Node node);

You can use the Node type as the irst argument because it’s 
the supertype of all JavaFX UI elements. This allows GridPane 
to work with any kind of UI element, both those coming from 
the standard widget set and those provided by third-party 
libraries. You’ll note that the previous method deinitions 
take an integer as a second argument; however, the FXML 
ile deines the corresponding values as literals. That works 
because FXMLLoader is capable of applying type conversions. 
It does so for all basic types and for enums. One more con-
cern would be storing the value in relation to the supplied 
node. Again, the JavaFX API comes to your aid because the 
base type Node has a handy properties map that can be used 
to store any kind of value, and that’s precisely what these 
methods do.

Armed with this new knowledge, you can create your 
own synthetic properties. Synthetic properties are properties  
that are not explicitly deined in the target type; rather, 
they relate to the target type by external means, such as a 
contextual dictionary. Suppose you had the requirement to 
limit the number of characters a user may type into either 
the Username or Password ield. You could create a new util-
ity class that deines a pair of methods that take a Node and 
a number, using the provided number as a limit. The utility 
class could look like this:

package sample;

import javafx.scene.control.TextInputControl;

public final class InputControlUtils {

    private static final String LIMIT = " limit";

    public static void setMaxTextLimit( 

              TextInputControl control, int maxLength) {

      control.getProperties().put(LIMIT, maxLength);

      control.textProperty()

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

20

//ui tools /

        .addListener((ov, oldValue, newValue) -> {

          if (control.getText().length() > maxLength) {

              String s = control.getText() 

                         .substring(0, maxLength);

              control.setText(s);

          }

        });

    }

    public static int getMaxTextLimit( 

                           TextInputControl control) {

        Object value = 

             control.getProperties().get(LIMIT);

        if (value instanceof Number) {

            return ((Number) value).intValue();

        }

        return -1;

    }

}

Note that this code does not take into account any invalid 
values (such as maxLength being equal or less than zero), 
nor does it provide the means to unregister the listener if 
the setMaxTestLimit method is called more than once with 
the same target node. This code is for illustration purposes 
and should not be used “as is” in production without 
addi tional tweaks. 

Moving on, you only need to update the FXML deinitions 
to look like this:

sample/app.fxml

<?xml version="1.0" encoding="UTF-8"?>

<?import javafx.scene.control.Button?>

<?import javafx.scene.control.Label?>

<?import javafx.scene.control.PasswordField?>

<?import javafx.scene.control.TextField?>

<?import javafx.scene.layout.GridPane?>

<?import sample.InputControlUtils?>

<GridPane>

  <Label text="Username:" 

    GridPane.columnIndex="0" GridPane.rowIndex="0"/>

  <TextField              

    GridPane.columnIndex="1" GridPane.rowIndex="0"

    InputControlUtils.maxTextLimit="10"/>

  <Label text="Password:" 

    GridPane.columnIndex="0" GridPane.rowIndex="1"/>

  <PasswordField

    GridPane.columnIndex="1" GridPane.rowIndex="1"

    InputControlUtils.maxTextLimit="10"/>

  <Button text="Cancel"   

    GridPane.columnIndex="0" GridPane.rowIndex="2"/>

  <Button text="Login"

    GridPane.columnIndex="1" GridPane.rowIndex="2"/>

</GridPane>

There are two other features to be mentioned when deal-
ing with properties in FXML. The irst is the ability to 
deine the name of a default property, which allows you to 
omit the property name when deining the hierarchy. The 
name of the property must be deined in code by apply-
ing the @javafx.beans.DefaultProperty annotation to 
the target type. Many of the UI elements in the stan-
dard JavaFX widget set use this annotation. For exam-
ple, the javafx.scene.layout.Pane type, which is the 
base type for many widget containers, is annotated with 
@DefaultProperty("children"). This allows you to write 
FXML as shown in the previous example instead of this:

sample/app.fxml

<?xml version="1.0" encoding="UTF-8"?>

<?import javafx.scene.control.Label?>

<?import javafx.scene.control.TextField?>

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

21

//ui tools /

<?import javafx.scene.layout.GridPane?>

<GridPane>

  <children>

    <Label text="Username:" 

      GridPane.columnIndex="0" GridPane.rowIndex="0"/>

    <!-- more elements follow -->

  </children>

</GridPane>

FXML support in popular IDEs is so well integrated that 
the IDEs can point out if there’s a default property that can 
be used instead of having it spelled out in the FXML ile. 
Speaking of tooling, it’s worth mentioning that you can write 
FXML by hand, or you can use a free visual tool named Scene 
Builder, which is described in the accompanying article on 
page 24.

I should also mention that you have the ability to supply 
additional hints to FXMLLoader when you are instantiating a 
type. So far, I’ve shown only types that follow the JavaBeans 
conventions by providing a no-argument constructor. This is 
what FXMLLoader expects by default. However, sometimes you 
might encounter a node that deines a constructor that takes 
arguments. Without the ability to supply additional hints, 
FXMLLoader would simply fail to instantiate the node. You can 
help it by supplying a name for the constructor arguments 
as if they were regular properties. To do this, you use the 
@javafx.beans.NamedArg annotation. You must deine a name 
for the argument, and you may deine a default value for it 
if the attribute is omitted in the FXML ile. Here’s a concrete 
example found in the standard JavaFX API—the Insets class 
deines the following constructors:

public Insets(@NamedArg("top") double top,  

              @NamedArg("right") double right,

              @NamedArg("bottom") double bottom,  

              @NamedArg("left") double left) {

    this.top = top;

    this.right = right;

    this.bottom = bottom;

    this.left = left;

}

public Insets(@NamedArg("topRightBottomLeft") 

              double topRightBottomLeft) {

    this.top = topRightBottomLeft;

    this.right = topRightBottomLeft;

    this.bottom = topRightBottomLeft;

    this.left = topRightBottomLeft;

}

This use of annotations enables you to deine instances in 
either of the following ways:

<Insets top="10" right="10" bottom="10" left="10"/>

or

<Insets topRightBottomLeft="10"/>

That’s all I can say about properties support in FXML for now. 
Next, let’s examine how to conigure the FXMLLoader itself, 
using internationalization as an example.

Configuring FXMLLoader for Internationalization

Many languages are spoken in the world today. As a devel-
oper, you must take into account the target audience of the 
applications you build. Sometimes users speak a diferent 
language than you speak, so you must be ready to provide a 
version that’s suitable for their needs. 

JavaFX widgets are aware of the locale and other regional 
settings exposed by the JVM, which results in widgets being 
rendered in right-to-left or left-to-right order depending  

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://gluonhq.com/labs/scene-builder
http://gluonhq.com/labs/scene-builder


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

22

//ui tools /

on the situation. But you can’t say the same about the string 
literals you add to the application. It would be great if you 
could somehow externalize those literals and have the FXML  
iles refer to them. Fortunately, FXMLLoader has just what  
you need to solve this problem. You may supply it a Resource 
Bundle at construction time or set the bundle as a property 
before loading FXML iles. You can create this ResourceBundle 
in any way you see it. My little example, sample/App.java, 
can be updated as follows:

ClassLoader cl = getClass().getClassLoader();

URL fxml = cl.getResource("sample/app.fxml");

String resource = "sample/messages_en.properties"

InputStream is = 

    cl.getResourceAsStream(resource);

ResourceBundle bundle = 

    new PropertyResourceBundle(is);

FXMLLoader fxmlLoader = new FXMLLoader(fxml, bundle);

You also deine the following pair of properties iles: one 
using English (en) as the default locale and another using 
German (de):

sample/messages_en.properties ile:

username.label=Username:

password.label=Password:

action.cancel.label=Cancel

action.login.label=Login

sample/messages_de.properties ile:

username.label=Benutzername:

password.label=Passwort:

action.cancel.label=Abbrechen

action.login.label=Anmeldung

You also must change the FXML ile to relect the keys of the 
properties you just deined. The convention is to use % as a 
preix to distinguish a key value from a literal value. Your IDE 
might even be able to suggest key completions.

<Label text="%username.label"

    GridPane.columnIndex="0" GridPane.rowIndex="0"/>

<TextField              

    GridPane.columnIndex="1" GridPane.rowIndex="0"

    InputControlUtils.maxTextLimit="10"/>

<Label text="%password.label"

    GridPane.columnIndex="0" GridPane.rowIndex="1"/>

<PasswordField

    GridPane.columnIndex="1" GridPane.rowIndex="1"

    InputControlUtils.maxTextLimit="10"/>

<Button text="%action.cancel.label"

    GridPane.columnIndex="0" GridPane.rowIndex="2"/>

<Button text="%action.login.label"

    GridPane.columnIndex="1" GridPane.rowIndex="2"/>

If you run the application again, you should see the same 
visuals as in Figure 1. Now, change the code to load the 
German version of the properties ile, and you’ll notice the 
application looks like Figure 2.

Great! These are the irst steps to get localization sup-
port in an application. As mentioned earlier, you can create 
the ResourceBundle in many ways that are commonly used in 
regular Java programming. A further step would be to make 

Figure 2. German login screen

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

23

//ui tools /

the application react to locale changes at runtime. If you 
choose to do this, you’ll need to ind a way to let the widgets 
know that a change of locale has occurred and that the new 
key values must be fetched again. I’m afraid that FXMLLoader 
alone is not enough, but you have all the basic blocks to 
get started. 

Conclusion

FXML provides a quick and easy way to deine UIs declara-
tively. The tooling support (IDEs and SceneBuilder) is good 
enough to get you started writing FXML with ease. Many of 
the node types that you can use inside FXML are straight-
forward, because they follow the JavaBeans conventions. But 
when they don’t, there’s still a way to use them with FXML 
given that the format provides useful extensions and hints to 
its loading mechanism, FXMLLoader. You can also conigure 
localization concerns on widgets via FXML, enabling a wider 
audience for your applications. In an upcoming article, I’ll 
examine the mechanism exposed by FXMLLoader and FXML  
to further customize and bind the widgets deined in the 
FXML ile—for example, features such as the fx:controller 
attribute and the @FXML annotation. </article>

Andrés Almiray is a Java and Groovy developer and a Java 

Champion with more than 17 years of experience in software de-

sign and development. He has been involved in web and desktop 

application development since the early days of Java. He is a true 

believer in open source and has participated in popular projects 

such as Groovy, JMatter, Asciidoctor, and others. He’s a founding 

member and current project lead of the Grifon framework, and he 

is the speciication lead for JSR 377.

Oracle’s tutorial on FXML

learn more

The brightest minds in  tech 
are coming to New York.

Practical training in the tools, techniques,  
and leadership skills you need for the evolving   
world of software architecture.

April 2– 5, 2017
softwarearchitecturecon.com/ny

JAVA MAGAZINE READERS GET   
20% OFF WITH CODE JAVA

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/8/javafx/api/javafx/fxml/doc-files/introduction_to_fxml.html
https://conferences.oreilly.com/software-architecture/sa-ny?cmp=mp-prog-confreg-home-sany17_java


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

24

//ui tools /

Scene Builder is a popular tool that enables developers to 
create Java user interfaces (UIs) using an intuitive drag-

and-drop approach. It was initially created and maintained 
by Oracle and open-sourced. Since March 2015, Gluon has 
distributed the releases of Scene Builder for Mac, Linux, and 
Windows systems. In that time, there have been more than 
400,000 downloads of the tool. Gluon continues to develop 
Scene Builder. In this article, I discuss how to use the tool. 
For readers familiar with Scene Builder from the days when 
Oracle distributed it, this will serve as both a refresher and 
an update. 

About Scene Builder

UIs for Java client applications can be created programmati-
cally using JavaFX code, or declaratively, using FXML code. 
The declarative approach requires FXML, which is a for-
mat based on XML and well documented by Oracle. While 
it is possible to create complete UIs writing directly FXML 
code, it is a tedious process. Fortunately, you can design a 
UI interactively using Scene Builder, which then translates 
your UI into FXML that can be used together with other 
JavaFX code.

In practice, many applications contain both JavaFX code 
and FXML code. The JavaFX APIs and the FXML constructs are 
designed to work together.

How It Works

On the JavaFX code side, the FXMLLoader class loads an FXML 
ile from the JAR containing the application ile or from the 
classpath: 

FXMLLoader.load(getClass().getResource("FXML.fxml"));

The connection between your Java code and the UI elements 
that are declared in the FXML ile is made by a controller 
class. This is a regular Java class that may contain annota-
tions linking the UI elements to Java classes. This approach 
separates the UI declaration from the behavior of the applica-
tion, while still allowing the application to access the UI ele-
ments directly.

The loader will ind the name of the controller class, as 
speciied by fx:controller="your.package.name.FXML 
Controller" in the FXML ile. Then the loader creates an 
instance of that class, in which it tries to inject all the objects 
that have an fx:id tag in the FXML ile and are marked with 
the @FXML annotation in the controller class. Finally, when the 
whole FXML ile has been loaded, the FXMLLoader will call the 
controller’s initialize method.

Although the FXML ile can be edited within any IDE as a 
regular XML ile, this practice is not recommended, because 
the IDE provides only basic syntax checking and autocomple-

JOHAN VOS

PHOTOGRAPH BY  

TON HENDRIKS

Scene Builder:  
The JavaFX UI Design Tool
The interactive UI design tool originally developed by Oracle continues to  
advance in the open source community.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://bit.ly/FXML8syntax
http://bit.ly/2iX6jmN


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

25

//ui tools /

tion but not visual guidance. A better approach is to open the 
FXML ile with Scene Builder.

Installing Scene Builder

You can install Scene Builder by downloading it. Make sure to 
download the right version for your operating system. Then 
follow the platform-speciic instructions for installing it in 
the default location, or select a custom location if you are 

installing it on Windows. (This is a new feature available in 
Scene Builder 8.3.0.) Once you have installed Scene Builder, 
open your IDE so you can set its location and you can open 
any FXML ile from your IDE:

■■ On NetBeans, select Tools -> Options (or Preferences on 
Mac) -> Java -> JavaFX, and click Browse to ind the main 
Scene Builder folder.

■■ On IntelliJ, select File -> Settings (or Preferences on Mac) 

Figure 1. Adding containers and controls

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://bit.ly/2iOUtxK


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

26

//ui tools /

-> Languages & Frameworks -> JavaFX, and browse for the 
application path.

■■ On Eclipse, select Window -> Preferences (or Preferences on 
Mac) -> JavaFX, and browse for the application path.

Whenever you have an FXML ile, you will be able to edit it 
with Scene Builder simply by right-clicking it and selecting 
Open with Scene Builder.

Creating a Basic Interface

You can open an existing FXML ile with Scene Builder, or 
you can open the Scene Builder application and create a new 
FXML ile. 

Creating a UI with Scene Builder is easy. You can drag and 
drop containers and controls to your view. Let’s step through 
an example.

To begin with, open Scene Builder, and select Start New 
Project from the Welcome menu. For mobile projects, a built-
in Gluon Mobile theme is set. If you want to create a regular  
JavaFX project, you can do this by selecting the Modena 
theme from Preview -> JavaFX theme -> Modena (FX8). 

Add a main container for your scene. In this example, I 
will add a BorderPane. You can drag a BorderPane from the 
Containers left panel to the middle of the screen or to the 
hierarchy panel.

In a similar way, you can drag and drop any JavaFX built-
in container or control (see Figure 1, previous page). You can 
use the Library Manager to include libraries containing cus-
tom controls. The online documentation can help with any-
thing that’s not intuitive.

A Hierarchy panel is available. It shows the hierarchy  
of containers and controls. If you want to use containers  
and controls in your Java code, you need to tag them with 
fx:id. This can be done in the Code right panel. This fx:id 
tag is a very important concept, because it bridges the world 
of the designer using Scene Builder with the developer code 
in an IDE.

If you want to have interactions between the FXML ile 
and your Java code, you need to specify the name of the con-
troller class. This name should be added to the FXML ile in 
the Controller panel. You open the Controller panel by click-
ing the widget in the lower left corner. 

If you want to access UI elements from your Java code (via 
the controller class), you need to make sure the value provided 
in the fx:id tag is exactly the same as the value of the @FXML 
annotation for the corresponding ield in the controller class.

