
ORACLE.COM/JAVAMAGAZINE

magazine

By and for the Java community

GROOVY 3.0 61 | JVM ESCAPE ANALYSIS 73 | REST API WITH SPRING 81

CREATING
MICROSERVICES
WITH
MICROPROFILE
AND DOCKER

15
DEVOPS
PIPELINES
FOR
CONTAINERS

32
WOOKIEE:
MICROSERVICES
WITHOUT THE
CONFIG HASSLES

53
MIXING JAVA
MODULES
AND OSGi

42

MARCH/APRIL 2018

MICROSERVICES
and CONTAINERS

http://www.oracle.com/javamagazine

Reload code changes instantly with

Would you rather be waiting... ...or coding

Don’t let Java redeploys
slow you down

GET FREE TRIAL TRY IT NOW!

https://zeroturnaround.com/software/jrebel/jrebelrocks/?utm_source=javamag&utm_medium=digital&utm_campaign=zt&utm_content=marchapril

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

02

61
Groovy 3.0: What’s Coming
By Ken Kousen

One of the most popular JVM languages

adds handy new features.

73
Escape Analysis in the
HotSpot JIT Compiler
By Ben Evans and Chris Newland

Automatic, complex variable-scope

analysis enables subtle optimizations.

81
Reactive Spring: Setting
up a REST API
By Josh Long

Using Spring WebFlux to quickly

implement a REST API

94
Fix This
By Simon Roberts and Mikalai Zaikin

Our latest quiz with questions that test

intermediate and advanced knowledge of

the language

32
DEVOPS WITH
CONTAINER-BASED
DELIVERY PIPELINES

By Michael Ḧttermann

A real-world pipeline for deliver-

ing containerized Java EE apps

to the cloud with a Jenkins-

based toolchain —automatically

42
WORKING WITH OSGi
AND JAVA 9 MODULES

By Eric J. Bruno

Integrating two module systems

for a solution that uses the

best of both

53
WOOKIEE: REDUCING
MICROSERVICE
CONFIGURATION

By Spencer Wood

Set up microservices quickly

and simply with the Wookiee

open source framework.

//table of contents /

CREATING MICROSERVICES
WITH PAYARA MICRO
By Josh Juneau

How to build small, lightweight services with Java EE and Docker

COVER FEATURES

OTHER FEATURES DEPARTMENTS

05
From the Editor
JavaFX and the evolving desktop

metaphor

08
Java Books
Review of Efective Java, Third Edition

09
Events
Upcoming Java conferences and events

12
User Groups
The Polish JUG

31
Java Proposals of Interest
JEP 320: Remove CORBA and selected

Java EE modules from Java SE

105
Contact Us
Have a comment? Suggestion? Want to

submit an article proposal? Here’s how.

COVER ART BY WES ROWELL

15

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

03

EDITORIAL

Editor in Chief
Andrew Binstock

Managing Editor
Claire Breen

Interim Managing Editor
Leslie Steere

Copy Editors
Lea Anne Bantsari, Karen Perkins

Technical Reviewer
Stephen Chin

DESIGN

Senior Creative Director
Francisco G Delgadillo

Design Director
Richard Merchán

Senior Designer
Arianna Pucherelli

Designer
Jaime Ferrand

Senior Publication Designer
Sheila Brennan

Production Designer
Kathy Cygnarowicz

PUBLISHING

Publisher and Audience Development
Director
Karin Kinnear

Audience Development Manager
Jennifer Kurtz

ADVERTISING SALES

Sales Director
Tom Cometa

Mailing-List Rentals
Contact your sales representative.

RESOURCES

Oracle Products
+1.800.367.8674 (US/Canada)

Oracle Services
+1.888.283.0591 (US)

ARTICLE SUBMISSION

If you are interested in submitting an article, please email the editors.

SUBSCRIPTION INFORMATION

Subscriptions are complimentary for qualified individuals who complete the
subscription form.

MAGAZINE CUSTOMER SERVICE

java@omeda.com

PRIVACY

Oracle Publishing allows sharing of its mailing list with selected third parties. If you prefer
that your mailing address or email address not be included in this program, contact
Customer Service.

Copyright © 2018, Oracle and/or its affiliates. All Rights Reserved. No part of this publication may be reprinted or otherwise

reproduced without permission from the editors. JAVA MAGAZINE IS PROVIDED ON AN “AS IS” BASIS. ORACLE EXPRESSLY

DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS OR IMPLIED. IN NO EVENT SHALL ORACLE BE LIABLE FOR ANY

DAMAGES OF ANY KIND ARISING FROM YOUR USE OF OR RELIANCE ON ANY INFORMATION PROVIDED HEREIN. Opinions

expressed by authors, editors, and interviewees—even if they are Oracle employees—do not necessarily reflect the views of Oracle.

The information is intended to outline our general product direction. It is intended for information purposes only, and may not

be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied

upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s

products remains at the sole discretion of Oracle. Oracle and Java are registered trademarks of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective owners.

Java Magazine is published bimonthly and made available at no cost to qualified subscribers by

Oracle, 500 Oracle Parkway, MS OPL-3A, Redwood City, CA 94065-1600.

ASSOCIATE PROFESSIONAL MASTER EXPERT SPECIALIST

Display Your Oracle Certification Digital Badge

Claim your certification badge and validate
your skills across all online platforms.

You’ve Earned It

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:karin.kinnear%40oracle.com?subject=
mailto:jennifer.s.kurtz%40oracle.com?subject=
mailto:tom.cometa%40oracle.com?subject=
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.sub-forms.com/dragon/init.do?site=ora6028_jfnew
mailto:java%40omeda.com?subject=
mailto:java%40omeda.com?subject=
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=861

https://www.jetbrains.com/idea?utm_source=javamag&utm_medium=cpc&utm_campaign=idea2018

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

05

//from the editor /

PHOTOGRAPH BY BOB ADLER/THE VERBATIM AGENCY

It’s no secret that the role of desktop computing

has changed considerably over the last 10 years.

Before the advent of web applications and the

widespread popularity of mobile devices, desk-

tops were the prevailing metaphor for user-facing

apps. Major languages all had specialized libraries

that delivered the ability for rich UI experiences.

Java had Swing (later JavaFX) and the Eclipse

Standard Widget Toolkit (SWT). C had the GTK

toolkit, and C++ had Qt. And of course Microsoft

had a variety of platform-speciic UI toolkits.
The decline of the PC market during the last

decade has been matched by a surge in mobile-

oriented design. Many UI metaphors today come

straight from mobile devices rather than being

desktop designs rejiggered for mobile platforms.

Microsoft Windows 10 is a canonical example of

this trend.

Meanwhile, apps that require an elabo-

rate or complex UI have been steadily opting

for browser-based presentation, in which UIs

are developed with the combination of HTML5,

CSS, and JavaScript. Only a few applications have

UI needs or local processing requirements that

exceed the browser’s ability to deliver a satisfac-

tory experience. These are the ones that stead-

fastly remain desktop applications. They include

programming environments, productivity soft-

ware such as Microsoft Oice, and visually inten-

sive tools, like those from Adobe. In addition, a

variety of scientiic software relies on desktop-
style UIs.

While the design of the UI front end has been

evolving, so has the back end. Whereas desktop

applications used to be delivered as large execut-

ables (Microsoft Oice is gigabytes in size; IDEs

The Evolving Desktop Metaphor
JavaFX and other desktop technologies adapt to a changing world.

#developersrule

developer.oracle.com

Get on the list

for event updates:
go.oracle.com/oraclecoderoadshow

Step up to modern cloud

development. At the

Oracle Code roadshow,

expert developers lead

labs and sessions on PaaS,

Java, mobile, and more.

Level Up at
Oracle Code

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://developer.oracle.com
http://go.oracle.com/oraclecoderoadshow

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

06

//from the editor /

are hundreds of megabytes),

there is an emerging trend to

deliver applications as complete

containerized software packages

in which the runtime is bundled.

This derives in part from mobile

and, especially, from the cloud

paradigm, where microservices

and applications are delivered in

Docker containers. (The irst two
feature articles in this issue dis-

cuss how to do this very thing.)

The evolution of the front and

back ends of the desktop meta-

phor as well as the PC’s long-term

decline have led to reconsideration

of the role of JavaFX and other

desktop-based technologies in the

Java ecosystem.

In early March, Oracle

announced that JavaFX would

be unbundled from the JDK and
JRE as of Java 11, which is slated

to ship in September. JavaFX is

already open source, but by split-

ting it of from the JDK, Oracle
enables evolution of the tools and

library separately from core Java.

This is likely to be good news for

interested parties, especially in

Europe, where JavaFX has a par-

ticularly dedicated following.

Several pundits and analysts

have wondered whether this

move means Oracle is pulling

back its commitment to JavaFX.

I should point to an announce-

ment made at a conclave of Java

Champions just prior to the 2016

JavaOne conference, in which

Oracle executives stated that

they view the future of the UI

to be based on web technolo-

gies, scripted with JavaScript. So,

while I don’t speak for Oracle, it’s

clear that it believes the future of

the UI does not run through the

desktop metaphor.

To this end, Oracle also

announced that Java Web Start

and Java applets would be slowly

phased out. The discontinua-

tion of applets was previously

announced, but now we know the

timeline, as we do for Java Web

Start: they’ll both be supported

in Java SE 8 through March

2025. However, Java Web Start

will not be included in Java 11 or

later releases.

While JavaFX will be spun

of, the underlying graphical
subsystem consisting of AWT and

Swing will continue to be part

of the JDK for the foreseeable
future, and they’ll be supported

far into the next decade.

The megatrend that is

squeezing the desktop has had an

unfortunate consequence, which

is the diminution of rich applica-

tion frameworks. While JavaFX

survives and will likely advance

in its new separated status, the

disappearance of other frame-

works and toolkits, such as Adobe

Flash, Microsoft Silverlight, and

Mozilla Prism, point to a future

of lessened competition for excel-

lence in advanced UI presenta-

tion. In this sense, I am heart-

ened that we still have JavaFX,

with its rich media, multimedia,

and 3D graphics, but I wish it
were not so lonely in its mission.

Andrew Binstock, Editor in Chief

javamag_us@oracle.com

@platypusguy

#developersrule

developer.oracle.com

Get your free trial:

developer.oracle.com

Experience modern,

open cloud development

with a free trial to Oracle

Cloud platform and

infrastructure services.

Get a Free
Trial to
Oracle Cloud

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oracle.com/technetwork/java/javase/javaclientroadmapupdate2018mar-4414431.pdf
mailto:javamag_us%40oracle.com?subject=
https://twitter.com/platypusguy
http://developer.oracle.com
http://developer.oracle.com

Written by leading experts in Java, Oracle Press books offer the most

definitive, complete, and up-to-date coverage of Java available.

www.OraclePressBooks.com • @OraclePressAvailable in print and eBook formats.

Your Destination for Oracle and Java Expertise

Java: A Beginner’s Guide,

 7th Edition

Herb Schildt

Revised to cover Java SE 9,

this book gets you started

programming in Java right away.

Java: The Complete

Reference,

10th Edition

Herb Schildt

Updated for Java SE 9, this book

shows how to develop, compile,

debug, and run Java programs.

OCA Java SE 8

Programmer I Exam Guide

(Exam 1Z0-808)

Kathy Sierra, Bert Bates

Get complete coverage of all

objectives for Exam 1Z0-808.

Electronic practice exam

questions are included.

Rapid Modernization

of Java

Applications

G. Venkat

Adopt a high-performance

enterprise Java application

modernization strategy.

http://www.oraclepressbooks.com

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

08

I can inally review the long-

anticipated third edition of the
classic book Efective Java, by
Joshua Bloch. Its release at the end
of 2017 brought the book’s con-
tent up to date with Java 9. Given
that the previous edition covered
only through Java 6, you can see
how long this edition has been
anticipated by Efective Java’s many
fans—fans who justiiably appreci-
ate the clear and elegant execution
of the book’s central promise: a
discussion of best practices in Java
programming. Bloch presents these
practices through a series of 90
short essays (up from 78 in the pre-
vious edition), each of which elabo-
rates a useful recommendation. For
example, here are some of the best
practices added in this volume:

■■ Prefer method references to
lambdas

■■ Prefer Collection to Stream as a
return type

■■ Use Streams judiciously
As you can see, these recommenda-
tions are true best practices. That

is, they are not intended as tutorials
on the language, but rather as good
things to do once you’ve learned
the language and are using it daily.
The irst example on the list above
will likely elicit from some readers
a “Huh, I never thought about that”
response. And that is precisely
what gained this book praise and
attention in its original release—
the many recommendations that
readers simply had not considered,
or if they’d considered them, had
not explored fully.

Other recommendations such
as “Use Streams judiciously” seem
banal in their formulation. “Use x
judiciously” is always good advice,
so what makes this suggestion
important? Bloch’s eight-page
explanation details how Streams
should be used. His principal the-
sis is that Streams provide little
beneit if they don’t implement
a functional-style operation. To
facilitate this, Bloch dives into
the Collectors API and explains
its tight relationship with opera-

tions for which many developers
misuse Streams. The explanation
contains examples of badly used
Streams and the correct use. In the
process, you learn a lot about how
Streams and Collectors operate, the
intended use of Streams, and how
to apply that knowledge to write
better and clearer code. Not bad for
eight pages!

The recommendations stretch
across many topics, from tricky
topics such as the Serializable
interface, to the more mundane,
such as when to omit accessors on
data-only classes.

The book is supremely read-
able: the style is concise and
clear, and the code examples are
short and to the point. As a result,
Efective Java is a pleasant volume
to read through from beginning to
end—learning to reine your cod-
ing skills as you go. It is one of
the very few books I recommend
without reservation to all Java pro-
grammers who are past the begin-
ner stage. —Andrew Binstock

//java books /

EFFECTIVE JAVA, THIRD EDITION
By Joshua Bloch

http://www.oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.safaribooksonline.com/library/view/effective-java-third/9780134686097/

09

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

//events /

PHOTOGRAPH BY FRANCISCO ANZOLA/FLICKR

JEEConf

MAY 18–19
KIEV, UKRAINE
JEEConf, the largest Java conference in Eastern Europe, focuses on prac-

tical experience and development. Topics include modern approaches for

developing distributed, highly loaded, scalable enterprise systems with

Java and innovations and new directions in application development

using Java.

JAX DevOps

APRIL 9 AND 12, WORKSHOPS
APRIL 10–11, CONFERENCE
LONDON, ENGLAND
This event for software experts

highlights the latest technologies

and methodologies for accelerated

delivery cycles, faster changes

in functionality, and increased

quality in delivery. More than 60

workshops, sessions, and key-

notes will be led by international

speakers and industry experts.

There’s also a two-in-one confer-

ence package that provides free

access to a parallel conference,

JAX Finance.

JAX Finance

APRIL 9–12
LONDON, ENGLAND
JAX Finance is a Java event

focused on core Java and the spe-

ciic technological needs of the
inancial industry, including low
latency, messaging, and exchange

architecture.

React Amsterdam

APRIL 13
AMSTERDAM, THE NETHERLANDS
This event draws front-end and

full-stack developers from across

the globe to discuss the React

JavaScript library for building

user interfaces.

Devoxx France

APRIL 18–20
PARIS, FRANCE
Devoxx France ofers more than
220 presentations on topics

including Java, alternative JVM

languages, web programming,

and architecture.

JAX

APRIL 23 AND 27, WORKSHOPS
APRIL 23–26, CONFERENCE
MAINZ, GERMANY
This German developer confer-

ence focuses on Java, architecture,

and software innovation. Topics

this year include microservices,

Spring Framework 5, JDK 10, and

property-based testing.

Voxxed Days Melbourne

MAY 2–3
MELBOURNE, AUSTRALIA
Voxxed Days is heading down

under to Melbourne, Australia.

The event will feature insights

into cloud, containers and infra-

structure, real-world architec-

tures, data and machine learning,

the modern web, and program-

ming languages.

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
http://jeeconf.com
https://devops.jaxlondon.com
https://www.eventbrite.co.uk/e/jax-finance-2018-tickets-33892443210?aff=es2
https://react.amsterdam
https://www.devoxx.fr/what-is-devoxx-france
https://jax.de/program-en/
https://voxxeddays.com/melbourne/

10

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

//events /

Java Day Istanbul

MAY 5
ISTANBUL, TURKEY
Java Day Istanbul is a one-day

conference that includes 36 ses-

sions presented in three par-

allel tracks, covering Java 9

through Java 11, DevOps, big data,

microservices, and more.

Devoxx UK

MAY 9, WORKSHOPS
MAY 10–11, CONFERENCE
LONDON, ENGLAND
Devoxx UK is a Java-focused

technology conference by devel-

opers, for developers. Topics

include functional languages,

Java SE, JDK, Ansible, Kubernetes,

Istio, PaaS, serverless architec-

ture, Java EE, EE4J, Spring, neu-

ral networks, TensorFlow, and

encryption.

GeeCon

MAY 9–11
KRAKÓW, POLAND
The 10th anniversary of this con-

ference gathers more than 1,000

participants and more than 75

speakers to discuss Java and JVM-

based technologies, dynamic lan-

guages, enterprise architectures,

patterns, distributed computing,

software craftsmanship, mobile,

and more.

PHOTOGRAPH BY NOWICIEL/FLICKR

Gluecon

MAY 16–17
BROOMFIELD, COLORADO
Gluecon is a developer-oriented

conference focused on cutting-

edge tools and platforms. Topics

include serverless architectures,

containers, microservices, APIs,

DevOps, mobile, analytics, per-

formance monitoring, and block-

chain applications.

WeAreDevelopers World Congress

MAY 16–18
VIENNA, AUSTRIA
Billed as the largest devel-

oper congress in Europe,

WeAreDevelopers expects more

than 8,000 participants and more

than 150 speakers for keynotes,

panel discussions, workshops,

hackathons, contests, and exhibi-

tions. The program covers talks

and sessions on front-end and

back-end development, artiicial
intelligence, robotics, blockchain,

security, and more.

J On The Beach

MAY 23–25
MÁLAGA, SPAIN
J On The Beach (JOTB) is an inter-

national workshop and conference

event for developers interested in

big data, JVM and .NET technolo-

gies, embedded and IoT develop-

ment, functional programming,

and data visualization.

Spring I/O

MAY 24–25
BARCELONA, SPAIN
Spring I/O focuses on the Spring

Framework ecosystem and is the

largest Spring-based conference

held in Europe.

jPrime

MAY 29–30
SOFIA, BULGARIA
jPrime will feature two days of

talks on Java, JVM languages,

mobile and web programming,

and best practices. The event is

run by the Bulgarian Java User

Group and provides opportunities

for hacking and networking.

Riga Dev Days

MAY 29–31
RIGA, LATVIA
The biggest tech conference in

the Baltic States covers Java, .NET,

DevOps, cloud, software architec-

ture, and emerging technologies.

This year, Java Champion Simon

Ritter is scheduled to speak.