To make this easier for the developer, and to avoid typos, 
Scene Builder can generate a sample controller skeleton for 
you. This sample controller is auto-generated Java code that 
contains FXML-annotated ields for all UI elements that are 
tagged with fx:id.

You can easily copy the diferent nodes to the controller 
by selecting View -> Show Sample Controller Skeleton. Click 
the Copy button, and on your IDE paste the content into the 
controller class. 

Typical code will look like Listing 1. 

Listing 1. Sample Skeleton

import com.gluonhq.charm.glisten.control.AppBar;

import com.gluonhq.charm.glisten.control.Avatar;

import javafx.fxml.FXML;

import javafx.scene.control.ScrollPane;

import javafx.scene.layout.StackPane;

public class GluonFXMLSampe {

    @FXML

    private AppBar appBar;

    @FXML

    private StackPane stackPane;

    @FXML

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://docs.gluonhq.com/scenebuilder/


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

27

//ui tools /

    private ScrollPane scrollPane;

    @FXML

    private Avatar avatar;

}

 

You can easily add CSS to the scene by providing a CSS ile 
that can be included using the Stylesheets option in the 
Properties panel on the right. You can add inline styling also, 
by providing style rules to any node on the scene. You can 
apply new or existing style classes to any node as well.

Features related to layout, such as position, dimensions, 
margin, padding, and transforms (translation, rotation,  

Figure 2. Defining anchor pane constraints in the Layout panel

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

28

//ui tools /

scaling, and so forth), can be set in the Layout right panel, as 
shown in Figure 2.

At any moment, you can preview the created scene by 
clicking Preview -> Show Preview in Window. A resizable  
dialog box with the designed scene will be shown. By resizing 
it, you can make sure every node behaves as expected.

Integrate the Basic Interface in a Java App and Show It

Once the FXML is ready, you can integrate it into your Java 
application by calling FXMLLoader to load it. Here’s how:

public class GluonSceneBuilder extends Application {

    @Override

    public void start(Stage stage) throws Exception {

        Parent root = FXMLLoader.load(getClass()

                      .getResource("GluonFXML.fxml"));

        

        Scene scene = new Scene(root);

        stage.setScene(scene);

        stage.show();

    }

}

In the controller class, you can add the required action han-
dlers and the response to the user interaction. You can create 
new controls as well, and combine them with those injected 
by the FXMLLoader. Notice that for the controls you add pro-
grammatically, you need to create new instances. This is 
not needed for controls that are declared in the FXML ile, 
because the FXMLLoader already creates them for you. The 
code snippet below shows a piece of a controller class that 
works with two controls: an HBox control deined in the FXML 
ile, and a Label that is not created in the FXML ile. The HBox 
instance does not need to be created in the controller class, 
but the Label instance does.

@FXML

private HBox hBox;

  

private Label label;

public void initialize() {

    label = new Label();

    hBox.getChildren().add(label);

    titledPane1.expandedProperty()

      .addListener((obs, ov, nv) -> {

         if (nv) {

            label.setText("TitledPane1");

         }

      });

      . . .

}    

In a controller class, you can annotate not only ields repre-
senting controls with the @FXML annotation, but also meth-
ods. As an example, I deine the following event handler in 
the controller:

@FXML

void buttonClicked(ActionEvent event) {

    label.setText("Button");

}

This event handler simply sets the text of the Label to 
"Button". Because the event handler annotated it with @FXML, 
Scene Builder will ind it and can assign it to a corresponding 
action for a node.

Integrate the Interface with Your Favorite IDE

Scene Builder is a standalone application. When FXML is 
being edited outside Scene Builder (by directly modifying it 
in your IDE, for example), Scene Builder reacts to the changes 

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

29

//ui tools /

made in the FXML itself or in the CSS iles after those 
changes are saved. Scene Builder also manages to ind the 
controller and the diferent nodes annotated with @FXML. 

If you prefer to use Scene Builder fully integrated with 
your preferred IDE, IntelliJ ofers this option by using the ver-
sion of Scene Builder installed in your system. Note that not 
all options are supported. For example, there is no support for 
menus, and custom controls are not allowed.

For Eclipse, there is no built-in integration, but there is 
a Preview option. On Window -> Show View -> Other select 
JavaFX -> JavaFX Preview. That option works like the Preview 
option on Scene Builder, and you can interact with it. In addi-
tion, by toggling the Load controller button, it applies the 
controller and works as if you were running the application 
embedded in the Preview panel. However, it doesn’t work 
with custom controls.

Community Enhancements in Scene Builder

Although most of the Scene Builder code was contributed by 
Oracle, the end product is really a synergy between Oracle 
and the JavaFX community. The code for Scene Builder is 
now being maintained by Gluon, but it contains contributions 

from many individuals and companies in 
the JavaFX community.

As a consequence, many major and 
minor bug ixes have been applied in Scene 
Builder, and new functionality has been 
added. As with any open source project, 
anyone can report a bug or submit a pull 
request with a proposed feature or ix.

Among the most recent improvements 
to Scene Builder are that it now works with 
an optimized set of imports, and other 
new features such as a design-time lag. 
The design-time lag allows developers to 
provide diferent behavior for their con-

trols during design time. This ability makes it much easier to 
work on complex controls, such as controls that at runtime 
require connections to external resources and databases that 
are not available at design time. One of the most commonly 
requested functionalities is better integration with third-
party libraries that are available via public repositories. In 
the past, developers had to manually upload those libraries 
in Scene Builder. Starting with Gluon Scene Builder 8.2, the 
Maven Central repository is fully supported, allowing search-
ing, downloading, and installing for any third-party library 
available in Maven Central or even private repositories. You 
can access these features by selecting the JAR/FXML Manager 
option, as shown in Figure 3.

Scene Builder then inspects those libraries, and the 
controls it inds in the libraries are added to the Custom left 
panel so they can be easily included in the FXML ile.

Conclusion

Scene Builder is a tool originally developed by Oracle that 
enables developers to create UIs using an intuitive drag-and-
drop interface. Thanks to the @FXML annotation and the ability 
to assign identiiers and event handlers to controls in Scene 
Builder, the worklow between Scene Builder and your JavaFX 
application code is easy. </article>

Johan Vos (@johanvos) started working with Java in 1995. He 

was part of the Blackdown team, porting Java to Linux. In 2015, he 

cofounded Gluon, which enables enterprises to create mobile Java 

client applications leveraging their existing back-end infrastruc-

ture. Gluon received a Duke’s Choice Award in 2015. Vos is a Java 

Champion and a member of the BeJUG steering group, the Devoxx 

steering group, and the JCP. He is the lead author of Pro JavaFX 8 

(Apress, 2014).

Figure 3. The JAR/FXML Manager menu

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://bitbucket.org/gluon-oss/scenebuilder/pull-requests/
https://bitbucket.org/gluon-oss/scenebuilder/pull-requests/
http://gluonhq.com/scene-builder-8-2-0-now/


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

30

//ui tools /

A pplications can be built using several diferent design 
architectures. Developers have come a long way from  

developing web applications using a single JSP page and  
embedding Java source code directly into the page. Main-
tenance on such applications was miserable, and they were 
not much fun to develop. Nowadays, developers have learned 
that it makes sense to separate code into diferent portions to 
promote easier maintenance and development.  

One of the most popular application design architectures 
is model-view-controller (MVC). This architectural pattern 
separates logic into three distinct categories. The model per-
tains to the database and any code that is used to bind data; 
the view is the code that is used to generate the front end; and 
the controller pertains to the application business logic and 
intermediate code between the data and the web view. The 
MVC 1.0 framework follows the MVC design architecture, and 
it puts the developer into the driver’s seat for making low-
level design choices and developing custom web controls.  

MVC 1.0 was considered for inclusion in Java EE 8 (as 
JSR 371). Since that time, Oracle has instead sought to move 
control of the project to the community. In this article, I exam-
ine this new framework and explain why I like it, even though 
there are many other great choices. I also develop an applica-
tion from the ground up using MVC 1.0 in the NetBeans IDE, 
allowing you to follow along each step of the way.  

Why MVC 1.0?

For many of years, the most popular MVC framework for use 
with Java EE has been JavaServer Faces (JSF), which follows 
the MVC architecture and cleanly separates each of the three 
categories. The JSF framework makes web application devel-
opment easy, because it takes much of the guesswork out of 
the design and, thus, allows the developer to focus on the 
business logic. That said, JSF makes some assumptions for the 
developer and is not very lexible in some areas. For instance, 
JSF is very targeted with regard to scoping, and each request 
follows a complex set of phases through which validation and 
other tasks occur. JSF can be customized, but there are certain 
ceremonies that must be followed in order to do so.  

One of the key features of JSF is the bundled component 
architecture, which allows web components to be bundled 
and made portable for other JSF applications. This abstracts 
the details of the JavaScript and CSS from the developer, so a 
tag can simply be placed into the view to render a fully imple-
mented component. JSF has a large ecosystem of component 
libraries available, which provide many options.  

MVC 1.0 does not contain any components, leaving the 
view completely up to the developer. However, this design 
does not mean options are not available, because MVC allows 
just about any view technology to be used to create a front 
end. The new framework does not contain request phases, 

JOSH JUNEAU

MVC 1.0: A Fresh, New Framework 
for Enterprise Apps
A look at a remarkably flexible framework that builds on JAX-RS

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

31

//ui tools /

because requests are handled completely by the implementa-
tion of controller methods. Given that view options are abun-
dant and the request/response is completely open to custom 
development, the MVC framework promises to deliver a very 
lexible web development option. Where JSF is component-
based and handles much of the session management for the 
developer, MVC leaves the developer to create applications 
using just about any view technology, and it hands over full 
control of the session management.

Building a Project with MVC 1.0 

The MVC framework reference implementation, named 
Ozark, was deined in JSR 371. This framework is layered on 
top of JAX-RS. If you are familiar with JAX-RS, you will ind it 
easy to use. If you are not familiar with JAX-RS, you can learn 
both MVC and JAX-RS reading this article, because they both 
function very much the same way. 

In this article, I walk through the development of the 
Duke Issue Tracker application, illustrating the basics of the 
MVC framework along the way. To follow along, you need to 
have a solid understanding of how Java EE applications are 
built. I use NetBeans 8.2 here, which already provides sup-
port for MVC 1.0, but you can follow along with the IDE of 
your choice.

Duke Issue Tracker is used to create and view issues for 
Duke’s application. The initial view of the application lists all 
of the open issues in the upper half of the UI and displays an 
issue-creation form on the lower half. An Apache Derby data-
base is used to store the data, and this article demonstrates 
how to use JAX-RS web services and Enterprise JavaBeans 
(EJBs) to read, create, and update data.

MVC is not quite a production-ready framework. Even 
though it is fairly developed at this point, it has not yet been 
completed, nor has it been released as part of any produc-
tion application server. This means you will need to obtain 
the Ozark reference implementation JAR ile from the proj-

ect site and deploy it along with your 
WAR ile to a valid container, such as 
GlassFish 4.1. For the purposes of this 
example, I deploy to the GlassFish 5 
nightly build, and I include Ozark 
1.0.0-m02 and MVC API 1.0-edr2 
as dependencies in the POM ile of 
the project.

Server and Project

To get started, create a new NetBeans 
Maven web application project, and 
name it DukeIssueTracker. Once the 
project has been generated, add the 
required dependencies to the POM, as shown in Listing 1. 
Conigure the application to run on JDK 8 and the GlassFish or 
Payara server of your choice.

Listing 1.

<dependency>

    <groupId>javax.mvc</groupId>

    <artifactId>javax.mvc-api</artifactId>

    <version>1.0-edr2</version>

    <scope>provided</scope>

</dependency>

<dependency>

    <groupId>org.glassfish.ozark</groupId>

    <artifactId>ozark</artifactId>

    <version>1.0.0-m02</version>

    <scope>provided</scope>

</dependency>

Next, I have created a small set of tables that needs to be 
installed into the local Apache Derby database or the database 
of your choice. To do so, run the create.sql ile that is pack-
aged with the source code against the database.

An MVC 1.0 
application is 
simply a JAX-RS 
application that 
consists of one or 
more resources 
annotated with 
@Controller.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

32

//ui tools /

The application requires a beans.xml Contexts and 
Dependency Injection (CDI) coniguration ile to be placed 
within the WEB-INF folder. The beans.xml ile should con-
igure all beans to be automatically discoverable, as shown in 
Listing 2. 

Listing 2.

<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"

       xmlns:xsi=

        "http://www.w3.org/2001/XMLSchema-instance"

       xsi:schemaLocation=

        "http://xmlns.jcp.org/xml/ns/javaee

    http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"

       bean-discovery-mode="all">

</beans>

The views for the application are placed inside the WEB-
INF folder because MVC 1.0 searches for view iles there and 
because the contents of WEB-INF are protected by the con-
tainer. Create a folder named views within WEB-INF in which 
to place the view iles. For the purposes of this article, I use 
Facelets for the view engine, but you can opt for JSP or other 
view languages if you choose.

An MVC 1.0 application is simply a JAX-RS applica-
tion that consists of one or more resources annotated with 
@Controller. Because the MVC framework is based upon 
JAX-RS, application coniguration must provide the URL 
pattern that will be used to access the controller methods 
or JAX-RS resources. I create a new Java class in a pack-
age named org.dukeissuetrackermvc.config, and I name 
the class ApplicationConfig. The class should extend the 
javax.ws.rs.core.Application class. I annotate the class 
with @ApplicationPath("tracker") to indicate that “tracker” 
should be applied to the end of the application path URL to 
access RESTful or MVC resources. Listing 3 contains the com-
plete code for this class. 

Listing 3.

package org.mvc.dukeissuetrackermvc;

import java.util.HashMap;

import java.util.Map;

import javax.mvc.security.Csrf;

import javax.ws.rs.ApplicationPath;

import javax.ws.rs.core.Application;

// Optionally this configuration can occur within

// the web.xml deployment descriptor

@ApplicationPath("tracker")

public class ApplicationConfig extends Application {

    // Additional configuration code, if needed

}

Entity Classes and RESTful Client

This application uses entity classes that are mapped to the 
database tables that have been generated for the Apache 
Derby database. For the purposes of this application, I use the 
JAX-RS client API to invoke RESTful web services that will 
provide the data for the application. Use NetBeans wizards 
to easily generate entity classes from the database and the 
RESTful application infrastructure.

Once the entity classes and web services have been 
generated, create a service class that uses a JAX-RS client to 
read from the web services to obtain data. Create a class in 
a new package named org.mvc.dukeissuetracker.service, 
and name the class DukeIssueTrackerService. This class is 
a CDI ApplicationScoped bean, and it creates a new JAX-RS 
client in a method annotated with @PostConstruct so that 
the client is generated when the class is constructed. Once 
the client is created, it will be used to load the data from the 
RESTful web service into a locally deined list of DukeIssues 
objects. The full listing (due to its length, available from Java 

Magazine’s download area) contains the complete source code 
for the DukeIssueTrackerService class, which also includes 

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://bit.ly/2lSVqGS


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

33

//ui tools /

accessor methods that make the 
JAX-RS client available to the rest of 
the application.

Controllers

Controllers are responsible for han-
dling web requests and responses for 
an MVC application. In other words, 
they bind the view to the data model 
and provide the necessary business 
logic for the application. A controller 
class is a CDI-managed plain old Java 
object (POJO) that contains both a 
@Path and a @Controller (javax.mvc.annotation.Controller) 
annotation at the class level, or has at least one method 
annotated with @Path and @Controller. It should also have at 
least one method annotated as a resource method, using @GET, 
@PUT, or @POST. 

A controller is very much the same as a JAX-RS class, 
except that it uses diferent annotations to signify that the 
controller class or method is used for MVC rather than for 
JAX-RS. If @Controller is placed at the class level, all meth-
ods of the class must be used as MVC controllers. However, a 
controller class can be made hybrid by placing the annotation 
at the method level. Hybrid classes can contain both MVC and 
JAX-RS resource methods. 

A controller class is instantiated and initialized for each 
request, so there is no state saved in between requests. To 
save state or data to display in views, you must use models, 
which I cover in the next section.

The @Path annotation is used to determine which con-
troller class and method is invoked when the URL including 
the indicated pattern is navigated to from within a browser. 
The return type of a controller method returns the String 
name of the view to which the browser will navigate upon 
return. The default return type of a controller is text/html, 

but it is also possible for the return type to be declared via the 
@Produces annotation. 

The code in Listing 4 demonstrates a simple controller 
class, which navigates to the issues.xhtml view when the 
URL http://localhost:8080/DukeIssueTracker/tracker/
issues is used. 

Listing 4.

@Path("/issues")

@Controller

public class IssuesController {

    @GET

    public String displayIssues() {

        //Perform processing and set Model

        return "issues.xhtml";

    }

}

The return type of a controller method determines how 
the request is processed. Various return types are possible, 
including Viewable, JAX-RS Response, Redirect, and String. 
As mentioned before, the default return type is String, but 
the @View annotation can also be used to indicate the view to 
which the browser should be directed after processing. If it is 
placed on a method, the return type should be void. Redirects 
are possible via the use of the JAX-RS Response object’s 
seeOther() method, or the client redirect preix (return 
redirect:see/here).  
Building the controller. I now create a class in a new org 
.dukeissuetrackermvc.web package named IssuesController. 
This class is annotated with @Controller, and it contains each 
of the issue tracker resource methods. 

Next, I create a method annotated with @GET (from 
javax.ws.rs.GET) that will be used for retrieving all active 
issues in the tracker. I name the method displayIssues() 
and provide a return type of String. The @GET annotation is 

A controller class 
is instantiated 
and initialized 
for each request, 
so there is no state 
saved in between 
requests.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

34

//ui tools /

used to denote a method that returns data to the view. In this 
case, the database will be queried using the JAX-RS client, 
which invokes the RESTful endpoint to obtain the issues and 
stores them in a request-scoped CDI bean named IssuesBean 
(see Listing 5). 

Listing 5.

@Named

@RequestScoped

public class IssuesBean {

    private Issue issue;

    /**

     * @return the issueList

     */

    public List<DukeIssues> getIssueList() {

        return issueList;

    }

    /**

     * @param issueList the issueList to set

     */

    public void setIssueList(

            List<DukeIssues> issueList) {

        this.issueList = issueList;

    }

    

    private List<DukeIssues> issueList;

    /**

     * @return the issue

     */

    public Issue getIssue() {

        if(issue == null){

            issue = new Issue();

        }

        return issue;

    }

    /**

     * @param issue the issue to set

     */

    public void setIssue(Issue issue) {

        this.issue = issue;

    }

    

}

Listing 6 shows the entire code, this far, for the 
IssuesController class.  

Listing 6.

@Controller

@Path("/issues")

public class IssuesController {

    

    @Inject

    private DukeIssueTrackerService

      dukeIssueTrackerService;

    

    @Inject

    private IssuesBean issuesBean;

    

    @GET

    public String displayIssues(){

        issuesBean.setIssueList(

         dukeIssueTrackerService.getIssueList());

        return "issues.xhtml";

    }

}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

35

//ui tools /

The issues.xhtml view will be displayed in the browser after 
the IssuesBean is loaded with data.

Models

The model of the application refers to the data binding 
between the data store and the application logic. In the case 
of MVC 1.0, data can be made available to the application 
controller, and subsequently to the views, by the injection 
of a standard javax.mvc.Models map or via CDI beans. The 
preferred technique to make data available is via CDI-based 
models, which is the technique I use here. However, all MVC 
1.0 implementations support the Models instance as well. 

The Models map allows data objects to be made avail-
able to the views via a series of key/value pairs in the 
Models<String, Object> map. Much like a standard HashMap, 
the key can be used to access the object, which is the value 
of the map. In an MVC 1.0 view, the key can be used to obtain 
access to the data that has been placed into the Models object. 
In the following case, the data would be available via the view 
by referencing the dukeIssues key:

…

@Inject

private Models models;

…

public String displayIssues(){

    …

    models.put("dukeIssues",data);

    return "issues.xhtml";

}

The default technique, CDI-based models, relies upon 
the generation and proper scoping of CDI beans to hold 
data that will be made available to views. IssuesBean, 
shown in Listing 5, is used by DukeIssueTracker to hold the 
List<DukeIssues> object and make it available to the views. 

In the case of a CDI bean, the name of the bean or the value 
provided to the @Named annotation is used to reference the 
data within a view.

Views

The view pertains to the presentation layer of the applica-
tion or the web views. The MVC framework supports two 
standard view engines out of the box—JSP and Facelets—
although others are available. You can also create a new view 
engine to support any view technology that is not already 
covered by generating a view engine that implements the 
javax.mvc.engine.ViewEngine interface. A view engine is 
used to locate and load views, prepare required models, and 
render the views back to the client. This application uses the 
Facelets view engine, along with PrimeFaces UI components.
Building the view. I create a folder within the WEB-INF folder 
and name it views. All the views for the application are placed 
within this folder, because this is the place where the frame-
work searches for view iles. Next, I create a new Facelet view 
named issues.xhtml within the newly generated folder. 

Facelets is not enabled by default, so to enable it, a web 
.xml deployment descriptor or a faces-conig.xml ile must 
be created for the application. Once that is generated, add 
the coniguration shown in Listing 7 to enable the Facelets 
view engine.

Listing 7.

<servlet>

    <servlet-name>Faces Servlet</servlet-name>

    <servlet-class>

      javax.faces.webapp.FacesServlet

    </servlet-class>

    <load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

    <servlet-name>Faces Servlet</servlet-name>

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

36

//ui tools /

    <url-pattern>*.xhtml</url-pattern>

</servlet-mapping>

I open the newly created issues.xhtml ile and add the 
markup contained in Listing 8. (Due to its length, Listing 8 
should be downloaded from Java Magazine’s download area 
or from the projects GitHub repository, which is shown in the 
links at the end of this article.) 

By taking a look at the code, you can see that I can use 
the CDI bean containing the issues by referencing it via 
issuesBean.issueList, as shown here:

<p:dataTable id="issueTable"

    value="#{issuesBean.issueList}"

    var="issue"

    emptyMessage="No issues found">

Finishing Up

I’ve now built the irst part of the application successfully. 
That is, if the application is deployed and the URL http://
localhost:8080/DukeIssueTracker/tracker/issues is vis-
ited, the displayIssues() method in IssuesController is 
invoked, and the issues.xhtml view is rendered, displaying 
the list of issues. The form to submit a new issue has not yet 
been attached to the IssuesController, so that needs to be 
done next.

Looking at the markup in issues.xhtml, a form is 
used to make submissions to http://localhost:8080/
DukeIssueTracker/tracker/issues/create, so a resource 
method annotated with @Path("/create") must be added 
to IssuesController. I name the method createIssue and 
provide a String return type. The MVC framework uses the 
@FormParam annotation to bind HTML values to Java ields, just 
like JAX-RS. Therefore, I create a new Java class named Issue 
within the org.mvc.dukeissuetracker.web package, and cre-
ate ields to map against the issue-creation form. Listing 9 

shows an abbreviated form of the completed class. Once it 
is created, the Issue class is passed as a parameter to the 
createIssue() method, and it is annotated with @BeanParam to 
denote that parameter ields are contained within the class. 

Listing 9.

import java.math.BigDecimal;

import javax.validation.constraints.Size;

import javax.ws.rs.FormParam;

public class Issue {

    

    @FormParam(value="id")

    private BigDecimal id;

   

    @FormParam(value="status")

    private String status;

    @FormParam(value="priority")

    private int priority;

  

    @FormParam(value="requestorFirstName")

    private String requestorFirstName;

  

    @FormParam(value="requestorLastName")

    private String requestorLastName;

    

    @FormParam(value="requestorEmail")

    private String requestorEmail;

    

    @Size(max = 150)

    @FormParam(value="subject")

    private String subject;

    

    @Size(max = 2000)

    @FormParam(value="description")

    private String description;

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://bit.ly/2lSVqGS
http://localhost:8080/DukeIssueTracker/tracker/issues
http://localhost:8080/DukeIssueTracker/tracker/issues
http://localhost:8080/DukeIssueTracker/tracker/issues/create
http://localhost:8080/DukeIssueTracker/tracker/issues/create


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

37

//ui tools /

   ...

    //Accessor methods

   ...

}

To implement the creation, a DukeIssues object should 
be instantiated within the createIssue() method of 
IssuesController, and the ields should be populated with 
those ields from the Issue class. Corresponding DukeUser, 
DukePriority, and DukeStatus objects should also be instan-
tiated and populated accordingly. Finally, a DukeIssuesFacade 
EJB createItem() method is called upon to persist the new 
record. Listing 10 shows the source code for the method. 

Listing 10.

@POST

@Path("/create")

@Controller

public String createItem(@BeanParam Issue form) {

    DukeIssues entity = new DukeIssues();

    entity.setId(new Long(

 dukeIssueTrackerService.getIssueList().size() + 1));

    entity.setDescription(form.getDescription());

    entity.setSubject(form.getSubject());

    DukeUser user = new DukeUser();

    user.setId(Long.valueOf(

            dukeUserFacade.count()+1));

    user.setEmail(form.getRequestorEmail());

    user.setFirstName(form.getRequestorFirstName());

    user.setLastName(form.getRequestorLastName());

    entity.setRequestor(user);

    DukePriority priority = new DukePriority();

    priority.setId(Long.valueOf(

            dukePriorityFacade.count()+1));

    priority.setPriority(form.getPriority());

    entity.setPriority(priority);

    DukeStatus status = new DukeStatus();

    status.setId(Long.valueOf(

            dukeStatusFacade.count()+1));

    status.setStatus("OPEN");

    entity.setStatus(status);

    // Create record

    dukeIssuesFacade.create(entity);

    // Initialize issue list

    dukeIssueTrackerService.setIssueList(null);

    issuesBean.setIssueList(

            dukeIssueTrackerService.getIssueList());

    return "issues.xhtml";

}

The inal product should look like Figure 1. Figure 1. Duke Issue Tracker main view

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

38

//ui tools /

Validation

Validation can be performed in several ways. Bean valida-
tion is performed within the Duke Issue Tracker, because 
the ields of the Issue class are annotated with suitable bean 
validation annotations. During the creation of an issue, if a 
ield does not pass validation requirements speciied in the 
bean validation constraints, the creation will fail. Annotating 
a resource method argument as @Valid triggers the validation 
of the bean on every form post.

However, controller methods can be executed even if 
validation errors are found, as long as they are declared as 
capable of handling the errors. The javax.mvc.binding 
.BindingResult can be injected into a controller class to 
indicate that they are capable. The BindingResult provides 
detailed information regarding any validation errors that are 
encountered. Therefore, custom validation algorithms can be 
coded into the resource methods if needed.

Exception Handling

Exceptions can be handled on a case-by-case basis using 
standard try/catch methodology. Often, returning a JAX-RS 
Response object with an error code—as shown below—is 
the best way to provide the user with information regarding 
the exception:

Return Response.status(

  Response.Status.BAD_REQUEST)

  .entity("error.xhtml").build();

It can become cumbersome if the same exception occurs 
multiple times in an application. In such cases, a global 
exception handler can be created by generating a class that 
implements the javax.ws.rs.ext.ExceptionMapper class. 
Listing 11 demonstrates a global exception handler for java 
.lang.Exception. 

Listing 11.

import javax.inject.Inject;

import javax.mvc.Models;

import javax.ws.rs.core.Response;

import javax.ws.rs.ext.ExceptionMapper;

import javax.ws.rs.ext.Provider;

@Provider

public class GenericExceptionMapper implements

        ExceptionMapper<Exception> {

 

  @Inject

  private Models models;

 

  @Override

  public Response toResponse(Exception exception) {

    models.put("message", exception.getMessage());

 

    return Response.status(

        Response.Status.BAD_REQUEST)

        .entity("/WEB-INF/error.xhtml")

        .build();

  }

}

Listing 11 also demonstrates a clean way of adding messages to 
the Models map to display within the view.

Security

MVC 1.0 controllers are required to support cross-site request  
forgery (CSRF) validation of tokens. The Csrf object can be 
injected via the MvcContext type or via #{mvc.csrf} within 
expression language (EL). A form can be protected by using 
EL to embed a Csrf object into a form, and it will be vali-
dated upon submission. The HTTP header can also be used to 
propagate the Csrf object. Automatic validation is enabled by 

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

39

//ui tools /

setting the property CsrfOptions.IMPLICIT, or manual  
validation can be conigured by setting the property 
CsrfOptions.EXPLICIT and annotating resource methods  
with @CsrfValid.

Additional Items

There are several ways to pass parameters to resource  
methods, and this article covered only @FormParam. Other 
techniques are the use of query and path parameters. A  
query parameter is passed to the method at the end of the 
URL using the following notation:

/controller?param1=value&param2=value

Path parameters are passed to the resource method as part  
of the URL using the following notation:

/controller/param1/param2

Query parameters can be indicated using the @QueryParam 
annotation, and path parameters can be indicated using the 
@PathParam annotation within the resource method signa-
ture. Listing 12 demonstrates how to use a path parameter in 
a resource method.

Listing 12.

@POST

@Path("/date/{year}/{month}")

public String pathParamDate(

    @PathParam("year") int year,

    @PathParam("month") int month) {

    models.put("specifiedDate",

        month + "/" + year);

    return "showDate.xhtml";

}

Observers can be used for logging or other work that must 
be done when a particular event occurs. An observer can be 
conigured by using the @Observes annotation on a resource 
method parameter, followed by the CDI event to observe.  

public void onBeforeProcessView

    (@Observes BeforeProcessViewEvent e) {

    // do some work

}

Note that CDI observers are ired in a synchronous manner, so 
long-running tasks should not be handled within an observer.

Conclusion

The MVC 1.0 framework provides a very lexible solution, 
worthy of serious consideration for enterprise apps. There are 
numerous excellent posts on MVC 1.0, and I recommend per-
forming web searches to read the bevy of content and exam-
ples already available on this new framework. </article>

Josh Juneau (@javajuneau) is a Java Champion and an applica-

tion developer, system analyst, and database administrator. He is a 

technical writer for Oracle Technology Network and Java Magazine, 

and he has written several books on Java and Java EE for Apress. 

Juneau is also a JCP expert group member for JSRs 372 and 378.

GitHub project source code

Ozark project site

MVC specification

Adding MVC to GlassFish

learn more

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/juneau001/DukeIssueTracker
https://ozark.java.net/
https://java.net/projects/mvc-spec/pages/Home
https://istanbul-jug.org/2016/03/shipping-mvc-1-0-into-glassfish-5/


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

40

//ui tools /

Oracle JavaScript Extension Toolkit, or Oracle JET as it’s 
more commonly called, is a modular toolkit based on a 

collection of open source libraries and open source code con-
tributed by Oracle. It helps JavaScript developers build pure 
client-side user interfaces that consume and interact with web 
services such as REST and WebSocket. The toolkit is designed 
so you can use as little or as much as you need. It’s as non-
prescriptive in nature as possible.

Why should a Java developer even care about a JavaScript 
toolkit? With the increasing demand each year for develop-
ers to be versed in more aspects of the application stack, it’s 
becoming critical for Java developers to understand the client 
space as well as the traditional server space. Whether you are 
responsible for developing REST services that an application 
will integrate with or the full application, you will inevitably  
need to know something about how that JavaScript client is 
written. It could be only for testing purposes, but you will 
most likely need to know how things work in the browser at 
some point.

Oracle JET is designed to be a comfortable toolkit for 
the traditional JavaScript developer. Installation is provided 
through the Node.js npm and bower modules, while starter 
templates are provided by using a Yeoman generator. The 
steps that follow assume that you are familiar with JavaScript 
and with Node.js, and that you already have Node.js and Git 

installed on your system. (Note that Node.js is required only 
for the installation.)

To install and create your own Oracle JET application, 
open a terminal or command-prompt window and follow the 
steps below.