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
https://javaday.istanbul/
https://www.devoxx.co.uk
https://2018.geecon.org
http://gluecon.com
https://www.wearedevelopers.com/congress/
https://www.jonthebeach.com
https://2018.springio.net
https://jprime.io/
https://jprime.io/
https://rigadevdays.lv

11

//events /

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

O’Reilly Fluent

JUNE 11–12, TRAINING
JUNE 12–14, TUTORIALS
AND CONFERENCE
SAN JOSE, CALIFORNIA
The O’Reilly Fluent conference

is devoted to practical train-

ing for building sites and apps

for the modern web. This event

is designed to appeal to applica-

tion, web, mobile, and interactive

developers, as well as engineers,

architects, and UI/UX designers. It

will be collocated with O’Reilly’s

Velocity conference for system

engineers, application developers,

and DevOps professionals.

EclipseCon France

JUNE 13–14
TOULOUSE, FRANCE
EclipseCon France is the Eclipse

Foundation’s event for the entire

European Eclipse community. The

conference program includes tech-

nical sessions on current topics

pertinent to developer communi-

ties, such as modeling, embedded

systems, data analytics and data

science, IoT, DevOps, and more.

The Eclipse Foundation supports

a community for individuals and

organizations who wish to col-

laborate on commercially friendly

open source software, and recently

was given control of development

technologies and project gov-

ernance for Java EE. EclipseCon

France attendance qualiies for
French training credits.

QCon

JUNE 25–26, WORKSHOPS
JUNE 27–29, CONFERENCE
NEW YORK, NEW YORK
Although the content has not yet

been announced, QCon confer-

ences typically ofer several Java
tracks along with tracks related to

web development, DevOps, cloud

computing, and more.

OSCON

JULY 16–17, TRAINING AND TUTORIALS
JULY 18–19, CONFERENCE
PORTLAND, OREGON
Groundbreaking open source proj-

ects, from blockchain to machine

learning frameworks, will be the

focus of the 20th annual OSCON

event. Live coding, emerging lan-

guages, evolutionary architecture,

and edge computing are among

the topics this year.

JCrete

JULY 22–28
KOLYMBARI, GREECE
This loosely structured “uncon-

ference” involves morning ses-

sions discussing all things Java,

combined with afternoons spent

Oracle Code Events
Oracle Code is a free event for devel-
opers to learn about the latest pro-
gramming technologies, practices,
and trends. Learn from technical
experts, industry leaders, and other
developers in keynotes, sessions, and
hands-on labs. Experience cloud development technology
in the Code Lounge with workshops as well as other live,
interactive experiences and demos.

APRIL 4, Hyderabad, India

APRIL 10, Bengaluru, India

APRIL 17, Boston,
Massachusetts

APRIL 24, Bogotá, Colombia

MAY 8, Shenzhen, China

MAY 11, Warsaw, Poland

MAY 15, Buenos Aires, Argentina

MAY 17, Singapore

MAY 30, London, England

socializing, touring, and enjoy-

ing the local scene. There is also a

JCrete4Kids component for intro-

ducing youngsters to program-

ming and Java. Attendees often

bring their families.

Java Forum Nord

SEPTEMBER 13
HANNOVER, GERMANY
Java Forum Nord is a one-day,

noncommercial conference

in northern Germany for Java

developers and decision mak-

ers. With more than 25 presen-

tations in parallel tracks and a

diverse program, the event also

provides interesting networking

opportunities.

jDays

SEPTEMBER 24–25
GOTHENBURG, SWEDEN
jDays brings together software

engineers from around the world

to share their experiences in dif-

ferent areas such as Java, software

engineering, IoT, digital trends,

testing, agile methodologies,

and security.

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
https://conferences.oreilly.com/fluent/fl-ca
https://www.eclipsecon.org/france2018/
https://qconnewyork.com
https://conferences.oreilly.com/oscon/oscon-or
http://www.jcrete.org/
https://developer.oracle.com/code
http://www.java-forum-nord.de
http://www.jdays.se

12

//events /

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

Strange Loop

SEPTEMBER 26–28
ST. LOUIS, MISSOURI
Strange Loop is a multi disciplinary

conference that brings together

the developers and thinkers

building tomorrow’s technology in

ields such as emerging languages,
alternative databases, concur-

rency, distributed systems, and

security. Talks are generally code-

heavy and not process-oriented.

JavaOne

OCTOBER 22–25
SAN FRANCISCO, CALIFORNIA
Whether you are a seasoned

coder or a new Java programmer,

JavaOne is the ultimate source of

technical information and learn-

ing about Java. For ive days, the
world’s largest collection of Java

developers gather to talk about

all aspects of Java and JVM lan-

guages, development tools, and

trends in programming. Tutorials

on numerous related Java and JVM

topics are ofered.

Devoxx Belgium 2018

NOVEMBER 12–16
ANTWERP, BELGIUM
The largest Java developer confer-

ence in Europe takes place again

in Antwerp, Belgium, with mul-

tiple tracks covering everything

from Java, to the mechanics of the

JVM, to JVM language. The event

is held in a multiplex theater with

code and slides shown on giant

movie screens.

Topconf Tallinn

NOVEMBER 20–22
TALLINN, ESTONIA
Topconf Tallinn is an international

software conference covering Java,

open source, agile development,

architecture, and new languages.

Are you hosting an upcoming

Java conference that you would

like to see included in this calen-

dar? Please send us a link

and a description of your event

at least 90 days in advance at

javamag_us@oracle.com. Other

ways to reach us appear on the

last page of this issue.

//user groups /

THE POLISH JUG
The Polish Java User Group,

founded in December 1999,

is Poland’s irst JUG. It was
started by Adrian Nowak

and hosted Poland’s irst
Java conference in November

2000, which set the tone for

the huge popularity of the

platform and language in

the country.

Currently, PJUG is asso-

ciated primarily with Kraków, Poland’s second-largest city;

many other Polish cities have since started their own JUGs—

often via the direct involvement of prominent PJUG members.

PJUG has also grown over the years and through its activi-

ties and events, with more than 2,300 developers now part of

its meetup.

Since its inception, PJUG has been constantly active in the

Java community, organizing meetups, hackathons, and the

annual GeeCON conference (in friendly collaboration with the

Poznań JUG). GeeCON is celebrating its 10th anniversary edi-
tion this year, so if you’re not a GeeCON geek already, check out

the conference site.

PJUG also organizes GeeCON 4 Kids with Kraków’s Hacker-

space and hosts developer events with JUGs from other cities.

It cofounded the local Google Developers Group and regu-

larly collaborates with the Kraków Ruby User Group, Software

Craftsmanship Kraków, and Kraków Scala. PJUG experiments

with meeting formats, and for some time it has been running a

small conference every month, working with Kraków’s univer-

sities and local companies.

To learn more about PJUG, visit its website or oicial meetup

page, where you’ll also ind photos and coverage of past events.

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
https://www.thestrangeloop.com/about.html
https://www.oracle.com/javaone/index.html
https://devoxx.be/
https://www.topconf.com/conference/topconf-tallinn-2018
mailto:javamag_us%40oracle.com?subject=
http://2018.geecon.org
https://java.pl/
http://meetup.java.pl/
http://meetup.java.pl/

https://www.devoxx.com/
https://www.voxxeddays.com/

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

14

//microservices and containers /

A
pplication development is continually in the process of moving to new paradigms,

either at a high level (mainframe, PC, server, web, mobile, cloud) or a low level,

such as the endless succession of web frameworks. While the higher-level trends

endure, it’s not always easy to gauge what will survive among the lower-level

technologies. In this issue, we examine the high-level trend, containers, and their

low-level use, running microservices.

Containers are the natural evolution of virtual machines and will surely endure long-term.

The natural it between containers and the cloud drives the popularity of both technologies.

Microservices could well evolve quickly into something else. The beneits of loosely coupled

services are balanced by the complexity of coding, testing, debugging, and

deploying them. As the trade-ofs are better understood and computing

needs evolve, microservices could well morph into a reined version of cur-

rent models—that are still likely to be housed in containers on the cloud.

We start by showing how to develop a microservice and deploy it in Docker

containers (page 15). We then examine the DevOps pipeline for containerized

apps (page 32). We compare and combine Java modules and OSGi as intra-

application containers (page 42), and inally, we look at Wookiee (page 53), a

framework that eliminates a lot of the grunt work in developing microservices.

In addition, we examine what’s new in Groovy 3.0 (page 61), continue

our series on the mechanics of the JVM (page 73), and look at building an

API using Spring (page 81). Enjoy!

The New Way to Build
and Ship Software

CREATING MICROSERVICES

WITH PAYARA MICRO 15

DEVOPS WITH CONTAINER-

BASED DELIVERY PIPELINES 32

WORKING WITH OSGi AND

JAVA 9 MODULES 42

WOOKIEE:

REDUCING MICROSERVICE

CONFIGURATION 53

ART BY WES ROWELL

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

15

//microservices and containers /

M
icroservices have become a very trendy architecture over the past few years. Because the

HTML5, JSON, and RESTful web service technologies have matured, they’ve made it easier

to construct applications as small, simple services that communicate with one another to per-

form a speciic task. When orchestrated with other services, they come together to create pow-

erful, decoupled applications.

A design that uses these services together can work well in a single application server

environment. However, to truly separate each service from the others, the services need to

stand alone within separate application server containers. Payara Micro provides a fully func-

tional Java application server container at a fraction of the size of a standard application server

container—a mere 70 MB. In addition, Payara Micro provides several diferent ways to deploy

applications and services, from standard WAR ile deployment to executable JAR packaging.

This article covers deployment of microservices from the ground up using Payara Micro.

In it, I demonstrate how to get started with Payara Micro by deploying a simple service. I then

explain how to create an “Uber JAR” (a JAR ile with the JAR you’ve created plus all its depen-

dencies) and how to deploy to Docker containers. Lastly, I’ll cover some custom coniguration

options for Payara Micro.

The Payara Micro server is compatible with the Java EE MicroProile, which was described

in detail in the November/December 2017 issue of this magazine. Payara Micro provides a more

optimized set of APIs for targeting enterprise Java microservices, and it ofers portability across

multiple MicroProile runtimes. The following APIs are currently supported in Payara Micro:

Bean Validation, Contexts and Dependency Injection (CDI), Concurrency, EJB Lite, JAX-RS, JBatch,

Creating Microservices
with Payara Micro
How to build small, lightweight services with Java EE

JOSH JUNEAU

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.javamagazine.mozaicreader.com/NovDec2017#&pageSet=56&page=0

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

16

//microservices and containers /

JCache, Java Persistence API (JPA), Java Transaction API (JTA), JavaServer Faces (JSF), Servlets

(with JSP Standard Tag Library [JSTL], Expression Language [EL], and JSP), and WebSocket.

Getting Started with Payara Micro

To get started with Payara Micro, download the latest distribution from the Payara website. The

download comes in the form of an executable JAR ile. Once the JAR ile has been downloaded,

it can be executed using a locally installed Java runtime. In this case, I am using Payara Micro

4.1.2.174, so I can start an instance of the server by executing the following from the command

line or terminal:

java -jar payara-micro-4.1.2.174.jar

As the server is started, output will be generated; once the startup is complete, a message will

be displayed to indicate that. Also displayed should be a host, the host port(s), and the HTTPS

port(s). These can be used to determine the URL that should be typed into the browser in order

to access the server. In most cases, the URL http://localhost:8080 can be used to access the

Payara Micro instance. Note that if any applications have been deployed to the instance, a sec-

tion of output denoted by “Payara Micro URLs” should contain the URLs for accessing those

applications. To stop the instance, simply press CTRL+C together.

At this point, Payara Micro has been started, and it can be used as a simple Java EE appli-

cation server container by deploying services upon instantiation, which I’ll cover next. There is

no web-facing administration console per se, but several coniguration options can be speciied

in the terminal to customize the coniguration of an instance. Other conigurations, such as

database access, can be done within the web applications themselves, leaving very little con-

iguration required for the instance.

Developing and Deploying a Simple Service

In this section, I walk through the development of a very basic web service that can be deployed

to Payara Micro. Services such as these are typically deployed along with other services and

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.payara.fish/payara_micro

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

17

//microservices and containers /

work together to power an over-

arching application. In this example,

I utilize very few APIs, because one

of the keys to developing successful

microservices is to minimize depen-

dencies and the overall footprint.

Thus, this is indeed a simplistic Java EE application, and from this point forward I will refer to

this application as a service. This particular service will be used to query a database table and

serve the results in XML or JSON format.

To begin, create a new Maven web project using an IDE. My IDE of choice is Apache

NetBeans, but there are many other ine choices for Java EE development. I named the service

EmployeeService, because it will be used to serve employee database records. First, I conig-

ure the Maven POM ile. The entire project code can be found on GitHub. If you prefer, you can

download just the source iles for this article from the Java Magazine download area.

This particular service will connect to an Apache Derby database, so that dependency has

been included, and the database driver will be registered with the Payara Micro instance from

within the service coniguration. That dependency is shown in this fragment from Listing 1:

Listing 1.

...

<dependencies>

 ...

 <dependency>

 <groupId>org.apache.derby</groupId>

 <artifactId>derbyclient</artifactId>

 <version>10.14.1.0</version>

 </dependency>

</dependencies>

...

A true microservice should be self-contained,
meaning the application server container is packaged
with the service in a portable manner.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/juneau001/PayaraMicro/tree/master/EmployeeService
http://bit.ly/2FCKiI8

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

18

//microservices and containers /

Then I choose a database schema to use for the application, create the database objects, and load

records with the SQL code in Listing 2. [This listing is not shown here, but it is available in the

download area or on GitHub. —Ed.]

The web.xml ile should contain the database coniguration, as shown in Listing 3.

Listing 3.

<?xml version="1.0" encoding="UTF-8"?>

 <web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

 http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd"

 version="3.1">

 <session-config>

 <session-timeout>30</session-timeout>

 </session-config>

 <data-source>

 <name>java:global/DerbyDataSource</name>

 <class-name>

 org.apache.derby.jdbc.ClientDriver

 </class-name>

 <server-name>localhost</server-name>

 <port-number>1527</port-number>

 <url>jdbc:derby://localhost:1527/acme</url>

 <user>acmeuser</user>

 <password>yourpassword</password>

 </data-source>

</web-app>

Because the service utilizes JPA, an entity class needs to be created to map to the EMPLOYEE

database table. Create the package org.employeeservice.entity and then create a class named

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://bit.ly/2FCKiI8

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

19

//microservices and containers /

Employee. The code in Listing 4 contains abbreviated source code for the Employee entity.

Listing 4.

@Entity

@Table(name = "ACME_EMPLOYEE")

@XmlRootElement

@NamedQueries({

 ...)})

public class AcmeEmployee implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id

 @Basic(optional = false)

 @NotNull

 @Column(name = "ID")

 private Integer id;

 @Size(max = 50)

 @Column(name = "FIRST_NAME")

 private String firstName;

 @Size(max = 50)

 @Column(name = "LAST_NAME")

 private String lastName;

 @Column(name = "START_DATE")

 @Temporal(TemporalType.DATE)

 private Date startDate;

 @Column(name = "AGE")

 private Integer age;

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

20

//microservices and containers /

 @Column(name = "JOB_ID")

 private Integer jobId;

 @Size(max = 20)

 @Column(name = "STATUS")

 private String status;

 public AcmeEmployee() {

 }

 // Getters and Setters

}

Now, create an ApplicationConfig class inside of the org.employeeservice package and place the

REST coniguration from Listing 5 into it. This class bootstraps JAX-RS by setting up an appli-

cation path of rest, meaning that RESTful web services will be invoked if a URL contains the

path /rest/. The class also makes JAX-RS resource classes available for use by the application by

returning them via the getClasses() method.

Listing 5.

import java.util.Set;

import javax.ws.rs.core.Application;

@javax.ws.rs.ApplicationPath("rest")

public class ApplicationConfig extends Application {

 @Override

 public Set<Class<?>> getClasses() {

 Set<Class<?>> resources = new java.util.HashSet<>();

 resources.add(

 org.employeeservice.AcmeEmployeeFacadeREST.class

);

 return resources;

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

21

//microservices and containers /

 }

}

Create another class in the same package named AcmeEmployeeFacadeREST, and add the source code

in Listing 6. AcmeEmployeeFacadeREST contains RESTful web service methods. The @Path annota-

tion makes the services contained within this class available via the path /rest/acmeemployee/.

Listing 6.

@Stateless

@Path("acmeemployee")

public class AcmeEmployeeFacadeREST {

 @PersistenceContext(unitName = "EmployeeService_1.0PU")

 private EntityManager em;

 public AcmeEmployeeFacadeREST() {

 }

 @GET

 @Produces({MediaType.APPLICATION_XML, MediaType.APPLICATION_JSON})

 public List<AcmeEmployee> findAll() {

 List<AcmeEmployee> employeeList = null;

 try {

 employeeList =

 em.createQuery("select object(o) from AcmeEmployee o")

 .getResultList();

 } catch (NoResultException e){

 }

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

22

//microservices and containers /

 return employeeList;

 }

}

The inal piece of the puzzle is the persistence.xml ile, which should be placed into the

resources/META-INF folder of the project. I’ve shown it in Listing 7. This coniguration ile makes

the database available to the application. In this case, the data source is pointing to an Apache

Derby database.

Listing 7.

<persistence-unit name="EmployeeService_1.0PU" transaction-type="JTA">

 <jta-data-source>

 java:global/DerbyDataSource

 </jta-data-source>

 <exclude-unlisted-classes>

 false

 </exclude-unlisted-classes>

 <properties/>

</persistence-unit>

That’s all there is to the service, and it can now be deployed and tested. Payara Micro pro-

vides the ability to deploy the service via the command line. To begin, compile the project into

a WAR ile. I’ll refer to the compiled ile as EmployeeService-1.0.war. At this point, the service

can be deployed to Payara Micro at startup by traversing to the same directory that contains the

EmployeeService-1.0.war ile and starting up the server, specifying the --deploy option as follows:

java -jar payara-micro-4.1.2.174.jar

 --deploy EmployeeService-1.0.war

Once started, the service should be available here:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

23

//microservices and containers /

http://localhost:8080/EmployeeService-1.0/rest/acmeemployee

If the URL is entered into the browser, the RESTful web service method containing a @GET anno-

tation and no speciied @Path will be invoked by default.

Deployment Options

More than one service can be deployed by passing the --deploy option as many times as needed

to accommodate the number of services being deployed, for example:

java -jar payara-micro-4.1.2.174.jar

 --deploy Service-1.war

 --deploy Service-2.war

It might be beneicial to deploy an exploded WAR ile at times, and it is possible to do that by

specifying the root directory path of the WAR ile in the --deploy option. In this situation, a ile

named .reload can be placed into the exploded WAR ile’s root directory, and the time stamp of

the ile can be updated to cause a redeployment to occur.

To deploy multiple instances of Payara Micro on a single machine, simply pass the

--port option and specify a diferent port number for each instance. For example, to deploy

the EmployeeService to multiple instances on the same host, deploy the service as out-

lined in the previous section for the initial deployment, and add the --port option for each

subsequent deployment:

java -jar payara-micro-4.1.2.174.jar

 --deploy EmployeeService-1.0.war

 --port 8082

If a service or application has been added to a Maven repository, it can be deployed directly

from there. This can be done by specifying the --deployFromGAV option and listing the Maven

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

24

//microservices and containers /

repository contained within double quotes. If there is more than one repository, separate them

with commas:

java -jar payara-micro-4.1.2.174.jar

 --deployFromGAV "my-repository, EmployeeService-1.0"

By default, when more than one instance is started on the same machine, the instances are

clustered via Hazelcast. Clustering means that the session data will be replicated between the

two instances. Hazelcast is an in-memory data grid, which Payara uses to implement caching.

The output will display a list of the members that have been clustered together:

Members [2] {

 Member [192.168.1.32]:5900 –9f8c400c-...-9af203bbeec9

 Member [192.168.1.32]:5901 –32b2bb1f-...-88eb47273d5b this

}

[The output was truncated to it. —Ed.] To see a full list of Payara Micro options, specify the

--help option when executing the Payara Micro JAR ile.

Java EE Application as an Executable JAR

A true microservice should be self-contained, meaning the application server container is pack-

aged with the service in a portable manner. One such way to package a microservice is to create

an executable JAR ile that can be ported across environments, as needed. Payara Micro enables

you to create such an Uber JAR by simply specifying the option --outputUberJar when executing

the Payara Micro JAR, as follows:

java -jar payara-micro-4.1.2.174.jar

 --deploy EmployeeService-1.0.war

 --outputUberJar EmployeeService.jar

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

25

//microservices and containers /

Executing this command will package the applica-

tion with an instance of Payara Micro. This com-

mand does not run the service, but it packages it

into a JAR ile such that it can be executed via the

java -jar command. As such, the resulting JAR ile

is now a portable, executable instance of the service.

The resulting EmployeeService.jar ile can then be

executed by running this command:

java -jar EmployeeService.jar

The Payara Micro instance will then start up, and the application will be deployed to the Payara

Micro instance. The application will then be available on port 8080 by default. To change the

default port number, there are several options. The irst way is to specify the --port conigu-

ration option, along with any of the other Payara Micro coniguration options, when you build

the Uber JAR. The second way is to specify the --port option when you execute the Payara

Micro JAR ile, because all of the standard Payara Micro options can be speciied at JAR startup.

To package more than one service with a container, simply specify the --deploy option mul-

tiple times, once for each service, when you create the Uber JAR:

java -jar payara-micro-4.1.2.174.jar

 --deploy Service-1.war

 --deploy Service-2.war

 --outputUberJar EmployeeService.jar

The deployment of multiple WAR iles in a single JAR is the ideal way to package a small appli-

cation made of multiple services. An Uber JAR can also be created via Maven by using the exec

plugin in the package phase. This would be useful for automatically creating a Payara Micro

Uber JAR when you build an application within an IDE.

More than one service can be
deployed by passing the --deploy
option as many times as needed to
accommodate the number of services
being deployed.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

26

//microservices and containers /

Deploying to Docker Containers

Docker plays an important role in the microservices universe, because it allows you to encapsu-

late an entire environment inside a portable container. Using this ability with Payara Micro, it is

possible to create portable, self-contained microservices at a fraction of the size of Docker con-

tainers that contain full-sized application server containers.

Docker is far too broad a topic to cover in this article; to learn more about this, please see

one of the many tutorials online. In this section, I will briely demonstrate how to deploy a

Payara Micro container and service to Docker.

One of the most useful ways to deploy Payara Micro containers to Docker images is to uti-

lize a Dockerile. Because a Dockerile enables a step-by-step build of an image, it is possible

to reuse instructions from an existing image to obtain an operating system and Payara Micro

instance, then specify any additional libraries, and inally perform the WAR deployment(s).

Listing 8 shows the Dockerile for this example, which I will explain in detail.

Listing 8.

Using the Payara Micro 5 snapshot build.

FROM payara/micro:5-SNAPSHOT

Maintainer of the Image

MAINTAINER Josh Juneau "myemail@mycompany.com"

Downloads the Apache Derby Client library

RUN wget -O

 /opt/payara/deployments/database-connector.jar

 http://central.maven.org/maven2/org/apache/

 derby/derbyclient/10.14.1.0/derbyclient-10.14.1.0.jar

Sets database connection environment variables

ENV DOCKER_HOST docker.for.mac.localhost

ENV DB_NAME ACME

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

27

//microservices and containers /

ENV DB_USER acmeuser

ENV DB_PASSWORD yourpassword

Adds an application

COPY EmployeeService-1.0.war /opt/payara/deployments

Default command to execute

ENTRYPOINT ["java", "-jar",

 "/opt/payara/payara-micro.jar", "--addJars",

 "/opt/payara/deployments/database-connector.jar",

 "--deploy",

 "/opt/payara/deployments/EmployeeService-1.0.war"]

To begin writing a Dockerile, simply create a ile named Dockerfile with no extension within

a directory where you will place any required iles to be loaded. A Dockerile generally consists

of one or more instructions for building a Docker image. The irst instruction must be a FROM

instruction, specifying the base image from which to build. In this case, I am building from the

Payara Micro 5 base; so I use this:

FROM payara/micro:5-SNAPSHOT

Next, it is a good idea to indicate the maintainer of the ile using the MAINTAINER instruction.

The next instruction (RUN, in this example) obtains the Apache Derby JAR ile and copies it

into a JAR ile in the /opt/payara/ deployments directory of the image. Following that, a few

environment variables are speciied for connecting to the database in the host environment

using the conigurations that were placed within the web.xml ile. It is worth noting that this

Dockerile is set up for use on an Apple Mac running “Docker for Mac,” because the environ-

ment variable for the host machine is speciied for a Mac. If you are deploying to a diferent OS

host, modify the host IP address accordingly.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

28

//microservices and containers /

Along those lines, you should modify the web.xml data-source element shown in Listing 9 to

specify environment variables for the pertinent JDBC ields, rather than hardcoding them.

Listing 9.

<data-source>

 <name>java:global/DerbyDataSource</name>

 <class-name>

 org.apache.derby.jdbc.ClientDriver

 </class-name>

 <server-name>${ENV=DOCKER_HOST}</server-name>

 <port-number>1527</port-number>

 <url>

 jdbc:derby://${ENV=DOCKER_HOST}:1527/${ENV=DB_NAME}

 </url>

 <user>${ENV=DB_USER}</user>

 <password>${ENV=DB_PASSWORD}</password>

</data-source>

Returning to the Dockerile, there is a COPY instruction to copy the EmployeeService-1.0.war ile

to the image deployment directory. The inal step in the Dockerile is to start up the Payara

Micro instance, using an ENTRYPOINT instruction to deploy the service.

To create the image and start it up, irst build an image using the Dockerile by opening a ter-

minal, traversing to the directory containing the Dockerile, and issuing the following command:

docker build -t employeeservice:1.0 .

Note that there is a trailing dot, which tells Docker that the Dockerile is in the current direc-

tory. Once the image has been built, it can be started by issuing the following command:

docker run -d -p 8082:8080 --name employeeservice employeeservice:1.0

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

29

//microservices and containers /

This command runs the Docker image

with the name employeeservice and the tag

1.0. The -d option speciies that the image

should be run in detached mode, and the -p

option maps the container’s port 8080 to

the host port of 8082. The Docker images

that are currently built and ready to run can

be listed by using the docker images com-

mand, and the containers can be listed by using the docker ps command. To remove a Docker

container, issue the command docker rm <<containerId>>, and to remove a Docker image, issue

the command docker rmi <<imageId>>, where the commands within double arrowheads indicate

a dynamic variable.

The EmployeeService should be running in the Docker container after issuing the run

command. Therefore, it can be accessed by entering the following URL into the browser:

http://localhost:8082/EmployeeService-1.0/rest/acmeemployees. (Note: You must have an

Apache Derby database running on port 1527 of the local host if you are using the example ser-

vice for this article; otherwise, the startup of the JAR ile might throw errors.)

Health Checking

Introduced in Payara Micro 4.1.2.161, the HealthCheck API provides a self-monitoring capability

to automatically report issues or future problems so that they can be acted upon or prevented.

By default, the HealthCheck API is disabled, but it can be enabled programmatically by conig-

uring it within a separate application that is deployed to the Payara Micro instance along with

any other applications or services. Ideally, the coniguration application should be packaged as

a singleton EJB, which will start up upon deployment.

To enable HealthCheck, develop the coniguration application by creating a Maven web

application that includes the following dependency:

Introduced in Payara Micro 4.1.2.161, the
HealthCheck API provides a self-monitoring
capability to automatically report issues or future
problems so that they can be acted upon.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

30

//microservices and containers /

<dependency>

 <groupId>fish.payara.extras</groupId>

 <artifactId>payara-micro</artifactId>

 <version>4.1.2.174</version>

 <scope>provided</scope>

</dependency>

The PayaraMicroRuntime object can be used to perform the coniguration, and an instance

of it can be obtained by calling the PayaraMicro.getInstance().getRuntime(). Thus, the

PayaraMicroRuntime object can then be used to conigure options, such as how often to per-

form and log health checks to the system log, which metrics to monitor (memory, CPU, and

so on), and specifying logging levels. In this case, I wish to enable health checking. To do so, I

specify the following coniguration within the singleton EJB class:

final PayaraMicroRuntime pmRuntime =

 PayaraMicro.getInstance().getRuntime();

pmRuntime.run("healthcheck-configure",

 "--enabled=true", "--dynamic=true");

The sources shown in Listing 10 (available online) demonstrate what a simple Payara Micro

coniguration class may look like. In this case, the coniguration will be set up to enable health

checking and machine memory logging every 30 seconds. Simply including this class as the

sole class of a Maven web application will allow for external coniguration of a Payara Micro

instance. You can then deploy the coniguration WAR and subsequent WAR iles by invoking the

standard Payara Micro deployment sequence:

java -jar payara-micro-4.1.2.174.jar

 --deploy MicroConfig.war

 --deploy EmployeeService-1.0.war

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://bit.ly/2FCKiI8

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

31

//microservices and containers /

Note that the coniguration WAR is speciied irst in

this example. Doing so allows for coniguration to

take place prior to deployment of any applications

or services.

External Libraries

If external libraries are needed to execute services, the

--addJars option can be speciied, as of Payara Micro 5

as well as Payara Micro 4.1.2.173. To package one or

more JAR iles with a Payara Micro container, specify

one or more colon-separated JAR iles or directories

after the --addJars option. If a directory is speciied,

all JAR iles within that directory will be added. This

option can be combined with the --outputUberJar

option to package everything up into an Uber JAR.

Conclusion

Payara Micro packs a lot of power into a small pack-

age. By taking advantage of its versatility and ease of

use, you can develop powerful microservices that can

be deployed just about anywhere. </article>

Josh Juneau is a Java Champion, application developer,

system analyst, and database administrator. He writes regu-

larly for Java Magazine and the Oracle Technology Network

and is the author of several books on Java and Java EE pub-

lished by Apress. He was a member of the JCP Expert Group

for JSR 372 and JSR 378 and is a member of the NetBeans

Dream Team.

//java proposals of interest /

This proposal puts forth the idea of actually remov-

ing from Java SE and the JDK a variety of modules

associated with CORBA and Java EE. It should be noted

that in Java 9, these modules have been marked for
removal and require the --add-modules switch to run.

Per this JEP, when they are removed from Java SE and

the JDK, they will no longer be available even by use of

--add-modules.

CORBA, an acronym for Common Object Request
Broker Architecture, was in the 1990s and early 2000s
the principal way to locate and execute objects on
remote systems. Although CORBA is heavy as an archi-

tecture, CORBA implementations were performant and

widely adopted in some industries, particularly for real-

time applications. However, over the years, other tech-

nologies displaced it, and it is now so rarely used that it

no longer needs to be included as part of the standard

Java SE distribution. Once CORBA is removed from Java

SE, it will still be available in Java EE implementations,

such as Glassish, but it will not be maintained by the

Java SE team.

Among the Java EE packages marked for removal
from Java SE are javax.activity, a CORBA-related

package, as well as several packages such as java.xml
.ws.annotation and java.transaction, which exist
in Java EE and will no longer be duplicated in Java SE

(sometimes in slightly modiied form) nor maintained
by the Java SE team.

JEP 320: Remove CORBA
and Selected Java EE Modules
from Java SE

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://openjdk.java.net/jeps/320
https://github.com/javaee/glassfish-corba

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

32

//microservices and containers /

I
n this article, I examine how to implement DevOps using the widely used Jenkins tool, Docker

containers, and a cloud-hosted instance of Java EE. DevOps is a term invented in 2009 to

emphasize the cooperation of developers and operations personnel in building and deploying

applications. DevOps is often focused on shortening cycle time; that is, making it easier to push

out new product releases quickly.

How does DevOps relate to other disciplines? Continuous delivery is the capability to make

changes to a product available frequently, whereas continuous deployment refers to the process

of efectively bringing those changes to the end user. Continuous inspection and continuous inte-

gration are building blocks of continuous delivery. Continuous inspection emphasizes that high

quality is always mandatory. Continuous integration is the practice of checking in changes to a

version control system several times a day and ensuring that the code in version control can be

checked out anytime and builds successfully. Continuous delivery is the prerequisite for con-

tinuous deployment and, in turn, DevOps is the prerequisite for continuous delivery.

The Basic Use Case

Because my colleagues and I do not want to reinvent the wheel, we try to share good practices

and synergies on toolchains. So, centralized tools—above all, the automation engine Jenkins—

are the foundation of our DevOps initiative.

This means that from the moment we push a change to our version control system (in our

case, Git), the overall process of testing, packaging, containerization, staging, and promotion

DevOps with Container-Based
Delivery Pipelines
A real-world pipeline for automating delivery of a containerized Java EE app to the

cloud with a Jenkins-based toolchain

MICHAEL HÜTTERMANN

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://jenkins.io/
https://git-scm.com

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

33

//microservices and containers /

is automated with Jenkins. While one of the building

blocks of DevOps is automation, manual steps do not

conlict with DevOps, and they are often meaningful

and sometimes mandatory.

In this example, I deploy a Java EE web applica-

tion, running OpenJDK on Alpine Linux, bundled with

the widely used Apache Tomcat, and deployed to the

cloud. While this application could be deployed on many clouds, I’ve chosen to run it on Oracle

Cloud. As expected, I use Docker containers driven by a Dockerile.

Running the application displays the start page shown in Figure 1.

I organize the processing of the upcoming changes with pipelines, which I discuss next.

Pipelines to Workflows

On its way toward production, the code changes will go through diferent stages. Staging (also

called promotion) is the activity of consistently transferring a deined baseline of the software

with all its coniguration items from one stage to another. Software is staged over diferent

environments by coniguration, without rebuilding. A delivery pipeline is a set of stages together

with transition rules between those stages. From a DevOps perspective, a pipeline bridges mul-

tiple functions in organizations, above all development and operations.

A change typically waits to be pulled to a succeeding stage for further processing according to

the transition rules, which are aligned with deined requirements that must be met. These are the

quality gates. In bigger and more-complex setups, multiple pipelines form a worklow. Parts of the

worklow are glued together and run automatically, and other pipelines are triggered manually.

Figure 2 shows a typical worklow that maps a code change to a release build. The work-

low is made up of diferent pipelines with quality gates in between (the lock in the igure). The

approved change request enters the worklow (illustrated top left) and leaves the worklow by

delivering the change to the end user (bottom right). The code in the change is built continu-

ously, and the dev build promotes it to be a deined development version, a release candidate

Figure 1: The start page of the simple

application used in this article

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://openjdk.java.net/
https://github.com/docker-library/openjdk/blob/master/8-jre/alpine/Dockerfile
https://tomcat.apache.org
http://ora.cl/Nm3JP
http://ora.cl/Nm3JP
https://www.docker.com/
https://github.com/michaelhuettermann/sandbox/blob/master/all/src/main/resources/docker/alpine/Dockerfile

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

34

//microservices and containers /

(RC), and inally a general availability (GA) version. Major stakeholders include development

(Dev at the bottom of the irst three columns), a business representative (Business), or a soft-

ware coniguration management function (SCM). I discuss this scenario in more detail in the

following sections.

The irst stage is the developer workspace, where developers design, write, and test code

before checking the code changes into a version control system. After checking the code in,

downstream Jenkins pipelines are triggered. The continuous build of the second stage is just a

fast-running job to check whether the changes, together with the existing code, compile and

whether some basic unit tests run successfully. Continuous integration refers to these irst

two stages.

The next stage is the “dev build” for producing development versions. This stage takes

a meaningful set of commits and builds a working implementation of the product. It passes

through all the stages of build, veriication, and creation of a deliverable in a container.

In my case, this pipeline takes a Maven snapshot and derives a Maven-based release, pack-

ages the WAR ile, inspects the code (I use SonarQube for static code analysis), checks whether

Figure 2: The workflow pipelines that move a code change to a release build

Continuous
Build

Change request

Delivered changeDevDev Dev
SCM

Business Business

GA Build
Pipeline for

Dev Versions
RC Build

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.sonarsource.com/products/sonarqube/

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

35

//microservices and containers /

the generated WAR ile is deployable, packages the WAR ile into a Docker image, and checks

whether the Docker container can be run and, thus, start the web application. If so, it transfers

the WAR ile as well as the Docker image to my company’s binary repository manager, which

is hosted with JFrog Artifactory. Artifactory serves as a Docker registry to manage our Docker

images. The WAR ile and Docker image are placed in the repository on Artifactory, and I can

navigate from Jenkins to Artifactory and back for traceability.

Listing 1 shows a snippet from a pipeline script I wrote in Groovy that shows how to bring

binaries from Jenkins to JFrog Artifactory, while adding context information. See the Jenkins

pipeline for details.

Listing 1: Excerpt of a pipeline script to move Docker images to JFrog Artifactory and label them

with metadata

def artDocker =

 Artifactory.docker server:server, host: "tcp://127.0.0.1:1234"

artDocker.addProperty("eat", "pizza").addProperty("drink", "beer")

def dockerInfo =

 artDocker.push(

 "$ARTI3REGISTRY/michaelhuettermann/alpine-tomcat7:${version}",

 "docker-local")

buildInfo.append(dockerInfo)

server.publishBuildInfo(buildInfo)

In DevOps, left shifting and right shifting describe moving activities from the classic software

development approaches to earlier in the pipeline (left shift) or later in the pipeline (right shift).

In my case, the left shift means packaging production-ready containers early in the process,

and the right shift is putting Dockeriles and other coniguration items into version control as

part of the same baseline business application.