Using npm, install the following libraries:

npm install –g bower grunt-cli yo 

npm install –g generator-oraclejet

Once you have the supporting libraries installed, you are 
ready to generate your irst Oracle JET application by typing 
the following:

yo oraclejet <application name> --template=navdrawer

This command will create a subdirectory with the <application 
name> that you provided and then install and conigure all 
the required iles for the Oracle JET application, using one of 
many sample application shells as a template. In this case, it 
will use an application shell that works on both desktop and 
mobile web browsers. If everything goes correctly, you should 
see a prompt with wording similar to:

Oracle JET: Your app is ready! Change to your new app  

JOHN BROCK

Building Browser-Based UIs  
with Oracle JET
A look inside Oracle’s open source JavaScript toolkit

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oraclejet.org


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

41

//ui tools /

    directory [application name] and try grunt build  

    and serve…

Now that you have your application shell created, you can run 
the sample app and see how it looks in a browser. To do this 
from the terminal or command-prompt window, type the 
following commands in your application’s root directory:

grunt build

grunt serve 

The browser opens automatically (on localhost at port 8000). 
The application should show a mostly empty dashboard win-
dow when the browser opens.

If you resize the browser window or use the browser tools 
to render the content in mobile mode, you will see that the 
application shell is already conigured as a responsive appli-
cation and will change layout depending on the viewport size. 
Figure 1 shows this same dashboard in a simulated device 
environment (here, the “device toolbar” in the Developer 
Tools menu of Google Chrome).

Figure 1. The sample application in a 
simulated mobile environment Figure 2. Cookbook samples

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

42

//ui tools /

Getting started is always the tricky part for anything 
new. With Oracle JET, you can use a helpful feature of the 
Oracle JET website called the Cookbook, which has recipes 
for all kinds of display components and widgets. Figure 2 
shows some samples. The code in the Cookbook is live, so 
you can make changes to HTML, JavaScript, or CSS and see 
the changes with a simple click of the Apply button. This is a 
great way to learn about the API and various options for dif-
ferent UI components. 

Once you are ready to add to your own code, you can 
simply copy and paste the HTML and JavaScript to your own 
application and continue your development. 

For this example, I am going to add one text input ield, 
a selection menu, a button, a radio button set, and a chart. 

The input ield will take a city name; the selection menu will 
allow you to select a state; and the button will call a REST ser-
vice to get all of the fueling stations ofering alternative fuels 
in that city and state. The chart will display the returned data. 
Using radio buttons, you can select whether you want to see 
the results as a bar chart or a pie chart. You will also be able 
to click any of the items in the legend of the chart to show or 
hide that particular item. Figure 3 is what the inal application 
looks like.

Note that out of the box, all Oracle JET UI components 
meet the Web Content Accessibility Guidelines (WCAG) 2.0 
at the AA level. While this might not mean much to some 
developers, it should be a goal of all developers to write soft-
ware that can be used by persons with or without disabilities. 

Beyond this just being the 
right thing to do, it’s also a 
requirement for many gov-
ernment and public sector 
customers, as well as many 
enterprises around the world. 

Let’s take a look at the 
code behind the sample 
application. The architec-
tural structure of an Oracle 
JET application follows the 
Model-View-View model 
(MVVM) pattern. MVVM is 
derived from the model-
view-controller (MVC) pat-
tern and is designed to sepa-
rate development of the view 
layer (usually HTML) from  
the business logic and data 
layers (usually JavaScript  
and JSON, respectively). The 
toolkit is designed to be as Figure 3. What the sample application will look like

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.w3.org/WAI/intro/wcag.php


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

43

//ui tools /

modular as possible, thereby allowing developers to use as 
little or as much of it as they like. It provides a two-way data 
binding method based on the open source library Knockout 
.js. While Knockout is not required by Oracle JET, it is used 
heavily in samples and documentation as a default bind-
ing mechanism. UI components are wrapped as jQuery UI 
widgets, and a custom Knockout binding integrates those 

components into the larger 
MVVM pattern. jQuery UI 
was chosen because of the 
hundreds of third-party UI 
components available for 
it on the internet. These 
third-party components 
can be used with few issues 
in any Oracle JET–based 
application. 

The inclusion of 
RequireJS with Oracle JET is 
to provide lazy loading of 
resources through the use of 
the Asynchronous Module 
Deinition (AMD) API. With 
large enterprise-ready 
applications, which might 
have hundreds of JavaScript 
libraries, it is critical to per-
formance to have the ability 
to manage the dependen-
cies among those librar-
ies as well as to load only 
speciic libraries when they 
are needed.

The directory structure 
shown in Figure 4 is a com-
mon one with JavaScript and 

CSS in their respective /js and  
/css folders. Build scripts are 
kept separate in their own  
/scripts folder. All the main 
application code is placed under 
the /src folder so you can sepa-
rate what would be included for 
source code management from 
what would be platform-speciic.  

The starter templates pro-
vided by Oracle JET are set up 
to allow you to build for mul-
tiple platforms. You can build a 
web or mobile hybrid application from the same source code. 
Currently Android, iOS, and Windows are supported mobile 
platforms. At build time, native themes are added for the 
platform that you have selected, so the application’s form 
elements and other platform-speciic theming automatically 
look like those of a native app. You can see a lot of this in 
action by changing the themes in the Cookbook on the Oracle 
JET website.

In addition to the accessibility features mentioned earlier 
(which also carry over to mobile apps), all Oracle JET UI com-
ponents are touch- and gesture-enabled out of the box. If you 
have a touchscreen on your laptop, Oracle JET–based applica-
tions will work properly.

Looking at the code itself, you will notice that the index 
.html ile provides the shell of the application, while the 
main content is actually loaded using a feature called  
ojModule. This design enables developers to think of their 
pages as separate modules that are loaded into the content 
area asynchronously when they are needed. This approach 
allows for more-distributed work on an application, because 
diferent teams can work on diferent modules without step-
ping on each other’s code. An ojModule binding consists of its 
own HTML (view) and JavaScript (viewModel) ile. As shown 

Figure 4. The default directory 
structure

Because Oracle JET 
is a pure client-side 
toolkit, the only way to 
consume and interact 
with remote data is via 
web services such as 
REST or WebSocket.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

44

//ui tools /

in Figure 4, there are separate directories for views and view-
Models as part of the app structure. In this sample applica-
tion, all code was added to the dashboard module (dashboard 
.html and dashboard.js iles).

The dashboard view ile is where you focus on writing 
your HTML code. Oracle JET is what is often referred to as an 
HTML forward toolkit. This means that you use the semantics 
of HTML5 itself to provide layout and structure to your appli-
cation. This is in contrast to a JavaScript forward framework, 
where you would write JavaScript to generate your HTML. The 
business logic is handled in the dashboard viewModel ile.  

The following code excerpt is an example of what the 
view looks like: 

<div class="oj-flex-item">

  <label id="groupLabel">Enter City and State</label>

  <div role="group" aria-labelledby="groupLabel" 

    class="oj-form-control-group">

    <input id="text-input" aria-label="city" 

      type="text"

      data-bind= 

        "ojComponent: {component: 'ojInputText', 

                       value: cityVal}"/>

    <input id="text-input" aria-label="state" 

      type="text"

      data-bind= 

        "ojComponent: {component: 'ojSelect', 

                       options: States,

                       value: selectVal}"/>

    <button data-bind= 

      "ojComponent: {component: 'ojButton',

                     label:'Search'},

                     click:getData">

    </button>

  </div>

</div>

Notice that the getData method is bound to the click event 
for the Search button. The values for the input ield and 
selection menu are also bound to values that are deined in 
the viewModel. This data binding functionality is provided 
by Knockout.

Looking at the viewModel, you can see that the Knockout 
observables are deined, along with their default values in the 
following code:

self.handleActivated = function (info) {

  self.cityVal = ko.observable('San Jose');

  self.chartType = ko.observable('pie');

  self.selectVal = ko.observableArray(['CA']);

  self.pieSeriesValue = ko.observableArray([]);

  self.groupsValue = ko.observableArray(['Fuel Types']);

  self.seriesValue = ko.observable();

  . . .

Knockout observables are special variables to which Knockout 
attaches listeners for the purpose of two-way data binding. 
You will recognize these variables because they are deined 
by ko.observable or ko.observableArray. If you change 
the value of one of these variables, anything bound to it on 
the view side of the application is automatically updated to 
the new value. The reverse is also true if you have bound 
the value of an editable component such as an input ield. 
Once the user updates that ield, the variable is updated 
and anything else bound to that same variable will be noti-
ied and updated as well. This is what two-way data bind-
ing is all about. You don’t need to worry about doing any 
kind of Document Object Model (DOM) manipulation in your 
JavaScript code to update the value of your UI components.  

The getData() method that is called when the Search 
button is clicked is shown in the following code: 

self.getData = function () {

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

45

//ui tools /

  // using a Promise to allow the chart to  

  // render only once the data is available.

  self.seriesValue(new Promise(

   function (resolve, reject) {

     var url = 

      "https://api.data.gov/nrel/alt-fuel-stations" +  

      "/v1/nearest.json?location=" +

      + self.cityVal() + "+" + self.selectVal()+ 

      "&api_key=<your api key goes here>";

     $.getJSON(url).then(function (data) {

       var fuels = data.station_counts.fuels;

       var seriesData = [];

     for (var prop in fuels) {

       if (fuels[prop].total > 0) {

         seriesData.push({name: getFuelName(prop), 

           items: [fuels[prop].total] })

       }

     }

     resolve(seriesData);

    });

  }))

};

This code uses a JavaScript Promise to return the results of 
the call to the REST service after the data is actually ready. 
The Promise object is a new addition in the ECMAScript 2015 
language speciication (also known as ES6) that helps when 
you are working with asynchronous data such as REST calls.

Because Oracle JET is a pure client-side toolkit, the only 
way to consume and interact with remote data is via web 
services such as REST or WebSocket. You can use any method 
you like for making the web service call. The most common 
way is to use jQuery Ajax methods or jQuery.getJSON, but 
you can use plain JavaScript XMLHttpRequest API calls as well. 
For more-complex data interactions—such as those used 
in applications that need to create, read, update, and delete 

(CRUD) data—Oracle JET 
provides a Common Model 
API that simpliies working 
with multiple types of data 
sources. You can read more 
about the Common Model 
API in the “Framework” 
section of the Oracle JET 
Cookbook.

If you would like to take a closer look at the sample 
application and run it in your own development environ-
ment, you can clone the project from GitHub. Installation 
and coniguration steps are included in the README ile for 
the project.

Conclusion

While Oracle JET has actually been around for more than 
three years, it has been available to the open source commu-
nity for only about one year. Oracle has used Oracle JET as the 
foundation for more than 70 percent of its new cloud service 
oferings—so you know that it meets the needs of very large 
enterprise-scale applications. 

Oracle JET is most powerful when you understand the 
concepts and ideas behind its creation. To get that under-
standing, you can read the developer’s guide or take the 
free online training course (login required). Both are great 
resources for beginners and developers. For announce- 
ments and interaction with others using Oracle JET, follow  
@oraclejet on Twitter or engage with other developers on  
the Oracle JET Community site. </article>

John “JB” Brock has spoken at JavaOne, Oracle OpenWorld, and 

many Developer Days events over the last decade. He is a coauthor  

of Java EE and HTML5 Enterprise Application Development 

(McGraw-Hill, 2014), a two-time winner of the JavaOne Rock Star 

Award, and the senior product manager for Oracle JET.

Oracle has used Oracle JET 
as the foundation for more 
than 70 percent of its 
new cloud service oferings.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://api.data.gov/nrel/alt-fuel-stations
https://github.com/peppertech/JavaMagazineSample
http://docs.oracle.com/middleware/jet220/jet/jet_books.html
https://oracle.com/oll/jet
https://community.oracle.com/community/development_tools/oracle-jet


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

46

//iot /

MQ Telemetry Transport (MQTT) is a lightweight publish-
subscribe messaging protocol, especially suitable for 

small devices but also useful for any device that requires mes-
saging over a network. In this article, I describe how to pub-
lish and receive messages with Java through the Mosquitto 
broker with the asynchronous API provided by the Eclipse 
Paho project Java client.

In this article, I develop and explain a project in which 
three drones use a Mosquitto broker to publish and receive 
text messages. Some of these messages provide only infor-
mation to a channel and others specify a command and 
a destination by which they tell speciic drones to dis-
play their altitude in feet. I use the asynchronous methods 
included in the Eclipse Paho Java Client to connect to the 
broker, publish messages, and subscribe to topics. This way, 
you can see how to work with MQTT in Java using a non-
blocking behavior.

The Pieces of the Puzzle

I will shortly explain how to include the necessary refer-
ences to work with the latest version of the Eclipse Paho Java 
Client. However, before moving forward, it is necessary to 
understand the diferent pieces of this puzzle: the MQTT pro-
tocol, Mosquitto, the Eclipse Paho project, and Eclipse Paho 
Java Client.

The MQTT protocol is a machine-to-machine (M2M) 
connectivity protocol used extensively in the Internet of 

Things (IoT), and it is gaining popularity in mobile and web 
applications. MQTT is a protocol that works with a publish-
subscribe mechanism and runs on top of the TCP/IP protocol. 
It is lighter than the HTTP protocol and, therefore, it is a very 
interesting option whenever you need to send and receive 
data in real time with a publish-subscribe model and you 
need the lowest possible footprint. However, as always hap-
pens, the reduced footprint comes at a price: MQTT does not 
ofer great extensibility. 

Mosquitto is an open source message broker that imple-
ments two versions of the MQTT protocol: 3.1 and 3.1.1. You 
can use Mosquitto to make any device subscribe to a spe-
ciic channel, known as a topic in MQTT terminology. All 
subscribed devices will receive all the messages published 
by other devices to this topic. Mosquitto, with its publish-
subscribe model, is an iot.eclipse.org project, also known as 
Eclipse IoT, and it is provided under the Eclipse Distribution 
License (EDL). It is important to know that, at the time of 
this writing, MQTT version 5 has reached the working  
draft stage.

The Eclipse Paho project ofers an open source imple-
mentation of an MQTT client library that is capable of work-
ing with the same two versions of the MQTT protocol sup-
ported by Mosquitto: 3.1 and 3.1.1. The Eclipse Paho Java Client 
provides both a synchronous and an asynchronous API. As 
previously explained, I will demonstrate how to work with 
its asynchronous API. However, bear in mind that there is 

GASTÓN HILLAR

Simple Messaging with MQTT
Use the principal IoT messaging protocol to asynchronously send and receive data  
from devices—in this case, from drones.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://mosquitto.org
http://mosquitto.org
http://www.eclipse.org/paho
http://www.eclipse.org/paho


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

47

//iot /

a synchronous version you 
can use if you don’t need 
the nonblocking features 
and you want to keep your 
code simpler.

It is important to under-
stand that the MQTT con-
nection is always between 
a client and the broker—in 
this case, between Paho Java 
Client and Mosquitto. You 
will never connect one client 
to another client through a direct connection. The dialogue is 
always between a client and the MQTT broker. In my example, 
each drone establishes a connection with Mosquitto, and a 
master drone sends messages with commands that are meant 
to be processed by speciic drones. 

It is possible for any client to subscribe to a speciic topic. 
By doing so, it will receive all the messages published to that 
topic. In addition, the client can publish messages to that 
speciic topic or to other topics. In my example, I work with 
just one topic, and I won’t take advantage of the wildcards 
that allow you to work with many topics at the same time. 
However, once you understand how to work with the Java 
client, you can use the sample code to take advantage of the 
additional features, based on your speciic needs.

I don’t want to focus on the coniguration of a Mosquitto 
message browser. Instead, I want to put my eforts into dem-
onstrating how to publish and receive messages. Eclipse allows 
you to use a publicly accessible sandbox server for the Eclipse 
IoT projects at iot.eclipse.org port 1883 identiied with the fol-
lowing URI: tcp://iot.eclipse.org:1883. I will use this sandbox 
server as the Mosquitto message broker, without any security. 
That way, you don’t have to lose time setting up a Mosquitto 
message broker to test the example. Of course, a real-life 
application would require you to set up a Mosquitto message 

broker. I provide many useful links to allow you to learn more 
about Mosquitto and MQTT at the end of this article.

You need to make sure that your software and hardware 
irewalls allow the application or the IDE to work with TCP in 
port 1883. 

Using the Java Client for MQTT

At the time of this writing, the latest release of Paho Java 
Client is 1.1.0. I will use this version to include the necessary 
dependencies. The easiest way to use the Java client is to start 
a Maven project in your favorite Java IDE and add the follow-
ing lines before </project> in the pom.xml ile. I’m assum-
ing that you are working with an empty Maven project. If you 
have other repositories or dependencies, make sure you edit 
the pom.xml ile to include the new entries, as shown next. 
You can also use the features included in your favorite IDE or 
its Maven plugins to add the repository and the dependency.

<repositories>

  <repository>

    <id>Eclipse Paho Repo</id>

    <url>https://repo.eclipse.org/content/ 

         repositories/paho-releases/</url>

    </repository>

</repositories>  

<dependencies>

  <dependency>

    <groupId>org.eclipse.paho</groupId>

    <artifactId> 

      org.eclipse.paho.client.mqttv3 

    </artifactId>

    <version>1.1.0</version>

  </dependency>

</dependencies>

[The repository URL should be entered as a single line. —Ed.]

You will never connect 
one client to another client 
through a direct connection. 
The dialogue is always 
between a client and 
the MQTT broker.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

48

//iot /

I am going to create the following three classes. All these 
classes are included in the code bundle for this article.

■■ MessageActionListener implements the org.eclipse 
.paho.client.mqttv3.IMqttActionListener interface. I use 
instances of this class to specify the callback that will run 
code whenever a message has been successfully published 
to a topic. 

■■ Drone represents a drone that has a name and can send 
and receive messages through the MQTT broker. This class 
not only encapsulates the data and logic related to drones 
as well as the messages and the commands included in 
messages, but it also implements the MqttCallback and 
ImqttActionListener interfaces deined in org.eclipse 
.paho.client.mqttv3. There is no type in these interface 
names—the naming convention for interfaces in the Java 
library is a bit confusing because some interfaces start with 
I while others don’t. I use Drone instances as callbacks for 
speciic events.

■■ MqttSample01 creates three instances of the Drone class, 
makes them connect to the MQTT broker, and sends mes-
sages and commands. This class declares the main static 
method for the example application.

Creating a Class That Is Notified When Asynchronous 

Actions Are Complete

The asynchronous API requires you to work with callbacks. 
In this example, I demonstrate many ways of working  
with the necessary callbacks. The following code shows  
the import statements and the code for the Message 
ActionListener class that implements the IMqttAction 
Listener interface.

import 

  org.eclipse.paho.client.mqttv3.IMqttActionListener;

import 

  org.eclipse.paho.client.mqttv3.IMqttToken;

public class MessageActionListener 

implements IMqttActionListener {

    protected final String messageText;

    protected final String topic;

    protected final String userContext;

    public MessageActionListener(

      String topic, 

      String messageText,

      String userContext) {

        this.topic = topic;

        this.messageText = messageText;

        this.userContext = userContext;

    }

    @Override

    public void onSuccess(

      IMqttToken asyncActionToken) {

        if ((asyncActionToken != null) && 

             asyncActionToken.getUserContext()

               .equals(userContext)) 

        {

         System.out.println( String.format( 

           "Message '%s' published to topic '%s'",

           messageText, topic));

        }

      }

    @Override

    public void onFailure( 

        IMqttToken asyncActionToken, 

        Throwable exception) {

            exception.printStackTrace();

        }

}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://bit.ly/2lajL8c


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

49

//iot /

When I create an instance of 
the MessageActionListener 
class, I need to specify the topic 
to which the message is going 
to be published, the message 
text, and a user context. The 
constructor saves the received 
values in immutable ields that 
have the same names as the 
received arguments.

The class implements the 
onSuccess method required by 
the IMqttActionListener inter-
face. Whenever an instance of the MessageActionListener 
class is used as a callback for an asynchronous action, the 
Java client invokes the onSuccess method when the action 
has been completed successfully, and it passes an asynchro-
nous action token (asyncActionToken) of type IMqttToken 
as an argument to specify the action that has been com-
pleted. The method makes sure that asyncActionToken 
is not null and checks whether the value returned by 
asyncActionToken.getUserContext() matches the user 
Context saved by the constructor. If they match, the success-
ful event is related to the event I wanted to monitor for its 
successful execution, and the code displays a message con-
taining the message text that has been published and the 
name of the destination topic. I use an instance of this class 
as a callback for each message that is published, and thereby I 
can see all the successfully published messages.

The class also implements the onFailure method, which 
is required by the IMqttActionListener interface and simply 
calls the printStackTrace method for the received exception.

Specifying the Quality of Service

What does it mean that a message was successfully delivered  
by the MQTT broker? It depends on the quality of service (QoS)  

that you select when you work with the MQTT protocol. The 
QoS level is the agreement between the publisher and the 
receiver of a message about the guarantees for delivering 
the message. Delivering a message involves publishing from 
the client to the broker and then from the broker to the sub-
scribed client. MQTT supports three possible QoS values:

■■ Level 0 means at most once: This level provides the same 
guarantee as the TCP protocol. The message is not acknowl-
edged by the receiver. The sender neither stores nor re-
delivers any messages. As you might expect, this level has 
the lowest overhead.

■■ Level 1 means at least once: This level provides a guaran-
tee that the message will be delivered at least once to the 
receiver. The main drawback is that this QoS level might 
generate duplicates, because the message can be delivered 
more than once. The sender stores the message until it 
receives an acknowledgment. In the event the acknowledg-
ment isn’t received within a speciic time, the sender will 
publish again.

■■ Level 2 means exactly once: This level provides a guaran-
tee that the message is delivered only once to the receiver. 
This QoS level makes sure the message isn’t delivered more 
than once and, therefore, there is no chance for duplicates. 
However, as you might expect, it has the highest over-
head because it requires two lows between the sender and 
receiver (one to receive, the other to send acknowledgment 
of receipt). Only when the entire low is completed is the 
message considered to be successfully delivered.

In this example, I will work with QoS level 2, because I don’t 
want the possibility of receiving a command twice. Messages 
are delivered even across network and client restarts. How-
ever, for that to occur, each message needs to be stored in 
a safe location until it has been successfully delivered. The 
Java client works with a pluggable persistence mechanism to 
store the messages. To keep things simple in this example, 
I will use memory-based persistence, which is not the best 

What does it mean 
that a message 
was successfully 
delivered by the MQTT 
broker? It depends on the 
quality of service (QoS) 
that you select.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

50

//iot /

option with QoS level 2. However, you can easily explore and 
conigure other pluggable persistence mechanisms to avoid 
losing messages in the event the application, the JVM, the 
computer, or the device running the application stops work-
ing or shuts down.

Creating a Class to Represent a Drone That  

Processes Messages

The following code shows the key aspects of the Drone class 
that implements the MqttCallback and IMqttActionListener 
interfaces. The full class is available in the downloadable code.

When I create an instance of the Drone class, it is nec-
essary to specify the desired name for the drone. The class 
deines many constants that I will use throughout the code 
and determine the string that deines a command key, the 
separator, the command that retrieves the altitude for the 
drone, the topic to which the Java client will subscribe, the 
desired QoS level, and the encoding that will be used for the 
messages, as shown below.

public class Drone implements MqttCallback, 

    IMqttActionListener {

    public static final String COMMAND_KEY = "COMMAND";

    public static final String COMMAND_SEPARATOR = ":";

    public static final String 

        GET_ALTITUDE_COMMAND_KEY = "GET_ALTITUDE";

    // Replace with your own topic name

    public static final String TOPIC =

        "java-magazine-mqtt/drones/altitude";

    public static final String ENCODING = "UTF-8";

    // Quality of Service = Exactly once

    // I want to receive all messages exactly once

    public static final int QUALITY_OF_SERVICE = 2;

    protected String name;

    protected String clientId;

    protected MqttAsyncClient client;

    protected MemoryPersistence memoryPersistence;

    protected IMqttToken connectToken;

    protected IMqttToken subscribeToken;

    public Drone(String name) { this.name = name; }

    public String getName() { return name; }

It is very important that you replace the TOPIC string with 
your own, unique topic name. The Mosquitto broker I am 
using in the example is public and, therefore, I need to use a 
unique topic to make sure I receive only the messages pub-
lished by my code. I have speciied "java-magazine-mqtt/
drones/altitude" for TOPIC in this example. MQTT uses topic 
names that have a hierarchy and are separated by a slash (/). 
Another example of a topic name is "java-client/samples/
drones/commands/altitude". 

The connect method has some code that is commented 
out just to remind you that in a production environment you 
shouldn’t send messages over an insecure connection and 
your MQTT broker should work with TLS/SSL and require the 
appropriate authentication. The code creates an instance 
of the MemoryPersistence class to use as the previously 
explained pluggable persistence, generates a unique client ID, 
and creates an instance of MqttAsyncClient named client. 
This way, I create the entry point for the Java client with the 
asynchronous API.

public void connect() {

    try {

        MqttConnectOptions options = 

            new MqttConnectOptions();

        // options.setUserName(

        //    "replace with your username");

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://bit.ly/2lajL8c


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

51

//iot /

        // options.setPassword(

        //    "replace with your password"

        //    .toCharArray());

        // Replace with ssl:// and work with TLS/SSL

        // best practices in a 

        // production environment

        memoryPersistence = 

            new MemoryPersistence();

        String serverURI = 

            "tcp://iot.eclipse.org:1883";

        clientId = MqttAsyncClient.generateClientId();

        client = new MqttAsyncClient(

                       serverURI, clientId, 

                       memoryPersistence);

        // I want to use this instance as the callback

        client.setCallback(this);

        connectToken = client.connect(

            options, null, this);

    } catch (MqttException e) {

        e.printStackTrace();

    }

}

public boolean isConnected() {

    return (client != null) && 

           (client.isConnected());

}

@Override

public void connectionLost(Throwable cause) {

    // The MQTT client lost the connection

    cause.printStackTrace();

}

The line that calls the setCallback method uses this as an 
argument because I use the actual instance as the callback 

that will execute speciic methods when some asynchro-
nous events occur. The setCallback method requires an 
argument of the MqttCallback type. The Drone class imple-
ments the MqttCallback interface that requires the follow-
ing three methods: connectionLost, messageArrived, and 
deliveryComplete. I’ll get back to these methods later. It is 
very important to call the setCallback method before estab-
lishing the connection with the MQTT broker.

The line that calls the client.connect method speciies 
this as the last argument because I will also use the actual 
instance as the callback that will execute speciic methods 
when some asynchronous events related to the connection 
occur. The fourth argument for the connect method requires 
an argument of the IMqttActionListener type. 

The Drone class implements the IMqttActionListener 
interface that requires these two methods: onSuccess  
and onFailure. 

@Override

public void onSuccess(

              IMqttToken asyncActionToken) {

        if (asyncActionToken.equals(connectToken)) {

            System.out.println( String.format(

                "%s successfully connected",name));

            try {

                subscribeToken = client.subscribe(

                    TOPIC, QUALITY_OF_SERVICE, 

                    null, this);

            } catch (MqttException e) {

                e.printStackTrace();

            }

        } 

        else if (asyncActionToken.equals( 

                       subscribeToken)) 

        {

            System.out.println( String.format(

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

52

//iot /

                "%s subscribed to the %s topic",

                name, TOPIC));

            publishTextMessage( String.format( 

                "%s is listening.", name));

        }

    }

@Override

public void onFailure(IMqttToken asyncActionToken, 

                      Throwable exception) 

{

    // The method will run if an operation failed

    exception.printStackTrace();

}

I implemented the same interface in the MessageAction 
Listener class. However, in this case, I will implement the 
interface to run code when the success or failure is related 
to the connection, not with messages as happened in the 
MessageActionListener class.

The code saves the IMqttToken returned by the client 
.connect method to the connectToken protected ield. This 
way, I am able to check whether the onSuccess method’s 
execution is related to this token or not. The connection uses 
asynchronous execution, and the onSuccess method for the 
Drone class will be executed after the connection with the 
MQTT broker has been successfully established.

The onSuccess method displays a message indicating  
that the speciic drone has been successfully connected. 
Then, the code calls the client.subscribe method with the 
topic to which I want to subscribe and the desired QoS level. 
The call to this method speciies this as the last argument 
because I will also use the actual instance as the callback 
that will execute speciic methods when some asynchronous 
events related to the subscription occur. The fourth argu-
ment for the subscribe method requires an argument of the 

IMqttActionListener type. So, after a successful subscription, 
the Java client will run the same onSuccess method, but the 
code will recognize that the event is related to the subscrip-
tion because the received token won’t match the connection 
token and instead will match the subscription token. It is not 
necessary to make it this way. It is possible to create an anon-
ymous type to declare the methods that are necessary for 
the subscription callback for the asynchronous subscription. 
However, I wanted to demonstrate the usage of the tokens.

The onSuccess method displays a message indicating that 
the speciic drone has been successfully subscribed to the 
speciic topic. Then, the code calls the publishTextMessage 
method to publish a message to the topic indicating that the 
drone is listening. 

public MessageActionListener publishTextMessage(

           String messageText) 

    {

        byte[] bytesMessage;

        try {

            bytesMessage = 

                messageText.getBytes(ENCODING);

            MqttMessage message;

            message = new MqttMessage(bytesMessage);

            String userContext = "ListeningMessage";

            MessageActionListener actionListener = 

                new MessageActionListener(

                    TOPIC, messageText, userContext);

            client.publish(TOPIC, message,

                    userContext,actionListener);

            return actionListener;

    } catch (UnsupportedEncodingException e) {

        e.printStackTrace();

        return null;

    } catch (MqttException e) {

        e.printStackTrace();

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

53

//iot /

        return null;

    }

}

The publishTextMessage method receives a String in the 
messageText argument with the text message that the 
drone has to publish to the topic and returns an instance 
of the MessageActionListener class. The method calls the 
messageTextgetBytes method to generate a byte array that 
takes into account the UTF-8 encoding. The MqttMessage class 
requires a byte array with the message to be sent as an argu-
ment to create an instance. Then, the code creates an instance 
of the MessageActionListener class named actionListener 
and calls the client.publish method to publish the mes-
sage on the topic with an actionListener instance as the 
last argument that speciies the desired callback. This way, 
the code declared in the onSuccess method for this class will 
run after the message has been successfully published to the 
speciied topic.

The publishCommand method takes two String argu-
ments: the command name and the destination name. The 
method uses the received values to build a command and 
then calls the previously explained publishTextMessage 
method with this command as an argument. For example, the 
following command requests a drone whose name is Drone #1 
to print its altitude in feet: COMMAND:GET_ALTITUDE:DRONE #1.

public MessageActionListener publishCommand(

           String commandName, String destinationName) 

{

     String command = String.format("%s%s%s%s%s",

         COMMAND_KEY, COMMAND_SEPARATOR,

         commandName, COMMAND_SEPARATOR,

         destinationName);

     return publishTextMessage(command);

}

Whenever a message arrives, the messageArrived method will 
be executed. The code in this method receives a String with 
the topic and an instance of MqttMessage.

@Override

public void messageArrived(String topic, 

               MqttMessage message) throws Exception 

{

    // A message has arrived from the MQTT broker

    // The MQTT broker doesn't send back 

    // an acknowledgment to the server until 

    // this method returns cleanly

    if (!topic.equals(TOPIC)) {

        return;

    }

    String messageText = 

        new String(message.getPayload(), ENCODING);

    System.out.println( String.format(

        "%s received %s: %s", name, topic,

        messageText));

    String[] keyValue = 

        messageText.split(COMMAND_SEPARATOR);

    if (keyValue.length != 3) {

        return;

    }

    if (keyValue[0].equals(COMMAND_KEY) &&

        keyValue[1].equals(

            GET_ALTITUDE_COMMAND_KEY) &&

            keyValue[2].equals(name)) 

        {

            // Process the "get altitude" command

            int altitudeInFeet = ThreadLocalRandom

                .current().nextInt(1, 6001);

            System.out.println( String.format(

                "%s altitude: %d feet",

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

54

//iot /

                name, altitudeInFeet));

        }

}

First, the code makes sure that the topic is the one that  
the drone is interested in. Then, the code calls the message 
.getPayload() method to retrieve the byte array with the 
message. The code creates a String instance with the byte 
array and the UTF-8 encoding as arguments to generate the 
appropriate String. The code displays a message indicating 
that the speciic drone has received a message in the topic. 
Finally, the code processes the String with the received mes-
sage to determine whether the message is a command. If it 
has the command-key preix, the code decodes the command 
and if it’s the “get altitude” command, the code displays a 
message with a pseudorandom altitude value for the drone 
expressed in feet.