The Jenkins pipeline is set up with a Jenkins pipeline visualization and creation feature

called Jenkins Blue Ocean and its domain-speciic language (DSL). This strongly overlaps with

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://jfrog.com/artifactory/
https://github.com/michaelhuettermann/sandbox/blob/master/all/src/main/resources/jenkins/MyDeliveryPipeline/pipeline.groovy
https://jenkins.io/projects/blueocean/
https://jenkinsci.github.io/job-dsl-plugin/

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

36

//microservices and containers /

what is often called continuous integration. SonarQube is also triggered by DSL, and deining a

SonarQube-based quality gate is shown in Listing 2.

Listing 2: Quality gate as part of the SonarQube processing

timeout(time: 2, unit: ‘MINUTES’) {

 def qg = waitForQualityGate()

 if (qg.status != ‘OK’) {

 error "Pipeline aborted ... ${qg.status}"

 }

}

My pipeline also contains a test of the Docker image, before it is pushed to Artifactory. For that,

the Docker image is run, and the resulting Docker container makes available the bundled web

application—exactly the one I want to promote to production later. I can now utilize Selenium

to check whether the web application started correctly and has the expected behavior. I have

posted a visualization of the pipeline run online.

Now let’s move to the next step: deriving a release candidate (RC) for the artifacts that have

been created.

Release Candidate Pipeline

The next pipeline is the pipeline to create the release candidate. This is the last stage before

release, so here I am concerned with making sure the binaries are packaged, well-tested, and

containerized. This is done by cherry-picking an existing development version. Typically this is

the most recent version created in the previous pipeline, but often there are reasons to not take

that one—for instance, if a regression was introduced. (In other words, not every single dev ver-

sion must be promoted to be a release candidate.) On big or complex projects, at this stage you

often have multicomponent setups or framework development.

In this example, the RC pipeline promotes the WAR ile and the Docker images to dedicated

staging repositories in Artifactory. Context information is often added to the binaries as part

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.seleniumhq.org/
http://huettermann.net/oracle/pipelinedevversions.png

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

37

//microservices and containers /

of this stage—for example, ticket numbers or a new owner of the binary expressing changed

responsibilities. You can ind my Groovy script for this pipeline on GitHub.

General Availability Pipeline

The next stage in the overall worklow is the pipeline to derive general availability (GA) ver-

sions. Also, the idea is to promote the binaries, apply diferent quality gates, add context infor-

mation, and do further testing. In practice, this is often done by a software coniguration man-

agement team or release team. In my example, the original binaries are promoted again, this

time from JFrog Artifactory to JFrog Bintray.

This is an example of how to utilize a diferent Docker registry. I’ve included it to demon-

strate a heterogeneous setup. In practice, many platforms and tools are used, relecting difer-

ent functions, ownership, and responsibilities in the company. This example stresses that I use

JFrog Artifactory as the Docker registry for my release candidates and JFrog Bintray as the tool

that serves as a Docker registry for my general-availability binaries (see Figure 3, taken from my

Jenkins Blue Ocean worklow). The script for this pipeline, again in Groovy, is available online.

Once the Docker image is pushed to JFrog Bintray, consumers can apply native Docker com-

mands on those images, such as for pulling the Docker images for further usage. The consumer

in this example is Oracle Cloud, because I want to run and orchestrate containers in the cloud,

which I cover in the next section.

Figure 3: Pipeline for GA versions

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/michaelhuettermann/sandbox/blob/master/all/src/main/resources/jenkins/Project-RC-Build/pipeline.groovy
https://jfrog.com/bintray/
https://github.com/michaelhuettermann/sandbox/blob/master/all/src/main/resources/jenkins/Project-GA-Build/pipeline.groovy

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

38

//microservices and containers /

Provisioning Docker Containers in the Cloud

Docker is the de facto standard for moving applications from development to production in a

reliable way, because it enables you to ship isolated, well-deined services across boundaries,

such as from on-premises data centers to the cloud. In addition, Docker can be easily inte-

grated with coniguration management systems, such as Puppet (see my previous article). The

emerging computing model today, however, is not only about moving around Docker images

and containers, but about orchestrating containers (including making up solutions by group-

ing single containers, such as an application server and a load balancer), managing resources

(including hosts and network), providing lifecycle operations on a set of containers (including

“self-healing” by automatic restart upon failure), and using considerably more functionality

(including scaling; service discovery; and a full-ledged, well-documented API).

An easy-to-use platform for achieving this and hosting environments, including produc-

tion environments, is Oracle Cloud Infrastructure Container Service Classic. This platform-as-

a-service (PaaS) software is part of the Oracle Cloud ofering. Its foundation is manager nodes

and worker nodes. The former orchestrate the deployment of containers to the latter. Container

services run on hosts. Hosts are further organized into resource pools, which are a collection

of hosts on which to place the con-

tainers for a service. An Oracle Cloud

Infrastructure Container Service Classic

container service deines a Docker ser-

vice together with the necessary con-

iguration settings for running a Docker

image and its deployment rules. With the Oracle Cloud service, you can construct a command

to run a service with a graphical wizard or by using a plain-text ield for entering the Docker

command. The Oracle service internally uses a YAML coniguration, which can be edited as

well. Services can be linked together and started as a semantic group called a stack. The Oracle

Cloud Infrastructure Container Service Classic console provides many default services and

stacks, so getting started quickly is easy.

A good software solution should be decoupled
from the underlying platform.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.javamagazine.mozaicreader.com/JulyAug2015/Default/28/0/3227711#&pageSet=28&page=0
https://docs.oracle.com/en/cloud/iaas/container-cloud/index.html

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

39

//microservices and containers /

In this context, a service is a manageable, deployable unit on which cross-functional

teams can work across its lifecycle. A good software solution should be decoupled from the

underlying platform. That is the reason that using the Oracle Cloud service as a platform can

serve as the vehicle with which to manage and orchestrate all your Docker containers and

solutions composed with them.

In my scenario here, the packaged and tested Docker container is pushed as a GA version

to a Docker registry on JFrog Bintray. After deining this Docker registry inside Oracle Cloud

Infrastructure Container Service Classic, the Oracle service can easily pull images from there.

For demo purposes, I stop a possibly existing demo deployment, delete it, and delete the

corresponding services and Docker image in Oracle Cloud Infrastructure Container Service

Classic. It is easy to enhance the solution by just providing respective new versions and retiring

the running ones. Afterwards the pipeline can pull the image, in its new version; create a new

service; and deploy the service. Figure 4 shows the sequence of included stages (captured while

the image deletion is in progress).

Jenkins is the automation engine; it is not the Docker orchestrater. Thus, I use the Oracle

Cloud API to work on the respective goals. The sequence of stages is secured by Jenkins’ cre-

dentials handling and partly uses centralized scripts, managed as Jenkins shared libraries. The

calls to Oracle Cloud are done with curl, according to the deined API. The code snippet shown

in Listing 3 creates a new service on Oracle Cloud Infrastructure Container Service Classic, for

Figure 4: Pipeline for cloud deployment: the streamlined sequence of automation steps for Oracle Cloud

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://curl.haxx.se/
https://docs.oracle.com/en/cloud/iaas/container-cloud/conta/toc.htm

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

40

//microservices and containers /

the given parameterized version, based on the newly created image.

Listing 3: Creating a new service (indented lines are continuations of the previous line)

curl -ski -X "POST"

 -H "Authorization: Bearer ${BEARER}"

 "https://${CLOUDIP}/api/v2/services/"

 --data "@${WORKSPACE}/new-service.json"

The command uses a JSON ile as input, and is available online.

After the service is created, I need to create a new deployment from the service. The

deployment is a running instance of the service. The command for creating a new deployment

on the Oracle Cloud service is shown in Listing 4.

Listing 4: Creating a new deployment (indented lines are continuations of the previous line)

curl -ski -X "POST"

 -H "Authorization: Bearer ${BEARER}"

 "https://${CLOUDIP}/api/v2/deployments/" \

 --data "@${WORKSPACE}/create-deployment.json"

The command again uses a generic JSON ile as input.

After the pipeline is completely processed (you can ind the complete pipeline ile here), the

container based on the new version of the Docker image runs and can be inspected in the cloud

console (see Figure 5; don’t be surprised by the names—I like cats).

The change is now live and available in the cloud. Now you have to check the public

web page to determine whether the new content is really available. Figure 6 shows that it is

working correctly.

Conclusion

This completes the journey of bringing code changes into production—based on tools such

as Jenkins and Docker while emphasizing DevOps concepts and tools. This article shows how

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/michaelhuettermann/sandbox/blob/master/all/src/main/resources/jenkins/oracle-cloud/new-service.json
https://github.com/michaelhuettermann/sandbox/blob/master/all/src/main/resources/jenkins/oracle-cloud/create-deployment.json
https://github.com/michaelhuettermann/sandbox/blob/master/all/src/main/resources/jenkins/oracle-cloud/pipeline.groovy

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

41

//microservices and containers /

deployment via pipelines and stages transitions the changes and deploys them to the cloud fol-

lowing typical best practices. </article>

Michael Hüttermann is a Java Champion and an expert in continuous delivery, DevOps, software coniguration

management, and application lifecycle management. He has written four books, including DevOps for Developers

(Apress) and Agile ALM (Manning Publications). In 2017, he was named an Oracle Developer Champion.

Figure 6: Checking whether the new content is available

Figure 5: Visualizing and working on deployments in the Oracle Cloud Infrastructure

Container Service Classic console

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

42

//microservices and containers /

A
s many developers have learned, code modularity is more than just deining Java pack-

ages. It’s about specifying precisely which code is imported, which is shared publicly,

and which is to be kept hidden. Proper modules also deine understandable contracts that give

insight into how shared code will behave and interact (Figure 1).

With Java SE 9, you can now modularize both Java applications and the Java platform itself.

Proponents of the Open Service Gateway Initiative (OSGi) have been modularizing Java applica-

tions since the early 2000s, but there

are key diferences between the

two approaches. In this article, I’ll

compare OSGi and Java 9 modular-

ity, enumerate the strengths of each,

and conclude with an example of

how to use them together.

Although Java 9 implements

much of the modularity that OSGi

ofers, there are cases where OSGi

its especially well. Examples include

some private cloud implementa-

tions, Internet of Things (IoT) solu-

tions (especially for device-side IoT

gateways), applications that it a

Working with OSGi and
Java 9 Modules
Integrating two module systems whose benefits complement each other

ERIC J. BRUNO

Figure 1: Modularity defines precisely how components are
published and used, along with contracts for proper usage.

Module A

Contrac ts

Module B

Module C

Class B

Class A

My Application

Package A

Package B

Dependencies

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

43

//microservices and containers /

plugin model (such as the Eclipse IDE), and those designed for ongoing extensibility. Still, the

Java 9 module system has an advantage in that it beneits from Java compiler support, which OSGi

does not.

Instead of debating the two approaches to modularity, in my opinion it’s better to focus on

the isolation each allows from the component, application, and JVM perspectives. This article

explores integrating OSGi and Java 9 modules into an ideal solution that uses the best features of

both options.

What Is OSGi?

OSGi began as JSR 8 in the late 1990s and has seen its share of political and technical chal-

lenges. OSGi is not just a module system. It’s an entire platform and dynamic component model

for Java. With it you can remotely install, activate, deactivate, and upgrade Java components or

entire Java applications without requiring OS reboots or even a restart of the JVM. It goes so far

as supporting the remote download

and installation of Java components

and supports management policies

that, taken together, form a full

application lifecycle model.

Although dynamic control of

components might not be neces-

sary for enterprise applications,

it is useful in the world of IoT and

embedded systems. However,

you’re free to ignore the dynamic

parts of OSGi and just take advan-

tage of its modularity. Modules

in OSGi are deined by bundles,

each of which comes with a cus-

tom classloader. As a result, private
Figure 2: OSGi provides a layered platform for module
definition and dynamic component control.

Ser vices

Bu
nd

le
s

Lifecycle

Modules

Se
cu

ri
ty

: O
S,

 J
av

a,
 O

SG
i,

Ap
p

OSGi E xecution Environment

Java Vir tual Machine

Operating System

Focus of modularity

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

44

//microservices and containers /

internal classes are not directly visible outside the bundle, thereby increasing true isolation.

Further, objects within bundles are shared through services (Figure 2), deining strict con-

tracts for component usage and communication while further hiding internal implementation.

The result of this isolation is reduced complexity, increased transparency into the running sys-

tem, and greater component reuse.

In Figure 2, which purposely difers from the typical OSGi layer illustration, the main sec-

tion where modularity is deined is outlined in red. Security is shown as a shared responsibility

involving the OS, the JVM, the OSGi environment, and your application code. No single compo-

nent can be completely responsible for security. Listing 1 shows a sample OSGi bundle for a par-

tial math library to be used in a simulator application (four iles are shown in the listing).

Listing 1: Simplified sample OSGi bundle implementation

package example.simulation.math;

public interface SimulationMath {

 double degreesToRadians(double degrees);

 double getTargetAngle(double centerOffset,

 double targetDistanceZone);

 //...

}

package example.simulation.math.impl;

import example.simulation.math.SimulationMath;

public class MyMathImpl implements SimulationMath {

 public double degreesToRadians(double degrees) {

 //...

 return radians;

 }

 public double getTargetAngle(double centerOffset,

 double targetDistanceZone) {

 //...

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

45

//microservices and containers /

 return angle;

 }

 //...

}

package example.simulation.math.impl;

import example.simulation.math.SimulationMath;

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

import org.osgi.framework.ServiceRegistration;

public class MathActivator implements BundleActivator {

 SimulatorMath mathImpl = new SimulatorMathService();

 ServiceRegistration registration;

 public void start(BundleContext bc) throws Exception {

 registration =

 bc.registerService(

 mathImpl.class.getName(),

 requestResponse, null);

 }

 public void stop(BundleContext bc) throws Exception {

 registration.unregister();

 }

}

Manifest-Version: 1.0

Bnd-LastModified: 1516396255825

Build-Jdk: 9.0.1

Built-By: ericjbruno

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

46

//microservices and containers /

Bundle-Activator: example.simulation.math.MathActivator

Bundle-ManifestVersion: 2

Bundle-Name: math

Bundle-SymbolicName: simulation.math

Bundle-Version: 1.0.0

Created-By: Apache Maven Bundle Plugin

Export-Package: example.simulation.math;version="1.0.0"

Import-Package: example.simulation.math;version="[1.0,2)",

 org.osgi.framework;version="[1.5,2)"

Require-Capability: osgi.ee;filter:="(&(osgi.ee=JavaSE)(version=1.6))"

Tool: Bnd-3.5.0.20170929184

With OSGi, you code mostly through plain old Java interfaces and objects, as the SimulationMath

and MyMathImpl illustrate in this set of listings. The notable addition is an OSGi bundle activa-

tor speciic to the simple math library bundle. The OSGi framework creates instances of the

MathActivator class to load the bundle, start it, and later stop it from running, as dictated by the

OSGi lifecycle. The addition of a bundle activator and a short manifest ile is all that’s needed to

plug into the OSGi framework.

Systems can be formed and orchestrated securely by dynamically assembling and control-

ling sets of components. If OSGi ofers a solution for Java modularity, how does Java SE 9 it in?

An Overview of Java Modules

Although there’s more to Java SE 9 than just modularity, Java modularity is certainly the high-

light of the release. Its use was described in detail in a previous issue of this magazine. Java

SE 9 comes with built-in modularity for the Java class libraries—broken into layers—and the

ability to modularize your own application. You can break your applications into modules, pre-

sumably to increase reuse across applications or to support future extensibility. This increases

robustness, because the JVM validates the classpath to ensure all dependencies are present at

compile time.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.javamagazine.mozaicreader.com/SeptOct2017#&pageSet=18&page=0

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

47

//microservices and containers /

As part of deining application modules and speci-

fying which Java class libraries to import, you can

modularize the JVM itself. The result is a custom Java

runtime that strips out everything except what your

application requires, reducing the overall JVM and

application footprint.

As with OSGi, modularity, from a size perspective,

might not be much of an issue for enterprise appli-

cations, but it’s a big issue in the world of embedded

and IoT development—both very important business

topics today.

Similar to OSGi, the Java module system requires

you to specify the modules your application is depen-

dent upon (via the new requires keyword) and those

your application or module exports for others to use

(Figure 3). How it difers is in its implementation. With the Java module system, you deine a

module-info.java ile that outlines all the dependencies, and the Java compiler enforces the

modularity and validates that all of the dependent modules are present at compile time.

Listing 2 shows the module-info.java iles where modularity requirements are deined for

the sample application, which consists of a user interface and math library implementation,

matching what’s shown in Figure 3.

Listing 2: Two sample module source files—one for the math package and a second for the application’s UI

// simulation.math/module-info.java

module simulation.math {

 exports example.simulation.math;

}

...

Figure 3: Example showing Java modules
available in the sample simulation application

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

48

//microservices and containers /

// simulation.ui/module-info.java

module simulation.ui {

 requires simulation.math;

}

For comparison, Figure 4 shows the OSGi ile structure for

an application similar to the Java module version shown in

Figure 3.

Given this overview of both OSGi and Java modules, let’s

examine their strengths and diferences.

OSGi and Java Modules Compared

OSGi creates a plugin model for applications—one such

common application is the Eclipse IDE. OSGi’s success is

largely due to its support for dynamic component control. In this case, plugins or components

(modules deined as OSGi bundles) are loaded dynamically and then activated, deactivated, and

even updated or removed as needed. Presently, this dynamic module lifecycle is not available

with Java modules.

Additionally, compared with Java modules, OSGi supports improved versioning. Other OSGi

advantages are related to isolation. For example, bundle changes require only the direct depen-

dencies to be recompiled, whereas a Java module’s entire layer—along with all child layers—

needs to be recompiled if just one module changes (Figure 5).

Enforcing proper coding practices, Java modules help to hide internal implementations

(private classes) from usage, and even from relection, which is an improvement over earlier

versions of Java. OSGi cannot enforce this. However, although the ability to use internal classes

within OSGi bundles using relection can be considered a weakness, it does allow for depen-

dency injection of private classes, which is more diicult, if not impossible, with Java modules.

The downside is that OSGi bundles still sufer from classpath issues, such as runtime

exceptions for missing dependencies, or arbitrary class loading for packages with the same

Figure 4: Example showing OSGi
modules available in the sample
simulation application

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

49

//microservices and containers /

name (also referred to as split

packages). Additionally, OSGi

requires a classloader per module,

which can afect some libraries

that expect only a single class-

loader. Java modules don’t allow

split packages—which is consid-

ered a big improvement in Java

overall—and don’t have simi-

lar classloader requirements or

restrictions.

One big advantage Java mod-

ules have over OSGi is compiler

support, as illustrated previously in Listing 1. Because the JDK is now modularized, it can reveal

classpath issues at compile time and can be used to create custom JVMs and runtimes to reduce

the total footprint and deployment size. OSGi provides no control over the JVM or its libraries.

IoT support is a strength of both OSGi and Java modules, but for diferent reasons:
■■ OSGi ofers excellent versioning and lifecycle support for modules: they can be remotely

installed, turned on and of, and later updated or removed altogether.
■■ Java modules allow you to create custom, modular JDKs and JVMs for reduced footprint and

deployment size.