Whenever a message has been successfully delivered, the 
deliveryComplete method is executed with a token (token) 
of type IMqttDeliveryToken as an argument to allow you to 
identify which message has been delivered. As previously 
explained, the meaning of a successfully delivered mes-
sage will depend on the QoS level. In this case, I’m working 
with QoS level 2 and this method will be executed after the 
acknowledgment from the receiver arrives. Here, I didn’t add 
code to this method and I just declared it to implement all the 
methods required by the interface.

    @Override

    public void deliveryComplete( 

                    IMqttDeliveryToken token) {

        // Delivery for a message has been completed

        // and all acknowledgments have been received

    }

Publishing Messages 

The following code lines show the code for the MqttSample01 
class that declares the main method. The main method cre-
ates three instances of the Drone class—drone1, drone2, and 
masterDrone—and calls the connect method for each of these 
instances. I didn’t use any kind of list to work with the drones 
because I wanted the code to be easier to read. Forgive me for 
repeating some code in this main method.

public class MqttSample01 {

    public static void main(String[] args) {

    Drone drone1 = new Drone("[Drone #1]");

    drone1.connect();

    Drone drone2 = new Drone("[Drone #2]");

    drone2.connect();

    Drone masterDrone = new Drone("*Master Drone*");

    masterDrone.connect();

    try {

        while (true) {

            try {

                Thread.sleep(5000);

                int r = 

                    ThreadLocalRandom.current()

                        .nextInt(1, 11);

                if ((r < 5) && drone1.isConnected()) {

                    masterDrone.publishCommand(               

                        Drone.GET_ALTITUDE_COMMAND_KEY,

                        drone1.getName());

                } else  

                if (drone2.isConnected()) {

                    masterDrone.publishCommand(

                        Drone.GET_ALTITUDE_COMMAND_KEY,

                        drone2.getName());

               }

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

55

//iot /

            } catch (InterruptedException e) {

                 e.printStackTrace();

         }

     } catch(Exception e) {

        e.printStackTrace();

     } finally {

        if (drone1.isConnected()) {

            try {

                drone1.client.disconnect();

            } catch (MqttException e) {

                e.printStackTrace();

            }

        }

            ...similarly for drone2 and masterDrone… 

    }

}

Then, a forever-running loop generates a pseudorandom 
number every ive seconds and, based on that number, it 
makes masterDrone publish a command to get the altitude for 
either drone1 or drone2.

Figure 1 shows an example of the output messages 
shown in the Console window of the IDE. Notice that both 
Drone #1 and Drone #2 receive the same messages with the 
GET_ALTITUDE command. However, only the drone that is the 
destination for the message processes the command and dis-
plays its pseudorandom altitude.

Conclusion

This example demonstrates how you can use the Eclipse Paho 
Java Client and a Mosquitto MQTT broker to subscribe to a 
topic and publish messages to a topic. There is also a Java cli-
ent library that can run on Android, in case you need to work 
with MQTT in Android. Whenever you need to exchange mes-
sages with an asynchronous, nonblocking API, you can con-
sider using MQTT and the Java client. </article>

Gastón Hillar (@gastonhillar) has been working as a software 

architect with Java since its irst release. He has 20 years of expe-

rience designing and developing software. He is the author of many 

books related to software development, hardware, electronics, and 

the Internet of Things, and he has been awarded the Intel Black 

Belt Software Developer Award eight times.

The MQTT protocol

The iot.eclipse.org project

learn more

Figure 1. Console messages

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://mqtt.org
https://iot.eclipse.org


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

56

//the road to java 9 /

Java 8 introduced the concept of Compact Proiles, which 
are reduced versions of the Java runtime environment 

(JRE) that do not contain the usual full contents of rt.jar. In 
this article, I explore the advantages of using Compact Proiles 
and how they point the way toward a modular future for the 
JDK, which takes a big step forward in Java 9.

The current versions of the JRE are quite monolithic: 
rt.jar is at least 60 MB on its own, without taking into 
account the size of native code loaded as dynamic libraries.  
If we can reduce the size of the Java platform footprint and 
move to a modular view of the JDK, we can realize some 
great beneits:

■■ Faster JVM startup times
■■ Reduced resource consumption
■■ Removal of packages that, in hindsight, shouldn’t be in 

the core
■■ Improved security, because removing unused classes 

reduces the attack surface of the platform
■■ Convergence of the Java ME Connected Device 

Coniguration (CDC) with Java SE
The initial approach to this efort was a full modularization of 
the platform, known as Project Jigsaw. This ambitious project 
also included other goals:

■■ Incorporate best practices for dependencies into the plat-
form core, and apply lessons learned about dependency 
management from tools such as Maven, Apache Ivy, OSGi 
standard, and Linux distributions. 

■■ Isolate dependencies—solve the library versioning problem.

■■ Allow application developers to package their code as mod-
ules, rather than as JAR iles. 

The catch is that in order to achieve the full set of goals, 
major surgery on the Java platform core is required. In partic-
ular, a new approach to classloading—involving a “modular 
classloader”—is required. This has a lot of edge cases and is a 
complex undertaking, especially if we need to maintain back-
ward compatibility.

In order to maintain the release date for Java 8, the deci-
sion was made to move full modularity out to Java 9, which 
will ship in July. Java 8 Compact Proiles are designed to be 
a irst step toward full modularity, with some of the basic 
advantages noted above. They build on the initial work done 
for modularity and provide a cut-down Java runtime, which

■■ Is fully compliant with the JVM and Java language 
speciications

■■ Has a substantially reduced footprint
■■ Removes functionality that is not always needed (for exam-

ple, CORBA)
■■ Works for many applications (especially server-side code)

Compact Proiles are based on packages; they contain a num-
ber of full packages, and no partial packages are currently 
allowed. They are also subject to two other restrictions:

■■ A proile must form a closed set; references to classes not 
contained in the proile are not allowed.

■■ If a proile contains some classes from another, smaller pro-
ile, it must contain all of them, so partially overlapping pro-
iles are not allowed. Put another way, proiles are additive.

BEN EVANS

PHOTOGRAPH BY JOHN BLYTHE

Exploring Compact Profiles
Java 8’s Compact Profiles point the way to Java 9’s modularity.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

57

//the road to java 9 /

The smallest Compact Proile is called compact1, and it com-
prises the following packages: java.io, java.lang, java 
.lang.annotation, java.lang.invoke, java.lang.ref, java 
.lang.reflect, java.math, java.net, java.nio, java.nio 
.channels, java.nio.channels.spi, java.nio.charset, java 
.nio.charset.spi, java.nio.file, java.nio.file.attribute, 
java.nio.file.spi, java.security, java.security.cert, 
java.security.interfaces, java.security.spec, java.text, 
java.text.spi, java.time, java.time.chrono, java.time 
.format, java.time.temporal, java.time.zone, java.util, 
java.util.concurrent, java.util.concurrent.atomic, java
.util.concurrent.locks, java.util.function, java.util 
.jar, java.util.logging, java.util.regex, java.util.spi, 
java.util.stream, java.util.zip, javax.crypto, javax 
.crypto.interfaces, javax.crypto.spec, javax.net, javax 
.net.ssl, javax.script, javax.security.auth, javax 
.security.auth.callback, javax.security.auth.login, 
javax.security.auth.spi, javax.security.auth.x500, and 
javax.security.cert.

Two other Compact Proiles are speciied in Java 8: 
compact2, which adds packages used for remote method 
invocation (RMI), SQL, and XML, and compact3, which com-
prises all of compact2 plus tooling and management pack-
ages (including Java Management Extensions [JMX]) as well 
as additional cryptography libraries. The smallest proile, 
compact1, occupies around 11 MB, which is a signiicant 
space savings.

As currently speciied, all of these proiles are headless; 
they do not contain any GUI classes. Any applications requir-
ing GUI support (Swing or AWT) must use a full JRE. 

Tools

To make use of Compact Proiles, developers require tools. 
One important question is whether an application can run 
against a speciic proile. Java 8 ships with two tools that have 
been enhanced to help answer this question: both javac and 

jdeps have been modiied to be aware of proiles.
javac is the tool of choice for determining whether a 

collection of source code can be safely run on a speciic pro-
ile. This is achieved by using the new -profile switch. 
javac -profile <profile> will cause a compilation error to 
be generated for any usage of a class not present in the indi-
cated proile.

In some cases, however, source code is not available or a 
recompilation run is inconvenient. Fortunately, in this case, 
the new jdeps tool can help. 

jdeps is a new static analysis tool that ships with 
Java 8. It provides an analysis of the dependencies of a spe-
ciic class or JAR ile. This tool is extremely useful (and not 
just for proile dependencies), and it features a -profile 
(or -P) switch that indicates which packages depend on 
which proiles.

Let’s take a look at an example, which summarizes the 
package dependencies for the popular JUnit testing library. 
See Listing 1, which shows good news: everyone should be able 
to test their code. 

Listing 1. 

jdeps -s -P junit.jar

junit.jar                      -> compact1

If we want more information, we can use the -v switch for 
verbose output, which will give us a lot of detail about each 
class inside the JAR ile. See Listing 2 (some of the output was 
truncated because it was 2,152 lines long).

Listing 2.

jdeps -v junit.jar

junit.jar -> /Library/Java/JavaVirtualMachines/openjdk8/

Contents/

Home/jre/lib/rt.jar

   junit.extensions.ActiveTestSuite (junit.jar)

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

58

//the road to java 9 /

      -> java.lang.Class

      -> java.lang.InterruptedException

      -> java.lang.Object

      -> java.lang.String

      -> java.lang.Thread

      -> junit.extensions.ActiveTestSuite$1     junit.jar

      -> junit.framework.Test                   junit.jar

      -> junit.framework.TestCase               junit.jar

If we want a slightly more high-level view, we can use -V 
package to show dependencies between packages, as shown 
in Listing 3 (some of the output was truncated because it was 
1,297 lines long).

Listing 3.

jdeps -V package junit.jar

junit.jar -> /Library/Java/JavaVirtualMachines/openjdk8/

Contents/Home/jre/lib/rt.jar

   junit.extensions (junit.jar)

      -> java.lang

   junit.framework (junit.jar)

      -> java.io

      -> java.lang

      -> java.lang.annotation

      -> java.lang.reflect

      -> java.util

   junit.runner (junit.jar)

      -> java.io

      -> java.lang

      -> java.lang.reflect

      -> java.text

      -> java.util

jdeps is also very lexible about what it will accept as input: a 
JAR ile, a directory, or a single .class ile. It provides capa-
bilities for recursive traversal and for specifying that only 

packages with a name that matches a given regular expres-
sion should be considered. It can also warn that code uses an 
internal API and is not portable between Java environments 
(and might break if run against a future version of Java).

Finally, let’s look at the NetBeans IDE. The current ver-
sion already has support for a wide range of JDK 8 features, 
including Compact Proiles. When selecting which JDK or 
JRE to use in Project Properties, for JDK 8 and later, a devel-
oper can choose whether to compile against the full JRE or 
a proile. This makes it much easier to ensure that when 
you’re targeting a particular proile, unwanted dependen-
cies don’t creep in. With luck, other IDEs will follow suit 
and also add support to allow developers to write code in 
the IDE that checks conformance with a speciic proile at 
development time.

A Word About Stripped Implementations

In addition to Compact Proiles, there was another tech-
nique that was proposed but ultimately not included in Java 8: 
Stripped Implementations. A Stripped Imple men tation was to 
be a reduced JRE, which was packaged with an application that 
had the exclusive use of it. Because the application was the 
only possible client for the Stripped Implementation, the run-
time could be aggressively pruned, removing packages, classes, 
and even methods that were not used by the application.

This approach was advantageous in circumstances where 
resource limitations were severe. It relied on extensive test-
ing to ensure that nothing that the application could rely 
on was removed by the stripping process. In general, it is 
extremely diicult to get a precise accounting of an applica-
tion’s dependencies. This is due in large part to the existence 
of techniques such as relection and classloading, which can 
greatly complicate (or even render impossible) the task of 
ascertaining the true dependencies of a set of classes.

Compact Proiles are very diferent from Stripped 
Implementations—the former are Java runtimes designed 

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

59

//the road to java 9 /

for general-purpose use and are complete implementa-
tions of the Java language speciication, whereas Stripped 
Implementations were deined to be single-use, nonreusable 
implementations that did not have to conform to the Java 
language speciication at their point of delivery to the user.

Stripped Implementations were targeted as a feature for 
Java SE 8, but due to some complications with licensing and 
the current testing kit, they had to be dropped very close to 
the release date.

Conclusion

[Java 9, which ships midyear, implements a whole new modu-
larity system based on Project Jigsaw. In most cases, that 
modularity system does away with the need for Compact 
Proiles and Stripped Implementations. This article, which 
originally appeared in 2014 and has been lightly updated, 
shows how the drive to smaller executables has been a focus 
of the Java team for a long time. Going forward, Compact 
Proiles will remain a useful option only for projects that 
need the reduced executables but, for one reason or another, 
cannot migrate to Java 9. —Ed.] </article>

Ben Evans (@kittylyst) is a Java Champion, tech fellow and 

founder at jClarity, an organizer for the London Java Community 

(LJC), and a member of the Java SE/EE Executive Committee.

Compact Profiles Demonstrated

Compact Profiles overview

Hinkmond Wong’s EclipseCon 2014 presentation on  

Compact Profiles

learn more

//user groups / 

THE PHILLY JUG
The Philadelphia Area Java 
Users Group (the Philly 
JUG) in Philadelphia, 
Pennsylvania, is one the 
world’s oldest, largest, 
and most active JUGs. 
Operating continuously 
since 2000, the JUG has 
been recognized twice 
by Sun Microsystems as 
one of the top JUGs in the 

world. From its humble beginnings with 35 members sitting 
on the loor of an abandoned oice, the JUG has grown to 
more than a thousand members. JUG meetings typically see 
70 to 100 developers attending on a regular basis. Over the 
years, the JUG has hosted many Java luminaries, such as Neal 
Ford, Brian Goetz, Cameron Purdy, Rod Johnson, Gavin King, 
Marc Fleury, Greg Luck, Yakov Fain, and Kito Mann. The group 
has a strong roster of regular local speakers. You can follow the 
JUG’s activ ities via its meetup group and its Twitter account. 

Topics at JUG meetings are always of interest to the pro-
fessional Java developer. Recent topics have included Java 9,  
Adopt-a-JSR, RxJava, Java on Azure, and NAO robots. The JUG 
has also been known to ofer more-general technology  
concepts that have a Java (or JVM language) angle, such as 
Docker, Spark, and Lagom. The JUG engages speakers and 
topics to help keep the local software engineering community 
engaged and informed.

The Philly JUG aims to further expand its reach and con-
tinue to serve its local community. Among these eforts, the 
JUG is an active adopter of critical Java SE and Java EE JSRs, 
including Java EE 8, Servlet 4, and Java SE 9. The JUG is an 
active partner member of the Java Community Process.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://blogs.oracle.com/jtc/entry/compact_profiles_demonstrated
http://docs.oracle.com/javase/8/docs/technotes/guides/compactprofiles/compactprofiles.html
https://blogs.oracle.com/hinkmond/entry/eclipsecon2014_slides_for_java_se
https://blogs.oracle.com/hinkmond/entry/eclipsecon2014_slides_for_java_se
https://www.meetup.com/PhillyJUG
https://twitter.com/ThePhillyJUG


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

60

//build /

Before the days of Apache Maven and Apache Ivy, mak-
ing use of third-party libraries was a laborious afair. 