For IoT, mobile applications, and embedded development support, to name a few, it makes

sense to integrate OSGi and Java modules.

Integrating OSGi and Java Modules

As I explained earlier, OSGi and Java modules complement one other, even if they weren’t

explicitly designed to. The overall strategy is to use Java modules to modularize libraries (either

imported or exported) and the JVM itself, and use OSGi on top to handle application modularity

and dynamic lifecycle control. Neither technology can ofer as complete a solution on its own,

Figure 5: Java module layers and dependencies propagate
changes, whereas OSGi isolates them.

* = updated

= requires rebuild

Application Layer

Layer 2

Layer 1

JPMS Boot Layer

Desk top UI # Web UI # Mobile UI

Simulation Engine

Math Module

java.base java.sql java.xml

D
ep

en
de

nc
ie

s

Module B API

* Framework

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

50

//microservices and containers /

and the combination extends mod-

ularity support from top to bottom

(Figure 6).

To ensure that existing Java

applications can run with Java 9

as is—that is, without explicitly

deining modules for existing

code—the JVM by default runs in

compatibility mode. It does this

by creating an unnamed mod-

ule in which to place nonmodular

application code. When OSGi is

run on Java SE 9 in compatibility

mode, the JVM automatically cre-

ates an unnamed module per OSGi

bundle, service, and execution

environment. However, explicit

Java modules (those designed to be

real Java 9 modules not in compatibility mode) cannot import unnamed modules. Therefore, to

import OSGi bundles, all OSGi bundles in your application and the execution environment must

be loaded within a matching Java 9 module. Doing this requires the following:
■■ Bundle imports match module requires.

■■ Bundle names match module names.
■■ Bundle versions match module versions.
■■ Private classes might need to be made accessible to all.
■■ A module layer must be deined per bundle dependency in the graph (in which nodes are

modules, and edges deine dependencies between modules). Java 9 layers allow new modules

to be added to a running application, just as OSGi bundles allow new implementations to be

loaded, started, stopped, and even updated within a running application.

Figure 6: When OSGi is layered on top of JPMS, modularity is
extended from the application, to libraries, through to the JVM
itself, with full lifecycle control.

Ser vices

Bu
nd

le
s

Ja
va

M
od

ul
e

Lifecycle

Modules

Se
cu

ri
ty

: O
S,

 J
av

a,
 O

SG
i,

Ap
p

OSGi E xecution Environment

Java 9 Vir tual Machine

Java Platform Management System

Operating System

Focus of modularity

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

51

//microservices and containers /

The advantages of integration include
■■ Increased isolation: changes to a single OSGi bundle

within a JPMS layer likely will not require that layer, or

dependent layers, to be rebuilt.
■■ Bundles inherit Java module restrictions on split pack-

ages and circular dependencies.
■■ Bundles inherit Java module compile-time presence of

all dependencies.
■■ Migration: OSGi bundle deinition and resolution is

maintained “as is,” on top of Java modules.
■■ Compatibility: OSGi bundles will still work indepen-

dently on Java SE 8 and earlier JVMs.

To integrate this way, the Java math module code in the

earlier example will simply extend the OSGi math bundle

built earlier. The package names in the OSGi bundle code

need to be changed slightly, resulting in the combined directory structure shown in Figure 7.

The code in Listing 3 contains the two implementations for the math module. The actual

implementation is in the OSGi bundle, while the Java module simply extends it.

Listing 3: Integrating the OSGi math bundle and the Java math module

package osgi.simulation.math.impl;

import osgi.simulation.math.SimulationMath;

public class MyMathImpl implements SimulationMath {

 // Actual implementation here...

}

package example.simulation.math;

//

// JPMS Module extends OSGi Bundle

Figure 7: The simulation.math Java
module extends the OSGi math bundle
implementations.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

52

//microservices and containers /

//

public class MyMathImpl extends osgi.simulation.math.impl.MyMathImpl {

}

The compile script from the Java module sample application needs to be modiied slightly

to include the updated module source path and the path to the OSGi math bundle ile (in

the classpath):

javac -d out -classpath ./math/target/*.jar --module-source-path

 ./math/src -m simulation.math

The application layer modularity remains the same, because it’s simply loading the Java module

wrappers around the OSGi bundles.

Conclusion

Cooperation beats rivalry. When combined, Java modules and OSGi ofer a more complete and

robust modularity solution than either ofers on its own. For example, without Java modules,

OSGi cannot support compile-time enforcement of dependencies. Likewise, application-level

modularity isn’t as complete and lifecycle control isn’t as robust without OSGi.

Combining both also helps existing OSGi applications leverage a growing number of Java 9

modules, and it ofers a clean integration (and, possibly, migration) path to build OSGi bundles

and services into Java 9 applications.

I’ll close with a inal thought: when polarizing concepts arise in computer science (for

example, the OS wars, the C++ versus Java debate, and framework diferences), it’s often better

to avoid being religious and instead ind ways to work together. </article>

Eric J. Bruno is a lead real-time engineer at Perrone Robotics, where he’s teaching cars to drive themselves.

He has 25 years’ experience in the information technology community as an enterprise architect, developer,

and analyst with expertise in large-scale distributed software design.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

53

//microservices and containers /

B
eing a developer today means dividing products into interconnected microservices—

standalone, always-up programs designed to address a few key functions in an assembly

line of such services. The trouble with this pattern, however, is that much of your setup code is

reinvented based on the last service you wrote. By the time everything is up and running, you

ind you’re likely to have burned as many cycles coaxing your program to work and play nicely

with others as you’ve burned actually writing the key functions.

The open source framework Wookiee reduces the time and clutter of building a commu-

nicative microservice architecture. It takes the error-prone process of initial setup out of the

picture. When I go to set up my next project, I take it for granted that I will be ready for the

main logic with only a few lines of setup. I can also depend on the base Wookiee framework for

hosting health checks, recording metrics, and loading and updating global conigurations.

On top of that, Wookiee also has multiple components that seamlessly incorporate the lat-

est technologies. Java-based frameworks can ill a similar niche, but the lexible and extensible

nature of Wookiee has allowed me to apply it to every type of service I need.

I’ll be walking you through the primary interfaces and key concepts of Wookiee. All code

is in Scala, but it should be understandable if you know Java. In some places, I have simpliied

it to avoid concepts speciic to Scala or to Akka, the open source messaging framework. If you

implement Wookiee on your own, it will be critical to understand the Akka framework, because

Wookiee provides/manages the Actor System and its respective routing. If you see the word

Harness in class or package names, it is because Harness was the original name of Wookiee.

Wookiee: Reducing
Microservice Configuration
An open source framework to set up microservices quickly and with little fuss

SPENCER WOOD

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/oracle/wookiee

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

54

//microservices and containers /

The Wookiee Service

The Service is the root of your application; it is your access point to add your key functions, and

it lets you branch out into using Wookiee’s features:

class MyMicroService extends Service

As you can see, implementing the Service interface is the only required code integration. Now,

you point to a coniguration ile that lets you tweak your Service or Wookiee itself by specifying

the VM option -Dconfig.file:

wookiee-system {

 services {

 internal = "MyMicroService"

 }

}

In this coniguration, I tell Wookiee that there is one Service to initialize. The Java main()

method is actually wrapped by another internal class, HarnessService, and on initialization it

will instantiate MyMicroService along with any Components (which I will cover later). Upon run-

ning the new Service, you’ll see the following on your console:

INFO MyMicroService - The service MyMicroService started

INFO ServiceManager - Service Manager started

INFO ServiceManager - Wookiee Started, Let's Go

You are now set up and ready to start coding. You now have logging access everywhere, HTTP-

accessible health checks and pings, coniguration loading/watching, local Akka messaging, and

helpful utility functions. You can even connect a companion test library that will let you spin up

a mock Wookiee Service for build-time integration testing.

Next, I will examine the extra functionality you can add with Components.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

55

//microservices and containers /

Wookiee Components

Components are modular living libraries. That is, they spin up before your Service and allow you

to set up and manage other libraries, features, or technologies. A Service can have any number

of Components, and a Component can be designed to do anything. The Wookiee community

has already open sourced a few Components that add helpful features, such as metrics. In the

Component code below, I create a connection to a database and receive queries with it:

class MyDBQueryComponent(name: String) extends Component(name) {

 val dbConnection = DBConnection(config).start()

 def receive = {

 case DBQuery(queryString) =>

 // run the query that was sent against the

 // database connection that was initialized

 val dbQueryResult = dbConnection.query(queryString)

 sender ! dbQueryResult

 }

}

In this code, I establish a connection to the database, dbConnection, and then I am ready to

handle queries from the Akka Actor receive block (which inlows messages). Results return

to their original sender, which could exist anywhere in your Wookiee Service. There are many

other possible applications of Components, which begin to become recognizable as you envision

Wookiee-based architectures. Figure 1 demonstrates how a normal Wookiee architecture incor-

porates a set of Components that load in parallel before it starts the Service.

To imagine your next Component, think back to a time you went to build a service that was

accessible externally via HTTP. First, you selected a library that it your needs. Next, you set up

and conigured an HTTP server class that needed to be passed around. And most HTTP librar-

ies would require you to compose complex routing trees that are diicult to split across classes.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

56

//microservices and containers /

Once that was done, you still had other services to write before your product worked end to end,

some of which needed HTTP servers of their own. This is a perfect situation for putting all of

your interactions with the chosen library into its own Component.

Components can also be built to do things that are normally reserved for the service-

speciic startup logic—for instance, starting up technologies or connections to servers. They

can even exist as their own pseudo-service running alongside your service and, for example,

accepting messages to process and respond to independently.

There are numerous possibilities for Components, such as a supervised connection to a data-

base with APIs for querying; managed access to a health-monitoring service; possibly a clus-

ter Component that messages instances of itself on other servers; or a metrics coordinator that

records timings and counts or one that connects to your big data stores, allowing access from any

Service. As the next evolution of libraries, Components seek to widen your applications.

Wookiee Commands

When you are communicating using Wookiee, the irst step is the Command. As with Services

and Components, you make your own Command by extending an interface. The snippet below is

simpliied (the actual version allows more lexible marshaling and asynchronous processing):

class MyStringCommand extends Command {

 def execute(bean: CommandBean): CommandResponse = {

 CommandResponse("Replying")

Figure 1: Startup of a Wookiee application

Component

Component

Component

Main
Class

Service

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

57

//microservices and containers /

 }

}

MyStringCommand, like all other Commands, is set up to handle messages sent to it. The messages

are processed in the execute method, and a response is returned to the original sender of the mes-

sage. These messages can come from an external HTTP or WebSocket entity, another Wookiee

Service, or even from any other internal class (Figure 2). Replying is optional, and Commands can

process more than one request at a time—acting like a thread pool for parallel processing.

Communication between Services depends on Zookeeper and Akka Remote—tools for regis-

tering cluster state and sending messages between server nodes. Wookiee wraps these tools using

the Discoverable Command interface, which enables Commands to be seen by other Services and

exchange messages. You can think of it as the ability to call a function in a class running on a dif-

ferent server. Getting this functionality is as easy as using the following extends statement:

Figure 2: Messages can come from various external and internal sources.

External

WebSocket

Command

B1

Service B

Service A

Command

A1

Command

B2 Command

A2

HTTP

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

58

//microservices and containers /

class MyStringCommand extends Command with Discoverable

The Command is then ready to receive from other Services on which it must act. With the

setup complete, you are clear to start sending messages to your new MyStringCommand. The

CommandHelper and its extension, the DiscoverableCommandExecution (from the Wookiee Zookeeper

Component), enable you to make calls to remote and local Commands, respectively:

class MyStringCommandCaller extends

 Actor with DiscoverableCommandExecution {

 ...

 executeCommand("MyStringCommand", bean)

 executeRemoteCommand("/other/service/path", "MyStringCommand", bean)

 ...

In addition, Commands themselves are accessible through HTTP or WebSockets using one

of the premade Components that support HTTP. (Colossus, Akka HTTP, Spray, and Socko

are currently supported.) Using supported premade Components is usually as easy as add-

ing one more layer of inheritance onto your class and specifying the endpoint that the

Command should match. In the following example, you would be able to reach the execute

method of the MyHttpAccessibleGetCommand by sending an HTTP request to your Service on the

/endpoint/to/match/over/http path.

class MyHttpAccessibleGetCommand extends Command with AkkaHttpGet {

 override def path: String = "endpoint/to/match/over/http"

 ...

Using a Service with Commands is a great way to connect your microservices. Commands take

advantage of the lexibility of Akka Actors to route requests and messages cluster-wide, and

they are usually the external point of entry for any processing on the Service.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

59

//microservices and containers /

A Wookiee About the Galaxy

The Wookiee Service can be shrunk into a single JAR ile for hosting anywhere with all its

dependencies, such as in a Docker container. Using a series of DevOps tools, my organization’s

vision has been to raise entire environments of Wookiee Services on Docker containers at build

time to allow for automated testing and veriication of code changes in a productionlike eco-

system. This enables QA to sign of on code changes soon after their completion, followed by a

release to production right after—thereby delivering on the promise of continuous delivery.

In speaking about Commands, I addressed communication between Wookiee Services

through Remote Commands. It is possible to go a step further in connecting our applications

by using the Cluster Component. This Component allows you to send messages on topics that

broadcast to all Services that subscribed to that topic. The result could be dozens of intercon-

nected Services constantly sending notiications and state changes between each other. You

could even use such a framework to create a reactive architecture that waits for state changes

and propagates them through a cluster of Wookiee applications rather than using traditional

method calls.

Letting the Wookiee Win

In my organization, I face diverse engineering challenges, from many-user application admin-

istration to demanding big data collection and querying. In every case, my organization has

been able to describe code solutions using a common vocabulary of Service, Component, and

Command. With this model, we have avoided many of the pitfalls inherent in creating setup

logic for each new application. With the help of tools such as Wookiee, developers eventually

will be able to take for granted that their next microservice can go from an empty repository to

operational quickly—possibly even in minutes. </article>

Spencer Wood is the big data democratizer at newly acquired Oracle Ininity, the next-generation stream-

ing infrastructure for Oracle Marketing Cloud. For the last ive years, he has been building performant, robust,

ininite-parameter streaming big data products. He has maintained Wookiee since its inception.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

Register Now
Oracle Code is BACK! | 1-Day, Free Event

developer.oracle.com/code
Coming to a city near you:

• DevOps, Containers, Microservices, and APIs

• MySQL, NoSQL, Oracle, and Open Source Databases

• Development Tools and Low Code Platforms

• Open Source Technologies

• Machine Learning, AI, and Chatbots

Explore the Latest Developer Trends:

https://developer.oracle.com/code
https://developer.oracle.com/code

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

61

//jvm languages /

G
roovy has always been easy for Java developers to learn, partly because the language syntax

is a natural extension and simpliication of Java, and partly because virtually all Java syntax

also compiles in Groovy. In fact, it’s sometimes an amusing demo to simply change a Java class

to Groovy by changing the ile name from .java to .groovy and watching it compile without

problems. While the result might not be idiomatic Groovy, the demo shows how easy it is to port

code from one language to the other.

This situation changed with the introduction of JDK 8, because Java added syntax for

lambda expressions and method references that don’t it the Groovy model. While Groovy sup-

plies closures where Java expects lambdas, it was considered unfortunate that the complete set

of Java syntax no longer can be compiled in Groovy.

Along with other improvements in Groovy 3.0, with the introduction of the new Parrot

parser, Java syntax once again works in Groovy. Groovy 3.0 is in alpha at the moment (specii-

cally, 3.0.0-alpha-1). The release notes show the direction the core team is taking, and feedback

is welcome. This article reviews many of the new features and examines some existing features

of Groovy that you might not know about.

Version Numbers

Groovy is an Apache project, which means it follows a semantic versioning scheme. That is, the

irst number is the major version, the number after the irst dot is the minor version, and bug

ix versions come after the second dot. As of early 2018, the current stable version of Groovy is

2.4 and the latest point release is 2.4.13. The 2.4 line is stable and efective, but there are major

changes coming soon.

Groovy 3.0: What’s Coming
One of the most popular JVM languages adds handy new features.

KEN KOUSEN

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://groovy-lang.org/

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

62

//jvm languages /

The next planned release in the 2.x line is 2.5, which is currently in beta. The biggest addi-

tion in 2.5 is the new macro capability, discussed below, which converts simple methods into

abstract syntax tree (AST) transformations.

Except as I explain in a moment, the plan is to jump from version 2.5 to 3.0. Groovy 3.0 will

include the Parrot parser and support the functional syntax in the Java 8 release. The Java syntax

for lambda expressions and method references will then work in Groovy without modiication.

Version 3.0 will also be the irst version of Groovy that requires JDK 8 as the minimum JDK

level. Because some developers still might not be able to move to JDK 8, the Groovy team decided

to back-port as many of the new features as possible into Groovy 2.6, which will run on JDK 7.

That means 2.6 will be, at best, a temporary solution, but better than nothing for those developers

who need it. The speciic list of features to be back-ported to version 2.6 is still under discussion.

Let’s look at some new features. In the rest of this article, I presume you have some working

familiarity with Groovy.

Functional Groovy

Groovy 2.x includes several functional features. Because most of the features were developed

prior to the release of JDK 8, they use a slightly diferent syntax than that found in Java.

For example, the simple map/ilter/reduce paradigm is implemented in Groovy using meth-

ods deined directly on collections. The Java map method is called collect in Groovy, while filter

is findAll, and reduce is inject.

List nums = [3, 1, 4, 1, 5, 9, 2, 6, 5]

assert nums.collect { it * 2 } // [6, 2, 8, 2, 10, 18, 4, 12, 10]

 .findAll { it % 3 == 0 } // [6, 18, 12]

 .sum() == 36

(Unfortunately, the collect method name was established for mapping operations long before

Java used the same name for the operation in the Stream interface that converts streams

into collections.)

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

63

//jvm languages /

As a reminder, the closure syntax in Groovy uses braces to wrap the entire expression, and

if you are using a single-argument closure without deining a dummy name, the variable it is

used by default.

These days, Java 8 and above can do this same procedure using streams. The analogous code

in Java would be this:

List<Integer> nums = Arrays.asList(3, 1, 4, 1, 5, 9, 2, 6, 5);

int sum = nums.stream()

 .mapToInt(n -> n * 2)

 .filter(n -> n % 3 == 0)

 .sum();

System.out.println("The sum is " + sum);

The mapToInt method on Stream takes a lambda expression representing a java.util.function

.Function interface and produces an IntStream. The filter method takes a java.util.function

.Predicate as an argument and returns a new IntStream, which includes the sum method to get

the inal result.

If you want to use streams in Groovy, the only diference is that where the Java methods

expect functional interfaces, you provide Groovy closures, as in the following example:

assert nums.stream()

 .mapToInt { it * 2 }

 .filter { it % 3 == 0 }

 .sum() == 36

Here, the arguments to the Java stream methods mapToInt and filter are Groovy closures.

If you use Groovy versions that support the new Parrot parser, you can supply Java lambdas

instead, in any of the legal forms. For example:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

64

//jvm languages /

assert nums.stream()

 .mapToInt((n) -> n * 2) // Expression lambda

 .filter(n -> { // Block lambda

 return n % 3 == 0

 })

 .sum() == 36

Note the use of the expression lambda syntax, which does not require either braces or a return

statement, in the mapToInt intermediate method on stream. Just to show the alternative, a block

lambda was used in the filter method.

You can also use Java method references. Groovy uses the ampersand operator (&) as a

way to refer to methods, but Java uses a double colon (::). For example, one of the additions

to the API in Java 8 was the static sum method in the Integer class, which can be used as a

BinaryOperator argument to the reduce method. The following code is written in Groovy, but

uses the standard Java syntax:

assert nums.stream()

 .mapToInt(n -> n * 2)

 .filter(n -> n % 3 == 0)

 .reduce(0, Integer::sum) == 36 // BinaryOperator

The point is that all the Java syntax works with the new Groovy parser. Groovy adds the ability

to add default parameter values to lambdas, too.

Groovy goes well beyond what Java provides. For example, Groovy has AST transformations

that generate useful code at compile time. Consider the classic Fibonacci calculation, which is

easy to do ineiciently.

@Memoized

long fibonacci(long n) {

 if (n < 2) 1

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

65

//jvm languages /

 else fibonacci(n - 1) + fibonacci(n - 2)

}

The key is the @Memoized annotation, which triggers a corresponding AST transformation. Any

evaluation of the fibonacci method deined this way will involve many repeated calculations,

even for small arguments. For example, fibonacci(5) = fibonacci(4) + fibonacci(3) =

fibonacci(3) + fibonacci(2) + fibonacci(2) + fibonacci(1) and so on.

To prevent the combinatorial explosion in the number of repeated calculations, the

@Memoized AST transform generates a cache of values, in which the keys are the arguments

and the values are the results of evaluating the operation. That means each computation of

fibonacci(n) is stored in a map of n to the result. With the AST transformation applied, it’s fast

and easy to compute higher values, such as

assert fibonacci(100) == 1298777728820984005

Another AST transformation provided in the Groovy standard library is @TailRecursive. If you

can write an algorithm in such a way that the last evaluated expression is a recursive call with

diferent arguments, the transform will convert the recursive calls into iterative ones.

For example, see the following factorial calculation:

import groovy.transform.*

@TailRecursive

def fact(n, acc = BigInteger.ONE) {

 n < 2 ? acc : fact(n - BigInteger.ONE, n * acc)

}

def result = fact(70000)

println "$result".size() // 308,760 digits

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

66

//jvm languages /

Note the use of Groovy’s optional arguments as well—another underrated feature.

Groovy also has closure currying, closure composition using the shift operators, and

more. Before going on to some of the other additions to Groovy, I will show you what happens

beneath the covers with AST transformations, using macros as an example.

Macros

First, a note on terminology. Groovy uses regular Java annotations to trigger code modiications

done by the parser at compile time. The compile-time changes are called AST transformations,

and for each annotation, such as @ToString, there is a corresponding AST transformation class,

org.codehaus.groovy.transform.ToStringASTTransformation. The transformation class visits the

various nodes of the syntax tree and modiies them as needed. Writing a transformation class

involves writing the node-manipulation code (creating nodes, adding them to the tree, and so

on), and thus requires deep knowledge of how the compiler generates the AST in the irst place.

(Although there are various utility and builder classes available to help, writing an AST trans-

formation is a tedious process.)

What Groovy macros enable you to do is to write the transformation code as a regular

Groovy method wrapped inside a macro block. The compiler then converts the provided meth-

ods into the detailed node-manipulation code for you.

Using an AST transformation is easy. For example, here the @ToString annotation is added to

a plain old Groovy object (often referred to as a POGO).

import groovy.transform.*

@ToString

class Person {

 String first

 String last

}

The @ToString annotation triggers an AST transformation (via the ToStringASTTransformation

class) that generates a toString method during the compilation process and adds it to the com-

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

67

//jvm languages /

piled bytecodes. In this case, the generated code returns the fully qualiied class name, followed

by the values of the attributes from the top down, wrapped in parentheses:

Person pk = new Person(first: 'Paul', last: 'King')

assert pk.toString() == 'Person(Paul, King)'

(Note: Paul King is one of the Groovy core team members, as well as one of the lead coauthors of

the book on Groovy 2.x, Groovy in Action.)

To see some of the details, load the POGO into the Groovy Console, which comes with the

Groovy SDK, as I’ve done in Figure 1.

Under the Script menu of the Groovy Console, there is an entry called “Inspect AST.” This

opens the Groovy AST Browser, which shows the generated nodes in the tree, some of which

are shown in Figure 2.

Figure 1: Code that will be converted into ASTs in Figure 2

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.manning.com/books/groovy-in-action-second-edition

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

68

//jvm languages /

The source code for the transformation class, which can be found on Github, shows

the details of the transformation and is far too long to include here. The source consists

of more than 200 lines that work with instances of classes such as VariableExpression,

MethodCallExpression, FieldNode, PropertyNode, BlockStatement, and so on, which combine to

generate the tree shown in Figure 2.

The beauty of the new macro approach is that much of the code in the transformation class

can be rewritten as normal Groovy statements wrapped in a block called macro. The Groovy

language documentation shows a trivial example where AST transformation code such as

ReturnStatement code = new ReturnStatement(new ConstantExpression("42"))

can be replaced with

ReturnStatement simplestCode = macro { return "42" }

Figure 2: AST tree for the code in Figure 1

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/groovy/groovy-core/blob/master/src/main/org/codehaus/groovy/transform/ToStringASTTransformation.java
http://docs.groovy-lang.org/docs/groovy-2.5.0-beta-2/html/documentation/#_macros

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

69

//jvm languages /

Life isn’t usually that simple, but I hope this gives you an idea how much easier it will be to work

with macros. It’s not a capability that is likely to change what Groovy developers do every day,

but it will make the creation of AST transformations easier.

Groovy already includes a wealth of useful AST transformations, triggered by annotations

such as @Canonical, @Delegate, @Immutable, @InheritConstructors, @Slf4j, @TypeChecked, and

@CompileStatic. The new macro capability will make it much easier to create many more.

Traits

Another major addition to Java 8 was the ability to deine default and static methods inside

interfaces. While the Parrot parser will support them as well, at least in some form, Groovy

already has something that does this and more: traits.

Groovy traits are used like interfaces, but their methods can contain implementations, just

like Java’s default methods. Traits can also have state, however, which Java interfaces cannot.

The Groovy documentation contains several simple examples, along with the rules and

restrictions on their usage, but here is an example from the Grails framework. Grails 3 is based

on Spring Boot, and it provides a powerful object-relational mapping API called GORM that

works with both relational and NoSQL databases. The testing framework has recently been

refactored to use traits.

Here is the beginning of a test of a Grails controller. The controller receives HTTP requests

by mapping a URL to a controller operation, known as an action. The declaration of a controller

test, which is auto-generated by Grails when you deine a controller, looks like this:

class QuestControllerSpec extends Specification

 implements ControllerUnitTest<QuestController>, DomainUnitTest<Quest> {

Both ControllerUnitTest and DomainUnitTest are traits, and are implemented by the class the

same way interfaces are. The source code for ControllerUnitTest, for example, starts this way:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

70

//jvm languages /

@CompileStatic

trait ControllerUnitTest<T> implements

 ParameterizedGrailsUnitTest<T>, GrailsWebUnitTest {

 static String FORM_CONTENT_TYPE = MimeType.FORM.name

 static String XML_CONTENT_TYPE = MimeType.XML.name

 static String JSON_CONTENT_TYPE = MimeType.JSON.name

 static String HAL_JSON_CONTENT_TYPE = MimeType.HAL_JSON.name

 static String HAL_XML_CONTENT_TYPE = MimeType.HAL_XML.name

 // … other constants ...

 private T _proxyInstance // instance attribute

It then has various methods such as

@CompileStatic(TypeCheckingMode.SKIP)

Map getModel() {

 request.getAttribute(

 GrailsApplicationAttributes.CONTROLLER)?.modelAndView?.model ?: [:]

}

Note the use of the @CompileStatic AST transformation, which triggers the corresponding AST

transformation and uses compile-time checks in the style of Java to perform static compila-

tion, thus bypassing the Groovy meta object protocol. The getModel method uses Groovy’s safe

navigation operator, ?, and the so-called Elvis operator, ?:. Other methods in the trait let you

retrieve the view, the controller, and more. By using traits, the test class includes many pow-

erful capabilities at compile time. In Groovy 3.0, default methods in Java interfaces are imple-

mented using traits.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

71

//jvm languages /

Miscellaneous Features

Groovy 3 includes a wide range of smaller changes that are interesting. Some are trivial exten-

sions used to make it more Java-friendly, including

■■ A do/while loop

■■ Java-style for loops with multiple looping variables

■■ Java-style array initialization

■■ Java’s try-with-resources syntax

Each of these could be done more idiomatically with Groovy alternatives, but it’s convenient

to be able to use the Java versions if you’re still learning.

Some of the new additions are simple. For example, you can use an exclamation point on

the in and instanceof operators to test for negation:

assert 45 !instanceof Date

assert 4 !in [1, 3, 5, 7]

The Elvis operator has been in Groovy for a long time. It is a minimal form of Java’s ternary

operator, which uses a supplied value if it’s true according to the Groovy truth, or a default if

not. The new Elvis assignment operator, ?=, lets you check for the Groovy truth and use the

result in an assignment, all in a single statement.

@groovy.transform.Canonical

class User {

 String name

}

User u = new User()

// u.name = u.name ?: 'default' // Elvis operator

u.name ?= 'default' // Elvis assignment

assert u.toString() == 'User(default)'

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

72

//jvm languages /

u = new User('Guillaume Laforge')

u.name ?= 'default' // Elvis assignment

assert u.toString() == 'User(Guillaume Laforge)'

(Guillaume Laforge is the head of the Groovy project.)

Groovy has always supported operator overloading, in that every operator in Groovy actu-

ally invokes a method. For example, the + sign calls the plus method, * calls the multiply

method, and so on. One interesting ramiication of this design is that the == operator does not

check that two references point to the same object, but rather it invokes the .equals method

instead. That intuitive approach means Groovy equivalence is represented by ==. If you want to

see if two references are the same, use the is method.

In Groovy 3.0, however, the === and !== operators now delegate to the is method, so you can

use those operators instead.

There are a few additional features and changes. See the release notes for details.

Conclusion

Groovy is an active, evolving language. Since its move to the Apache Software Foundation,

the number of monthly downloads has more than doubled. The changes coming in Groovy 3.0

include native support for lambda expressions, method references, default methods in inter-

faces, and more. These changes and others will continue to make Groovy a natural way to inte-

grate features to existing Java projects as well as improve new Groovy development. </article>

Ken Kousen is a Java Champion and the author of the books Modern Java Recipes (O’Reilly Media), Gradle

Recipes for Android (O’Reilly Media), and Making Java Groovy (Manning), as well as more than a dozen video

courses at Safari Books Online on topics ranging from Java to Groovy to Spring to Android. He holds BS

degrees in both mechanical engineering and mathematics from MIT, a PhD in aerospace engineering from

Princeton, and an MS in computer science from Rensselaer Polytechnic Institute.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://groovy-lang.org/releasenotes/groovy-3.0.html

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

73

//inside the jvm /

I
n previous issues of Java Magazine, we introduced the basic theoretical concepts of just-in-

time (JIT) compilation as well as the Java Microbenching Harness and the JITWatch open

source tool for visualizing and understanding the basic mechanisms provided in the Java

HotSpot VM. In this article, we dive into escape analysis (EA), which is one of the more interesting

forms of optimization that takes place in the JVM. EA is an automatic analysis of the scope of

variables performed by the JVM to enable certain kinds of special optimizations, which we’ll also

examine. To follow along, you need only basic familiarity with how the HotSpot JVM works.

To understand the basic idea behind EA, let’s look at the following buggy C code—which is

impossible to write in Java, of course:

int * get_the_int() {

 int i = 42;

 return &i;

}

This C code creates an int on the stack and then returns a pointer to it as the return value of

the function. This is incorrect, because the stack frame where the int was stored is destroyed as

get_the_int() returns, so you have no way of knowing what is in the memory location if it is

accessed at some later time.

Completely eliminating the possibility of these types of bugs was a major safety goal in

the design of the Java platform. By design, the JVM does not have a low-level “read memory BEN EVANS PHOTOGRAPH BY

JOHN BLYTHE, CHRIS NEWLAND

PHOTOGRAPH BY DAVID NEWLAND

Escape Analysis in the
HotSpot JIT Compiler
Complex analysis of variables’ scope enables a variety of subtle optimizations.

BEN EVANS

CHRIS NEWLAND

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://bitbucket.org/javamagazine/magdownloads/downloads/2012-05-IntroToJIT-Evans&Lawrey-articleOnly.pdf
https://bitbucket.org/javamagazine/magdownloads/downloads/2012-05-IntroToJIT-Evans&Lawrey-articleOnly.pdf
http://www.javamagazine.mozaicreader.com/MarApr2015#&pageSet=33&page=0
http://www.javamagazine.mozaicreader.com/MarApr2015#&pageSet=33&page=0
http://www.javamagazine.mozaicreader.com/MarApr2015#&pageSet=33&page=0

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

74

//inside the jvm /

at location indexed by value” capability. All heap access is done by ield name (or array index)

relative to a base object. The relevant JVM bytecodes corresponding to these operations include

getfield and putfield.

Now consider the following bit of Java code:

public class Rect {

 private int w;

 private int h;

 public Rect(int w, int h) {

 this.w = w;

 this.h = h;

 }

 public int area() {

 return w * h;

 }

 public boolean sameArea(Rect other) {

 return this.area() == other.area();

 }

 public static void main(final String[] args) {

 java.util.Random rand = new java.util.Random();

 int sameArea = 0;

 for (int i = 0; i < 100_000_000; i++) {

 Rect r1 = new Rect(rand.nextInt(5), rand.nextInt(5));

 Rect r2 = new Rect(rand.nextInt(5), rand.nextInt(5));

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

75

//inside the jvm /

 if (r1.sameArea(r2)) {

 sameArea++;

 }

 }

 System.out.println("Same area: " + sameArea);

 }

}

This code creates 100 million pairs of rectangles of random size and counts how many pairs are

of equal size. During each iteration of the for loop, a new pair of Rect objects is allocated. You

would therefore expect 200 million Rect objects to be allocated in the main method: 100 million

each of r1 and r2.

However, if an object is created in one method and used exclusively inside that method—

that is, if it is not passed to another method or used as the return value—the runtime can

potentially do something smarter. You can say that the object does not escape and the analysis

that the runtime (really, the JIT compiler) does is called escape analysis.

If the object does not escape, then the JVM could, for example, do something similar to an

“automatic stack allocation” of the object. In this case, the object would not be allocated on the

heap and it would never need to be managed by the garbage collector. As soon as the method

containing the stack-allocated object returned, the memory that the object used would immedi-

ately be freed.

In practice, the HotSpot VM’s C2 JIT compiler does something more sophisticated than stack

allocation. Let’s have a look.

Within the HotSpot VM source code, you can see how the EA analysis system classiies the

usage of each object:

typedef enum {

 NoEscape = 1, // An object does not escape method or thread and it is

 // not passed to call. It could be replaced with scalar.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

76

//inside the jvm /

 ArgEscape = 2, // An object does not escape method or thread but it is

 // passed as argument to call or referenced by argument

 // and it does not escape during call.

 GlobalEscape = 3 // An object escapes the method or thread.

}

The irst option suggests that the object can be replaced by a scalar substitute. This elimination

is called scalar replacement. This means that the object is broken up into its component ields,

which are turned into the equivalent of extra local variables in the method that allocates the

object. Once this has been done, another HotSpot VM JIT technique can kick in, which enables

these object ields (and the actual local variables) to be stored in CPU registers (or on the stack

if necessary).

One of the major challenges of the Java platform is the sophistication of the execution

model. In this case, just by looking at the Java source code, you might naively conclude that the

object r1 does not escape the main method but that r2 is passed as an argument to the sameArea

method on r1 and so it escapes the scope of the main method.

Using the previous classiications, it would appear at irst sight that r1 should be treated as

a NoEscape and r2 should be treated as an ArgEscape; however, this would be a dangerous conclu-

sion for several reasons.

First of all, recall that method calls in Java are replaced by the Java compiler with invoke

bytecodes. These operate by setting up the stack with the destination of the call (known as the

receiver object) and with any arguments before the call of the appropriate method is looked up

and dispatched (that is, executed).

This means that the receiver object is also passed to the method being called (it becomes

the this object in the method that is called). So receiver objects also escape the current scope; in

this case, that would mean that both r1 and r2 would be classiied as ArgEscape if EA were to be

applied to the code as it appears in the Java source code.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

77

//inside the jvm /

If this were the whole story, it would seem that the feature of allocation elimination is

extremely limited. Fortunately, the Java HotSpot VM can do better than this. Let’s look at the

detail of the bytecode and see what can be observed.

The method sameArea() is both small (17 bytes of bytecode) and frequently called in the

example, thereby making it an ideal candidate to be inlined:

 public boolean sameArea(Rect);

 Code:

 0: aload_0

 1: invokevirtual #4 // Method area:()I

 4: aload_1

 5: invokevirtual #4 // Method area:()I

 8: if_icmpne 15

 11: iconst_1

 12: goto 16

 15: iconst_0

 16: ireturn

The method makes two further calls to another (easily inlineable) method area():

 public int area();

 Code:

 0: aload_0

 1: getfield #2 // Field w:I

 4: aload_0

 5: getfield #3 // Field h:I

 8: imul

 9: ireturn

Using JITWatch or PrintCompilation, you can see that the calls to area() are indeed inlined into

their caller sameArea() and that method is inlined into its callsite in the loop body of the main()

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

78

//inside the jvm /

method. JITWatch provides a useful graphical representation of which methods will be inlined

(illustrated in Figure 1, which due to its size is available only online).

Remember that the order in which the Java HotSpot VM applies its JIT compiler optimiza-

tions is important. Method inlining is one of the irst optimizations and is known as a gate-

way optimization, because it opens the door to other techniques by irst bringing related code

closer together.

Now that the call to sameArea() and the calls to area have been inlined, the method scopes

no longer exist, and the variables are present only in the scope of main(). This means that EA

will no longer treat either r1 or r2 as an ArgEscape: both are now classiied as a NoEscape after

the methods have been fully inlined.

This might seem like a counterintuitive result, but you need to bear in mind that the origi-

nal source code is not what the JIT compiler will use as a starting point. Without this knowl-

edge, it’s easy to draw the wrong conclusion about what is eligible for EA.