Every time you wanted to include a library, you would have to 
download manually not only its JAR but also any other JARs 
that it depended on. You would then go through a similar 
process whenever you wanted to upgrade a library. Tracking 
down the necessary transitive dependencies could be particu-
larly painful, as could identifying any dependencies you no 
longer needed.

Both Maven and Ivy simpliied the process by allowing you 
to declare which dependencies you needed via a set of standard 
coordinates: a group, a name, and a version. The tools took on 
the responsibility of locating and downloading the necessary 
JARs for you—a process known as dependency resolution. Make 
no mistake, automatic dependency management (in addition to 
a single public Java library repository—Maven Central) funda-
mentally changed the way Java developers worked.

This approach has been reined over the years, but what 
you are using now is still at heart the same. In fact, you might 
be forgiven for thinking that dependency management is a 
“solved” problem. 

Automatic dependency management introduced its own 
set of issues that can bedevil developers. Build tools can 
and should do more to help, because they are best placed to 
improve the situation. If you’re interested in learning what 
that help looks like, then read on as I investigate several 
common challenges of working with Java libraries—both 
third-party and your own.

Consuming Third-Party Libraries

In an ideal world, you would declare your project’s dependen-
cies and everything would just work. But this rarely happens 
except in small projects. A more likely outcome is that you 
would encounter one or more of the following issues:

■■ An unexpected library version that breaks the build or your 
app/library

■■ Multiple versions of a library on a classpath
■■ Multiple JARs with the same class or classes
■■ Unwanted or unnecessary dependencies
■■ Dependency resolution that works for some developers but 

not others
The sources of these issues are varied, ranging from poorly 
deined metadata to changes in the names of dependencies. 
And don’t underestimate the inherent challenge of keeping 
a system working that relies on perhaps hundreds of moving 
parts, with each library having its own release schedule, time 
constraints, priorities, and so on.

Given that you’re likely to encounter problems with 
dependency resolution (unless you never change or upgrade 
any of your dependencies), it’s crucial that you be able to 
identify the underlying issues quickly. That’s why I think 
developers deserve better diagnostic tools. 

Diagnosing Dependency Issues

You might think that tracking down the source of a version 
conlict or some other dependency issue is simply a case of 
looking at the dependency graph. You can do this with most 

PETER LEDBROOK

Gradle’s Java Library Management
As builds become more complex, library dependencies present a special challenge that  
build tools are working to solve.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

61

//build /

build tools, but remember that dependency graphs can be 
large and complex. Trying to identify the source of a problem 
in such scenarios is often elusive and frustrating—even if you 
know what you’re looking for.

Imagine you have added a library to your Hibernate 4–
based project that, without you realizing it, has pulled in 
Hibernate 5. If you’re lucky, your project continues to work 
regardless of which version of Hibernate the build tool 
selects. Alternatively, the build or the running project might 
fail in a way that makes it obvious there’s an issue with the 
version of the Hibernate library. In that case, you can run 
Gradle’s dependencyInsight command (which is a built-in 
task) to ind out which dependencies transitively depend 
on Hibernate.

What if your project falls into neither category? What 
if, instead, the build or running project fails in a distinctly 
unhelpful way? In that case, the obvious question to ask is: 
what changed? Unfortunately, build tools haven’t made it  
easy to answer that question in the past. 

One workaround is to disable automatic conlict resolu-
tion, resulting in the build tool reporting an error if there is 
more than one version of a library in the dependency graph. 
You can do this in Gradle by adding the following snippet to 
your build ile:

configurations.all {

    resolutionStrategy {

        failOnVersionConflict()

    }

}

This approach unfortunately forces you to resolve even minor 
version conlicts yourself. It also fails to help if a library’s 
name or group has changed.

Wouldn’t it be great if you could just ask the build tool 
to show the diferences between the dependency graphs of 

the current build and the last 
working one? This feature is 
available in Gradle Enterprise, 
saving developers efort and 
time in diagnosing many 
dependency issues.

Identifying the source of a 
dependency issue is only part of 
the solution, because you still 
need to ix it somehow. 

Fixing Dependency Issues

Build masters and developers traditionally resolve dependency 
problems using exclusions, a solution that reminds me of the 
adage that when all you have is a hammer, everything looks 
like a nail. Exclusions may solve the problem in practice, but 
they’re often fragile and time-consuming to maintain.

What you need is an expressive way to specify rules or 
constraints for the dependency resolution engine. Taking the 
earlier Hibernate example, what you probably want to say is 
“always use version 4.3.11.Final of Hibernate.” You can do this 
with Gradle using the following build script snippet:

configurations.all {

  resolutionStrategy {

    force  

      'org.hibernate:hibernate-core:4.3.11.Final'

  }

}

This ensures that only the speciied version of the hibernate-
core dependency is included on your project’s classpath.

You might also want to consider what happens if Hiber-
nate 3 or 5 appears in the dependency graph. Do you simply 
want to force their versions as previously described? Or does 
it make more sense to add a warning or even fail the build 

Ideally, what you 
need is some way 
to declare whether a 
dependency is exposed 
in your component’s 
API or not. 

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

62

//build /

because the libraries that depend 
on those versions are unlikely to 
work with a diferent major ver-
sion? You can implement any of these 
approaches via Gradle’s resolution 
strategy API.

There is no single correct strat-
egy for dependency resolution that 
works for everyone, which is why 
Gradle’s API is so lexible. But most of the time, you probably 
won’t want to deal with it at a ine-grained level. Developers 
at Netlix have open-sourced two plugins that help by pro-
viding higher-level abstractions. The Nebula Resolution Rules 
Plugin enables powerful, declarative, centralized resolu-
tion rules across your whole organization, while the Nebula 
Dependency Lock Plugin solves the issues of build instability 
and staging when using snapshot versions and version ranges 
(known as dynamic versions).

Third-party libraries are only part of the story. Most sites 
also build and reuse their own libraries, which I discuss next.

Writing and Consuming Your Own Libraries

With the advent of multiproject or multimodule builds, it has 
never been easier to break your systems into several compo-
nents. Your build tool manages the dependencies between the 
individual components automatically, avoiding any manual 
installation or publishing steps.

Intermodule dependencies generally work well, but there 
are still some important issues to consider. One of them is 
how to deal with libraries outside of the multimodule build— 
a topic tackled in the previous section. Another is a funda-
mental law in the way dependencies are speciied. For exam-
ple, consider the module relationships in Figure 1.

The arrows represent compile-time requirements, and 
each box is a module you own, with Joda Time being the only 
third-party library. In this case, date-utils needs joda-time 

in order to compile, which you would specify in Gradle as

dependencies {

    compile 'joda-time:joda-time:2.9.7'

}

This seems simple enough, so what’s the problem? The law 
is that this simple dependency graph ignores the consumer’s 
perspective. It doesn’t answer the question: does core (the 
consumer of date-utils) need joda-time in order to compile, 
or is the date-utils module enough?

Build tools currently play it safe and always include joda-
time as a compile-time dependency of App. But this sim-
ply pollutes the compilation classpath of core if date-utils 
doesn’t expose any Joda Time types in its public API—that is, 
if the use of joda-time is an internal implementation detail.

Ideally, what you need is some way to declare whether a 
dependency is exposed in your component’s API or not. You 
will be able to do so from Gradle 3.4 onward. We are introduc-
ing two new conigurations (or scopes, in Maven terminology) 
for Java projects: api and implementation. As part of the new 
Java library plugin, these conigurations will allow you to 
express the efect of dependencies on consumers.

Going back to the example in Figure 1, imagine that 
date-utils does expose Joda Time types in its public API. 
Then you would declare the dependency in your date-utils 
build script this way:

dependencies {

    api 'joda-time:joda-time:2.9.7'

}

Figure 1. Module dependencies in a multimodule build

App core date-utils joda-time

Managing library 
dependencies 
at the build level is 
deceptively hard.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/nebula-plugins/gradle-resolution-rules-plugin
https://github.com/nebula-plugins/gradle-resolution-rules-plugin
https://github.com/nebula-plugins/gradle-dependency-lock-plugin
https://github.com/nebula-plugins/gradle-dependency-lock-plugin


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

63

//build /

By declaring joda-time as an API dependency, you ensure that 
it is included on the compilation classpath of core, because 
core requires date-utils to compile.

Now consider the relationship between date-utils and 
core from the perspective of App. Does App need to be aware 
of date-utils at compile time? In this case, let’s assume 
that date-utils is used purely internally by core. You would 
express this in core’s build script this way:

dependencies {

    implementation project(':date-utils')

}

What these two dependency declarations mean for the overall 
project is

■■ core has both date-utils and joda-time on its compilation 
classpath

■■ App has date-utils and joda-time on its runtime classpath 
but not its compilation classpath

■■ App requires core at compile time
This approach has several signiicant advantages:

■■ JARs don’t leak onto compilation classpaths when it’s 
unnecessary for them to do so.

■■ Changing an implementation dependency doesn’t force a 
recompilation of consumers.

■■ Published POMs match the requirements of consumers.
■■ The relationships between components are clearer.

With respect to the published POM, Gradle uses a simple 
mapping of api to compile and of implementation to runtime. 
This mapping makes sense because a transitive api depen-
dency is required in order to compile the consumer, but that’s 
not the case for a transitive implementation dependency.

I’ve discussed consuming libraries so far, but only in  
the context of dependency repositories and multimodule 
builds. There is one other scenario to consider: when you 

want to work from the source code version of a library that 
is not part of your multimodule build.

Improving Versioned-Library Workflows

There is an interesting debate going on at the moment 
regarding the relative merits of a monolithic repository 
(monorepo), which is a single source code repository for all 
your code, versus the more usual design, which relies on 
separate repositories for diferent projects. Of particular 
relevance to this discussion of libraries is one of the declared 
beneits of a monorepo: easier cross-project changes.

Consider this worklow:
■■ You discover that the project you’re working on requires a 

ix to a library it uses.
■■ You ask that library’s team to implement the ix.
■■ You incorporate the ixed library into your project.

In the case of a monorepo, you have access to the ixed ver-
sion as soon as you update your local working copy or reposi-
tory. And if you deploy of the trunk/master, you can deploy a 
new version of your project with the ix right away.

The process is less straightforward if the library is in a 
diferent source repository. The typical solution involves get-
ting the library maintainer’s team to publish a new version 
of the JAR, often as a snapshot. But snapshots are notori-
ously unreliable because the actual binary can change at any 
moment. So there is no guarantee that a given ix will appear 
in the next release version.

Another option is to check out or clone the source 
repository for the library and build it locally. Then you 
become less dependent on the library’s team to publish 
updated versions. On the other hand, you still end up rely-
ing on locally installed or published snapshots—unless you 
are able to make your project depend on the library’s source 
project, and then build them together. Adding a dependency 
on the source distribution (rather than just an evolving 

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

64

//build /

binary) would give you the following advantages:
■■ You control exactly what code you’re working against, via a 

commit ID, tag, or some other label.
■■ You can make ixes yourself and test them without any 

intermediate steps.
■■ You don’t need to rely on snapshots that can easily break 

your project again.
■■ You can easily test in-progress work by updating your work-

ing copy/repository.
You can achieve this with Gradle’s composite builds feature. It 
enables you to incorporate any other Gradle build into your 
own, dynamically replacing the corresponding declared 
dependencies.

To understand how it works, think back to Figure 1 and 
imagine you need a ix for the Joda Time library. Also imag-
ine that it has a Gradle build. The maintainer is too busy to 
implement the ix, so you get hold of the source code project 
and put it alongside or even inside your project’s root direc-
tory. Then you can apply the necessary changes yourself.

Now, rather than building joda-time separately and 
installing or publishing its JAR, you can run

./gradlew --include-build ../joda-time-copy build

This will automatically build the project at ../joda-time-
copy and put its JAR on the compilation classpath of date-
utils when it builds that, even though the latter declares a 
versioned dependency of joda-time. Even better, your tests 
will run against this development version of joda-time 
as well. This approach greatly improves the development 
cycle for cross-project changes and works particularly well 
with the IDE support in IntelliJ and Eclipse, which uses the 
Buildship plugin.

One other consideration is how you share your work with 
other team members without having to publish intermedi-
ate versions of the library for them to use. It’s an awkward 

problem, but you can solve it by persisting the build inclu-
sion deinition in your project’s settings.gradle ile. This is 
explained on the Gradle blog. Just be aware that you should 
use something like Git submodules or Subversion externals 
to ensure that your team members have a local copy of the 
library’s source when they build your project. Alternatively, 
you can make the inclusion conditional on the library exist-
ing locally.

It’s also worth thinking about how you manage the con-
tinuous integration of your own libraries and applications 
that reside in separate source repositories. With Gradle, you 
can create a composite build for your continuous integra-
tion servers that includes only the builds you need—it’s 
otherwise empty—and runs all the integration tests. Both 
the application and the library teams then get immediate 
feedback on any breaking changes without having to publish 
intermediate binaries.

Composite builds smooth the development process and 
buy time for teams to coordinate releases where necessary. 
While this discussion involved separate repositories, you can 
also use this feature with a monorepo if you want to use that 
architecture while retaining independently versioned libraries.

Conclusion

Managing library dependencies at the build level is decep-
tively hard, as anyone who has worked extensively with them 
will attest. In this article, I’ve presented several of the chal-
lenges that Java developers and build masters face. Many 
of you have probably encountered at least some of these in 
your own day-to-day work. The ultimate goal of the build 
tool developer is to make dependency management truly 
manageable. </article>

Peter Ledbrook is an independent consultant who has maintained 

many builds over the years, including ones based on Make, Ant, and 

Maven. He now does training and technical writing for Gradle Inc.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://marketplace.eclipse.org/content/buildship-gradle-integration
https://blog.gradle.org/introducing-composite-builds


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

65

//java proposals of interest /

JavaServer Faces (JSF) 2.3, which is governed by JSR 372, 
recently ended its public comment period. This event 
lets us see what is new in mostly a minor update from 
version 2.2. It includes the addition of incremental fea-
tures that the community requested. The community 
has driven JSF 2.3 very heavily, directly committing 
many of the features into the codebase of the reference 
implementation, Mojarra. These are the features slated 
to be in JSF 2.3:

■■ Alignment with the Java SE 8 Date and Time API
■■ Improved CDI support
■■ Formal deprecation of the JSF-speciic bean subsystem 

in favor of CDI
■■ WebSocket integration
■■ Ajax method invocation
■■ Multiield validation

Besides these changes, there are many other smaller 
updates. For details on these, check out the speciication 
document itself. There is a useful change list at the very 
beginning of the PDF document. The community has 
been doing a good job blogging about JSF 2.3 features 
—particularly folks such as Arjan Tijms and Anghel 
Leonard. In addition, the July/August 2016 issue of Java 

Magazine had a detailed explanation of the new features, 
written by Tijms, who is on the expert group for this JSR.

Download the draft speciication from the JCP site.  
Do your part by engaging actively. Try out the new ver-
sion and provide comments on the new features. 

[Thanks to Reza Rahman for his contributions to 
this write-up. —Ed.]

JSR 372: JSF 2.3

FEATURED JAVA SPECIFICATION REQUEST

• DevOps, Containers, Microservices & APIs

• MySQL, NoSQL, Oracle & Open Source Databases

• Development Tools & Low Code Platforms

• Open Source Technologies

• Machine Learning, Chatbots & AI

Explore the Latest Developer Trends:

Oracle Code
Register Now

New One-Day, Free Event | 20 Cities Globally

developer.oracle.com/code
Find an event near you:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://javaserverfaces.java.net/
http://download.oracle.com/otndocs/jcp/jsf-2_3-pr-spec/index.html
http://download.oracle.com/otndocs/jcp/jsf-2_3-pr-spec/index.html
http://www.javamagazine.mozaicreader.com/JulyAug2016#&pageSet=17&page=0
https://jcp.org/aboutJava/communityprocess/pr/jsr372/index.html
https://developer.oracle.com/index.html


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

66

//ix this /

A s promised in my last column, with this issue, I begin to 
include questions that simulate the level of diiculty of 

the Oracle Certiied Associate exam, which contains questions 
for a more preliminary level of certiication than the ques-
tions that regularly have appeared here.  