In the previous example, both of these object allocations can avoid using the heap and

instead their ields will be treated as individual values. The register allocator will normally place

the broken-up object ields directly into registers, but if not enough free registers are available,

the remaining ields will be placed on the stack. This situation is known as a stack spill.

To illustrate the power of eliminating heap allocations inside tight loops of code, run this

program with and without EA enabled and inspect the activity of the garbage collector.

Because EA is enabled by default in modern JVMs, to do this, you need to disable EA by

using the JVM switch -XX:-DoEscapeAnalysis.

Here is the garbage collection log with EA enabled (with some extraneous detail removed):

java -XX:+PrintGCDetails Rect

Same area: 18073993

Heap

 PSYoungGen total 95744K, used 13462K

 eden space 82432K, 16% used

 from space 13312K, 0% used

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://bit.ly/2Gc30UH

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

79

//inside the jvm /

 to space 13312K, 0% used

 ParOldGen total 218624K, used 0K

 object space 218624K, 0% used

 Metaspace used 2664K, capacity 4490K, committed 4864K, reserved 1056768K

 class space used 286K, capacity 386K, committed 512K, reserved 1048576K

The log shows that there were no GC events at all—instead, the log just contains the heap

summary as the process exits. If you look at the GC Log from a run without escape analysis

enabled, then things look quite diferent:

java -XX:+PrintGCDetails -XX:-DoEscapeAnalysis Rect

[GC (Allocation Failure) [PSYoungGen: 82432K->480K(95744K)] 82432K->488K(314368K),

0.0008348 secs] [Times: user=0.01 sys=0.00, real=0.00 secs]

[GC (Allocation Failure) [PSYoungGen: 82912K->464K(95744K)] 82920K->480K(314368K),

0.0007404 secs] [Times: user=0.00 sys=0.00, real=0.01 secs]

[Many minor GC collections]

[GC (Allocation Failure) [PSYoungGen: 56352K->0K(55808K)] 56720K->368K(274432K),

0.0004405 secs] [Times: user=0.00 sys=0.01, real=0.00 secs]

[GC (Allocation Failure) [PSYoungGen: 55296K->0K(54784K)] 55664K->368K(273408K),

0.0004537 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]

Same area: 18080278

Heap

 PSYoungGen total 54784K, used 46674K

 eden space 54272K, 86% used

 from space 512K, 0% used

 to space 512K, 0% used

 ParOldGen total 218624K, used 368K

 object space 218624K, 0% used

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

80

//inside the jvm /

 Metaspace used 2665K, capacity 4490K, committed 4864K, reserved 1056768K

 class space used 286K, capacity 386K, committed 512K, reserved 1048576K

In this case, you can clearly see the GC events that are caused by allocation failure as the Eden

area of memory ills up and needs to be collected.

Conclusion

The addition of EA to the Java HotSpot VM is a useful improvement. When EA was in devel-

opment, an additional 3% to 6% performance increase in real-world tests was seen that was

directly attributable to it.

However, for the developer who is also interested in the how and why of platform features,

EA provides an interesting insight: it is a feature that depends upon another optimization (auto-

matic inlining) and is essentially useless without it.

The low-level details and the source code of the JVM’s implementation can be found in

opto/escape.hpp in the Java HotSpot VM source code. It is a modiied form of the algorithm pre-

sented in the “Escape Analysis for Java” proceedings of the ACM SIGPLAN Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA) conference in November 1999 by

Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar, and Sam Midkif.

In addition to allocation elimination, within the Java HotSpot VM there are several other

optimization techniques that depend upon similar scope analysis to that which is used for

allocation elimination. These mostly work with the intrinsic locks that Java provides for each

object. We’ll discuss those optimizations in the next issue. </article>

Ben Evans (@kittylyst) is a Java Champion; a tech fellow and founder at jClarity; an organizer for the London

Java Community (LJC); and a member of the Java SE/EE Executive Committee.

Chris Newland (@chriswhocodes) is a Java Champion. He invented and still leads developers on the JITWatch

project, an open source log analyzer to visualize and inspect just-in-time compilation decisions made by the

HotSpot JVM.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

81

//reactive programming /

I
n the previous issue of this magazine, I presented part 1 of this two-part series. In it, I explained

the reactive components that are available in Spring Framework 5.0, and I built a simple project

to serve up book data. Now that I’ve got data in the data source, I will stand up a REST API. I’ll use

Spring WebFlux, a brand-new reactive web runtime and component model. Spring WebFlux does

not depend on the Java Servlet speciication. It can work independently, with a Netty-based web

server. It is designed, from the bottom up, to work with Publisher<T> instances.

To follow along, you’ll need just a little Spring background, although you’ll be well served

by quickly reading or reviewing the previous article in this series.

Spring WebFlux

With Spring WebFlux, I can use Spring model-view-controller (MVC)–style controllers, as

shown in Listing 1.

Listing 1: A Spring MVC-style REST API

package com.example.libraryservice;

import org.springframework.context.annotation.Profile;

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.PathVariable;

import org.springframework.web.bind.annotation.RestController;

import reactor.core.publisher.Flux;

Reactive Spring: Setting up
a REST API
In part 1, I built a reactive app with the Spring Framework. Now I’ll provide access

to it by quickly implementing a REST API.

JOSH LONG

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.javamagazine.mozaicreader.com/JanFeb2018#&pageSet=61&page=0

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

82

//reactive programming /

@Profile("mvc-style")

@RestController

class BookRestController {

 private final BookRepository bookRepository;

 BookRestController(BookRepository bookRepository) {

 this.bookRepository = bookRepository;

 }

 @GetMapping("/books")

 Flux<Book> all() {

 return this.bookRepository.findAll();

 }

 @GetMapping("/books/{author}")

 Flux<Book> byAuthor(@PathVariable String author) {

 return this.bookRepository.findByAuthor(author);

 }

}

Spring has the concept of proiles. Proiles are essentially labels, or tags, for Spring beans. Beans

in a given proile don’t exist unless that proile is activated. The easiest way to activate a proile

is to use a command-line argument when you run the java command. For example, if you want

to activate all the beans under the profile1 and profile2 proiles, you’d use a command line

like this:

java -Dspring.profiles.active=profile1,profile2 -jar ...

The beneit of the proile, in this case, is that you can have the same HTTP endpoints imple-

mented three diferent ways in the same codebase and activate only one at a time. The controller

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

83

//reactive programming /

in Listing 1 should look familiar to anyone who’s ever used Spring MVC. It might look familiar,

but it is not Spring MVC. I am using a new reactive runtime called Spring WebFlux. The annota-

tions are the same, but the rules are sometimes diferent.

Functional Reactive Endpoints

Listing 1 demonstrates a controller. Spring WebFlux controllers deine endpoint handlers and

endpoint mappings through declarative annotations. The annotations describe how the routing

for a given endpoint is to be handled. The annotations are sophisticated, but ultimately lim-

ited to whatever the framework itself can do with those annotations. If you want more-lexible

request-matching capabilities, you can use Spring WebFlux functional reactive endpoints, as

shown in Listing 2. You can run this code using the frpjava proile.

Listing 2: The same endpoints as in Listing 1 reworked as functional reactive endpoints in Java

package com.example.libraryservice;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.context.annotation.Profile;

import

 org.springframework.web.reactive.function.server.RouterFunction;

import static

 org.springframework.web.reactive.function.server.RequestPredicates.GET;

import static

 org.springframework.web.reactive.function.server.RouterFunctions.route;

import static

 org.springframework.web.reactive.function.server.ServerResponse.ok;

@Profile("frp-java")

@Configuration

class BookRestConfigurationJava {

 @Bean

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

84

//reactive programming /

 RouterFunction<?> routes(BookRepository br) {

 return

 route(GET("/books"),

 req -> ok().body(br.findAll(), Book.class))

 .andRoute(GET("/books/{author}"),

 req -> ok().body(br.findByAuthor(req.pathVariable("author")),

 Book.class));

 }

}

The functional reactive style lets you express HTTP endpoints as request predicates mapped to

a handler class. The handler class implementation is easily expressed as concise Java lambdas.

You can use the default request predicates or provide your own to gain full control over how

requests are matched and dispatched.

In Listing 2, I produce a result and pass it to the body(Publisher<T>) method, along with a

class literal. I need the class literal to help the engine igure out what type of message fram-

ing it should do. Remember that Publisher<T> might produce billions of records—it might never

stop! The producer can’t aford to wait until all records have been produced and only then

marshal the record from an object to

JSON. So, it marshals each record as

soon as it gets it. I need to tell it what

kind of message to look for. In Spring

MVC–style controllers, the return

value (a Publisher<T>) in the handler

methods encodes its generic parameter, T, and the engine can retrieve that generic parameter

using relection. The engine cannot do the same thing for the instance variable passed into

the body method as a parameter, because there is no easy way to retrieve the generic signa-

ture of instance variables. This limitation is called type erasure. The type literal gets you past

this restriction. If you’re using the Kotlin language, things are even more concise thanks to a

The Spring Security framework supports a rich
set of integrations with all manner of identity providers.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

85

//reactive programming /

Kotlin-language DSL that also ships as part of Spring Framework 5. The Kotlin DSL requires

less code and also supports retrieving the generic parameter, thanks to runtime reiication of

inline methods.

Listing 3 shows the same endpoints reimplemented using the Kotlin-language DSL.

Listing 3: The same endpoints using the Kotlin-language DSL

package com.example.libraryservice

import org.springframework.context.annotation.Bean

import org.springframework.context.annotation.Configuration

import org.springframework.context.annotation.Profile

import

 org.springframework.web.reactive.function.server.ServerResponse.ok

import org.springframework.web.reactive.function.server.body

import org.springframework.web.reactive.function.server.router

@Profile("frp-kotlin")

@Configuration

class BookRestConfigurationKotlin {

 @Bean

 fun routes(br: BookRepository) = router {

 GET("/books") { r -> ok().body(br.findAll()) }

 GET("/books/{author}") { r ->

 ok().body(br.findByAuthor(r.pathVariable("author")))

 }

 }

}

Spring Security

Even with this, though, the code is not quite ready for production. I need to address security.

The Spring Security framework supports a rich set of integrations with all manner of identity

providers. It supports authentication by propagating a security context so that application-

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

86

//reactive programming /

level code (method invocations, HTTP requests, and so on) have easy access to the context.

The security context historically has been implemented with ThreadLocal. Thread-local state

doesn’t make a lot of sense in a reactive world. Spring Reactor, which I explored in depth in the

irst article, provides a Context object, which acts as a sort of dictionary. Spring Security 5.0’s

reactive support propagates its security context using this mechanism. Parallel, reactive-type

hierarchies have been introduced to support nonblocking authentication and authorization.

You don’t have to worry about much of this. All you need to know is that in the reactive world,

authentication is handled by an object of type ReactiveAuthenticationManager that has a simple

job: given an Authentication attempt, return a Mono<Authentication> indicating whether the

authentication attempt succeeded; otherwise, throw an exception.

One implementation of the ReactiveAuthenticationManager supports delegating to a user-

provided object of type MapReactiveUserDetailsService. The MapReactiveUserDetailsService

connects your custom username and password store to Spring Security’s authentication. You

might have a database table called USERS or just a hardcoded Map<K,V> of users. By default, Spring

Security locks down the whole application and installs HTTP BASIC authentication. Any attempt

at calling any endpoint will fail unless you provide credentials. By default, all authenticated

principals can access all endpoints.

Let’s introduce a handful of users with various roles. All users will have the USER role, but

only a privileged few will have the ADMIN role. In this newly secured world, let’s say that all

users will be able to view the books they’ve written, but only those with the ADMIN role will be

able to see all the books. Listing 4 shows how this is done. (Let’s ignore for now whether this

domain makes any sense!)

Listing 4: Adding users with the Spring Security configuration

package com.example.libraryservice;

import org.springframework...

@Profile("security")

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.javamagazine.mozaicreader.com/JanFeb2018#&pageSet=61&page=0
http://www.javamagazine.mozaicreader.com/JanFeb2018#&pageSet=61&page=0

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

87

//reactive programming /

@Configuration

@EnableWebFluxSecurity

class SecurityConfiguration {

 @Bean

 ReactiveUserDetailsService authentication() {

 User.UserBuilder builder = User.withDefaultPasswordEncoder();

 return new MapReactiveUserDetailsService(

 builder.username("rjohnson")

 .password("pw").roles("ADMIN").build(),

 builder.username("cwalls")

 .password("pw").roles().build(),

 builder.username("jlong")

 .password("pw").roles().build(),

 builder.username("rwinch")

 .password("pw").roles("ADMIN").build());

 }

 @Bean

 @Profile("authorization")

 SecurityWebFilterChain authorization(ServerHttpSecurity http) {

 ReactiveAuthorizationManager<AuthorizationContext> am =

 (auth, ctx) ->auth.map(authentication -> {

 Object author = ctx.getVariables().get("author");

 boolean matchesAuthor =

 authentication.getName().equals(author);

 boolean isAdmin =

 authentication

 .getAuthorities()

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

88

//reactive programming /

 .stream()

 .anyMatch(ga ->

 ga.getAuthority().contains("ROLE_ADMIN"));

 return (matchesAuthor || isAdmin);

 })

 .map(AuthorizationDecision::new);

 return http.httpBasic()

 .and()

 .authorizeExchange()

 .pathMatchers("/books/{author}").access(am)

 .anyExchange().hasRole("ADMIN")

 .and()

 .build();

 }

 }

This code installs some rules for authentication and authorization. Spring Security can talk to

any number of diferent identify providers, but for our example I use a hardcoded map of user-

names and passwords and associated roles. The ReactiveUserDetailsService bean handles user-

name and password-based authentication.

The authorization bean uses the ServerHttpSecurity builder DSL to say that all requests

have the ADMIN role unless the request is to the /books/{author} endpoint. In this case, I defer

to some custom business logic (captured in the ReactiveAuthorizationManager) that inspects the

path variable in the request and allows the request to proceed if the author in the path variable

matches the currently authenticated user or if the currently authenticated principal is an admin

(that is, it has the role ROLE_ADMIN).

In Listing 5, I’ll try making an HTTP BASIC authenticated call to the service. I’ll use curl to

make the irst request as jlong, a regular USER.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

89

//reactive programming /

Listing 5: Using curl to access the endpoint as jlong

curl -ujlong:pw http://localhost:8080/books/jlong

It won’t work if I try to access http://localhost:8080/books/rwinch, as I do in Listing 6. Only

ADMIN role users can access other endpoints.

Listing 6: Using curl to access the endpoint as rwinch

curl -urwinch:pw http://localhost:8080/books

Deployment

The application is secure and observable. Now I can deploy it. This kind of app is a natural thing

to run in a cloud provider such as Cloud Foundry, an open source cloud platform released under

version 2.0 of the Apache License, which is optimized for the continuous management of appli-

cations. It sits at a level (or two) above cloud infrastructure. It is infrastructure-agnostic, run-

ning on local cloud providers such as OpenStack and vSphere and on public cloud providers such

as Amazon Web Services, Google Cloud, Microsoft Azure, and Oracle Cloud. No matter where

Cloud Foundry is installed, its use is basically the same. You authenticate and then tell the plat-

form about your application workload using the cf command-line interface (CLI) and the cf push

command, as shown in Listing 7.

Listing 7: Using the cf CLI to push the application

cf login -a $CF_API_ENDPOINT -u $CF_USER -s $CF_SPACE -o $CF_ORG

cf push -p library-service-0.0.1-SNAPSHOT.jar java-magazine-library-service

Once the application is up and running, you can access its public HTTP endpoints. You can pro-

vision backing services—such as message queues, databases, and caches—using cf create-

service. You can scale the application up to multiple load-balanced instances by using cf scale.

You can interrogate the application’s metrics, its Spring Boot Actuator endpoints, its health, and

much more, all from the Pivotal Apps Manager dashboard. The application is up and running

now and the clients can talk to it in a secure fashion. Let’s look at that client.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://blogs.oracle.com/developers/cloud-foundry-arrives-on-oracle-cloud

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

90

//reactive programming /

A (Reactive) Client

I have now stood up a REST API. I need to connect a client to the service. While I could use the

Spring Framework RestTemplate, the general workhorse HTTP client that has served develop-

ers well for the better part of a decade, it’s not particularly suited to potentially unbounded

streams of data. The RestTemplate takes a whole payload, reading until the end of a document

or ile, and converts it all in one go. This isn’t going to work if the client is using server-sent

events or even just a really large JSON response. Instead, let’s use the new Spring WebFlux

WebClient, as shown in Listing 8.

Listing 8: Configuring and using an authenticated WebClient

package com.example.libraryclient;

import lombok.AllArgsConstructor;

import lombok.Data;

import lombok.NoArgsConstructor;

import org.springframework...

@SpringBootApplication

public class LibraryClientApplication {

 @Bean

 WebClient client(

 @Value("${libary-service-url:http://localhost:8080/}")

 String url) {

 ExchangeFilterFunction basicAuth =

 ExchangeFilterFunctions

 .basicAuthentication("rwinch", "pw");

 return WebClient

 .builder()

 .baseUrl(url)

 .filter(basicAuth)

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

91

//reactive programming /

 .build();

 }

 @Bean

 ApplicationRunner run(WebClient client) {

 return args -> client.get().uri("/books")

 .retrieve()

 .bodyToFlux(Book.class)

 .subscribe(System.out::println);

 }

 public static void main(String[] args) {

 SpringApplication.run(LibraryClientApplication.class, args);

 }

}

@Data

@AllArgsConstructor

@NoArgsConstructor

class Book {

 private String id;

 private String title;

 private String author;

}

In the code in Listing 8, I conigure the WebClient and preconigure a baseUrl as well as an

ExchangeFilterFunction that authenticates the client with the service. The WebClient gives me a

Publisher<T> for the response, which I then print to the console. The client lives in a separate

process, so I reproduced the Book class deinition here so that the WebClient can bind the JSON

to it as a client-side data-transfer object. In this case, it doesn’t really matter; I’ve got only four

records in the endpoint! This web client is designed to process potentially unbounded data.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

92

//reactive programming /

Although we’re looking at this code for four records, there’s no reason it shouldn’t handle an

unlimited amount of data.

Conclusion

In this pair of articles, I have demonstrated briely how to build a web service with Spring Boot.

I looked at Reactor, Spring Data Kay, Spring Framework 5 and Spring WebFlux, Spring Security 5,

and Spring Boot 2. Spring Boot 2 makes it easy to assemble the various reactive Spring projects

into an application. I didn’t examine the Spring Boot Actuator, but it surfaces operational data

such as metrics, application health, and more. It also has been updated to work seamlessly in a

reactive world.

Spring Boot 2 sets the stage for the upcoming Spring Cloud Finchley. Spring Cloud Finchley

builds on Spring Boot 2.0 and updates several diferent APIs to support reactive programming,

service registration, and discovery works in Spring WebFlux–based applications. Spring Cloud

Commons supports client-side load balancing across services registered in a service registry

(such as Apache Zookeeper, HashiCorp Consul, and Netlix Eureka) for the Spring Framework

WebClient. Spring Cloud Netlix Hystrix circuit breakers have always worked naturally with

RxJava, which in turn can interop with Spring Publisher<T> instances.

Spring Cloud Stream supports working with Publisher<T> instances to describe how mes-

sages arrive and are sent to messaging layers such as RabbitMQ, Apache Kafka, and Redis.

Begin your journey building reactive applications and services with Spring Boot using the

Spring Initializr. The complete code for this article is on GitHub. If you have questions, ind me

on Twitter (@starbuxman) or by email at josh@joshlong.com. </article>

Josh Long (@starbuxman) is a Java Champion and a Spring developer advocate at Pivotal. He is the author of

several books on Spring programming, and he speaks frequently at developer conferences.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://start.spring.io
https://github.com/joshlong/reactive-spring-article

Push a Button
Move Your Java Apps
to the Oracle Cloud

…or Back to Your Data Center

Same Java Runtime

Same Dev Tools

Same Standards

Same Architecture

http://cloud.oracle.com/java

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

94

//ix this /

I
f you’re a regular reader of this quiz, you know that these questions simulate the level of dif-

iculty of two diferent certiication tests. Questions marked “intermediate” correspond to

those from the Oracle Certiied Associate exam, which contains questions for a preliminary

level of certiication. Questions marked “advanced” come from the 1Z0-809 Programmer II

exam, which is the certiication test for developers who have been certiied at a basic level of

Java 8 programming knowledge and now are looking to demonstrate more-advanced expertise.

These questions rely on Java 8. We’ll begin covering Java 9 and 10 in future columns, of

course, and we will make that transition clear when it occurs.

Question 1 (intermediate). The main method that represents the entry point of a typical Java

program must match a particular form.

Which of the following are true? Choose two.

A. The method must be public.

B. The method may be any accessibility type except private.

C. The method may be either an instance method or static.

D. The argument list must be declared exactly as String [] args.

E. The argument list may be declared as String… args.

Question 2 (intermediate). Which are true of a Java program or the JVM? Choose two.

A. The program runs substantially more slowly than an equivalent program written in a lan-

guage that compiles to machine binary code, because Java bytecode is interpreted.

Quiz Yourself
Intermediate and advanced test questions

SIMON ROBERTS

MIKALAI ZAIKIN

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-808
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-809
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-809

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

95

//ix this /

B. Java’s private keyword can be used to help make programs easier to maintain by support-

ing the concept of encapsulation.

C. The JVM garbage collector system ensures that the programmer has zero control over and

zero responsibility for releasing allocated memory.

D. The JVM’s “write once, run anywhere” goal allows creating programs that produce the

same results on difering hardware and under diferent operating systems. However,

achieving this goal imposes some requirements on the programmer and the coniguration

of the host environment.

E. The multithreading features of the Java programming language and the JVM ensure that

programs written with threads always produce the same output, even when they are run on

diferent hardware.

Question 3 (advanced). Given this code:
import static java.lang.System.out;

// line n1

interface Something {

 void execute();

 default void speak() { out.println("Hello!"); }

}

public class TryThis {

 public void speak() { out.println("Bonjour!"); }

 public void go() {

 Something s = () -> this.speak(); // line n2

 s.execute();

 }

 public static void main(String[] args) {

 new TryThis().go();

 }

}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

96

//ix this /

Which is true?

A. The output is Hello!

B. The output is Bonjour!

C. Compilation fails, but if line n1 is altered to @FunctionalInterface then the output is Hello!

D. Compilation fails, but if line n2 is altered to Something s = () -> Something.super.speak();

then the output is Hello!

E. Compilation fails, but if line n2 is altered to Something s = () -> TryThis.this.speak();

then the output is Bonjour!

Question 4 (advanced). Given this code:
 StringBuilder sb = IntStream.iterate(0, x->(x+1)%26)

 .mapToObj(x->new StringBuilder("" + (char)(x+'A')))

 .parallel() // line n1

 .limit(52)

 .collect(

 ()->new StringBuilder(),

 (x,y)->y.append(x),

 (x,y)->y.append(x)

);

 System.out.println(sb);

What is the result?

A. Compilation fails because of an error at line n1.

B. The code throws a runtime exception because of the position of line n1.

C. The code prints out one line containing the sequence of capital letters A through Z

repeated twice.

D. The code prints out one line containing the capital letters A through Z with two of each

letter, but they are not necessarily in order.

E. The code prints only a single, empty line and then exits.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

97

//ix this /

Answer 1. The correct answers are options A and E. The form of Java’s main entry point has been

reined a bit over the years of the language’s history. For example, at one time the method was

not required to be public. However, section 12.1.4 of the Java 8 version of the Java Language

Speciication says the following:

“The method main must be declared public, static, and void. It must specify a formal

parameter whose declared type is array of String.”

Given these requirements, it’s clear that option A must be correct, and options B and C must

be incorrect. However, options D and E are yet to be resolved.

The speciication demands that the formal parameter’s type must be array of String. (If

the term formal parameter is unfamiliar, it simply refers to the argument listed in the method’s

declaration; the term distinguishes that argu-

ment from the actual parameter, which is the value

passed in by an invocation.) Clearly the form pre-

sented in option D deines an array of String, and

it is actually the usual form. But option D demands

this argument must be exactly as shown. It’s rea-

sonable to question this, because the name of the

formal parameter (args, in this case) isn’t usu-

ally syntactically critical. In fact, it turns out that

the ellipsis (...) form, which deines a variable-length argument list, really causes the formal

parameter to be of array type. This means that option E, while unconventional with respect to

Answers

A running Java program is unlikely
to be slower than a program in a
compiled language that uses the same
data structures and algorithms.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

98

//ix this /

the use of the ellipsis form of array declaration, is entirely valid, and we can say that not only

is option D incorrect, but that option E is correct.

Answer 2. The correct answers are options B and D. This question addresses some descriptions

and assumptions about the Java language and execution environment. These kinds of topics are

often where marketing statements get misconstrued into misunderstandings that later contrib-

ute to program errors.

The irst statement suggests that Java is slow. This is a comment we still hear quite a bit,

and it’s worth addressing. Benchmarks are typically diicult to write, and precise comparisons

are often hard to come by. However, the origin of this comment is twofold. First, the earliest

versions of Java did, in fact, interpret the bytecode,

and they were signiicantly slower than languages

that compiled directly to machine binary code.

However, for a long time now, the JVM has used a

mechanism that compiles regions of bytecode into

native machine binary code, while optimizing it for

the platform and the manner of use. Consequently,

a running Java program is unlikely to be slower

than a program in a compiled language that uses the same data structures and algorithms. Of

course, the compilation to native binary code happens after the program has started—the sys-

tem that performs this is called the just-in-time (JIT) compiler, so if the execution time is fairly

short (in the region of a few seconds, for example), you won’t see the beneit and the machine-

speciic compiled language will be faster.

Another part of the puzzle is that starting a Java program involves irst starting the JVM,

and the JVM is a large and complex program that takes signiicant time to load up. Many pro-

grams are much smaller than the JVM. Again, this means that if you take a small machine-

speciic compiled program and compare it with a similar small Java program, the time from

startup to completion will difer. But for a program of any real consequence, the startup time is

typically lost in the overall execution time.

The incorrect idea that the garbage
collector renders Java programs
magically immune to memory problems
has been around for a long time.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

99

//ix this /

Given these observations, option A is incorrect.

The private keyword can indeed be used to implement encapsulation. This can be used

to build a system in which an object is responsible for protecting its own “structural integ-

rity.” For example, in a Gregorian calendar, a month might have 28, 29, 30, or 31 days. If you

ever ind February 31 in a system, something went wrong; that would be a failure of structural

integrity (which, by the way, is our made-up term, not something with formal academic sig-

niicance). Anyway, if you build a Date class (one of your own making, not the ones already

provided) with private day, month, and year ields, you can protect the values and ensure they

are never invalid in this way. So, if the method setDayOfMonth is invoked with the value 31, it

should not set the day to 31 if the month is February (what it does instead won’t be discussed

here). Then, if you ind an invalid date, you’re able to say that there is a bug in the Date class,

instead of having no idea where in the entire program the problem is. The simple expedient of

having a better idea of where to look makes maintenance easier, or perhaps we should say it

makes maintenance less diicult. Because of this, option B is correct.

The idea that the garbage collector renders Java programs magically immune to memory

problems has been around for a long time. Unfortunately, it’s substantially exaggerated, and the

programmer does, in fact, have some inluence over the garbage collection mechanism. That

inluence can cause undesirable efects, including memory leaks, if mishandled.

Speciically, the garbage collector does not reclaim the memory of an object until that

object is “unreachable.” This means that if there is any way the program could use the object—

if any usable reference to it exists in the system—the object is not collected. So, for example,

if a program has a static variable that refers to a list, and it uses that list to store references to

large arrays that it will never again use, the program is causing memory leaks and eventually

may fail. The easiest solution is not to store the unwanted objects. In the more general case,

the programmer can write null over a reference to indicate that the object referred to is no

longer needed.

Given these observations, the programmer does have some control over and some respon-

sibility for releasing objects (or at least not preventing their timely release). Therefore, option C

is incorrect.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

100

//ix this /

Java’s “write once, run anywhere” promise is an important feature of the language’s popu-

larity. Java bytecode is a machine-like language that is not speciic to any particular CPU hard-

ware but is easy and reasonably eicient to execute on any hardware. By compiling the source

language to bytecode instead of to native machine language, the result can be executed on any

computer equipped with a JVM.

In addition to the design and availability of the JVM, the Java system as a whole includes

extensive libraries, and these have been carefully designed to allow for equivalent behavior on

diferent operating systems. However, it’s possible for the programmer to request some actions

that will not work properly across all operating systems and all hardware environments. For

example, while the method java.nio.file.Paths.get allows you to access iles and directories

regardless of the format of the paths

(notably, their separators) on difering

hosts, it’s also possible to try to access

iles in a way that would work on one

operating system, but fail on another.

On the topic of paths and the dif-

ferences in ile system behavior among

operating systems, it’s possible to get

into trouble because Java is (almost)

entirely case-sensitive, so class A and class a would properly be two distinct classes, and they

could coexist in the same package. However, in an operating system that does not distinguish

case in its ile system, this would fail.

More platform variations that can cause trouble if approached clumsily relate to the screen.

Diferent systems will have diferent screen resolutions, and creating windows of ixed sized

could make a program unusable on a small screen. Similarly, diferent hosts have diferent fonts

available, with diferent geometries, and these issues, too, can cause trouble if the programmer

fails to follow some established guidelines. The classic, but tempting, error is to position graph-

ical items in a window using absolute coordinates, rather than using one of Java’s layout manag-

ers. By doing this, critical elements can become obscured and inaccessible on some hosts.

The meaning of names and the this and
super keywords appearing in a lambda body,
along with the accessibility of referenced declarations,
are the same as in the surrounding context (except that
lambda parameters introduce new names).

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

101

//ix this /

Given these diferences, it’s clear that although “write once, run anywhere” generally works

well, allowing you to create platform-independent programs quite easily, there are a few things

you can do that would prevent code from working properly. As a result, option D is correct.

The inal option considers whether Java’s multithreading system can guarantee the same

output on diferent systems. In fact, one issue that arises with threaded code is that a deliber-

ate design efort is necessary if a programmer wants to ensure that the same output is reliably

presented—even with the same machine running the same program several times. One fun-

damental reason is that running two threads concurrently ofers no guarantee that the threads

proceed at the same speed each time they run. Therefore, at the very least, messages output by

these threads might appear interleaved in difering orders. Because the threading system does

not intrinsically guarantee exactly consistent output even on the same machine, it certainly

cannot be guaranteed on diferent machines. Of course, the threading libraries provide tools

that allow a programmer to deliberately create such guarantees when they are needed, but this

requires deliberate design by the programmer and is not simply a result of the language or the

JVM. Because of this, option E must be incorrect.

Answer 3. The correct answer is option B. The essence of this question is that a lambda expres-

sion does not create a new scope for names. In particular, Java Language Speciication section

15.27.2 notes the following:

“Unlike code appearing in anonymous class declarations, the meaning of names and the

this and super keywords appearing in a lambda body, along with the accessibility of referenced

declarations, are the same as in the surrounding context (except that lambda parameters intro-

duce new names).”

In other words, the value of this in the body of the lambda in the code shown in question 3

does not refer to the lambda itself, but instead refers to the enclosing instance of the TryThis

class. As a result, when the lambda invokes this.speak(), it calls the method deined in the

TryThis class, not the default method in the Something interface. As a result, the code prints the

output Bonjour!. Because of this, option B is correct, and option A is incorrect.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

102

//ix this /

Option C suggests that the lambda cannot be created unless the target interface (Something)

is annotated with @FunctionalInterface. While it is a good idea to annotate an interface that’s

created speciically for the purpose of supporting lambdas with this annotation, it’s only a

means of getting a more helpful error report from the compiler. Speciically, if an interface car-

ries this annotation, the annotation will report an error if the interface contains more than a

single abstract method. On the other hand, if the annotation is not present, the errors will show

up whenever any attempt is made to create a lambda expression using the interface. It’s gener-

ally more helpful to have an error reported as close to its cause as possible, rather than being

reported when a consequential problem arises. However, because the existing code does not fail

to compile, and because it prints Bonjour! rather than Hello!, option C is incorrect.

The syntax suggested in option D will not compile. This is an attempt to resolve ambiguous

access to default methods in interfaces. However, this form cannot be used in this situation, so

option D is incorrect.

Option E employs a syntax that is normally used to access shadowed elements of an enclos-

ing class, although in this case, the class of this is already TryThis. The syntax compiles and

does result in the output of Bonjour!. However, option E is incorrect because the original code

does not fail to compile.

Answer 4. The correct answer is option E. This is one of those questions that tend to annoy peo-

ple. It requires you to spot a subtle programming error. However, this is an error that the com-

piler cannot spot and that does not cause any visible problems at runtime (other than a wrong

answer), and you would be hard-pressed to look up a solution in a reference document. Unless

you “just know” the relevant detail, you run the risk of falling into this trap. So, let’s discuss

the various options.

First, the code compiles and executes without any errors being reported. The call to

parallel() is merely a distraction in this question; it is completely correct but entirely irrel-

evant. It doesn’t matter where in the sequence of the stream operations this call is placed;

the call has the same efect regardless. Further, the call afects the entire stream, not merely

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

103

//ix this /

the parts of the pipeline that follow the call.

It’s worth noting that the stream methods

don’t really execute the processing; rather

they conigure the various pipes and process-

ing elements, and this is why the position of

the parallel() call is not signiicant unless

it’s followed by a call to sequential(), (which

would be confusing, but still not an error; such a call merely overrides the efect of the call to

parallel()). Because of these observations, both options A and B are incorrect.

Having established that the code runs, you must determine what it does. The form of the

stream appears ready to print out the sequence of A through Z—that is, all the capital let-

ters in order, with the sequence repeated a second time. Certainly, the stream creates these

values internally.

One question is whether the letters show up in order or not. Using parallel() to run in par-

allel mode can sometimes cause the order of the items arriving at the collector to be altered by

concurrency interleaving, and that might call into question whether option C is correct. In fact,

parallel mode isn’t the same as unordered mode and in this case, the letters should not be jum-

bled by this efect.

Supericially then, it looks like you should expect a bunch of capital letters, but closer

inspection shows the real root of this question. It turns out that the second and third arguments

to the collect method are incorrectly formed.

The three-argument collect method (there’s also a single argument overload) requires that

the second and third arguments work to mutate a “bucket” of intermediate/incremental result

data with additional input. But the bucket that is collecting the result is always the irst of the

two arguments to the operation, and the second argument is the data that should be merged

into that bucket. In this case, the irst argument is merged into the second, which will guaran-

tee that the inal result is empty. That might seem like a “tricky” question, but this mistake is

easy to make if you’re unfamiliar with the requirements of the collect operation, and it’s hard

Using parallel() to run in parallel mode
can sometimes cause the order of the items
arriving at the collector to be altered by
concurrency interleaving.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

104

//ix this /

to debug, because the operations are performed internally to the collect method implementa-

tion. Some things just have to be learned, and once you have learned about this issue (particu-

larly if you learn it the hard way), you become pretty sensitive to the order of those arguments.

Therefore, options C and D are incorrect, and option E is the correct answer.

As an aside, this is the correct form of the collect call:

 .collect(

 ()->new StringBuilder(),

 (x,y)->x.append(y),

 (x,y)->x.append(y)

)

</article>

Simon Roberts joined Sun Microsystems in time to teach Sun’s irst Java classes in the UK. He created the

Sun Certiied Java Programmer and Sun Certiied Java Developer exams. He wrote several Java certiication

guides and is currently a freelance educator who publishes recorded and live video training through Pearson

InformIT (available direct and through the O’Reilly Safari Books Online service). He remains involved with

Oracle’s Java certiication projects.

Mikalai Zaikin is a lead Java developer at IBA IT Park in Minsk, Belarus. During his career, he has helped Oracle

with development of the Java certiication exams, and he has been a technical reviewer of several Java certii-

cation books, including three editions of the famous Sun Certified Programmer for Java study guides by Kathy

Sierra and Bert Bates.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2018

105

//contact us /

Comments
We welcome your comments, correc-

tions, opinions on topics we’ve covered,

and any other thoughts you feel impor-

tant to share with us or our readers.

Unless you speciically tell us that your

correspondence is private, we reserve

the right to publish it in our Letters to

the Editor section.

Article Proposals
We welcome article proposals on all

topics regarding Java and other JVM

languages, as well as the JVM itself.

We also are interested in proposals for

articles on Java utilities (either open

source or those bundled with the JDK).

Finally, algorithms, unusual but useful

programming techniques, and most other

topics that hard-core Java programmers

would enjoy are of great interest to us,

too. Please contact us with your ideas

at javamag_us@oracle.com and we’ll

give you our thoughts on the topic and

send you our nifty writer guidelines,

which will give you more information

on preparing an article.

Customer Service
If you’re having trouble with your sub-

scription, please contact the folks at

java@omeda.com, who will do what-

ever they can to help.

Where?
Comments and article proposals should

be sent to our editor, Andrew Binstock,

at javamag_us@oracle.com.

While they will have no inluence on our

decision whether to publish your article

or letter, cookies and edible treats will

be gratefully accepted by our staf at

Java Magazine, Oracle Corporation,

500 Oracle Parkway, MS OPL 3A-3133,

Redwood Shores, CA 94065, USA.

 World’s shortest subscription form

 Download area for code and

other items

 Java Magazine in Japanese

magazine

By and for the Java community

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:javamag_us%40oracle.com?subject=
mailto:java%40omeda.com?subject=
mailto:javamag_us%40oracle.com?subject=
https://www.sub-forms.com/dragon/init.do?site=ora6028_jfnew
http://bit.ly/2b2tXeb
http://bit.ly/2b2tXeb
http://www.oracle.com/technetwork/jp/articles/java/overview/index.html