Of course, I also include the more advanced questions  
that simulate those from the 1Z0-809 Programmer II 
exam, which is the certiication test for developers who 
have been certiied at a basic level of Java 8 programming 
knowledge and now are looking to demonstrate more-
advanced expertise. 

Because there is little value in asking easy questions, I 
provide only intermediate and advanced questions (and they 
are marked as such). These levels correlate with the two 
exams. However, don’t let the “intermediate” tag fool you—
the questions are never trivial. 

Question 1 (intermediate). Given this code (with line numbers 
at left), which is a fragment of a larger method body:
14: StringBuilder[] sba = {

15:   new StringBuilder("Fred"),

16:   new StringBuilder("Jim"),

17:   new StringBuilder("Sheila")

18: };

19: 

20: System.out.println("sba[2] is " + sba[2]);

21: 

Which two of the following are true? 
a. The array referred to by sba might be eligible for garbage 

collection at line 19.
b. The array referred to by sba might be eligible for garbage 

collection at line 21.
c. Assigning sba = null; at line 21 would make the array 

referred to by sba and the three StringBuilder objects 
deinitely eligible for garbage collection.

d. The array referred to by sba and the three StringBuilder 
objects will deinitely be eligible for garbage collection 
when the method returns to its caller.

e. The array referred to by sba and the three StringBuilder 
objects might not be eligible for garbage collection even 
after the method returns to its caller.

Question 2 (intermediate). Given the following code:
// line n1

switch (x) {} 

Which two of the following lines of code can be added success-

fully at line n1? Assume that x has no declaration in scope at 
line n1 and assume that each line is added individually.

a. boolean x = false;

b. short x = 99;

c. int x = 0;

d. long x = 0;

e. StringBuilder x = new StringBuilder("x");

SIMON ROBERTS

Quiz Yourself
Intermediate and advanced test questions

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-808
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-809
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-809


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

67

//ix this /

Question 3 (advanced). Given this:
public class Recorder {

  class Record {}

  class LongRecord extends Record {}

  public List<LongRecord> gatherRecords() {

    return Arrays.asList(

      new LongRecord(), new LongRecord()

    );

  }

  public void processRecords(

      Collection<Record> records) { // line n1

    records.forEach(System.out::println);

  }

  public void gatherAndProcess() {

    List<LongRecord> lr = gatherRecords(); // line n2

    processRecords(lr);

  }

  public static void main(String[] args) {

    new Recorder().gatherAndProcess();

  }

}

Which is true? Choose one.
a. The code produces output in the following form:

Recorder$LongRecord@1218025c

Recorder$LongRecord@816f27d

b. Changing the argument type declaration at line n1 to 
List<Record> produces output in the following form:

Recorder$LongRecord@1218025c

Recorder$LongRecord@816f27d

c. Changing the argument type declaration at line n1 to 
Collection<? super Record> produces output in the  
following form:

Recorder$LongRecord@1218025c

Recorder$LongRecord@816f27d

d. Changing the argument type declaration at line n1 to 
Collection<? extends Record> produces output in the 
following form:

Recorder$LongRecord@1218025c

Recorder$LongRecord@816f27d

e. Changing the variable type declaration at line n2 to 
List<Record> produces output in the following form:

Recorder$LongRecord@1218025c

Recorder$LongRecord@816f27d

Question 4 (advanced). Given this code:
List<String> ls = Arrays.asList("Fred", "Jim", "Sheila", 

    "Fred");

Set<String> s1 = new HashSet<>(ls); // line n1

Set<String> s2 = new TreeSet<>(ls); // line n2

System.out.println(s1.equals(s2));

What is the result? Choose one.
a. Line n1 causes compilation to fail.
b. Both line n1 and line n2 cause compilation to fail.
c. An exception is thrown at line n1.
d. Outputs true.
e. Outputs false.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

68

//ix this /

Question 1. The correct answers are options C and E. The basis 
on which an object is eligible for garbage collection is sim-
ply that it cannot be reached from any live thread. In other 
words, the program can never get hold of the object again. 
At line 19, sba is an entirely valid reference to the original 
array. Consequently, sba is deinitely not eligible for collec-
tion at that point. That’s really important because if it were 
collected, the attempt to print sba[2] on line 20 would have 
unpredictable results. Generally, Java avoids any unpredict-
able behaviors (concurrent programming is the signiicant 
exception to this). This means that option A is incorrect.

Similarly, although sba does not appear to be used again 
at or after line 21, it is deinitely not eligible for garbage col-
lection because the reference is still valid, and it could be 
used later in the method. Note that the question explicitly 
states that there is more to the method. Therefore, option B is 
also incorrect.

However, if line 21 executes sba = null;, the previous  
value of the reference is overwritten. Because the now-lost 
value in sba was the only reference to the array created  
in lines 14 through 18, and that value was never stored any-
where else (not even as an argument to a method call) 
between its creation and line 21, you know that there are now 
zero references to that object that are available to the pro-
gram. As a result, the array is deinitely unreachable and is 
eligible for garbage collection. Also, references to the three 
StringBuilder objects were written only into the array, and 
because the array is not reachable in the program, neither are 
the StringBuilder objects, and they, too, are eligible for gar-
bage collection. Because of this, option C is correct.

Options D and E are, perhaps obviously, the inverses of 
one another, so one must be true and the other false. As a 
side note, exam creators try to avoid this sort of situation 
—because it makes a question easier—but sometimes it is 
unavoidable, so it is worth spotting inverse answers. Be sure 
your logic is sound, though. For example, if option E had 
said “deinitely not eligible,” the two would not have been 
inverses of each other, because the important possibility  
of “don’t know” would be a third possibility not covered  
by either.

In this case, because one or the other must be true, 
either you can deinitely collect the objects at the return of 
the method or you cannot be sure. Which is it? Generally, 
local variables go out of scope and cease to exist when a 
method returns. This would suggest that the objects referred 
to by those variables become eligible for garbage collection. 
However, in this case, you don’t see the whole method body. 
If a reference to the array “escapes” from the method, you 
can make no such assumption. At least three mechanisms 
exist by which this escape might occur, the most obvious of 
which is probably when the method itself returns the value 
of sba to its caller. A second possibility is that this method 
stores the value of sba in a variable that has greater visibility 
and longer life, such as a static variable or collection. In addi-
tion, passing sba as a method argument might allow the value 
to escape, because you cannot know if that method stores the 
value somewhere in a manner similar to the previous point. 
As a result, you cannot know if the array and, therefore, the 
three StringBuilder objects are eligible for garbage collec-
tion. Consequently, option E is true and option D is false.

Question 2. The correct answers are options B and C. The  
rules for a switch statement require that the argument 
be assignment-compatible with an int (allowing for auto-
unboxing), an enum, or a String. Java Language Speciication 
section 14.11 states that the type of the expression “must be 

Answers

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/specs/jls/se8/html/jls-14.html#jls-14.11


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

69

//ix this /

char, byte, short, int, Character, Byte, Short, Integer, String, 
or an enum type, or a compile-time error occurs.” String and 
enum types haven’t always been allowed; enum was new 
with Java 5. Therefore, it didn’t apply before that and, in fact, 
String was not legal until Java 7.

Although String is a legal type for a switch statement, 
StringBuilder is not; neither is it assignment-compatible 
with String.

Because of these rules, options A, D, and E are all incor-
rect, while both options B and C are correct.

Question 3. The correct answer is option D. This question 
delves into one of the most startling consequences of the 
type-erasure mechanism of Java’s generics system. When  
a variable of a collection type is declared with its generic  
speciication—as in something like List<Record>—the 
“Record” part of the information exists only at compile time. 
The underlying object is still a List that actually accepts  
any object type. The power of generics is that they allow the 
compiler to do “consistency checking” that can ensure that 
type errors cannot happen in the code.

As part of the consistency checking, the compiler veri-
ies that all assignments are safe from the perspective of 
the Liskov Substitution Principle. This is a principle in object 
orientation that requires that if you assign b = a, a must be 
capable of fully substituting for b. That is, all the behaviors 
expected of the type of b must be properly implemented, and 
work as expected, in the object referred to by a.

Now, the trick here is that, in fact, the compiler does  
not accept that assigning a List<LongRecord> to a Collection 
<Record> is a valid substitution. Because the assignment  
that occurs in the invocation of the method declared around 
line n1 is not valid, the code does not compile and option A  
is incorrect.

This question really hinges on why that assignment 
is not valid, and how you might correct that problem. 

Option B suggests that by changing the argument type from 
Collection to List, you might ix it. However, a List is fully 
capable of substituting for a Collection (the List inter-
face extends Collection, and all the methods are imple-
mented). This part of the assignment is not the problem, and 
the change wouldn’t alter the situation. Therefore, option B 
is incorrect.

Consider the following, because it’s a little less confus-
ing. The compiler thinks that a List<LongRecord> is not a 
valid substitute for a List<Record>. There’s something that 
you can do with a List<Record> that isn’t properly sup-
ported by a List<LongRecord>. That illegal operation is 
the addition of a Record. Think about that for a moment. 
A List<LongRecord> can properly contain anything that’s 
assignment-compatible with a LongRecord: that would be 
LongRecord objects and any subclasses thereof. However, it 
should not contain any instances of the parent class Record. 
And it should not contain any sibling classes of LongRecord, 
if they existed. However, a List<Record> can legitimately 
contain such objects, and the compiler doesn’t know that you 
don’t add any in the method declared around line n1. Imagine 
the consequences if the method, prior to looping over the 
contents of Collection, invoked records.add(new Record()). 
That would be bad, right?

The code does not actually do any such terrible opera-
tions, but the compiler doesn’t analyze that; it just knows 
that the code could. Fortunately, there’s a syntax that lets you 
do what you want to do—that is, iterate over the contents of 
the collection, safely extracting things from it while know-
ing they’re assignment-compatible with Record. In efect, you 
deine that Collection can be a collection of “anything that’s 
assignment-compatible with Record.” Therefore, if X is a type 
that’s assignment-compatible with Y, X must be “further 
down” the inheritance hierarchy (regardless of whether it is 
an object or an interface) than Y. In a sense, X extends Y. And 
that’s how the syntax comes about; the language lets you say, 

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

70

//ix this /

in efect, “collection of something,” provided that something 
extends Record. (Note that in this sense, Record “extends” 
Record because it’s assignment-compatible.) That syntax, 
of course, is Collection<? extends Record>. On that basis, 
option D is correct.

Option C is also interesting. In this situation, the pro-
posed change would say that whatever Collection is intended 
to contain, Record must be assignment-compatible with 
that. If you presented a collection of Object, then Object is 
a superclass of Record, and you’d be able to insert the Record 
safely into Collection. However, you have no idea what types 
you might pull out of Collection, which might be a problem. 
But regardless of this, you still cannot pass List<LongRecord> 
into the method, because List<LongRecord> could not prop-
erly accept assignment of a Record into List even if you 
wanted to do that. Therefore, this syntax doesn’t solve the 
problem at hand, and option C is incorrect. However, this is 
an important syntax when you want to assign things to the 
generic type of whatever is passed in.

Option E fails for the same reasons the code fails in 
its unchanged form. The return type of the gatherRecords 
method is List<LongRecord>, and that’s not assignment-
compatible with List<Record>. Therefore, changing the vari-
able type on line n2 would fail to compile, even though it 
would allow the invocation of the method around line n1 to 
compile. Substituting one problem for another doesn’t result 
in any output, though, so option E is incorrect.

Question 4. The correct answer is option D. Options A and 
B suggest compilation failures while attempting to con-
struct and initialize the sets. This might happen if there is 
no constructor available that accepts a List as an argument. 
However, both Set types provide such a constructor. The 
documentation for collections calls for collection implemen-
tations to provide constructors that accept an argument of 
type Collection, and as a result, a List is valid. Because of 

this, both options A and B are false.
Option C suggests that an exception is thrown during 

construction of the Set. This might be plausible, given that 
the List has a duplicate entry, which is not permitted in a 
Set. However, the documentation notes that “all construc-
tors must create a set that contains no duplicate elements.” 
The efect is that both Set objects contain only the three 
distinct elements, "Fred", "Jim", and "Sheila". It’s also fair 
to observe that, in general, a Set recognizes and ignores 
attempts to add duplicates, so an exception in this initial-
ization situation would be unhelpful and counterintuitive. 
Because no exception is thrown, option C is false.

As a side note, it’s possible for a TreeSet to throw an 
exception during the addition of items, if the items being 
added to it are not Comparable and no suitable Comparator 
has been provided. In this case, however, the items 
being added are String objects, and String implements 
Comparable<String> as needed, so no such problem arises.

Having eliminated all the other options, options D and 
E are essentially alternatives. The interesting thing here is 
that the documentation for the equals method of Set requires 
that all implementations return a value that indicates only 
whether the contents of the set are the same, without regard 
to the implementing class. As the documentation notes fur-
ther, “This deinition ensures that the equals method works 
properly across diferent implementations of the set inter-
face.” As a result, the output is the value true, and option D is 
correct, while option E is incorrect. </article>

Simon Roberts joined Sun Microsystems in time to teach Sun’s 

irst Java classes in the UK. He created the Sun Certiied Java 

Programmer and Sun Certiied Java Developer exams. He wrote 

several Java certiication guides and is currently a freelance edu-

cator who teaches at many large companies in Silicon Valley and 

around the world. He remains involved with Oracle’s Java certiica-

tion projects.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=


ORACLE.COM/JAVAMAGAZINE  /////////////////////////////////////////// MARCH/APRIL 2017

71

//contact us / 

Comments 
We welcome your comments, correc-

tions, opinions on topics we’ve covered, 

and any other thoughts you feel impor-

tant to share with us or our readers. 

Unless you speciically tell us that your 

correspondence is private, we reserve  

the right to publish it in our Letters to  

the Editor section. 

Article Proposals 
We welcome article proposals on all  

topics regarding Java and other JVM  

languages, as well as the JVM itself.  

We also are interested in proposals for  

articles on Java utilities (either open 

source or those bundled with the JDK).  

Finally, algorithms, unusual but useful  

programming techniques, and most other 

topics that hard-core Java programmers 

would enjoy are of great interest to us, 

too. Please contact us with your ideas  

at javamag_us@oracle.com and we’ll  

give you our thoughts on the topic and 

send you our nifty writer guidelines, 

which will give you more information  

on preparing an article. 

Customer Service 
If you’re having trouble with your 

subscription, please contact the 

folks at java@halldata.com (phone 

+1.847.763.9635), who will do  

whatever they can to help.

Where? 
Comments and article proposals should 

be sent to our editor, Andrew Binstock, 

at javamag_us@oracle.com. 

While it will have no inluence on our  

decision whether to publish your article  

or letter, cookies and edible treats will  

be gratefully accepted by our staf at 

Java Magazine, Oracle Corporation,  

500 Oracle Parkway, MS OPL 3A-3133, 

Redwood Shores, CA 94065, USA.

 Subscription application

 Download area for code and  

other items

 Java Magazine in Japanese

magazine

By and for the Java community

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:javamag_us%40oracle.com?subject=
mailto:java%40halldata.com?subject=
mailto:javamag_us%40oracle.com?subject=
https://www.sub-forms.com/dragon/init.do?site=ora6028_jfnew
http://bit.ly/2b2tXeb
http://bit.ly/2b2tXeb
http://www.oracle.com/technetwork/jp/articles/java/overview/index.html

	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71

	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71


	
	Java_MA17_cover
	Java_MA17_pg01
	Java_MarApr2017_Master_working
	Java_MA17_pg02
	Java_MA17_pg03
	Java_MA17_pg04-05
	Java_MA17_pg06-07
	Java_MA17_pg08
	Java_MA17_pg09-12
	Java_MA17_pg13
	Java_MA17_pg14
	Java_MA17_pg15
	Java_MA17_pg17-23
	Java_MA17_pg24-29
	Java_MA17_pg30-39
	Java_MA17_pg40-45
	Java_MA17_pg46-55
	Java_MA17_pg56-59
	Java_MA17_pg60-64
	Java_MA17_pg65
	Java_MA17_pg66-70
	Java_MA17_pg71



